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1. Introduction

Classical MPC schemes are based on quadratic cost functions,
and aim at minimizing the deviation of the system states and inputs
from a given reference. This reference is often selected as a steady-
state optimal operating point with respect to a known economic
performance index. In contrast, Economic Model Predictive Con-
trol (EMPC) is based on directly optimizing the given economic
performance index. As a result, economic MPC schemes usually
outperform tracking MPC schemes especially when the system
operates in transients.

The stability theory of tracking MPC is well developed and
understood, see e.g. [1,2]. However, the stability theory of eco-
nomic MPC is arelatively new field of research and many questions
are still open. It initially considered linear systems and convex
objectives [3,1]. For nonlinear systems, an analysis of average per-
formance bounds was proposed in [4] and average constraints
were considered in [5]. Lyapunov stability of economic MPC was
first proven in [6] under a strong duality assumption and general-
ized in [7,8] under a strict dissipativity assumption. The necessity
of strict dissipativity for optimal steady-state operation has been
analyzed in [9,10]. A stability proof in the absence of terminal
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constraintsis provided in [11]. The extension of the stability results
to periodic systems has been considered in [12-14]. Economic
MPC schemes where stability is enforced without the need of strict
dissipativity have been proposed in [15-19]. Note that, by using
the latter approaches, enforcing stability typically entails a loss of
economic optimality.

In the nonlinear case, the strict dissipativity condition can be
hard to verify, thus making it difficult to ensure the closed-loop sta-
bility of the economic MPC scheme. This paper proposes a strategy
to compute a positive-definite tracking stage cost for nonlinear MPC
(NMPC) so as to yield an NMPC feedback law that is locally equiv-
alent to the one delivered by the economic MPC scheme. In [20],
economic linear MPC has been analysed in the case of no active
constraints at steady state and a method has been proposed for
computing a positive definite stage cost for tracking MPC having
locally the same behaviour as economic MPC. In this paper, we gen-
eralise these results to the case of active constraints at steady state
and nonlinear tracking MPC formulations. Moreover, we prove
that the obtained tracking MPC schemes locally approximate the
behaviour of economic MPC up to first order.

This paper is structured as follows. In Section 2 we introduce
the notation and describe the considered problem. In Section 3, we
present the main result of the paper and a sketch of how it will be
proven in the following sections. In Section 4 we prove the local
equivalence of economic NMPC and an ad-hoc formulated indef-
inite linear MPC. In Section 5 the main result of [20] is briefly
summarised, i.e. every stabilising linear MPC scheme with an indef-
inite stage cost and without active constraints at steady state can be
reformulated as a positive definite linear MPC scheme. Moreover,
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an alternative formulation for convexifying the stage cost is pre-
sented. In Section 6, the case of active constraints at steady state is
analysed, and a convexification procedure is proposed. In Section 7
the results are extended to cover tracking NMPC. An example which
illustrates the theoretical developments of this contribution is pro-
vided in Section 8. Conclusions and outlines for future research are
provided in Section 9.

2. Problem description

This paper is concerned with time-invariant nonlinear discrete-
time systems Xp.1 =f(Xy, uj) that shall be operated such that
constraints h(xy, u;) > 0 are satisfied and the cost Zzozof(xk, u) is
minimised. For notational simplicity and without loss of generality
we assume that £(0, 0)=0 and that xs =0, us = 0 is an optimal steady
state, i.e. it solves the steady state problem

r?iun £(x,u) s.t.  x—f(x,u)=0, h(x,u) > 0. (1)
We define ws = (xs, us) = (0, 0), denote by As and s the optimal
Lagrange multipliers associated with the equality and inequality
constraints of problem (1) respectively. Note that these multipliers
are in general nonzero.

Because the infinite horizon problem is computationally
intractable, MPC approximates the infinite horizon problem by
optimizing over a finite horizon N. We lump all states and controls
in a vector w = (wg, Wy, ..., Wy_1, Wy), With wy = (X, ug), k=
0,...,N—1andwy = xy. In the following, we will refer to the opti-
mal solution by adding to the variable as a superscript the equation
number of the problem it refers to, i.e. w(?) is the optimal pri-
mal solution of Problem (2). In the following, we introduce two
approaches towards the aim of constrained economic optimisation.

The first approach is tracking MPC, where, at each time step,
given the current state Xg, one solves the following optimal control
problem

N-1

min Zkt(xk, ug) + Vi(xn) (2a)
k=0

S.t. X0 — }?0 =0, (Zb)

Xpr1 —f(xg, ug) =0, k=0,...,N-1, (2¢c)

h(xg, u) >0, k=0,...,N—1, (2d)

XN € Xf. (2e)

The stage and terminal cost satisfy £5(x, u) > a(||x ||) for all feasible
u and Vft(x) > o(]1x]|), where « is a Ko, function [21]. Typically, the
tracking stage and terminal cost are chosen as quadratic functions.
In the remainder of the paper, whenever we refer to tracking MPC,
we will implicitly assume such a choice. We define the optimal

primal solution as w(2)(&g) = (xgz), ugz)’ .. .,xﬁ)) and the tracking

MPC feedback as u(Xg) = uff).

An alternative approach to tracking MPC is economic MPC, where
ateach time step, given the current state Xg, one solves the following
optimal control problem

N-1

min Y 60 ) + Vi) (3a)
k=0

s.t.  (2b)—(2e) (3b)

where we define the optimal primal solution as w(3)(%;) =
(fo), uEJB), e xﬁ)) and the economic MPC feedback as u®(Xg) = uEf).

We remark that the terminal cost and constraint in both MPC
Problems ought to be chosen together with the prediction hori-

zon in order to guarantee stability [21,2]. For a given stage cost,

this choice can be made so as to provide a good approximation
of the infinite-horizon problem. For X; = {xs} we also define the
Lagrangian of the economic MPC problem as

N-1
LW, Ay 1) =Y O ) = A4 (icpr = F ok ) = 1 X, )
k=0

= Ao (X0 —Ro) = Ayyq (XN — Xs),

and we denote the optimal Lagrange multipliers as )»Ef) and /Lf).
Throughout this paper we assume that the minimiser of Problems
(1)-(3) exists.

The main difference between economic and tracking MPC is that
the former typically outperforms the latter during transients. How-
ever, proving stability for economic MPC is much more involved
than for tracking MPC. The difficulty stems from the fact that, in
general, £(x,u) # a(||x ||). In this paper, whenever we label a problem
as economic we assume that o € Koo s.t. £(x, u) > (X ||). Stability
proofs for economic MPC typically rely on the concept of rotated
cost. Given a function A(x), we define the rotated stage cost as

L(xp, uge) := €(xp, wge) + Axge) — AU (X, 1)) (4)

Many developments in this paper can be interpreted using this con-
cept of rotation or a generalisation that we will propose. We will
refer to a problem as rotated whenever its stage cost is rotated
and we will call linear rotation the one which uses a linear storage
function. For more details on rotated cost and stability proofs for
economic MPC, we refer to [6,8,10,14] and Appendix A.

Another difference between economic and tracking MPC regards
the applicable algorithms: efficient numerical schemes for fast real-
time NMPC, based on the generalised Gauss—-Newton method, can
in general only be applied to tracking MPC. For these reasons, in this
paper, we aim at computing a positive definite stage cost for track-
ing (N)MPC such that it is locally first-order equivalent to economic
(N)MPC. We state next the main result of this paper.

3. Main result

We introduce first the following key definitions of equivalent
MPC problems.

Definition 1 (Equivalent problems). Consider two MPC problems
A and B and any initial state Xy for which both problems are fea-
sible and have a unique solution satisfying linear independence
constraint qualification (LICQ) and second order sufficitent condi-
tions (SOSC). Denote the optimal feedback laws as u”(Xp) and uB(%y)
respectively. We define the following:

(i) MPC problems A and B are equivalent iff they deliver the same
feedback law, i.e. for all Xg it holds that u®(Rg) = uB(&);
(ii) MPC problems A and B are locally equivalent iff there exists a
neighbourhood A of the origin such that uA(&g) = uB(Xo);
(iii) MPC problems A and B are locally first-order equivalent iff there
exists a neighbourhood N of the origin such that for all Xy € N/
it holds that [uA(Rg) — uB(Ro)ll = O(|IRolI%).

Equivalence (i) implies local equivalence (ii) which, in turn,
implies first-order local equivalence (iii). We will apply equiva-
lence (i) and (ii) to convex problems and only equivalence (iii) will
be applied to nonconvex problems. Throughout this paper, we will
assume that all considered MPC problems are locally stabilising and
satisfy SOSC, such that uAB(0)=0 is unique and u?-B(%y) is unique
for X in a neighbourhood of the origin, but could still be multi-
valued for X far from the origin. For this reason, considering only
the case of unique solutions is not very restrictive and allows us to
establish local equivalence of nonconvex problems.
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The main result of this paper is then expressed in the following
theorem.

Theorem 2. Given any stabilising economic NMPC of the form (3)
satisfying the mild technical assumptions of Theorem 16 in Appendix
B, it is possible to formulate both a tracking linear MPC and a tracking
nonlinear MPC with a positive-definite stage cost which are locally
first-order equivalent to the economic NMPC problem (3), i.e. [|u(%g) —
U&(Ro)ll = O([1Ra1?), for all Xq in a neighbourhood of the origin.

Because of the complexity of the analysis, we will first estab-
lish some intermediate results. The proof of Theorem 2 will then be
given in Section 7. In order to establish it, we will (a) formulate an
economic linear MPC (ELMPC) scheme which is locally first-order
equivalent to economic NMPC (ENMPC), (b) convexify its stage cost
to obtain a locally equivalent linear MPC problem with positive
definite cost (PD LMPC) and (c) formulate a locally first-order equiv-
alent tracking NMPC problem (PD NMPC). This is summarised by
the following scheme:

(iii). i)/(ii

ENMPC (3 ELMPC (6)(5<—>6)PDLMPC 22)&

<PDNMPC (2),
where we denote equivalence in the sense of Definition 1 by using
the symbol « with the type of equivalence as superscript. The
reference to the section in which the equivalence is proven is deliv-
ered as a subscript. In order to clearly distinguish between linear
and nonlinear MPC, we denote them as LMPC and NMPC respec-
tively. Moreover, we define as ELMPC a linear MPC problem with
quadratic indefinite stage cost. By definition, the solution of the
PD LMPC problem, if it exists, is unique. Therefore, by equivalence
(i)/(ii) also the solution of problem ELMPC must be unique. Prob-
lems ENMPC and PD NMPC, instead, can have multiple solutions as
they are nonconvex.

Throughout this paper, we will assume that the reference eco-
nomic MPC scheme (3) is locally stabilising. Note that, whenever
a positive-definite stage cost yielding local first-order equivalence
of tracking and economic MPC does not exist, we do certify that
economic MPC can not stabilising. In this case, operating the sys-
tem at steady state rather than e.g. periodically, is not optimal. We
leave the analysis of such situation for future research and recall
that steady state operation can be enforced by e.g. [20, Remark
4]. As we will prove in Sections 5 and 6, the formal design of the
locally first-order equivalent tracking MPC scheme involves solving
a convex SDP. Note that these computations are done offline and
the online computational burden is the one of a standard tracking
MPC scheme.

In the following, we will construct an ELMPC scheme which is
first-order locally equivalent to the ENMPC scheme.

4. Locally first-order equivalent ENMPC and ELMPC

In this section, we analyse the properties that enforce
ENMPC (3)(21>)ELMPC (6). First, we establish an important prop-
erty relating the economic MPC Problem (3) to the steady-state

Problem (1).

Lemma 3. Consider a stabilising economic MPC formulation of the
form (3) with V(x) the cost-to-go of Problem (3) with an infinite hori-
zon. Assume that (a) the horizon is infinite, or (b) the gradient of the
terminal cost Vi(-) satisfies VVi|y—x, = As and V>V;>V 2V, or (c) the
terminal constraint is Xy = xs. Then, the Lagrange multipliers Ay, [ty of
the MPC problem solved for the initial state Xy = Xs coincide with those
of the steady state problem As, (is.

Proof. The proof is directly obtained by comparing the KKT con-
ditions of the MPC problem and the steady-state problem. Because
the economic MPC problem is stabilising, the primal solution is

Xy =xs and uy =us. Then, by replacing A, = As and 1ty = (45, one obtains
that the KKT conditions are satisfied. O

Note that the result holds both for the original and the rotated stage
cost, provided that the economic MPC problem and the steady-state
problem are formulated using the same stage cost.

In order to formulate the locally first-order equivalent ELMPC
problem, we define

H:=VE Lw. i), q:i= Vi (X, ), (5a)
A= vxkf(xks uk)Ty B:= Vukf(xkv uk)T» (5b)
C = Vi h(xy, uy)", (5¢)

where all expressions are evaluated at the primal-dual solution of
the steady-state Problem (1), i.e. ws, As, (s. Moreover, we used the
fact that the Lagrangian Hessian of Problem (3) is block diagonal,
with each block given by

nx

Vs LW, & 1) 1= V20 )+ M, i V(e )

i=0
ny

—Zﬂk,jvzhj(xks Uy).
=0

Theorem 4. The ELMPC problem
T
. [ & Xk o | Xe
min 5 H +q (6a)
X05 .- XN k=0 U U Ug
Ug, ..., UN-1
s.t. Xg—Xp =0, (6b)
Xpp1 —Axgp —Bup =0, k=0,...,N—-1, (6¢)
Xk
C +e>0, k=0,....,N-1, (6d)
Uy
xy =0, (6e)

is locally first-order equivalent to the ENMPC problem (3).

Proof. The equivalence is a direct consequence of Lemma 17 in
Appendix B.O

Note that, because one can rotate the cost without changing the
primal solution, a new formulation is easily obtained which is also
first-order locally equivalent to ENMPC (3). Because it is simpler to
formulate and analyse, a scheme with no gradient in the cost (i.e.
with g=0) can be of interest. We will establish next that such a
formulation exists only if there are no active constraints at steady
state and can be obtained by rotating the cost using A(x) = A{ x.

Lemma 5. Suppose that the steady-state Problem (1) has no active
constraints. Then the rotated cost L(x, u) with A(x) = AJx has zero
gradient at steady state. If there are strictly active constraints at steady
state, then the following holds:

OL(xy, Uk)‘ o= ul oh(xy, Uk)‘ .
aWk w= s aWk w=
Proof. In the case of no active constraints at steady-state, the

rotated cost coincides with the Lagrangian of the optimisation Prob-
lem (1) evaluated at the optimal Lagrange multipliers, which, by
definition of optimality, has zero gradient at the optimum. If instead
some constraints are active at steady state, the desired equality is
directly obtained by writing the KKT conditions of Problem (1). O
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We just proved that one can rotate the cost by exploiting
the equality constraints. Therefore, rotating the cost using active
inequality constraints might sound appealing. However, we prove
next that in that case the obtained problem would not deliver the
same primal solution as the original one.

Lemma 6. Consider vectors A and L, a vector of fixed parameters 6,
and the two parametric NLPs

n}ﬂi/n flw,0) s.t. gw,60)=0, h(w, 6) > 0. (7)

min  f(w,0)—ATg(w,0)— aTh(w,0) s.t. gw,60)=0,
w

h(w, 0) > 0. (8)

We will call NLP (7) the original NLP and NLP (8) the rotated NLP.
For NLP (7), let us introduce the optimal Lagrange multipliers A(7)(6),
w7)(0) associated with the equality and inequality constraints, respec-
tively. Equivalently, for NLP (8), we introduce A(8)(8) and u(8)(0). Then,
the original and rotated NLPs (7) and (8) deliver the same primal solu-
tion for all 9 iff i = 0. Moreover, it holds that A®)(0) = A(7)(0) — X and
n®6)=u ().

Proof. The proofis obtained by writing the KKT conditions for the
two NLPs. The detailed developments are given in Appendix C. O

An intuitive explanation of Lemma 6 can be obtained as follows.
Consider rotating the cost with respect to a strictly active inequality
constraint, so as to remove the corresponding gradient from the
cost. This makes the constraint weakly active so that Problems (7)
and (8) do not deliver the same primal solution for all parameter
values. Indeed, because the new multiplier becomes zero, the cost
of Problem (8) becomes locally insensitive to relaxing or tightening
the constraint. On the contrary, this does not hold for Problem (7),
as the multiplier is nonzero.

In the following two sections, we will state the conditions for
eLMpC (6)"AVPDLMPC (22). We will analyse first the case of no
active constraints at steady state and we will prove that the equiva-
lence can be obtained by means of a quadratic rotation. Afterwards,
we will consider the case of active constraints at steady-state,
which requires a more involved analysis.

5. Linear MPC without active constraints at steady state

The equivalence ELMPC (6)(l)</—(>“)PDLMPC (22) has been ana-
lysed in [20] for the case of no active constraints at steady state.
In the following, we first summarise the main result of [20], which
states this equivalence. Then, we extend that result by proposing
a new method for computing the positive definite stage cost. This
also makes it possible to prove the necessity of strict dissipativity
with a quadratic storage function for stability of LMPC in the case
of no active constraints at steady state.

5.1. Review of previous results
Let us consider the following LMPC problem where, without loss

of generality, we assume that the linearly rotated stage cost with
zero gradient at steady-state is used

N-1o [ T Q s7] [x 127
min Z— + — Pnxn (9a)
w k=0 2 Uy S R Uy XN
——
=H*0
s.t. Xo — )A(() =0, (gb)

Xgi1 —AXg —Bup =0, k=0,...,N-1, (9¢c)

Xk
C +e>0, k=0,....N—-1. (9d)

Here, we assume that e > 0, such that no constraint is active at steady
state and the gradient of the stage cost at the origin is 0. The predic-
tion horizon N and terminal cost matrix Py are tuning parameters
to be adequately selected, and are not discussed in this paper. For
more details on the topic we refer toe.g. [1,2].

Note that, for the case of H> 0, the equivalence is directly
obtained, and we label as Economic LMPC (ELMPC) the case of
H > 0.While in general it is preferable to formulate LMPC problems
using a positive definite stage cost both for ensuring closed-
loop stability and for computational reasons, the use of indefinite
stage costs does not necessarily result in an unstable closed-loop
behaviour [22].

Theorem 7. Suppose that both (a) the economic LQR formulated
using matrices A, B, H exists and (b) the economic LMPC scheme (9)
is stabilizing. Then, there exist (a) an LQR with positive definite cost
which yields the same feedback matrix as the economic LQR and (b) a
positive definite LMPC scheme which yields the same primal solution
as the economic LMPC scheme (9).

Proof. The proofis givenin [20]. O

Theorem 7 implies that for all stabilising schemes the stage and
terminal cost matrices H, Py * 0 can always be replaced by appro-
priately selected matrices A, Py > 0 without changing the (primal)
solution of the LMPC scheme. In this paper, we will denote by
the term convexification the procedure of computing the positive
definite stage cost.

We define the feedback matrix K and the cost-to go matrix P
as the ones obtained from the LQR formulated using the original
cost. Note that the LQR does not necessarily exist, in which case
the infinite horizon economic problem is not stabilising, and the
system is not optimally operated at steady state. The case of non
optimal steady state operation is out of the scope of this paper and
is the object of ongoing research. Because the choice of P, H is not
unique, it was proposed in [20] to compute them by solving the
following SDP

_min _ JH-1)? (10a)
B.Q.
o s
st. H=|_ (10b)
S R
A>0 (10c)
P>0 (10d)
Q+ATPA—P— (8T +ATPB)K =0, (10e)
(R+B"PB)K — (S+BTPA) =0, (10f)
R+B'PB=R+B'PB, (10g)
S+BTPA=S+BTPA. (10h)

The convexification of the terminal cost matrix is given by Py =
PN —P+ INJ

In the following, we propose a new formulation where fewer
optimisation variables are necessary and the feedback matrix K
does not need to be computed explicitly.
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5.2. Further analysis of the steady-state case with no active
constraints

Let us define 8P = P — P and introduce the linear operator

ATSPA— 8P ATéPB
H(8P) = . (11)
BTSPA  BT4PB

We then define H = H + H(8P). It can be easily checked that this
construction directly enforces Constraints (10e)-(10h). Then, one
can convexify the cost by solving the following SDP which is equiv-
alent to (10)

nglijn IH + H(8P) — I} (12a)

s.t.  H+H(SP) = 0. (12b)
Note that A > 0implies that the cost-to-go matrix P of the LQR com-
puted using H satisfies P > 0. Moreover, no knowledge about the
cost-to-go Por the feedback gain matrix Kis needed in order to com-
pute the stage cost convexification given by H > 0. Note that the
cost function of the SDP is somewhat arbitrary and has been cho-
sen to favour well-conditioned stage cost matrices. However, other
choices are possible and even preferable. They will be discussed in
Section 6.2.

This new formulation of the cost convexification also high-
lights the connection with the concept of strict dissipativity and
rotated cost. In the following, we prove an important implication
of Theorem 7 on the necessity of strict dissipativity. Note that
necessity of strict dissipativity has been proven in [10]. However,
Corollary 8 states that the storage function can be selected to be
quadratic for linear systems with quadratic stage cost.

Corollary 8. Consider an economic LMPC formulation of the form
(9) with no active constraints at steady state. Strict dissipativity with
a quadratic storage function is not only sufficient but also necessary
for the stability of the closed-loop system.

Proof. By Theorem 7, if the economic LMPC (9) with no active
constraints at steady state is stabilising, then there exists a matrix
8P such that H := H + H(8P) > 0. It can be seen that the cost con-
vexification (11) is a nonlinear cost rotation of the form (4) with
storage function A(x;) = —x;(Ska. Therefore, the convexified stage
cost satisfies

T
Xk ~ | Xk
L(x, u) :=£(x, u) + A(x) — A(Ax + Bu) = H
U U

2
= €[lx[%,

with €>0. As a result, strict dissipativity is therefore not only suffi-
cient, but also necessary for closed-loop stability of economic LMPC
with no active constraints at steady state.(]

Note that the original stability proof based on strict dissipativity
[8] considers states and controls to be in a compact set Z. In the
framework of LMPC with no active constraints at steady state, how-
ever, we obtain the stronger result of Corollary 8. Moreover, Eq.
(11) establishes that the convexification procedure is a nonlinear
rotation of the cost. We remark that in the economic LMPC For-
mulation (9) we assumed without loss of generality that the cost
was linearly rotated. Then, in the general case, for economic LMPC
without active constraints at steady state, the rotation of the cost is
given by the composition of a linear rotation and a convexification,
i.e. A(x) = AJ x — xT8Px. In the following section, we turn to the case
of active constraints at steady state.

6. Linear MPC with active constraints at steady state

In this study the
(i)/(i)

ELMPC (6) < 'PDLMPC (22) in the case some constraints are
active at steady state. First, we establish a theoretical framework
for proving the existence of the equivalent PD LMPC formulation.
Subsequently, we provide a practical approach for computing its
stage cost.

section, we equivalence

6.1. Equivalent LMPC formulations with active constraints at
steady state

In the case of a linear system, a quadratic cost and strictly active
constraints at steady state, the cost can in general have a non-zero
gradient at the optimum even after a linear rotation of the stage cost
(cf. Lemma 6). We consider an LMPC problem formulated with the
stage cost rotated linearly by using the Lagrange multipliers cor-
responding to the system dynamics evaluated at the origin, given
by

N-1 T
3 1| Xk Xk T Xk
min 5 H +q (13a)
Y k=0 LUk Ui Ui
s.t. Xg—X0=0, (13b)
Xgp1 —Axy —Bup, =0, k=0,...,N—1, (13¢)
Xk
C +e>0, k=0,...,.N-1, (13d)
U
xy =0. (13e)

We consider a terminal point constraint for simplicity, however,
any formulation satisfying the conditions of Lemma 3 can be used
in our derivation.

We analyse now some local properties of Problem (13), which
hold for a given fixed active set. Note that the problem formulations
we will consider can be too restrictive and inadequate for practical
applications. However, they are helpful for establishing some prop-
erties that can then be exploited in practice. We denote the set of
indices relative to the strictly active constraints at steady state as
As and we assume the Jacobian of the strictly active constraints Ca,
to be full row rank. Note that, the steady state being xs =0, us=0,
the affine term in the active inequality constraints must be zero, i.e.
Cas = 0.

Theorem 9. Let us consider the region Xq of initial states Xy around
the origin for which the optimal active set of Problem (13) includes all
constraints which are strictly active for Xy = 0. Assume that the LMPC
problem

N-1 T
. 1| Xk Xk T Xk
min 5 H +q (14a)
v k=0 k Uk Uk
s.t. Xg—Xp=0, (14b)
Xgp1 —Axg —Bup,=0, k=0,...,N—1, (14c¢)
Xk
Cas =0, k=0,..,N-1, (14d)
Uy
xy = 0. (14e)

is stabilising for all Xy € Xq. Then there exist matrices P and F such
that

H +H(8P) + C/ FCy, > 0.
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Additionally,
ZT(H+H(8P))Z = 0,
holds for any Z with C4,Z = 0, Z"Z=1I and [Cgs Z] invertible.

Proof. For any matrix F, Problem (14) can be reformulated as

o[ ! X X
min Z 3 (H + CJFCa,) +q7 (15a)
Yo o Ug | ~——~— | Uk U
H
s.t. (14b)— (14e). (15b)

By construction, for any %, € Xg, Problem (15) delivers the same
solution as Problem (14). Moreover, because matrix Ca, is full row
rank, there exists a matrix F > 0, such that CASHCAL > 0.

We consider now a series of problems which are in general not
equivalent, but which share some important properties for Xy = 0,
and which will allow us to prove the theorem. We therefore now
focus on the special case Xy = 0. In this setting, Lyapunov stability of
Problem (14) entails that the primal solution of Problem (15)is zero,
i.e. w(13)(0) = w(14)(0) = 0. In the following, we consider a problem
formulation in which we dualise the constraints, i.e. we replace
the original cost with the Lagrangian of the problem. By Lemma 3,
the Lagrange multipliers of Problem (15) with X9 = 0 coincide with
those of the original steady-state Problem (1). Moreover, the primal
solution is not changed by the following linear rotation:

.
Xk _ | Xk T | Xk
H +q
Uje Uj Uje

N-1
Xk
—A{xo+ E — hg (X1 — AXy — Buy) — jug Cag [ ] (16)
U
k=0

N =

J=

N-1
k=

0

N

Uy

=

>EN

= Z H , (17)
o LY

where, by optimality, all linear terms cancel out. Note that our new
cost is given by the Lagrangian function of Problem (15) evaluated
at the optimal Lagrange multipliers.

By using (17) as a cost in the LMPC, we obtain the following
problem

N-1 T
min Z 1) % H e
w 2 |y Uy

k=0

(18a)

s.t. (14b) — (14e). (18b)

(18) _
k
0 and u;, ~’ = 0. We recall that, by an appropriate choice of matrix
F, we obtain CASHC,L > 0 and, because the primal solution is zero,
the Lagrange multipliers associated with the path constraints are
also zero, i.e. ;1(18)(0)=0. As a result, one can remove them without
changing the primal solution for xy = Xg. Then, also the following
problem

1 T
. % 1 Xk | - | Xk
min 5 H
w k=0 Ug Ug

For the initial condition X9 = 0, the unique primal solution is x
(18)
k

(19a)
s.t. Xg—X% =0, (19b)
Xep1 —Axg —Bup =0, k=0,..,N—1, (19¢)
xy =0, (19d)

delivers the unique primal solution xfjg) =0and ugjg) =0forkg =

0. Because this property holds for any arbitrarily long horizon
length N, it must also hold for an infinite horizon. As we prove in
Lemma 18 given in Appendix D, this entails that the infinite horizon
problem must deliver a stabilising feedback matrix. Therefore, by
Theorem 7, the desired property is obtained, i.e.:

3 8P, F st.  H+H(8P)+C] FCy, > 0. (20)

By definition of the nullspace Z, it also holds that

3 6P, s.t.  Z' (H+H(8P))Z 0. (21)

O

Remark 10. The terminal point constraint should be handled with
care, as it might lead to infeasibility if the horizon is shorter than
the amount of states of the system, i.e. N <ny. Moreover, extra care
needs to be taken if the system is not controllable but stabilisable.
The developments of Theorem 9 directly extended to the case of
stabilisable systems and a stabilising terminal cost.

By relying on the result of Theorem 9, we can now formulate the
LMPC problem with positive definite stage cost as

N-1 T
Xk _ | Xk Xk
min Z% S = O R I L (22a)
L U U
s.t. Xg—X =0, (22b)
Xgp1 —Axy —Bup, =0, k=0,...,N—1, (22¢)
Xk
C +e>0, k=0,...,N—1, (22d)
Uk
xy =0. (226)

with H = H + H(8P) + Cj;{s FC,,. We are now ready to formulate the
main result of this section in the following theorem.

Theorem 11. Consider any linear MPC scheme (13) which is stabilis-
ingin the sense of Lyapunov with region of attraction X € X and which
satisfies the mild technical assumptions of Theorem 16 in Appendix B.
Then, the positive definite LMPC scheme (22) delivers the same primal
solution as the original problem for initial conditions X in a neighbour-
hood of the origin, i.e. w(Z2)() = w13(R¢) holdsV R € Xo, where we
define the set Xq as the set of initial conditions X for which the set
of active constraints for both Problem (13) and (22) coincides and
includes all constraints that are active for Xy = 0.

Moreover, if the positive definite stage cost matrix can be computed
using F=0, then the equivalence holds for all initial conditions Xy, i.e.
w22)(%g) = wl13)(Rg), V Xo.

Proof. Given the stage cost matrix H, Theorem 9 guarantees the
existence of a positive definite stage cost matrix H = H + H(5P) +
Cl;{s FC4,. We now distinguish two cases.

Let us first consider the case F=0. Because the convexification
(11)is a rotation in the sense of [8], the addition of the term #(6P)
to the stage cost does not change the primal solution of the prob-
lem, regardless of the active set. Then, for F=0, the equivalence of
Problems (13) and (22) is directly obtained, regardless of the active
set.

For F # 0, the equivalence of Problems (13)and (22) will in gen-
eral depend on the active set. If the set A, of the indices of the
active constraints at each stage k is such that As C Ay, then the
optimal cost is independent of the choice of F. Indeed, by denot-
ing the nullspace of the active constraints Jacobian as Z;, such that
CaZi = 0, we obtain Z C FCZ) = 0. Therefore, if for each stage k
it holds that As € A, Problem (22) delivers the same primal solu-
tion as the original Problem (13). Moreover, Theorem 16 guarantees
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that there exists a neighbourhood of initial conditions Xy around
the origin in which the constraints that are strictly active for Xy = 0
remain active. Finally, w(22)(%g) = w(13)(&,) for all &y € Xo, implies
that the control laws of the two MPC schemes are identical, i.e.
u2)(Rg) = u13)(&0).0

6.2. A practical approach for convexifying the stage cost

The convexification procedure can be formulated as the follow-
ing Linear Matrix Inequality (LMI)

H =H +M(8P)+ CJ FCs, > 0. (23)

Note that, similarly to the unconstrained case, by solving the LMI
(23)in variables SPand Fthe stage cost matrix A can be badly condi-
tioned. Moreover, it is interesting to seek solutions for which F=0,
such that the equivalence ELMPC (6)(l)</—(>“)PDLMPC (22) holds for
all feasible initial conditions.

In order to mitigate the problem of bad conditioning, one can
minimise the condition number of matrix A. While this problem
seems nonconvex, there exist convex formulations. In this paper,
however, we are mostly interested in positive definiteness of H. A
simple convex approach for approximately minimising the condi-
tion number consists in minimising y 8 — ¢, with y > 0 a parameter
of choice and A > al, BI = H. Note that the condition number is
given by «=f/a and its first order Taylor expansion around (o,
B)=(a, b)yields k ~ & + 1 B — L. One can therefore interpret the
proposed cost function as the cost of a subproblem of a sequential
convex programming (SCP) method for minimising the condition
number.

In order to also address the second observation, we propose a
two-step procedure in which it is first attempted to solve the con-
vexification problem using F=0 and, only when necessary, F # 0
is used. We construct the convexification procedure using the fol-
lowing SDP:

min  yf—o+p|F| (24a)
SP,F,a,f8
s.t.  H+H(8P)+ nC[ FCp, = o, (24b)
H + H(8P) + nC/ FCy, < BI, (24c)

with y >0, p>0 two tuning parameters and |-| an appropriately
chosen matrix norm. Parameter 1 € {0, 1} is used to construct the
aforementioned 2-step procedure. First, SDP (24) is solved using
n=0, p>0, which results in F=0. If the solution satisfies o" >0, we
have found the stage cost matrix for a positive definite reformu-
lation of the original problem which is globally equivalent to it.
If even with y =0 we obtain o <0, we set n=1 and solve the SDP
again. In this second case the equivalence of the positive definite
and original problems will only be local.

For the second step of the convexification procedure, one can
decide to set p=0 and constrain §P to match the one found by the
previous solution. This way, the second solution only acts on matrix
Fin order to make the stage cost matrix positive definite and reduce
its condition number.

Note that, if one chooses y =0, it might be necessary to introduce
the additional constraint & < & with & a parameter of choice. This
ensures that the SDP is bounded.

7. Formal design of the tracking (N)MPC based on
economic criteria

In this section, we state the conditions for the equivalence

PDLMPC (22)’PDNMPC (2) to hold. By relying on the equiva-
lence result of Lemma 17 itis possible to formulate a tracking NMPC

problem whose QP approximation at the origin is given by Prob-
lem (22), so that the tracking NMPC problem is locally first-order
equivalent to the economic NMPC problem, i.e. in the sense of (iii).
However, some difficulties can be encountered if this last equiva-
lence needs to be satisfied by using a positive definite stage cost
also in the tracking NMPC formulation. We explain in the following
why this is not straightforward and we propose a way to tackle this
problem.

We recall that the stage-cost matrix H of PD LMPC (22) is given
by (20):

A= Vi, Liw, A, 1)+ H(8P)+ C] FCys > 0.

Then,for the PD NMPC, the choice of tthe quadratic cost
N-1
ngﬁtwk + q{ W,
k=0

He = V20(xs, us) + H(SP) + C[ FCag,  qe = VE(xs, us),

yields the desired local first-order equivalence. However, such a
choice does not guarantee positive definiteness of the stage cost, as

nx M
Ae= A+ MV2hixwd) = > psV2hilxi, u)).
>0 i=0 j=0

*0 #0

In order to tackle the problem relative to the Hessian of the
equality constraints, one ought to consider the rotated ver-
sion of the economic NMPC problem, so that As=0, therefore
Z?ioksvzf,-(xk, ug) = 0. However, as proven in Lemma 6, it is not
possible to rotate the cost with respect to the inequality multi-
pliers without changing the primal solution, so that one needs to
address the problem of the contribution of the path constraints to
the Hessian.

In the case A% — E;fouk,jvahj(xk, ), we propose to tackle
the problem by introducing slack variables s and replacing the
inequality constraints h(w) > 0 by the equality constraints h(w) —
s =0 and inequality constraints s> 0. Then, the inequality con-
straints do not contribute to the Lagrangian Hessian because they
are linear. At the same time, the contribution to the Hessian which
was previously due to inequality constraints is now due to equality
constraints which can be rotated. This reasoning is formalised in
the following Lemma for generic parametric NLP formulations.

Lemma 12. Consider vectors A and fi, a vector of fixed parameters
6, and the two parametric NLPs

min  f(w, 0) (25a)
st. gw,0)=0, h(w,0)—s=0, s>0. (25b)
and

min fw,0) = 1Tg(w,6) — " (h(w, 0) —s) (26a)
st. gw,0)=0, h(w,0)-s=0, s>0. (26b)

For NLP (25), let us introduce the Lagrange multipliers associated
with g(w, 0) =0 as A(25)(9), those associated with h(w,8)—s =0
as 1125)(9) and those associated with s >0 as V25, Equivalently, for
NLP (26), we introduce A(26)(8), 11(26)(9) and v(26)(@). Then, both NLP
(25) and (26) deliver the same primal solution for all X, ji. More-
over, it holds that A28)(0) = A(25)(9) — X, u(26)(8) = u2%)(8) — i and
(26)(9) = v(25)(9).

Proof. As we only rotate equality constraints, Lemma 6 directly
applies. O
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The proposed slack reformulation of the economic NMPC Problem
(3) has the useful property that, after rotation of the cost, none of
the constraints contributes to the Hessian of the Lagrangian for an
initial state close to the origin. Note that the proposed rotation is
different from the one proposed in both [6,8]. We are now ready to
prove the main result of this paper, i.e. Theorem 2.

Proof (Theorem 2). One can always formulate Problem (3) using
the proposed slack variable Formulation (26). Then, none of the
inequality constraints contributes to the Lagrangian Hessian at
steady state. The existence of the positive definite tracking formu-
lation is then a direct consequence of Lemma 12 and Theorem 11.
Indeed, one can rotate the economic NMPC NLP in the form (26)
using A = As and i = us. The corresponding locally equivalent lin-
ear MPC problem is obtained as Problem (6), which has a possibly
indefinite stage cost. Note that the slack variables introduced by
the formulation (26) can be treated as dummy controls which do
not affect the system dynamics. Theorem 11 then states that there
also exists a locally equivalent positive definite linear MPC Formu-
lation (22). Moreover, as we use Formulation (26), the inequality
constraints do not contribute to the Lagrangian Hessian. Therefore,
by using the same stage cost as in (22), one can directly formulate
a tracking NMPC scheme (2) which has the same local behaviour as
the economic NMPC problem.

Using Theorem 16 and Lemma 17 given in Appendix B we obtain
that

w® w® G e w2

i 13g=0 = 7z Iz,= an 7 lzg=0 = 77 lz,=0-
BXO *0=0 8X() %0=0 8X0 o 8X0 =0

—_———  —\— —— ——

Indefinite MPC EMPC PD tracking NMPC PD MPC

Moreover, Theorem 11 proves that w(22) = w(®) Jocally holds.
Therefore

ow(22) ow(®6)
fl” =0 = ~ |” =
aXO X0=0 axo X0=0"
—_——— —\—
PDMPC IndefiniteMPC

and we obtain the desired equivalence:
1u*(Ro) — u®(Xo)Il = O(lI%oI?)-
O

Remark 13. It is important to remark that, in order to formulate
the tracking NMPC problem which locally approximates economic
NMPC, we first rotate the stage cost of economic NMPC. This implies
that, as stated in Lemma 5, the gradient of the rotated cost in the
origin is given by:

OL(xy, uy) T Oh(xy., uy)
8Wk w=0 awk
Note that, because we formulate the economic NMPC Problem (3)

in its slack form, i.e. as Problem (26), we have h(x;, uy)=s;, where
sy are the slack variables added as ficticious controls in vector u.

.
lw=oMs-

8. Numerical example

In this section, we present a numerical example which illus-
trates the theoretical concepts presented in the previous sections.
We remark that the scope of this section is not to assess how well a
tuned tracking NMPC scheme can perform, but rather to show that
the tuning procedure allows one to formulate an NMPC scheme
whose closed loop behaviour is closer than that of a generic NMPC
to the one obtained by the economic NMPC scheme, which also
results in an improved performance. Clearly, the economic perfor-
mance of the tuned tracking NMPC scheme can be extremely good
for some applications, while for some other applications it can still

Table 1
Model parameters. The units are omitted and are consistent with the physical quan-
tities they correspond to.

a b c d e f g h
0.5616 0.3126 48.43 0.507 55 0.1538 55 0.16
M C UA; Cp A As Fy X
20 4 6.84 0.07 38.5 36.6 10 5%
F3 T T200

50 40 25

be rather poor, as all derived results concern local properties. As
opposed to the economic NMPC formulation, however, the tuned
tracking NMPC formulation does always provide stability guaran-
tees. Moreover, more efficient and faster numerical schemes are
available for tracking formulations.

In order to compare the performance of the different MPC
schemes, we use the following performance measure

Peco — P
G= eco Tﬁ]track7 (27)

k:OPS

where Peco and Py, are the cumulative costs of economic and
tracking NMPC respectively over T time steps and Ps is the steady-
state optimal cost.

Let us consider an evaporation process that removes a volatile
species from a solvent. The model equations are given by [23]

MX; = F1X1 — BXo, CPy =F4 —Fs, (28)
where

T, =aP, +bX; +c¢, T3 =dP;+e, AF4 = Qoo — F1Go(T2 — Th)

Ti00 = fP100 + &, Q100 = UA1(T100 — T2), UA; = h(Fy + F3),
Qio UA>(T5 — Tao0)
Frop = 200 = Sl fao0) e 00,
100 = - Q200 T+ Uy /(2Cy Faoo) 5 = Q200
F =F —Fy,

and the states are x=(X3, P;) the controls are u=(P1qg, F2g0). The
model parameters are given in Table 1. The economic objective is
given by

E(X, u) = 1009(F2 + F3) + 600F gg + 0.6F5q0.
The system is subject to the following constraints

X2 > 25 %,
P10 < 400 kPa,

40kPa < P, < 80kPa,
F>00 < 400 kg/mm

The optimal steady state is given by

xs = (25, 49.743),  us = (191.713, 215.888). (29)

We consider a sampling time t; =1s and formulate the NMPC
scheme using a piecewise constant control parametrisation, a pre-
diction horizon N=200 and the terminal point constraint xy = xs. In
order to avoid feasibility problems we reformulate the concentra-
tion constraint using a slack variable s (introduced as a ficticious
control) so that the constraint reads X,+s>25%, s> 0, and the cost
is given by

£(x, u) = 10.09(F; + F3) + 600F 09 + 0.6F»0 + 10°s.

A purely economic NMPC scheme has been compared in a simu-
lation scenario to a conventional tracking NMPC implementation,
the proposed economically tuned NMPC scheme and a simplified
version of the tuned NMPC scheme which uses a diagonal weight-
ing matrix. On a 300s long simulation, a pressure disturbance
AP, =1kPais applied to the system at time instants tg =0s, t; =20,
and t; =40s. For the tracking schemes we choose the following
“normal” stage cost matrix (denoted by subscript n), we compute
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economic
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tracking

tuned diagonal

— — tracking no gradient
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Fig. 1. States and controls for the evaporation process. Blue = EMPC, dashed black = tuned tracking, red = normal tracking, magenta = tuned diagonal, dashed magenta = normal
tracking with zero gradient. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

the following tuned stage cost matrix (denoted by subscript t) and
its diagonal version (denoted by subscript td)

Hp = diag([10 10 0.1 0.1 0.1]),

6.96.10° -7.42.100' 1.54.107' -9.55.107%
-7.42.10°!  1.23.100! -1.62.10% 6.86-10°

Hi=| 1.54.100' -1.62.-107% 7.93.107> -2.10.-107°
-955.100* 6.86.10° -2.10-10° 4.53.1073
0 0 0 0

where the units of the weights are chosen consistently with the
physical quantities they correspond to, so as to yield a dimension-
less cost. We remark that, in order to be able to compute a convex
tuned tracking stage cost, we need to make use of the term Cgs FCp,.
The operator diag constructs a diagonal matrix with the diagonal
elements taken from the given vector and the operator Diag returns
amatrix of the same size as the original with the diagonal elements
are unchanged and all off-diagonal elements are set to 0.
The tracking cost has then been defined as

.
L(x,u) = [z] H, {ﬂ + Vil (x, u)ly, [ﬂ , e € {n,t, td},

wherew = [x u]'.Weremark that, as there are active constraints
at steady state, the gradient of the cost at steady state can not be
made equal to zero and needs to be included in the tracking cost for-
mulation. For comparison, we also implemented a tracking NMPC

- O O O O

formulation which uses the stage cost matrix Hy and zero gradient,
i.e.

) th = Diag(Ht)5

.49.10!

.
L (x,u) = {X} Hp {X} .
n,ngi™ u u

The state and control trajectories resulting from the closed loop
simulations are displayed in Fig. 1. It can be seen that the tuned
tracking NMPC scheme is so close to the economic NMPC one
that the trajectories are indistinguishable by eye inspection. The
NMPC scheme formulated using the diagonal of the tuned stage
cost matrix performs better than the normal though there is no
a priori guarantee that this should be the case. The performance
index for the three schemes reflects this situation:

Gn=-32-10"%  Gnng=-15-102, Gyu=-1.1-10"%,
Gi=-1.2-10"",

The tuned NMPC scheme performs 3 orders of magnitude better
than the two other tracking NMPC schemes. It is therefore clear
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Fig. 2. MPC control law depending on initial conditions close to the optimal steady state. In the top graph we have perturbed X,, while in the bottom one we have perturbed P,.
In all graphs, the optimal steady state is displayed in dashed black line and the bounds in thick continuous black line. Blue = EMPC, dashed black = tuned tracking, red = tuned
diagonal, magenta = normal tracking, dashed magenta=normal tracking with zero gradient. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of the article.)

that the off-diagonal elements can be very important in order to
have an accurate approximation of the economic NMPC behaviour.

In order to confirm the theoretical result that [|ut(Xg) — u®(Xo)| =
O(||%o11?), we have perturbed the initial condition in a neighborhood
of the optimal steady state. The resulting control laws are displayed
in Fig. 2, where it can be seen that the tuned tracking nonlinear
MPC scheme is the only tracking scheme for which it holds that
But(io) _ Bue(fco)

T o=xs = 3%, ltg=xs-

From Fig. 2 we also deduce that the tracking NMPC scheme
with zero gradient performs very differently from the others if the
pressure P, drops. By running the same scenario with negative per-
turbations of the pressure, we obtain the following performance
indices:

Gn = —5.4-1075,
Gi=-1.2-10"".

Gnng=-1.6-10"1,  Gyg=-1.1-10"%,

All the tracking NMPC schemes with the correct gradient perform
very well, while the tracking NMPC scheme with zero gradient
performs much worse than all others.

Finally, on a 300 s long simulation, a concentration disturbance
AX; =1% is applied to the system at time instants tp=0s, t; =205,
and t; =40s. We obtain the following performance indices:

Gn=-2.6-107,
Gi=-7.4-107°.

Gnng =—4.2-1072, Gy =-1.6-10">,

Again, all tracking NMPC schemes which make use of the non-
zero gradient at the origin perform well compared to the economic
NMPC, while the one which has zero gradient at the origin is by
far the worst. We remark that this last tracking NMPC scheme is
the only one which does not bring the concentration X, back to its
steady state value in one step.
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9. Conclusions

In this paper we have set a theoretical background for a for-
mal design of the stage cost for both linear and nonlinear tracking
MPC schemes approximating the behaviour of economic NMPC also
in the presence of active constraints at the optimal steady state.
We have proven that our design procedure yields tracking MPC
schemes which locally deliver a first-order approximation of the
economic MPC control law. A necessary condition for the tuning to
exist is that the economic MPC scheme is locally stabilising.

When considering nonlinear tracking MPC in the presence of
nonlinear inequality constraints active at steady state, the theoret-
ical developments valid for linear tracking MPC do not apply. In
order to tackle this issue, we have proposed a slack reformulation
of the NMPC scheme which only has linear inequality constraints
but is equivalent to the original formulation.

We have proposed a practical approach for computing the pos-
itive definite stage cost matrix for tracking NMPC. In order to
compute a stage cost which is well conditioned, we formulate the
problem as an SDP. Whenever our approach leads to an infeasible
SDP, we have certified that the economic MPC scheme is not locally
stabilising.

Finally, we have applied the theoretical developments to an
example in simulations. We analyse both (a) the closed-loop
behaviour in terms of trajectories and economic performance and
(b) the feedback control law as a function of the initial state. All
results demonstrate the beneficial effect of the proposed tuning
procedure.
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Appendix A.

We define an MPC scheme as stabilising if the closed-loop system
is Lyapunov stable, which we define as follows.

Theorem 14 (Lyapunov stability). Suppose that the set X c R™ is
positive invariant for the closed-loop system Xj.1 = f{xy, u*(xy)), e € {e,
t}, and that x; lies in the interior of X. If there exists a Lyapunov function
V : X — R for the closed-loop system and the equilibrium xs, then xs
is asymptotically stable with a region of attraction X.

For tracking MPC, Lyapunov stability is guaranteed by the con-
dition £%(x, u)>a(|x||) for all feasible u, in combination with
continuity of the cost and system dynamics, an appropriate choice
of the terminal cost, and the satisfaction of a technical controllabil-
ity assumption. For economic MPC, the condition £(x, u) > a(|lx||) is
in general violated and the current stability theory relies on a strict
dissipativity assumption to replace it.

Definition 15 (Strict dissipativity [24]). The system Xj.1 =f(x, uy)
is dissipative on a set W = Wx x Wy with respect to the supply rate
£ : W — R if there exists a function A : Wx — R, which is bounded
from below on Wx and such that the following inequality is satisfied
for all (x, u,) € W:

A (s uge)) — A(x) < L(Xpe, Ug).

If there exists a positive definite function p such that for all
(Xk, uk) e W:

A (xis uie)) = Axie) < —pClIxell) + €(x, ),

then the system is strictly dissipative on W.

(A1)

(A2)

The assumption of strict dissipativity has been used in [8] in order
to prove Lyapunov stability of economic MPC. The stability proof

hinges on the rotated cost (4) satisfying L(x, uy) > p(||x [|) with A(x)
continuous in xs and bounded. In [6] and [8], it has been proven
that the MPC problem (3) formulated using the rotated cost delivers
the same primal solution as the original one. Clearly, if strict dissi-
pativity holds, L(x, uy) > a(||xs ||) holds on a compact set so that the
rotated economic MPC problem satisfies all the assumptions used
to prove Lyapunov stability of tracking MPC. Because there exists
no systematic method to find or dismiss the existence of a stor-
age function A(x) such that the system satisfies strict dissipativity
in the general case, it is hard to guarantee Lyapunov stability for
economic MPC schemes.

Appendix B.

We provide next a result from parametric optimisation.

Theorem 16. (Continuous differentiability [25,26]) Let us consider
a parametric optimisation problem which depends on parameter t

min  f(w,t) st gw,t)=0,  h(w,t)>0. (B.1)

We define the Lagrangian as L(w,t, A, i) =f(w,t)— AT&(w, t) —
1T h(w, t), the solution points depending on t as (w*(t), A*(t), n*(t)),
and the set of indices of the active constraints for t=0 as A. Let us
assume that the KKT point (w*(0), A*(0), u*(0)) satisfies linear inde-
pendence constraint qualification (LICQ), strong second order sufficient
conditions and strict complementarity. Let us moreover assume that
the solution (dw*, 5A*, 5% ) of the following quadratic program (QP)

.

min 15WTV3VZ:5W + 2VWZ sw (B.2a)
w 2 Jat

s.t.  ViZ8+Vygdw=0, (B.2b)

Vihy + Vwhléw =0, (B.2¢)

where all derivatives are evaluated at (w*(0), A*(0), u*(0)), satisfies
the strict complementarity condition. Then

(i) there exists an € and a differentiable curve v(t)=
(w*(t), A*(t), u*(t)) of KKT points that satisfy the optimality
conditions for Problem (B.1), for t € (—¢€, €);

(ii) at t=0 the one sided derivative of this curve is given by

w*(t) — w*(0) ow
?z lim+% [k*(t)—k*(O)] _ (;sx* ,
R PRO YR [ l(ﬂ

where we ordered 1" such that the multipliers corresponding to
the active constraints are followed by those corresponding to the
inactive ones.

Proof. The proof is given in [26] and [25, Theorem 3.3.4 and
Corollary 3.3.1].0

This theorem is particularly important because (a) it ensures
that there is an interval (—¢, €) inside which the set of strongly
active constraints remains unchanged and (b) it states that w*(t) =
w*(0) + tdw* + O(t2), for t € (—€, €).

The original version of the theorem considered milder assump-
tions that allowed the existence of weakly active constraints for
t=0. In that case one can only prove the existence of the one-
sided derivative of the solution curve, as t=0 can be a point of
non-differentiability of the solution curve. For simplicity, in this
paper we only consider economic MPC formulations which do not
have weakly active constraints at steady state. An extension to the
case of weakly active constraints at steady state seems possible but
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requires a more detailed technical discussion which is left for future
research.
An implication of Theorem 16 is given in the following lemma.

Lemma 17. Consider any NLP of the form (B.1) which satisfies the
assumption of Theorem 16 and the following QP

.

min EWTV,%‘,,Z‘(SW + ﬁVWZ Sw (B.3a)
w $ ot

s.t. gwBD )+ Vy,gTsw =0, (B.3b)

h(wBD ) + V,,h 78w > 0, (B.3¢)

where all derivatives are evaluated at the optimal point
w*(t), t, A*(t), w*(t). Then the following holds at t=0:

B3 gyl
a ot

i.e. the two problems locally deliver the same solution up to first-order.

Proof. The proof is obtained by noting that both Problem (B.1)
and (B.3) deliver the same QP (B.2).00

Appendix C.

We provide next the proof of Lemma 6.

Proof (Lemma 6). Let us denote the optimal solution of Problem
(7) by w*(8) = w{7)(8). The KKT conditions of NLP (7) read

Vif (W*(6), 0) — Vwg(w*(6), 0)2.7() — Vwh(w*(6), 0)u(6) = 0,

(C.1a)
g(w*(0),6) =0, (C.1b)
h(w*(6),0) = 0, (C.1¢c)
nw7(6) = 0, (C.1d)
W (Oh(w*(0),0)=0, i=1,....n. (C.1e)

If the original and rotated NLPs deliver the same primal solution,
then w*(@) must also be a KKT point for the rotated problem. The
KKT conditions of NLP (8) then read

Vuf (w*(8), 8) - Vwg(w*(8), ) A®(0) + 1)

— Vwh(w*(6), 0)(uB)(0) + 1) = 0, (C2a)
&(w*(0),0) =0, (C.2b)
h(w*(6),6) > 0, (C.2¢)
a®0) =0, (C.2d)
A(Oh(w*(0),0)=0, i=1,...,ny. (C.2e)

Conditions (C.1a) and (C.2a) are equivalent for A®)(8) = A()(6) — A
and for u®)(8) = u(”(9) — 1. However, we will now show that
one can in general only satisfy Conditions (C.2d) and (C.2e) for
all @ iff jt = 0. Let us consider the original problem and a vari-
ation 89 which yields 0 = ;{”(6 + 89) < p{”)(6). In this case the
only feasible choice which still satisfies (C.2d) is ft; < 0. However,
in case h(w*(0 + 86), @ + 86) > 0, then the only admissible choice
is f1; = 0, otherwise Condition (C.2e) cannot be satisfied.

Therefore, Problems (7) and (8) are always delivering the same
primal solution if and only if i = 0, i.e. u®(0)=u(7(8).00

Appendix D.

We prove that, under the conditions of Theorem 9, for system
(A, B) the LQR formulated using the stage cost matrix H satisfying
Ca HCJ, > 0 delivers a stabilising feedback matrix.

Lemma 18. Consider the infinite-horizon problem

ad X ' X
k| - | Xk
V*+(Ro) := min Zl A (D.1a)
w 2 U, u
k=0 4 k
s.t. Xg—ZX0=0, (D.1b)
Xgp1 —Axg —Bu, =0, k=0,1,..., (D.1c)
lim xy = 0. (D.1d)
N—oo

If the system is stabilisable and if for X = 0 the unique primal solution
is x}(D'l) =0, u}{D'l) = 0, then Problem (D.1) is stabilising for all initial
conditions Xg.

Proof. Let us define the following helper problem

R ! 1| Xk T- Xk
V= (%) := min 5 H (D.2a)
w o Ug Ug
s.t. Xg—Xp =0, (D.2b)
Xgp1 —Axy —Bu, =0, k=0,1,..., (D.2¢)
limx_y =0, (D.2d)
N—oo
We then define
-
N . - 1| Xk _ | Xk
V(Xp) := min 5 H (D.3a)
v k=—o0 Uk Uk
s.t. Xo — )ACO =0, (D3b)
limx_y =0, (D.3c)
N—oo
Xk+1 fokauk=O, k=...,0,1,... (D3d)
]\}im xy =0, (D.3e)

which implies V(x)=V~(x)+V*(x).

We prove now that Vit is a Lyapunov function for the closed-
loop system using the MPC feedback from Problem (D.1). First, we
assume that the system is controllable, so that V=(Xp) < oo for all
bounded initial values. We will extend the proof to stabilisable
systems in a second step.

We begin by proving that V(x) is lower and upper bounded by
K« functions. By assumption, the unique solution of MPC prob-
lem (D.1) with initial condition %y = 0 is x; =0, u, =0 with a cost
V*(0)=0. Moreover, for Xy = 0, Problem (D.3) coincides with Prob-
lem (D.1) shifted backwards in time. This entails that, for Xy = 0,
xf{D'E') =0, u}{DB) = 0 must be the unique solution of Problem (D.3a).
Therefore, for allx # 0, any feasible trajectory X, (x), &;(x) such that
A’im X_n(x) =0,%p(x) = xand ’\}im Xn(x) = Oyields a strictly positive

— 00 —00

cost. Therefore, V(x)>0, for all x #+ 0. Controllability implies that
V*(x)< oo and V(x)<co. Moreover, because V(x) >0 and V*(x)< oo, it
also holds that V=(x)>— oo. Because the system dynamics are lin-
ear, the cost is quadratic and there is no path constraint, V*(x),
V-(x) and V(x) are quadratic. Then V(x)>0, for all x # 0 implies
that V(x)=xT Wx, with W > 0. Therefore,

a(lixll) < V(x) < a(lxl),

with o, & two K functions.
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We now turn to prove descent of the Lyapunov function can-
didate, i.e. for a given initial state xEJD‘” = X9 # 0, we must have

V(x(lD '”) - V(XE)D '”) < 0. By definition of optimality, we get

; xg)‘]) T xgm)
o (D.1) EPNOR N F
Vo(x; ) < V(xg )+2 o) ek (D.4)
Uy L)
o171 T (D.1)
1 X _ | X
VP ) = v Py S| O Al |, (D.5)
21| .,(D.1) (D.1)
Uy L)

and, by replacing (D.5) into (D.4), we obtain
VP D) —vxPD) <o,

Because V is bounded and V(x)>0 for all x # 0, the situation
V(x(]D'U) - V(xEJD'U) =0 can only last at most for a finite num-
ber of consecutive steps n<oo, otherwise V would be unbounded.
This implies that the feedback from Problem (D.1) is n-step sta-
bilising. However, because the system and stage cost are time
invariant and the system is linear, also the feedback from Prob-
lem (D.1) is linear time invariant and, therefore, n=1. This means
that V(x(lD'l)) - V(xE)D'U) < 0 for all xE)D'U + 0, which concludes the
first part of the proof.

In case the system is not controllable but stabilisable, the upper
bound V(x) < @&(|x||) can be violated if x is not reachable from the
origin. In order to address that problem, we can formulate a relaxed
version of Problems (D.1) and (D.2) which makes use of the relaxed
system dynamics xy,1 = Axy + Buy + v, with v, a ficticious con-
trol penalised by the term y|vgllq, with ¥ > | Amax Il oo, and Amax
the Lagrange multiplier of Problems (D.1) and (D.2) whose infinity
norm is maximum for all feasible initial conditions. This entails that
the relaxed versions of Problems (D.1)-(D.2) yield the same primal
solution and optimal value as the original problems for all terminal
conditions which are feasible. However, the relaxed problems are
feasible for all terminal conditions. Then the proof proceeds along
the same arguments used for the controllable case, with the differ-
ence that now functions V*, V- and V are not quadratic but they are
still radially unbounded.O]
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