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a  b  s  t  r  a  c  t

The  stability  proof  for  economic  Model  Predictive  Control  (MPC)  is in general  difficult  to  establish.  In
contrast,  tracking  MPC  has  well-established  and  practically  applicable  stability  guarantees,  but  can  yield
poor closed-loop  performance  in  terms  of the  selected  economic  criterion.  In this  paper,  we  derive  a  for-
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mal procedure  to design  a tracking  MPC  scheme  so  as to locally  approximate  the  behaviour  of  economic
MPC.  Given  an  economic  stage  cost,  the  desired  tracking  stage  cost  can  therefore  be  computed  automat-
ically.  Because  tracking  MPC  guarantees  stability  of  the  closed-loop  system,  our  procedure  succeeds  if
and only  if  economic  MPC  is  locally  stabilising.  This  fact  can  be  used  to certify  whether  economic  MPC is
not  stabilising.  We  illustrate  the  theoretical  developments  in  a simulated  example.
ormal design of tracking MPC

. Introduction

Classical MPC  schemes are based on quadratic cost functions,
nd aim at minimizing the deviation of the system states and inputs
rom a given reference. This reference is often selected as a steady-
tate optimal operating point with respect to a known economic
erformance index. In contrast, Economic Model Predictive Con-
rol (EMPC) is based on directly optimizing the given economic
erformance index. As a result, economic MPC  schemes usually
utperform tracking MPC  schemes especially when the system
perates in transients.

The stability theory of tracking MPC  is well developed and
nderstood, see e.g. [1,2]. However, the stability theory of eco-
omic MPC  is a relatively new field of research and many questions
re still open. It initially considered linear systems and convex
bjectives [3,1]. For nonlinear systems, an analysis of average per-
ormance bounds was proposed in [4] and average constraints
ere considered in [5]. Lyapunov stability of economic MPC  was
rst proven in [6] under a strong duality assumption and general-
zed in [7,8] under a strict dissipativity assumption. The necessity
f strict dissipativity for optimal steady-state operation has been
nalyzed in [9,10]. A stability proof in the absence of terminal
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IGHWIND (259 166), FP7-ITN-TEMPO (607 957), and H2020-ITN-AWESCO (642
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constraints is provided in [11]. The extension of the stability results
to periodic systems has been considered in [12–14]. Economic
MPC  schemes where stability is enforced without the need of strict
dissipativity have been proposed in [15–19]. Note that, by using
the latter approaches, enforcing stability typically entails a loss of
economic optimality.

In the nonlinear case, the strict dissipativity condition can be
hard to verify, thus making it difficult to ensure the closed-loop sta-
bility of the economic MPC  scheme. This paper proposes a strategy
to compute a positive-definite tracking stage cost for nonlinear MPC
(NMPC) so as to yield an NMPC feedback law that is locally equiv-
alent to the one delivered by the economic MPC  scheme. In [20],
economic linear MPC  has been analysed in the case of no active
constraints at steady state and a method has been proposed for
computing a positive definite stage cost for tracking MPC having
locally the same behaviour as economic MPC. In this paper, we gen-
eralise these results to the case of active constraints at steady state
and nonlinear tracking MPC  formulations. Moreover, we prove
that the obtained tracking MPC  schemes locally approximate the
behaviour of economic MPC  up to first order.

This paper is structured as follows. In Section 2 we introduce
the notation and describe the considered problem. In Section 3, we
present the main result of the paper and a sketch of how it will be
proven in the following sections. In Section 4 we  prove the local
equivalence of economic NMPC and an ad-hoc formulated indef-

inite linear MPC. In Section 5 the main result of [20] is briefly
summarised, i.e. every stabilising linear MPC  scheme with an indef-
inite stage cost and without active constraints at steady state can be
reformulated as a positive definite linear MPC  scheme. Moreover,

dx.doi.org/10.1016/j.jprocont.2016.06.006
http://www.sciencedirect.com/science/journal/09591524
http://www.elsevier.com/locate/jprocont
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n alternative formulation for convexifying the stage cost is pre-
ented. In Section 6, the case of active constraints at steady state is
nalysed, and a convexification procedure is proposed. In Section 7
he results are extended to cover tracking NMPC. An example which
llustrates the theoretical developments of this contribution is pro-
ided in Section 8. Conclusions and outlines for future research are
rovided in Section 9.

. Problem description

This paper is concerned with time-invariant nonlinear discrete-
ime systems xk+1 = f(xk, uk) that shall be operated such that
onstraints h(xk, uk) ≥ 0 are satisfied and the cost

∑∞
k=0�(xk, uk) is

inimised. For notational simplicity and without loss of generality
e assume that �(0, 0) = 0 and that xs = 0, us = 0 is an optimal steady

tate, i.e. it solves the steady state problem

in
x,u

�(x, u) s.t. x − f (x, u) = 0, h(x, u) ≥ 0. (1)

e define ws = (xs, us) = (0,  0), denote by �s and �s the optimal
agrange multipliers associated with the equality and inequality
onstraints of problem (1) respectively. Note that these multipliers
re in general nonzero.

Because the infinite horizon problem is computationally
ntractable, MPC  approximates the infinite horizon problem by
ptimizing over a finite horizon N. We  lump all states and controls
n a vector w = (w0, w1, . . .,  wN−1, wN), with wk = (xk, uk), k =
, . . .,  N − 1 and wN = xN . In the following, we will refer to the opti-
al  solution by adding to the variable as a superscript the equation

umber of the problem it refers to, i.e. w(2) is the optimal pri-
al  solution of Problem (2). In the following, we  introduce two

pproaches towards the aim of constrained economic optimisation.
The first approach is tracking MPC, where, at each time step,

iven the current state x̂0, one solves the following optimal control
roblem

in
w

N−1∑
k=0

�t(xk, uk) + V t
f (xN) (2a)

.t. x0 − x̂0 = 0, (2b)

k+1 − f (xk, uk) = 0, k = 0, . . .,  N − 1, (2c)

(xk, uk) ≥ 0, k = 0, . . .,  N − 1, (2d)

N ∈ Xf. (2e)

he stage and terminal cost satisfy �t(x, u) ≥ ˛(‖x ‖) for all feasible
 and V t

f (x) ≥ ˛(‖x‖), where  ̨ is a K∞ function [21]. Typically, the
racking stage and terminal cost are chosen as quadratic functions.
n the remainder of the paper, whenever we refer to tracking MPC,

e will implicitly assume such a choice. We  define the optimal
rimal solution as w(2)(x̂0) = (x(2)

0 , u(2)
0 , . . .,  x(2)

N ) and the tracking

PC  feedback as ut(x̂0) = u(2)
0 .

An alternative approach to tracking MPC  is economic MPC, where
t each time step, given the current state x̂0, one solves the following
ptimal control problem

in
w

N−1∑
k=0

�(xk, uk) + Vf(xN) (3a)

.t. (2b) − (2e)  (3b)

here we define the optimal primal solution as w(3)(x̂0) =

x(3)

0 , u(3)
0 , . . .,  x(3)

N ) and the economic MPC  feedback as ue(x̂0) = u(3)
0 .

We  remark that the terminal cost and constraint in both MPC
roblems ought to be chosen together with the prediction hori-
on in order to guarantee stability [21,2]. For a given stage cost,
s Control 45 (2016) 30–42 31

this choice can be made so as to provide a good approximation
of the infinite-horizon problem. For Xf = {xs} we also define the
Lagrangian of the economic MPC  problem as

L(w, �, �) =
N−1∑
k=0

�(xk, uk) − ��
k+1(xk+1 − f (xk, uk)) − ��

k h(xk, uk)

− ��
0 (x0 − x̂0) − ��

N+1(xN − xs),

and we denote the optimal Lagrange multipliers as �(3)
k

and �(3)
k

.
Throughout this paper we  assume that the minimiser of Problems
(1)–(3) exists.

The main difference between economic and tracking MPC  is that
the former typically outperforms the latter during transients. How-
ever, proving stability for economic MPC  is much more involved
than for tracking MPC. The difficulty stems from the fact that, in
general, �(x, u) � ˛(‖x ‖). In this paper, whenever we label a problem
as economic we  assume that �   ̨ ∈ K∞ s.t. �(x, u) ≥ ˛(‖x ‖). Stability
proofs for economic MPC  typically rely on the concept of rotated
cost. Given a function �(x), we define the rotated stage cost as

L(xk, uk) := �(xk, uk) + �(xk) − �(f (xk, uk)). (4)

Many developments in this paper can be interpreted using this con-
cept of rotation or a generalisation that we will propose. We will
refer to a problem as rotated whenever its stage cost is rotated
and we  will call linear rotation the one which uses a linear storage
function. For more details on rotated cost and stability proofs for
economic MPC, we  refer to [6,8,10,14] and Appendix A.

Another difference between economic and tracking MPC regards
the applicable algorithms: efficient numerical schemes for fast real-
time NMPC, based on the generalised Gauss–Newton method, can
in general only be applied to tracking MPC. For these reasons, in this
paper, we  aim at computing a positive definite stage cost for track-
ing (N)MPC such that it is locally first-order equivalent to economic
(N)MPC. We  state next the main result of this paper.

3. Main result

We introduce first the following key definitions of equivalent
MPC  problems.

Definition 1 (Equivalent problems).  Consider two MPC  problems
A and B and any initial state x̂0 for which both problems are fea-
sible and have a unique solution satisfying linear independence
constraint qualification (LICQ) and second order sufficitent condi-
tions (SOSC). Denote the optimal feedback laws as uA(x̂0) and uB(x̂0)
respectively. We  define the following:

(i) MPC  problems A and B are equivalent iff they deliver the same
feedback law, i.e. for all x̂0 it holds that uA(x̂0) = uB(x̂0);

(ii) MPC  problems A and B are locally equivalent iff there exists a
neighbourhood N  of the origin such that uA(x̂0) = uB(x̂0);

(iii) MPC  problems A and B are locally first-order equivalent iff there
exists a neighbourhood N  of the origin such that for all x̂0 ∈ N
it holds that ‖uA(x̂0) − uB(x̂0)‖ = O(‖x̂0‖2).

Equivalence (i) implies local equivalence (ii) which, in turn,
implies first-order local equivalence (iii). We  will apply equiva-
lence (i) and (ii) to convex problems and only equivalence (iii) will
be applied to nonconvex problems. Throughout this paper, we will
assume that all considered MPC  problems are locally stabilising and
satisfy SOSC, such that uA,B(0) = 0 is unique and uA,B(x̂0) is unique

for x̂0 in a neighbourhood of the origin, but could still be multi-
valued for x̂0 far from the origin. For this reason, considering only
the case of unique solutions is not very restrictive and allows us to
establish local equivalence of nonconvex problems.
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The main result of this paper is then expressed in the following
heorem.

heorem 2. Given any stabilising economic NMPC of the form (3)
atisfying the mild technical assumptions of Theorem 16 in Appendix
, it is possible to formulate both a tracking linear MPC and a tracking
onlinear MPC  with a positive-definite stage cost which are locally
rst-order equivalent to the economic NMPC problem (3), i.e. ‖ut(x̂0) −
e(x̂0)‖ = O(‖x̂0‖2), for all x̂0 in a neighbourhood of the origin.

Because of the complexity of the analysis, we will first estab-
ish some intermediate results. The proof of Theorem 2 will then be
iven in Section 7. In order to establish it, we will (a) formulate an
conomic linear MPC  (ELMPC) scheme which is locally first-order
quivalent to economic NMPC (ENMPC), (b) convexify its stage cost
o obtain a locally equivalent linear MPC  problem with positive
efinite cost (PD LMPC) and (c) formulate a locally first-order equiv-
lent tracking NMPC problem (PD NMPC). This is summarised by
he following scheme:

ENMPC (3)
(iii)↔
4

ELMPC (6)
(i)/(ii)↔
5−6

PDLMPC (22)
(iii)↔
7

PDNMPC (2),

here we denote equivalence in the sense of Definition 1 by using
he symbol ↔ with the type of equivalence as superscript. The
eference to the section in which the equivalence is proven is deliv-
red as a subscript. In order to clearly distinguish between linear
nd nonlinear MPC, we denote them as LMPC and NMPC respec-
ively. Moreover, we define as ELMPC a linear MPC  problem with
uadratic indefinite stage cost. By definition, the solution of the
D LMPC problem, if it exists, is unique. Therefore, by equivalence
i)/(ii) also the solution of problem ELMPC must be unique. Prob-
ems ENMPC and PD NMPC, instead, can have multiple solutions as
hey are nonconvex.

Throughout this paper, we will assume that the reference eco-
omic MPC  scheme (3) is locally stabilising. Note that, whenever

 positive-definite stage cost yielding local first-order equivalence
f tracking and economic MPC  does not exist, we  do certify that
conomic MPC  can not stabilising. In this case, operating the sys-
em at steady state rather than e.g. periodically, is not optimal. We
eave the analysis of such situation for future research and recall
hat steady state operation can be enforced by e.g. [20, Remark
]. As we will prove in Sections 5 and 6, the formal design of the

ocally first-order equivalent tracking MPC  scheme involves solving
 convex SDP. Note that these computations are done offline and
he online computational burden is the one of a standard tracking

PC  scheme.
In the following, we will construct an ELMPC scheme which is

rst-order locally equivalent to the ENMPC scheme.

. Locally first-order equivalent ENMPC and ELMPC

In this section, we analyse the properties that enforce

NMPC (3)
(iii)↔ELMPC (6). First, we establish an important prop-

rty relating the economic MPC  Problem (3) to the steady-state
roblem (1).

emma  3. Consider a stabilising economic MPC  formulation of the
orm (3) with V(x) the cost-to-go of Problem (3) with an infinite hori-
on. Assume that (a) the horizon is infinite, or (b) the gradient of the
erminal cost Vf(·) satisfies ∇Vf|x=xs = �s and ∇2Vf ≥ ∇ 2V, or (c) the
erminal constraint is xN = xs. Then, the Lagrange multipliers �k, �k of
he MPC  problem solved for the initial state x̂0 = xs coincide with those

f the steady state problem �s, �s.

roof. The proof is directly obtained by comparing the KKT con-
itions of the MPC  problem and the steady-state problem. Because
he economic MPC  problem is stabilising, the primal solution is
s Control 45 (2016) 30–42

xk = xs and uk = us. Then, by replacing �k = �s and �k = �s, one obtains
that the KKT conditions are satisfied. �

Note that the result holds both for the original and the rotated stage
cost, provided that the economic MPC  problem and the steady-state
problem are formulated using the same stage cost.

In order to formulate the locally first-order equivalent ELMPC
problem, we  define

H := ∇2
wk

Lk(w, �, �), q := ∇wk
�(xk, uk), (5a)

A := ∇xk
f (xk, uk)�, B := ∇uk

f (xk, uk)�, (5b)

C := ∇wk
h(xk, uk)�, (5c)

where all expressions are evaluated at the primal-dual solution of
the steady-state Problem (1), i.e. ws, �s, �s. Moreover, we used the
fact that the Lagrangian Hessian of Problem (3) is block diagonal,
with each block given by

∇2
wk

Lk(w, �, �) := ∇2�(xk, uk) +
nx∑

i=0

�k+1,i∇2fi(xk, uk)

−
n�∑
j=0

�k,j∇2hj(xk, uk).

Theorem 4. The ELMPC problem

min
x0, . . .,  xN

u0, . . .,  uN−1

N−1∑
k=0

1
2

[
xk

uk

]�

H

[
xk

uk

]
+ q�

[
xk

uk

]
(6a)

s.t. x0 − x̂0 = 0, (6b)

xk+1 − Axk − Buk = 0, k = 0, . . .,  N − 1, (6c)

C

[
xk

uk

]
+ e ≥ 0, k = 0, . . .,  N − 1, (6d)

xN = 0, (6e)

is locally first-order equivalent to the ENMPC problem (3).

Proof. The equivalence is a direct consequence of Lemma  17 in
Appendix B. �

Note that, because one can rotate the cost without changing the
primal solution, a new formulation is easily obtained which is also
first-order locally equivalent to ENMPC (3). Because it is simpler to
formulate and analyse, a scheme with no gradient in the cost (i.e.
with q = 0) can be of interest. We  will establish next that such a
formulation exists only if there are no active constraints at steady
state and can be obtained by rotating the cost using �(x) = ��

s x.

Lemma  5. Suppose that the steady-state Problem (1) has no active
constraints. Then the rotated cost L(x, u) with �(x) = ��

s x has zero
gradient at steady state. If there are strictly active constraints at steady
state, then the following holds:

∂L(xk, uk)
∂wk

|w=0 = ��
s

∂h(xk, uk)
∂wk

|w=0.

Proof. In the case of no active constraints at steady-state, the
rotated cost coincides with the Lagrangian of the optimisation Prob-

lem (1) evaluated at the optimal Lagrange multipliers, which, by
definition of optimality, has zero gradient at the optimum. If instead
some constraints are active at steady state, the desired equality is
directly obtained by writing the KKT conditions of Problem (1). �
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We  just proved that one can rotate the cost by exploiting
he equality constraints. Therefore, rotating the cost using active
nequality constraints might sound appealing. However, we prove
ext that in that case the obtained problem would not deliver the
ame primal solution as the original one.

emma  6. Consider vectors �̄ and �̄, a vector of fixed parameters �,
nd the two parametric NLPs

in
w

f̄ (w, �) s.t. ḡ(w, �) = 0, h̄(w, �) ≥ 0. (7)

in
w

f̄ (w, �) − �̄�ḡ(w, �) − �̄�h̄(w, �) s.t. ḡ(w, �) = 0,

h̄(w, �) ≥ 0. (8)

e  will call NLP (7) the original NLP and NLP (8) the rotated NLP.
or NLP (7), let us introduce the optimal Lagrange multipliers �(7)(�),
(7)(�) associated with the equality and inequality constraints, respec-

ively. Equivalently, for NLP (8), we introduce �(8)(�) and �(8)(�). Then,
he original and rotated NLPs (7) and (8) deliver the same primal solu-
ion for all � iff �̄ = 0. Moreover, it holds that �(8)(�) = �(7)(�) − �̄ and

(8)(�) = �(7)(�).

roof. The proof is obtained by writing the KKT conditions for the
wo NLPs. The detailed developments are given in Appendix C. �

n intuitive explanation of Lemma  6 can be obtained as follows.
onsider rotating the cost with respect to a strictly active inequality
onstraint, so as to remove the corresponding gradient from the
ost. This makes the constraint weakly active so that Problems (7)
nd (8) do not deliver the same primal solution for all parameter
alues. Indeed, because the new multiplier becomes zero, the cost
f Problem (8) becomes locally insensitive to relaxing or tightening
he constraint. On the contrary, this does not hold for Problem (7),
s the multiplier is nonzero.

In the following two sections, we will state the conditions for

LMPC (6)
(i)/(ii)↔ PDLMPC (22). We  will analyse first the case of no

ctive constraints at steady state and we will prove that the equiva-
ence can be obtained by means of a quadratic rotation. Afterwards,

e will consider the case of active constraints at steady-state,
hich requires a more involved analysis.

. Linear MPC  without active constraints at steady state

The equivalence ELMPC (6)
(i)/(ii)↔ PDLMPC (22) has been ana-

ysed in [20] for the case of no active constraints at steady state.
n the following, we first summarise the main result of [20], which
tates this equivalence. Then, we extend that result by proposing

 new method for computing the positive definite stage cost. This
lso makes it possible to prove the necessity of strict dissipativity
ith a quadratic storage function for stability of LMPC in the case

f no active constraints at steady state.

.1. Review of previous results

Let us consider the following LMPC problem where, without loss
f generality, we assume that the linearly rotated stage cost with
ero gradient at steady-state is used

in
w

N−1∑
k=0

1
2

[
xk

uk

]�[
Q S�

S R

]
︸ ︷︷  ︸

[
xk

uk

]
+ 12

x

�

N
PNxN (9a)
=H�0

.t. x0 − x̂0 = 0, (9b)

k+1 − Axk − Buk = 0, k = 0, . . .,  N − 1, (9c)
s Control 45 (2016) 30–42 33

C

[
xk

uk

]
+ e ≥ 0, k = 0, . . .,  N − 1. (9d)

Here, we  assume that e > 0, such that no constraint is active at steady
state and the gradient of the stage cost at the origin is 0. The predic-
tion horizon N and terminal cost matrix PN are tuning parameters
to be adequately selected, and are not discussed in this paper. For
more details on the topic we refer to e.g. [1,2].

Note that, for the case of H 
 0, the equivalence is directly
obtained, and we  label as Economic LMPC (ELMPC) the case of
H �  0. While in general it is preferable to formulate LMPC problems
using a positive definite stage cost both for ensuring closed-
loop stability and for computational reasons, the use of indefinite
stage costs does not necessarily result in an unstable closed-loop
behaviour [22].

Theorem 7. Suppose that both (a) the economic LQR formulated
using matrices A, B, H exists and (b) the economic LMPC scheme (9)
is stabilizing. Then, there exist (a) an LQR with positive definite cost
which yields the same feedback matrix as the economic LQR and (b) a
positive definite LMPC scheme which yields the same primal solution
as the economic LMPC scheme (9).

Proof. The proof is given in [20]. �

Theorem 7 implies that for all stabilising schemes the stage and
terminal cost matrices H, PN �  0 can always be replaced by appro-
priately selected matrices H̃, P̃N 
 0 without changing the (primal)
solution of the LMPC scheme. In this paper, we will denote by
the term convexification the procedure of computing the positive
definite stage cost.

We  define the feedback matrix K and the cost-to go matrix P
as the ones obtained from the LQR formulated using the original
cost. Note that the LQR does not necessarily exist, in which case
the infinite horizon economic problem is not stabilising, and the
system is not optimally operated at steady state. The case of non
optimal steady state operation is out of the scope of this paper and
is the object of ongoing research. Because the choice of P̃, H̃ is not
unique, it was proposed in [20] to compute them by solving the
following SDP

min
P̃,Q̃ ,R̃,S̃,H̃

‖H̃ − I‖2 (10a)

s.t. H̃ =
[

Q̃ S̃�

S̃ R̃

]
(10b)

H̃ � 0 (10c)

P̃ � 0 (10d)

Q̃ + A�P̃A − P̃ − (S̃� + A�P̃B)K = 0, (10e)

(R̃ + B�P̃B)K − (S̃ + B�P̃A) = 0, (10f)

R̃ + BT P̃B = R + BT PB, (10g)

S̃ + BT P̃A = S + BT PA. (10h)

The convexification of the terminal cost matrix is given by P̃N =

PN − P + P̃.

In the following, we propose a new formulation where fewer
optimisation variables are necessary and the feedback matrix K
does not need to be computed explicitly.
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.2. Further analysis of the steady-state case with no active
onstraints

Let us define ıP = P − P̃ and introduce the linear operator

(ıP)  =
[

A�ıPA − ıP A�ıPB

B�ıPA B�ıPB

]
. (11)

e then define H̃ = H + H(ıP). It can be easily checked that this
onstruction directly enforces Constraints (10e)–(10h). Then, one
an convexify the cost by solving the following SDP which is equiv-
lent to (10)

in
ıP

‖H + H(ıP)  − I‖2 (12a)

.t. H + H(ıP)  � 0. (12b)

ote that H̃  � 0 implies that the cost-to-go matrix P̃ of the LQR com-
uted using H̃ satisfies P̃ � 0. Moreover, no knowledge about the
ost-to-go P or the feedback gain matrix K is needed in order to com-
ute the stage cost convexification given by H̃ � 0. Note that the
ost function of the SDP is somewhat arbitrary and has been cho-
en to favour well-conditioned stage cost matrices. However, other
hoices are possible and even preferable. They will be discussed in
ection 6.2.

This new formulation of the cost convexification also high-
ights the connection with the concept of strict dissipativity and
otated cost. In the following, we prove an important implication
f Theorem 7 on the necessity of strict dissipativity. Note that
ecessity of strict dissipativity has been proven in [10]. However,
orollary 8 states that the storage function can be selected to be
uadratic for linear systems with quadratic stage cost.

orollary 8. Consider an economic LMPC formulation of the form
9) with no active constraints at steady state. Strict dissipativity with

 quadratic storage function is not only sufficient but also necessary
or the stability of the closed-loop system.

roof. By Theorem 7, if the economic LMPC (9) with no active
onstraints at steady state is stabilising, then there exists a matrix
P such that H̃ := H + H(ıP)  
 0. It can be seen that the cost con-
exification (11) is a nonlinear cost rotation of the form (4) with
torage function �(xk) = −x�

k
ıPxk. Therefore, the convexified stage

ost satisfies

(x, u) := �(x, u) + �(x) − �(Ax + Bu)  =
[

xk

uk

]�

H̃

[
xk

uk

]
≥ �‖x‖2,

ith � > 0. As a result, strict dissipativity is therefore not only suffi-
ient, but also necessary for closed-loop stability of economic LMPC
ith no active constraints at steady state.�

ote that the original stability proof based on strict dissipativity
8] considers states and controls to be in a compact set Z.  In the
ramework of LMPC with no active constraints at steady state, how-
ver, we obtain the stronger result of Corollary 8. Moreover, Eq.
11) establishes that the convexification procedure is a nonlinear
otation of the cost. We  remark that in the economic LMPC For-
ulation (9) we assumed without loss of generality that the cost
as linearly rotated. Then, in the general case, for economic LMPC

ithout active constraints at steady state, the rotation of the cost is

iven by the composition of a linear rotation and a convexification,
.e. �(x) = ��

s x − x�ıPx. In the following section, we turn to the case
f active constraints at steady state.
s Control 45 (2016) 30–42

6. Linear MPC  with active constraints at steady state

In this section, we  study the equivalence

ELMPC (6)
(i)/(ii)↔ PDLMPC (22) in the case some constraints are

active at steady state. First, we  establish a theoretical framework
for proving the existence of the equivalent PD LMPC formulation.
Subsequently, we  provide a practical approach for computing its
stage cost.

6.1. Equivalent LMPC formulations with active constraints at
steady state

In the case of a linear system, a quadratic cost and strictly active
constraints at steady state, the cost can in general have a non-zero
gradient at the optimum even after a linear rotation of the stage cost
(cf. Lemma  6). We  consider an LMPC problem formulated with the
stage cost rotated linearly by using the Lagrange multipliers cor-
responding to the system dynamics evaluated at the origin, given
by

min
w

N−1∑
k=0

1
2

[
xk

uk

]�

H

[
xk

uk

]
+ q�

[
xk

uk

]
(13a)

s.t. x0 − x̂0 = 0, (13b)

xk+1 − Axk − Buk = 0, k = 0, . . .,  N − 1, (13c)

C

[
xk

uk

]
+ e ≥ 0, k = 0, . . .,  N − 1, (13d)

xN = 0. (13e)

We consider a terminal point constraint for simplicity, however,
any formulation satisfying the conditions of Lemma 3 can be used
in our derivation.

We  analyse now some local properties of Problem (13), which
hold for a given fixed active set. Note that the problem formulations
we will consider can be too restrictive and inadequate for practical
applications. However, they are helpful for establishing some prop-
erties that can then be exploited in practice. We  denote the set of
indices relative to the strictly active constraints at steady state as
As and we assume the Jacobian of the strictly active constraints CAs

to be full row rank. Note that, the steady state being xs = 0, us = 0,
the affine term in the active inequality constraints must be zero, i.e.
eAs = 0.

Theorem 9. Let us consider the region X0 of initial states x̂0 around
the origin for which the optimal active set of Problem (13) includes all
constraints which are strictly active for x̂0 = 0. Assume that the LMPC
problem

min
w

N−1∑
k=0

1
2

[
xk

uk

]�

H

[
xk

uk

]
+ q�

[
xk

uk

]
(14a)

s.t. x0 − x̂0 = 0, (14b)

xk+1 − Axk − Buk = 0, k = 0, . . .,  N − 1, (14c)

CAs

[
xk

uk

]
= 0, k = 0, . . .,  N − 1, (14d)

xN = 0. (14e)
is stabilising for all x̂0 ∈ X0. Then there exist matrices ıP and F such
that

H + H(ıP)  + C�
As

FCAs 
 0.
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dditionally,

�(H + H(ıP))Z 
 0,

olds for any Z with CAs Z = 0, Z�Z = I and
[

C�
As

Z
]

invertible.

roof. For any matrix F, Problem (14) can be reformulated as

in
w

N−1∑
k=0

1
2

[
xk

uk

]�

(H + C�
As

FCAs︸  ︷︷  ︸
H̄

)

[
xk

uk

]
+ q�

[
xk

uk

]
(15a)

.t. (14b) − (14e). (15b)

y construction, for any x̂0 ∈ X0, Problem (15) delivers the same
olution as Problem (14). Moreover, because matrix CAs is full row
ank, there exists a matrix F 
 0, such that CAs H̄C�

As

 0.

We  consider now a series of problems which are in general not
quivalent, but which share some important properties for x̂0 = 0,
nd which will allow us to prove the theorem. We  therefore now
ocus on the special case x̂0 = 0. In this setting, Lyapunov stability of
roblem (14) entails that the primal solution of Problem (15) is zero,
.e. w(15)(0) = w(14)(0) = 0. In the following, we consider a problem
ormulation in which we dualise the constraints, i.e. we replace
he original cost with the Lagrangian of the problem. By Lemma  3,
he Lagrange multipliers of Problem (15) with x̂0 = 0 coincide with
hose of the original steady-state Problem (1). Moreover, the primal
olution is not changed by the following linear rotation:

 =
N−1∑
k=0

1
2

[
xk

uk

]�

H̄

[
xk

uk

]
+ q�

[
xk

uk

]

− ��
s x0 +

N−1∑
k=0

− ��
s (xk+1 − Axk − Buk) − ��

s CAs

[
xk

uk

]
(16)

N−1∑
k=0

1
2

[
xk

uk

]�

H̄

[
xk

uk

]
, (17)

here, by optimality, all linear terms cancel out. Note that our new
ost is given by the Lagrangian function of Problem (15) evaluated
t the optimal Lagrange multipliers.

By using (17) as a cost in the LMPC, we obtain the following
roblem

in
w

N−1∑
k=0

1
2

[
xk

uk

]�

H̄

[
xk

uk

]
(18a)

.t. (14b) − (14e). (18b)

or the initial condition x̂0 = 0, the unique primal solution is x(18)
k

=
 and u(18)

k
= 0. We  recall that, by an appropriate choice of matrix

, we obtain CAs H̄C�
As


 0 and, because the primal solution is zero,
he Lagrange multipliers associated with the path constraints are
lso zero, i.e. �(18)(0) = 0. As a result, one can remove them without
hanging the primal solution for x0 = x̂0. Then, also the following
roblem

in
w

N−1∑
k=0

1
2

[
xk

uk

]�

H̄

[
xk

uk

]
(19a)
.t. x0 − x̂0 = 0, (19b)

k+1 − Axk − Buk = 0, k = 0, . . .,  N − 1, (19c)

N = 0, (19d)
s Control 45 (2016) 30–42 35

delivers the unique primal solution x(19)
k

= 0 and u(19)
k

= 0 for x̂0 =
0. Because this property holds for any arbitrarily long horizon
length N, it must also hold for an infinite horizon. As we prove in
Lemma  18 given in Appendix D, this entails that the infinite horizon
problem must deliver a stabilising feedback matrix. Therefore, by
Theorem 7, the desired property is obtained, i.e.:

∃ ıP, F s.t. H + H(ıP)  + C�
As

FCAs 
 0. (20)

By definition of the nullspace Z, it also holds that

∃ ıP, s.t. Z� (
H + H(ıP)

)
Z 
 0. (21)

�

Remark 10. The terminal point constraint should be handled with
care, as it might lead to infeasibility if the horizon is shorter than
the amount of states of the system, i.e. N < nx. Moreover, extra care
needs to be taken if the system is not controllable but stabilisable.
The developments of Theorem 9 directly extended to the case of
stabilisable systems and a stabilising terminal cost.

By relying on the result of Theorem 9, we  can now formulate the
LMPC problem with positive definite stage cost as

min
w

N−1∑
k=0

1
2

[
xk

uk

]�

H̃

[
xk

uk

]
+ q�

[
xk

uk

]
(22a)

s.t. x0 − x̂0 = 0, (22b)

xk+1 − Axk − Buk = 0, k = 0, . . .,  N − 1, (22c)

C

[
xk

uk

]
+ e ≥ 0, k = 0, . . .,  N − 1, (22d)

xN = 0. (22e)

with H̃ = H + H(ıP)  + C�
As

FCAs . We  are now ready to formulate the
main result of this section in the following theorem.

Theorem 11. Consider any linear MPC scheme (13) which is stabilis-
ing in the sense of Lyapunov with region of attraction X  ⊆ X0 and which
satisfies the mild technical assumptions of Theorem 16 in Appendix B.
Then, the positive definite LMPC scheme (22) delivers the same primal
solution as the original problem for initial conditions x̂0 in a neighbour-
hood of the origin, i.e. w(22)(x̂0) = w13(x̂0) holds∀ x̂0 ∈ X̄0, where we
define the set X̄0 as the set of initial conditions x̂0 for which the set
of active constraints for both Problem (13) and (22) coincides and
includes all constraints that are active for x̂0 = 0.

Moreover, if the positive definite stage cost matrix can be computed
using F = 0, then the equivalence holds for all initial conditions x̂0, i.e.
w(22)(x̂0) = w(13)(x̂0), ∀ x̂0.

Proof. Given the stage cost matrix H, Theorem 9 guarantees the
existence of a positive definite stage cost matrix H̃ = H + H(ıP)  +
C�
As

FCAs . We  now distinguish two  cases.
Let us first consider the case F = 0. Because the convexification

(11) is a rotation in the sense of [8], the addition of the term H(ıP)
to the stage cost does not change the primal solution of the prob-
lem, regardless of the active set. Then, for F = 0, the equivalence of
Problems (13) and (22) is directly obtained, regardless of the active
set.

For F /= 0, the equivalence of Problems (13) and (22) will in gen-
eral depend on the active set. If the set Ak of the indices of the
active constraints at each stage k is such that As ⊆ Ak, then the
optimal cost is independent of the choice of F. Indeed, by denot-

ing the nullspace of the active constraints Jacobian as Zk, such that
CAk

Zk = 0, we obtain Z�
k

C�
As

FCAs Zk = 0. Therefore, if for each stage k
it holds that As ⊆ Ak, Problem (22) delivers the same primal solu-
tion as the original Problem (13). Moreover, Theorem 16 guarantees
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hat there exists a neighbourhood of initial conditions x̂0 around
he origin in which the constraints that are strictly active for x̂0 = 0
emain active. Finally, w(22)(x̂0) = w(13)(x̂0) for all x̂0 ∈ X̄0, implies
hat the control laws of the two MPC  schemes are identical, i.e.
(22)(x̂0) = u(13)(x̂0).�

.2. A practical approach for convexifying the stage cost

The convexification procedure can be formulated as the follow-
ng Linear Matrix Inequality (LMI)

˜ = H + H(ıP)  + C�
As

FCAs 
 0. (23)

ote that, similarly to the unconstrained case, by solving the LMI
23) in variables ıP and F the stage cost matrix H̃ can be badly condi-
ioned. Moreover, it is interesting to seek solutions for which F = 0,

uch that the equivalence ELMPC (6)
(i)/(ii)↔ PDLMPC (22) holds for

ll feasible initial conditions.
In order to mitigate the problem of bad conditioning, one can

inimise the condition number of matrix H̃.  While this problem
eems nonconvex, there exist convex formulations. In this paper,
owever, we are mostly interested in positive definiteness of H̃. A
imple convex approach for approximately minimising the condi-
ion number consists in minimising �  ̌ − ˛, with � ≥ 0 a parameter
f choice and H̃  � ˛I,  ˇI � H̃.  Note that the condition number is
iven by 	 = ˇ/  ̨ and its first order Taylor expansion around (˛,
) = (a, b) yields 	 ≈ b

a + 1
a  ̌ − b

a2 ˛. One can therefore interpret the
roposed cost function as the cost of a subproblem of a sequential
onvex programming (SCP) method for minimising the condition
umber.

In order to also address the second observation, we propose a
wo-step procedure in which it is first attempted to solve the con-
exification problem using F = 0 and, only when necessary, F /= 0
s used. We  construct the convexification procedure using the fol-
owing SDP:

min
P,F,˛,ˇ

�  ̌ −  ̨ + 
‖F‖ (24a)

.t. H + H(ıP)  + �C�
As

FCAs � ˛I, (24b)

 + H(ıP)  + �C�
As

FCAs � ˇI, (24c)

ith � ≥ 0, 
 ≥ 0 two tuning parameters and ‖·‖ an appropriately
hosen matrix norm. Parameter � ∈ {0, 1} is used to construct the
forementioned 2-step procedure. First, SDP (24) is solved using

 = 0, 
 > 0, which results in F = 0. If the solution satisfies ˛* > 0, we
ave found the stage cost matrix for a positive definite reformu-

ation of the original problem which is globally equivalent to it.
f even with � = 0 we obtain ˛* < 0, we set � = 1 and solve the SDP
gain. In this second case the equivalence of the positive definite
nd original problems will only be local.

For the second step of the convexification procedure, one can
ecide to set 
 = 0 and constrain ıP to match the one found by the
revious solution. This way, the second solution only acts on matrix

 in order to make the stage cost matrix positive definite and reduce
ts condition number.

Note that, if one chooses � = 0, it might be necessary to introduce
he additional constraint  ̨ ≤ ¯̨  with ¯̨  a parameter of choice. This
nsures that the SDP is bounded.

. Formal design of the tracking (N)MPC based on
conomic criteria
In this section, we state the conditions for the equivalence

DLMPC (22)
(iii)↔PDNMPC (2) to hold. By relying on the equiva-

ence result of Lemma  17 it is possible to formulate a tracking NMPC
s Control 45 (2016) 30–42

problem whose QP approximation at the origin is given by Prob-
lem (22), so that the tracking NMPC problem is locally first-order
equivalent to the economic NMPC problem, i.e. in the sense of (iii).
However, some difficulties can be encountered if this last equiva-
lence needs to be satisfied by using a positive definite stage cost
also in the tracking NMPC formulation. We  explain in the following
why this is not straightforward and we propose a way to tackle this
problem.

We recall that the stage-cost matrix H̃ of PD LMPC (22) is given
by (20):

H̃ = ∇2
wk

Lk(w, �, �) + H(ıP)  + C�
As

FCAs 
 0.

Then,for the PD NMPC, the choice of tthe quadratic cost

N−1∑
k=0

w�
k Ĥtwk + q�

t wk,

Ĥt = ∇2�(xs, us) + H(ıP)  + C�
As

FCAs , qt = ∇�(xs, us),

yields the desired local first-order equivalence. However, such a
choice does not guarantee positive definiteness of the stage cost, as

Ĥt = H̃︸︷︷︸

0

+ (
nx∑

i=0

�s∇2fi(xk, uk)

︸  ︷︷  ︸
/�  0

−
n�∑
j=0

�s∇2hj(xk, uk)

︸ ︷︷  ︸
/�  0

).

In order to tackle the problem relative to the Hessian of the
equality constraints, one ought to consider the rotated ver-
sion of the economic NMPC problem, so that �s = 0, therefore∑nx

i=0�s∇2fi(xk, uk) = 0. However, as proven in Lemma 6, it is not
possible to rotate the cost with respect to the inequality multi-
pliers without changing the primal solution, so that one needs to
address the problem of the contribution of the path constraints to
the Hessian.

In the case H̃�  − ∑n�

j=0�k,j∇2
whj(xk, uk), we propose to tackle

the problem by introducing slack variables s and replacing the
inequality constraints h̄(w) ≥ 0 by the equality constraints h̄(w) −
s = 0 and inequality constraints s ≥ 0. Then, the inequality con-
straints do not contribute to the Lagrangian Hessian because they
are linear. At the same time, the contribution to the Hessian which
was previously due to inequality constraints is now due to equality
constraints which can be rotated. This reasoning is formalised in
the following Lemma  for generic parametric NLP formulations.

Lemma  12. Consider vectors �̄ and �̄, a vector of fixed parameters
�, and the two parametric NLPs

min
w,s

f̄ (w, �) (25a)

s.t. ḡ(w, �) = 0, h̄(w, �) − s = 0, s ≥ 0. (25b)

and

min
w,s

f̄ (w, �) − �̄�ḡ(w, �) − �̄�(h̄(w, �) − s) (26a)

s.t. ḡ(w, �) = 0, h̄(w, �) − s = 0, s ≥ 0. (26b)

For NLP (25), let us introduce the Lagrange multipliers associated
with ḡ(w, �) = 0 as �(25)(�), those associated with h̄(w, �) − s = 0
as �(25)(�) and those associated with s ≥ 0 as �(25). Equivalently, for
NLP (26), we  introduce �(26)(�), �(26)(�) and �(26)(�). Then, both NLP
(25) and (26) deliver the same primal solution for all �̄, �̄. More-
over, it holds that �(26)(�) = �(25)(�) − �̄, �(26)(�) = �(25)(�) − �̄ and

�(26)(�) = �(25)(�).

Proof. As we  only rotate equality constraints, Lemma  6 directly
applies. �
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Table 1
Model parameters. The units are omitted and are consistent with the physical quan-
tities they correspond to.

a b c d e f g h
0.5616 0.3126 48.43 0.507 55 0.1538 55 0.16

M  C UA2 Cp � �s F1 X1

20 4 6.84 0.07 38.5 36.6 10 5 %
M. Zanon et al. / Journal of 

he proposed slack reformulation of the economic NMPC Problem
3) has the useful property that, after rotation of the cost, none of
he constraints contributes to the Hessian of the Lagrangian for an
nitial state close to the origin. Note that the proposed rotation is
ifferent from the one proposed in both [6,8]. We are now ready to
rove the main result of this paper, i.e. Theorem 2.

roof (Theorem 2). One can always formulate Problem (3) using
he proposed slack variable Formulation (26). Then, none of the
nequality constraints contributes to the Lagrangian Hessian at
teady state. The existence of the positive definite tracking formu-
ation is then a direct consequence of Lemma  12 and Theorem 11.
ndeed, one can rotate the economic NMPC NLP in the form (26)
sing �̃ = �s and �̃ = �s. The corresponding locally equivalent lin-
ar MPC  problem is obtained as Problem (6), which has a possibly
ndefinite stage cost. Note that the slack variables introduced by
he formulation (26) can be treated as dummy  controls which do
ot affect the system dynamics. Theorem 11 then states that there
lso exists a locally equivalent positive definite linear MPC  Formu-
ation (22). Moreover, as we use Formulation (26), the inequality
onstraints do not contribute to the Lagrangian Hessian. Therefore,
y using the same stage cost as in (22), one can directly formulate

 tracking NMPC scheme (2) which has the same local behaviour as
he economic NMPC problem.

Using Theorem 16 and Lemma  17 given in Appendix B we obtain
hat

∂w(6)

∂x̂0
|x̂0=0︸  ︷︷  ︸

Indefinite MPC

= ∂w(3)

∂x̂0
|x̂0=0︸  ︷︷  ︸

EMPC

and
∂w(2)

∂x̂0
|x̂0=0︸  ︷︷  ︸

PD tracking NMPC

= ∂w(22)

∂x̂0
|x̂0=0︸  ︷︷  ︸

PD MPC

.

oreover, Theorem 11 proves that w(22) = w(6) locally holds.
herefore

∂w(22)

∂x̂0
|x̂0=0︸  ︷︷  ︸

PDMPC

= ∂w(6)

∂x̂0
|x̂0=0︸  ︷︷  ︸

IndefiniteMPC

,

nd we obtain the desired equivalence:

‖ut(x̂0) − ue(x̂0)‖ = O(‖x̂0‖2).

emark 13. It is important to remark that, in order to formulate
he tracking NMPC problem which locally approximates economic
MPC, we first rotate the stage cost of economic NMPC. This implies

hat, as stated in Lemma  5, the gradient of the rotated cost in the
rigin is given by:

∂L(xk, uk)
∂wk

|�w=0 = ∂h(xk, uk)
∂wk

|�w=0�s.

ote that, because we formulate the economic NMPC Problem (3)
n its slack form, i.e. as Problem (26), we have h(xk, uk) = sk where
k are the slack variables added as ficticious controls in vector uk.

. Numerical example

In this section, we present a numerical example which illus-
rates the theoretical concepts presented in the previous sections.

e remark that the scope of this section is not to assess how well a
uned tracking NMPC scheme can perform, but rather to show that
he tuning procedure allows one to formulate an NMPC scheme
hose closed loop behaviour is closer than that of a generic NMPC
o the one obtained by the economic NMPC scheme, which also
esults in an improved performance. Clearly, the economic perfor-
ance of the tuned tracking NMPC scheme can be extremely good

or some applications, while for some other applications it can still
F3 T1 T200

50 40 25

be rather poor, as all derived results concern local properties. As
opposed to the economic NMPC formulation, however, the tuned
tracking NMPC formulation does always provide stability guaran-
tees. Moreover, more efficient and faster numerical schemes are
available for tracking formulations.

In order to compare the performance of the different MPC
schemes, we use the following performance measure

G = Peco − Ptrack∑T−1
k=0 Ps

, (27)

where Peco and Ptrack are the cumulative costs of economic and
tracking NMPC respectively over T time steps and Ps is the steady-
state optimal cost.

Let us consider an evaporation process that removes a volatile
species from a solvent. The model equations are given by [23]

MẊ2 = F1X1 − F2X2, CṖ2 = F4 − F5, (28)

where

T2 = aP2 + bX2 + c, T3 = dP2 + e, �F4 = Q100 − F1Cp(T2 − T1)

T100 = fP100 + g, Q100 = UA1(T100 − T2), UA1 = h(F1 + F3),

F100 = Q100

�s
, Q200 = UA2(T3 − T200)

1 + UA2/(2CpF200)
, �F5 = Q200,

F2 = F1 − F4,

and the states are x = (X2, P2) the controls are u = (P100, F200). The
model parameters are given in Table 1. The economic objective is
given by

�(x, u) = 10.09(F2 + F3) + 600F100 + 0.6F200.

The system is subject to the following constraints

X2 ≥ 25 %, 40 kPa ≤ P2 ≤ 80 kPa,
P100 ≤ 400 kPa, F200 ≤ 400 kg/min.

The optimal steady state is given by

xs = (25, 49.743), us = (191.713, 215.888). (29)

We consider a sampling time ts = 1 s and formulate the NMPC
scheme using a piecewise constant control parametrisation, a pre-
diction horizon N = 200 and the terminal point constraint xN = xs. In
order to avoid feasibility problems we reformulate the concentra-
tion constraint using a slack variable s (introduced as a ficticious
control) so that the constraint reads X2+ s ≥ 25 %, s ≥ 0, and the cost
is given by

�(x, u) = 10.09(F2 + F3) + 600F100 + 0.6F200 + 103s.

A purely economic NMPC scheme has been compared in a simu-
lation scenario to a conventional tracking NMPC implementation,
the proposed economically tuned NMPC scheme and a simplified
version of the tuned NMPC scheme which uses a diagonal weight-

ing matrix. On a 300 s long simulation, a pressure disturbance

P2 = 1 kPa is applied to the system at time instants t0 = 0 s, t1 = 20 s,
and t2 = 40 s. For the tracking schemes we  choose the following
“normal” stage cost matrix (denoted by subscript n), we  compute
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racking with zero gradient. (For interpretation of the references to color in this figu

he following tuned stage cost matrix (denoted by subscript t) and
ts diagonal version (denoted by subscript td)

Hn = diag([ 10 10 0.1 0.1 0.1 ]),

Ht =

⎡
⎢⎢⎢⎣

6.96 · 100 −7.42 · 10−1 1.54 · 10−1 −9.55 · 10−4

−7.42 · 10−1 1.23 · 10−1 −1.62 · 10−2 6.86 · 10−5

1.54 · 10−1 −1.62 · 10−2 7.93 · 10−3 −2.10 · 10−5

−9.55 · 10−4 6.86 · 10−5 −2.10 · 10−5 4.53 · 10−3

0 0 0 0 

here the units of the weights are chosen consistently with the
hysical quantities they correspond to, so as to yield a dimension-

ess cost. We  remark that, in order to be able to compute a convex
uned tracking stage cost, we need to make use of the term C�

As
FCAs .

he operator diag constructs a diagonal matrix with the diagonal
lements taken from the given vector and the operator Diag returns

 matrix of the same size as the original with the diagonal elements
re unchanged and all off-diagonal elements are set to 0.

The tracking cost has then been defined as

�t•(x, u) =
[

x
u

]�
H•

[
x
u

]
+ ∇w�(x, u)|�ws

[
x
u

]
, • ∈ {n, t, td},

[ ]

here w = x u

�
. We  remark that, as there are active constraints

t steady state, the gradient of the cost at steady state can not be
ade equal to zero and needs to be included in the tracking cost for-
ulation. For comparison, we also implemented a tracking NMPC
racking, red = normal tracking, magenta = tuned diagonal, dashed magenta = normal
end, the reader is referred to the web version of the article.)

 · 101

⎤
⎥⎥⎥⎦ , Htd = Diag(Ht),

formulation which uses the stage cost matrix Hn and zero gradient,
i.e.

�t
n,ng(x, u) =

[
x
u

]�
Hn

[
x
u

]
.

The state and control trajectories resulting from the closed loop
simulations are displayed in Fig. 1. It can be seen that the tuned
tracking NMPC scheme is so close to the economic NMPC one
that the trajectories are indistinguishable by eye inspection. The
NMPC scheme formulated using the diagonal of the tuned stage
cost matrix performs better than the normal though there is no
a priori guarantee that this should be the case. The performance
index for the three schemes reflects this situation:

G = −3.2 · 10−4, G = −1.5 · 10−3, G = −1.1 · 10−4,
n n,ng td

Gt = −1.2 · 10−7.

The tuned NMPC scheme performs 3 orders of magnitude better
than the two  other tracking NMPC schemes. It is therefore clear
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Fig. 2. MPC  control law depending on initial conditions close to the optimal steady state. In the top graph we have perturbed X2, while in the bottom one we have perturbed P2.
In  all graphs, the optimal steady state is displayed in dashed black line and the bounds in thick continuous black line. Blue = EMPC, dashed black = tuned tracking, red = tuned
d gradie
r

t
h

O
o
i
M

w
p
t
i

iagonal, magenta = normal tracking, dashed magenta = normal tracking with zero 

eferred to the web  version of the article.)

hat the off-diagonal elements can be very important in order to
ave an accurate approximation of the economic NMPC behaviour.

In order to confirm the theoretical result that ‖ut(x̂0) − ue(x̂0)‖ =
(‖x̂0‖2), we have perturbed the initial condition in a neighborhood
f the optimal steady state. The resulting control laws are displayed
n Fig. 2, where it can be seen that the tuned tracking nonlinear

PC  scheme is the only tracking scheme for which it holds that
∂ut(x̂0)

∂x̂0
|x̂0=xs = ∂ue(x̂0)

∂x̂0
|x̂0=xs .

From Fig. 2 we also deduce that the tracking NMPC scheme
ith zero gradient performs very differently from the others if the
ressure P2 drops. By running the same scenario with negative per-
urbations of the pressure, we obtain the following performance
ndices:
Gn = −5.4 · 10−6, Gn,ng = −1.6 · 10−1, Gtd = −1.1 · 10−4,
Gt = −1.2 · 10−7.
nt. (For interpretation of the references to color in this figure legend, the reader is

All the tracking NMPC schemes with the correct gradient perform
very well, while the tracking NMPC scheme with zero gradient
performs much worse than all others.

Finally, on a 300 s long simulation, a concentration disturbance

X2 = 1% is applied to the system at time instants t0 = 0 s, t1 = 20 s,
and t2 = 40 s. We  obtain the following performance indices:

Gn = −2.6 · 10−5, Gn,ng = −4.2 · 10−2, Gtd = −1.6 · 10−5,

Gt = −7.4 · 10−9.

Again, all tracking NMPC schemes which make use of the non-
zero gradient at the origin perform well compared to the economic

NMPC, while the one which has zero gradient at the origin is by
far the worst. We  remark that this last tracking NMPC scheme is
the only one which does not bring the concentration X2 back to its
steady state value in one step.
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. Conclusions

In this paper we have set a theoretical background for a for-
al  design of the stage cost for both linear and nonlinear tracking
PC  schemes approximating the behaviour of economic NMPC also

n the presence of active constraints at the optimal steady state.
e have proven that our design procedure yields tracking MPC

chemes which locally deliver a first-order approximation of the
conomic MPC  control law. A necessary condition for the tuning to
xist is that the economic MPC  scheme is locally stabilising.

When considering nonlinear tracking MPC  in the presence of
onlinear inequality constraints active at steady state, the theoret-

cal developments valid for linear tracking MPC  do not apply. In
rder to tackle this issue, we have proposed a slack reformulation
f the NMPC scheme which only has linear inequality constraints
ut is equivalent to the original formulation.

We have proposed a practical approach for computing the pos-
tive definite stage cost matrix for tracking NMPC. In order to
ompute a stage cost which is well conditioned, we formulate the
roblem as an SDP. Whenever our approach leads to an infeasible
DP, we have certified that the economic MPC  scheme is not locally
tabilising.

Finally, we have applied the theoretical developments to an
xample in simulations. We  analyse both (a) the closed-loop
ehaviour in terms of trajectories and economic performance and
b) the feedback control law as a function of the initial state. All
esults demonstrate the beneficial effect of the proposed tuning
rocedure.
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ppendix A.

We  define an MPC  scheme as stabilising if the closed-loop system
s Lyapunov stable, which we define as follows.

heorem 14 (Lyapunov stability). Suppose that the set X  ⊂ Rnx is
ositive invariant for the closed-loop system xk+1 = f(xk, u•(xk)), • ∈ {e,
}, and that xs lies in the interior of X. If there exists a Lyapunov function

 : X  → R  for the closed-loop system and the equilibrium xs, then xs

s asymptotically stable with a region of attraction X.

For tracking MPC, Lyapunov stability is guaranteed by the con-
ition �t(x, u) ≥ ˛(‖x ‖) for all feasible u, in combination with
ontinuity of the cost and system dynamics, an appropriate choice
f the terminal cost, and the satisfaction of a technical controllabil-
ty assumption. For economic MPC, the condition �(x, u) ≥ ˛(‖x ‖) is
n general violated and the current stability theory relies on a strict
issipativity assumption to replace it.

efinition 15 (Strict dissipativity [24]). The system xk+1 = f(xk, uk)
s dissipative on a set W = WX × WU with respect to the supply rate

 : W → R  if there exists a function � : WX → R, which is bounded
rom below on WX and such that the following inequality is satisfied
or all (xk, uk) ∈ W:

(f (xk, uk)) − �(xk) ≤ �(xk, uk). (A.1)

f there exists a positive definite function 
 such that for all
xk, uk) ∈ W:

(f (xk, uk)) − �(xk) ≤ −
(‖xk‖) + �(xk, uk), (A.2)
hen the system is strictly dissipative on W.

he assumption of strict dissipativity has been used in [8] in order
o prove Lyapunov stability of economic MPC. The stability proof
s Control 45 (2016) 30–42

hinges on the rotated cost (4) satisfying L(xk, uk) ≥ 
(‖xk ‖) with �(x)
continuous in xs and bounded. In [6] and [8], it has been proven
that the MPC  problem (3) formulated using the rotated cost delivers
the same primal solution as the original one. Clearly, if strict dissi-
pativity holds, L(xk, uk) ≥ ˛(‖xs ‖) holds on a compact set so that the
rotated economic MPC  problem satisfies all the assumptions used
to prove Lyapunov stability of tracking MPC. Because there exists
no systematic method to find or dismiss the existence of a stor-
age function �(x) such that the system satisfies strict dissipativity
in the general case, it is hard to guarantee Lyapunov stability for
economic MPC  schemes.

Appendix B.

We  provide next a result from parametric optimisation.

Theorem 16. (Continuous differentiability [25,26]) Let us consider
a parametric optimisation problem which depends on parameter t

min
w

f̄ (w, t) s.t. ḡ(w, t) = 0, h̄(w, t) ≥ 0. (B.1)

We define the Lagrangian as L̄(w, t, �, �) = f̄ (w, t) − ��ḡ(w, t) −
��h̄(w, t), the solution points depending on t as (w∗(t), �∗(t), �∗(t)),
and the set of indices of the active constraints for t = 0 as A. Let us
assume that the KKT point (w∗(0), �∗(0), �∗(0)) satisfies linear inde-
pendence constraint qualification (LICQ), strong second order sufficient
conditions and strict complementarity. Let us moreover assume that
the solution (ıw∗, ı�∗, ı�∗

A
) of the following quadratic program (QP)

min
w

1
2

ıw�∇2
wL̄ıw +

(
∂
∂t

∇wL̄
)�

ıw (B.2a)

s.t. ∇t ḡ + ∇wḡ�ıw = 0, (B.2b)

∇t h̄A + ∇wh̄�
A

ıw = 0, (B.2c)

where all derivatives are evaluated at (w∗(0), �∗(0), �∗(0)), satisfies
the strict complementarity condition. Then

(i) there exists an � and a differentiable curve v(t) =
(w∗(t), �∗(t), �∗(t)) of KKT points that satisfy the optimality
conditions for Problem (B.1), for t ∈ (−�, �);

(ii) at t = 0 the one sided derivative of this curve is given by

∂v
∂t

= lim
t→0+

1
t

[
w∗(t) − w∗(0)
�∗(t) − �∗(0)
�∗(t) − �∗(0)

]
=

⎡
⎢⎣

ıw∗

ı�∗[
ı�∗
A

0

]
⎤
⎥⎦ ,

where we ordered �* such that the multipliers corresponding to
the active constraints are followed by those corresponding to the
inactive ones.

Proof. The proof is given in [26] and [25, Theorem 3.3.4 and
Corollary 3.3.1]. �

This theorem is particularly important because (a) it ensures
that there is an interval (−�, �) inside which the set of strongly
active constraints remains unchanged and (b) it states that w∗(t) =
w∗(0) + tıw∗ + O(t2), for t ∈ (−�, �).

The original version of the theorem considered milder assump-
tions that allowed the existence of weakly active constraints for
t = 0. In that case one can only prove the existence of the one-
sided derivative of the solution curve, as t = 0 can be a point of

non-differentiability of the solution curve. For simplicity, in this
paper we only consider economic MPC  formulations which do not
have weakly active constraints at steady state. An extension to the
case of weakly active constraints at steady state seems possible but
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equires a more detailed technical discussion which is left for future
esearch.

An implication of Theorem 16 is given in the following lemma.

emma  17. Consider any NLP of the form (B.1) which satisfies the
ssumption of Theorem 16 and the following QP

in
w

12
ı

w�∇2
wL̄ıw +

(
∂
∂t

∇wL̄
)�

ıw (B.3a)

.t. ḡ(w(B.1), t) + ∇wḡ�ıw = 0, (B.3b)

¯ (w(B.1), t) + ∇wh̄�ıw ≥ 0, (B.3c)

here all derivatives are evaluated at the optimal point
∗(t), t, �∗(t), �∗(t). Then the following holds at t = 0:

∂v(B.3)

∂t
= ∂v(B.1)

∂t
,

.e. the two problems locally deliver the same solution up to first-order.

roof. The proof is obtained by noting that both Problem (B.1)
nd (B.3) deliver the same QP (B.2).�

ppendix C.

We  provide next the proof of Lemma  6.

roof (Lemma 6). Let us denote the optimal solution of Problem
7) by w∗(�) = w(7)(�). The KKT conditions of NLP (7) read

wf̄ (w∗(�), �) − ∇wḡ(w∗(�), �)�(7)(�) − ∇wh̄(w∗(�), �)�(7)(�) = 0,

(C.1a)

¯ (w∗(�), �) = 0, (C.1b)

¯ (w∗(�), �) ≥ 0, (C.1c)

(7)(�) ≥ 0, (C.1d)

(7)
i

(�)h̄i(w
∗(�), �) = 0, i = 1, . . .,  nh. (C.1e)

If the original and rotated NLPs deliver the same primal solution,
hen w∗(�) must also be a KKT point for the rotated problem. The
KT conditions of NLP (8) then read

wf̄ (w∗(�), �) − ∇wḡ(w∗(�), �)(�(8)(�) + �̄)

− ∇wh̄(w∗(�), �)(�(8)(�) + �̄) = 0, (C.2a)

¯ (w∗(�), �) = 0, (C.2b)

¯ (w∗(�), �) ≥ 0, (C.2c)

¯ (8)(�) ≥ 0, (C.2d)

¯ (8)
i

(�)h̄i(w
∗(�), �) = 0, i = 1, . . .,  nh. (C.2e)

onditions (C.1a) and (C.2a) are equivalent for �(8)(�) = �(7)(�) − �̄
nd for �(8)(�) = �(7)(�) − �̄. However, we will now show that
ne can in general only satisfy Conditions (C.2d) and (C.2e) for
ll � iff �̄ = 0. Let us consider the original problem and a vari-
tion ı� which yields 0 = �(7)

i
(� + ı�)  < �(7)

i
(�). In this case the

nly feasible choice which still satisfies (C.2d) is �̄i ≤ 0. However,

n case h̄i(w∗(� + ı�), � + ı�)  > 0, then the only admissible choice
s �̄i = 0, otherwise Condition (C.2e) cannot be satisfied.

Therefore, Problems (7) and (8) are always delivering the same
rimal solution if and only if �̄ = 0, i.e. �(8)(�) = �(7)(�).�
s Control 45 (2016) 30–42 41

Appendix D.

We prove that, under the conditions of Theorem 9, for system
(A, B) the LQR formulated using the stage cost matrix H̄  satisfying
CAs H̄C�

As

 0 delivers a stabilising feedback matrix.

Lemma  18. Consider the infinite-horizon problem

V+(x̂0) := min
w

∞∑
k=0

1
2

[
xk

uk

]�

H̄

[
xk

uk

]
(D.1a)

s.t. x0 − x̂0 = 0, (D.1b)

xk+1 − Axk − Buk = 0, k = 0, 1, . . .,  (D.1c)

lim
N→∞

xN = 0. (D.1d)

If the system is stabilisable and if for x̂0 = 0 the unique primal solution
is x(D.1)

k
= 0, u(D.1)

k
= 0, then Problem (D.1) is stabilising for all initial

conditions x̂0.

Proof. Let us define the following helper problem

V−(x̂0) := min
w

−1∑
k=−∞

1
2

[
xk

uk

]�

H̄

[
xk

uk

]
(D.2a)

s.t. x0 − x̂0 = 0, (D.2b)

xk+1 − Axk − Buk = 0, k = 0, 1, . . ., (D.2c)

lim
N→∞

x−N = 0, (D.2d)

We then define

V(x̂0) := min
w

∞∑
k=−∞

1
2

[
xk

uk

]�

H̄

[
xk

uk

]
(D.3a)

s.t. x0 − x̂0 = 0, (D.3b)

lim
N→∞

x−N = 0, (D.3c)

xk+1 − Axk − Buk = 0, k = . . .,  0, 1, . . . (D.3d)

lim
N→∞

xN = 0, (D.3e)

which implies V(x) = V−(x) + V+(x).
We prove now that V it is a Lyapunov function for the closed-

loop system using the MPC  feedback from Problem (D.1). First, we
assume that the system is controllable, so that V−(x̂0) < ∞ for all
bounded initial values. We  will extend the proof to stabilisable
systems in a second step.

We begin by proving that V(x) is lower and upper bounded by
K∞ functions. By assumption, the unique solution of MPC  prob-
lem (D.1) with initial condition x̂0 = 0 is xk = 0, uk = 0 with a cost
V+(0) = 0. Moreover, for x̂0 = 0, Problem (D.3) coincides with Prob-
lem (D.1) shifted backwards in time. This entails that, for x̂0 = 0,
x(D.3)

k
= 0, u(D.3)

k
= 0 must be the unique solution of Problem (D.3a).

Therefore, for all x /= 0, any feasible trajectory x̌k(x), ǔk(x) such that
lim

N→∞
x̌−N(x) = 0, x̌0(x) = x and lim

N→∞
x̌N(x) = 0 yields a strictly positive

cost. Therefore, V(x) > 0, for all x /= 0. Controllability implies that
V+(x)< ∞ and V(x)< ∞.  Moreover, because V(x) ≥ 0 and V+(x)< ∞,  it
also holds that V−(x)>− ∞.  Because the system dynamics are lin-
ear, the cost is quadratic and there is no path constraint, V+(x),
V−(x) and V(x) are quadratic. Then V(x) > 0, for all x /= 0 implies

that V(x) = x�Wx, with W 
 0. Therefore,

˛(‖x‖) ≤ V(x) ≤ ¯̨ (‖x‖),

with ˛, ¯̨  two  K∞ functions.
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We  now turn to prove descent of the Lyapunov function can-
idate, i.e. for a given initial state x(D.1)

0 = x̂0 /= 0, we  must have

(x(D.1)
1 ) − V(x(D.1)

0 ) < 0. By definition of optimality, we  get

−(x(D.1)
1 ) ≤ V−(x(D.1)

0 ) + 1
2

[
x(D.1)

0

u(D.1)
0

]�

H̄

[
x(D.1)

0

u(D.1)
0

]
, (D.4)

+(x(D.1)
0 ) = V+(x(D.1)

1 ) + 1
2

[
x(D.1)

0

u(D.1)
0

]�

H̄

[
x(D.1)

0

u(D.1)
0

]
, (D.5)

nd, by replacing (D.5) into (D.4), we obtain

V(x(D.1)
1 ) − V(x(D.1)

0 ) ≤ 0.

ecause V is bounded and V(x) > 0 for all x /= 0, the situation
(x(D.1)

1 ) − V(x(D.1)
0 ) = 0 can only last at most for a finite num-

er of consecutive steps n< ∞,  otherwise V would be unbounded.
his implies that the feedback from Problem (D.1) is n-step sta-
ilising. However, because the system and stage cost are time

nvariant and the system is linear, also the feedback from Prob-
em (D.1) is linear time invariant and, therefore, n = 1. This means
hat V(x(D.1)

1 ) − V(x(D.1)
0 ) < 0 for all x(D.1)

0 /= 0, which concludes the
rst part of the proof.

In case the system is not controllable but stabilisable, the upper
ound V(x) ≤ ¯̨ (‖x‖) can be violated if x is not reachable from the
rigin. In order to address that problem, we can formulate a relaxed
ersion of Problems (D.1) and (D.2) which makes use of the relaxed
ystem dynamics xk+1 = Axk + Buk + vk with vk a ficticious con-
rol penalised by the term �‖vk‖1, with � ≥ ‖ �max ‖ ∞, and �max

he Lagrange multiplier of Problems (D.1) and (D.2) whose infinity
orm is maximum for all feasible initial conditions. This entails that
he relaxed versions of Problems (D.1)-(D.2) yield the same primal
olution and optimal value as the original problems for all terminal
onditions which are feasible. However, the relaxed problems are
easible for all terminal conditions. Then the proof proceeds along
he same arguments used for the controllable case, with the differ-
nce that now functions V+, V− and V are not quadratic but they are
till radially unbounded.�
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