
Nonlinear Model Predictive Control of a Human-sized Quadrotor

Andrea Zanelli1, Greg Horn2, Gianluca Frison1 and Moritz Diehl1

Abstract— This paper discusses the design, implementation and
deployment of an attitude controller for a quadrotor based on
nonlinear model predictive control on a low-power embedded
system equipped with a Cortex A9 CPU running at 800
MHz. Due to the limited computational power of the available
hardware, a modified interior-point solver for the so-called
partially tightened Real-Time Iteration is used. The algorithm
splits the prediction horizon in two sections. A Riccati-like
recursion is exploited that relies on a single linearization of the
complementarity conditions per sampling-time for the terminal
section. In this way, it is possible to achieve a speedup of a factor
3 with respect to a standard real-time iteration formulation
for the application under consideration. Simulation results
that show the improvement in performance obtained by using
NMPC over standard control techniques are discussed and
experimental results using the proposed implementation are
presented.

I. INTRODUCTION

Nonlinear model predictive control (NMPC) is an
optimization-based control technique that allows one
to directly address several sources of complexity in the
process of designing a controller. In particular, it provides
a framework to design a controller in the presence of
nonlinear dynamics and constraints which can lead to
significant performance improvements with respect to
classical control solutions. However, these advantages come
at the cost of a considerably increased computational effort
needed to compute the control law: at every sampling
time, a nonlinear nonconvex optimization problem has to
be solved that can result in prohibitive computation times,
especially on low-power embedded systems.
For this reason, NMPC has been historically used in appli-
cations with relatively slow dynamics, where enough time
is available to compute the control inputs to be applied
to the plant [16]. In recent years, due to the considerable
progress made in algorithms and software implementations
and thanks to the increasing available computation power
on embedded platforms, applications with shorter sampling
times could be realized. In [10] NMPC is used to control a
diesel engine, while in [4] it is applied to a gasoline two-
stage turbo charger. In both applications computation times

This research was supported by the EU via ERC-HIGHWIND (259 166),
FP7-ITN-TEMPO (607 957) and H2020-ITN-AWESCO (642 682), by the
Federal Ministry for Economic Affairs and Energy (BMWi) via eco4wind
and DyConPV, and by DFG via Research Unit FOR 2401.

1Andrea Zanelli, Gianluca Frison and Moritz Diehl are with the
University of Freiburg, Department of Microsystems Engineering
(IMTEK), Georges-Koehler-Allee 102, 79110 Freiburg, Germany -
andrea.zanelli, gianluca.frison, moritz.diehl
@imtek.uni-freiburg.de

2Greg Horn is with Kitty Hawk Corporation, Mountain View, CA, USA
- greg@kittyhawk.aero

in the order of tens of milliseconds could be met.

A. Background and Contribution

Unmanned aerial vehicles (UAVs) are finding their way into
several application fields such as inspection, surveillance
and rescuing and are drawing considerable interest in the
control engineering community. Furthermore, a few appli-
cations have emerged in which quadrotor- and multirotor-
like systems are used as personal air vehicles [2], [3]. Due
to the highly nonlinear dynamics exhibited by quadrotors,
the performance of linearization-based controllers can be
affected when the vehicles are operated far from the lin-
earization point. Moreover, with classical control solutions,
it is non-trivial to deal with constraints on states and inputs,
when they are present. Although such approaches have been
successfully applied to the problem of controlling the attitude
of quadrotors (see [7], [18] to cite only few applications),
NMPC could in principle provide a more direct approach
in treating nonlinearity and constraints. In [13] an NMPC
attitude controller for a multicopter that operates on the
rotation group SO(3) using the Real-Time Iteration (RTI)
scheme [8] is proposed.
In this paper, NMPC is used to design an attitude controller
for a human-sized quadrotor equipped with a low-power
embedded processor running at 800 MHz. The designed
controller is required to be able to compute the control
action within 10 ms, while sparing enough CPU time for
the other routines running on the embedded platform to
be performed (e.g telemetry, logging, low-level controller,
sensing and estimation, fault detection, etc). In order to meet
the required execution time a so-called partially tightened
formulation [20] is used that allows one to speed up the
computations by exploiting a modified Riccati-based interior-
point solver. The optimal control formulation (OCP) utilizes
dynamics in quaternion form and a nonlinear least-squares
cost that enables direct tracking of references in the Euler
angles space.
The main purpose of the paper is, rather than building on top
of state-of-the-art control techniques for UAVs, to show that
recent advances in algorithms and software implementations
enable one to reduce the computational burden associated
with optimization-based control techniques. In particular,
applications can be tackled where short sampling times need
to be met on resource constrained hardware. The paper is
structured as follows: in Section II preliminary concepts on
NMPC and the RTI scheme are described. Section III intro-
duces the algorithm used in the controller. Sections IV and V
present simulation and experimental results respectively and
in Section VI conclusions and outlook are discussed.



II. PRELIMINARIES

A. Nonlinear Model Predictive Control

In order to use NMPC to control a system, one has to be
able to efficiently solve nonlinear nonconvex optimal control
problems. In this paper, the following nonlinear least-squares
formulation will be taken into account:

min
x0,··· ,xN

u0,··· ,uN−1

1

2

N−1∑
i=0

‖η(xi, ui)‖2W +
1

2
‖ηN (xN )‖2WN

s.t. x0 − x̄0 = 0

xi+1 = f(xi, ui), i = 0, · · · , N − 1

g(xi, ui) ≤ 0, i = 0, · · · , N − 1

gN (xN ) ≤ 0,

(1)

where xi ∈ Rnx and ui ∈ Rnu are the states and inputs of
the system respectively and f , g, gN , η and ηN are twice
continuously differentiable functions. The nonlinear residual
functions η and ηN are weighted by W, WN � 0 respectively
and the initial state of the system is denoted by x̄0.
In order to efficiently solve (1), among other approaches [14],
SQP-based methods can be used that rely on the solution of a
series of quadratic programs (QPs) that locally approximate
the original nonlinear program (NLP). Together with several
other algorithmic ingredients and under mild assumptions
[14], it can be shown that the generated iterates converge to
a local minimum of the NLP.
In this paper a method based on SQP and a modified version
of the so-called Real-Time Iteration (RTI), which will be
described in the following section, will be used.

B. Real-Time Iteration

Since the computation times associated with the solution of
an NLP can be rather high, the RTI scheme can be used
which relies on a single SQP iteration per sampling time.
In this way, the NLP needs to be linearized only once and
a single QP needs to be solved, leading to considerably
reduced computation times. After linearization, a QP of the
following form is obtained:

min
x0,··· ,xN

u0,··· ,uN−1

N−1∑
i=0

l(xi, ui) + lN (xN )

s.t. x0 − x̄0 = 0

xi+1−Aixi−Biui−ci = 0, i = 0, · · · , N − 1

di +Gx
i xi +Gu

i ui ≤ 0, i = 0, · · · , N − 1

di +Gx
NxN ≤ 0,

(2)
where

l(xi, ui) :=
1

2

(
xTi Qixi + uTi Riui

)
+ qTi xi + rTi ui

lN (xN ) :=
1

2
xTNQNxN + qTNxN .

(3)

The linearized dynamics and constraints appearing in (2) use
the quantities:

Ai := ∇xf(x
k
i , u

k
i )

T , Bi := ∇uf(x
k
i , u

k
i )

T

Gx
i := ∇xg(x

k
i , u

k
i )

T , Gu
i := ∇ug(x

k
i , u

k
i )

T

Gx
N := ∇xgN (xkN )T

(4)

and
ci := f(xki , u

k
i )−Aix

k
i −Biu

k
i

di := g(xki , u
k
i )−Gx

i x
k
i −Gu

i u
k
i ,

(5)

where quantities with the k superscript denote states and
inputs obtained at the previous SQP iteration. The quadratic
cost approximation uses the exact gradients

qi := ∇xη(x
k
i , u

k
i ) η(x

k
i , u

k
i )

ri := ∇uη(x
k
i , u

k
i ) η(x

k
i , u

k
i )

qN := ∇xηN (xkN ) ηN (xkN )

(6)

and the Gauss-Newton Hessian with
Qi := ∇xη(x

k
i , u

k
i )W

x ∇xη(x
k
i , u

k
i )

T

Ri := ∇uη(x
k
i , u

k
i )W

u ∇uη(x
k
i , u

k
i )

T

QN := ∇xη(x
k
N )WN ∇xη(x

k
N )T ,

(7)

where W x and Wu denote the Hessian blocks in W associ-
ated with states and inputs respectively.
Remark: notice that cost cross-terms coupling states and in-
puts have been neglected in the QP formulation for simplicity
of notation, since the OCP used (which will be described in
the next section) has decoupled residuals which do not jointly
depend on both states and inputs.

III. PROBLEM FORMULATION AND IMPLEMENTATION

A. Model and Optimal Control Formulation
For the simulations shown in Section IV, the following model
[6] will be used:

q̇ =
1

2
STΩ, Ω̇ = J−1(T − Ω× JΩ), (8)

where q and Ω describe the orientation of the quadrotor ex-
pressed in quaternion representation and its angular velocity
respectively and

S :=

−q1 q0 q3 −q2
−q2 −q3 q0 q1
−q3 q2 −q1 q0

 . (9)

It is assumed that angular velocities of the propellers ω
can be tracked instantaneously, hence they are considered
as inputs to the system. Moreover, the angular momentum
contribution of the propellers is ignored in order to simplify
the model. The matrix J denotes the inertia matrix of the
vehicle, while the torques applied to the system are described
by T := [T1 T2 T3]

T , with

T1 :=
AClρ(ω

2
2 − ω2

4)

2
, T2 :=

AClρ(ω
2
1 − ω2

3)

2

T3 :=
ACdρ(ω

2
1 − ω2

2 + ω2
3 − ω2

4)

2
,

where ρ is the air density, Cd and Cl are the drag and lift
coefficients and A is the area of the propellers. The values of
the parameters appearing in the model are listed in Table I.



Parameter Value Description

ρ 1.225 kg/m3 air density

A 0.1m2 propeller area

Cl 0.125 lift coefficient

Cd 0.075 drag coefficient

m 10Kg quadrotor mass

g 9.81m/s2 gravitational acceleration

J1 = J2 = 4 · J3 0.25Kg · m/s2 moments of inertia

TABLE I: quadrotor model - values of the parameter used for
the simulation results in Section IV. Notice that these values
are fictitious. They have been used for simulation purpose and
do not correspond to the parameters of the physical system.

B. Partially Tightened Real-Time Iterations

In order to reduce the computational burden associated with
the solution of the QP subproblems (2), the so-called partially
tightened RTI scheme proposed in [20] is used. The main
idea behind the algorithm is to replace the constraints in
the terminal section of the prediction horizon with barrier
terms and to perform Newton-type iterations that require the
solution of a reduced QP of the form

min
x0,··· ,xM

u0,··· ,uM−1

M−1∑
i=0

l(xi, ui) + ψ(xM )

s.t. x0 − x̂0 = 0

xi+1−Aixi−Biui−ci = 0, i = 0, · · · ,M − 1

di +Gx
i xi +Gu

i ui ≤ 0, i = 0, · · · ,M − 1,
(10)
with quadratic terminal cost for stage M

ψ(xM ) :=
1

2
xTMPM (D)xM + pM (D)TxM , (11)

where the variables associated with stages i > M (and
the inputs for stage i =M ) have been eliminated using a
structure-exploiting Riccati recursion. Notice that in (11) D
(for “data”) has been introduced to stress the dependency of
PM (D) and pM (D) on quantities associated with stages M
to N . Effectively, at each iteration, the modified RTI scheme
solves a nonlinear root-finding problem where the only
source of nonlinearity lies in the complementarity conditions
for stages i = 0 to M − 1. This fact can be exploited in
order to efficiently eliminate the variables associated with
the terminal section of the prediction horizon which yields
the positive definite terminal Hessian PM (D) and terminal
gradient pM (D) in the reduced QP (10).
The description of the details of the algorithm and its
implementation goes beyond the scope of the paper and the
interested reader is referred to [20] where numerical results
and a sketch of a stability proof are provided. In the next
section, numerical simulations will be shown that compare
the computation times and the closed loop performance
of different attitude controllers among which the above
described partially tightened and the standard RTI scheme.

IV. SIMULATION RESULTS

In this section, the performance of different control strate-
gies will be assessed in simulation. In particular, a
proportional-derivative controller (PD), a linear-quadratic
regulator (LQR) and different variants of an NMPC-based
scheme will be taken into account.

A. PD Controller

The first controller taken into account is a PD acting sep-
arately on the three Euler coordinates and using a fixed
torque allocation as described in [7]. The main idea consists
in defining the torque applied to the vehicle using an a
priori fixed parametrization that relies on the observation
that torques along the three axis can be obtained, loosely
speaking, by adjusting the propeller speeds in a “differential”
fashion:

τ1 =
AClρ

2J1
(ω2

2 − ω2
4), τ2 =

AClρ

2J2
(ω2

3 − ω2
1)

τ3 =
ACdρ

2J3
(ω2

1 − ω2
2 + ω2

3 − ω2
4).

(12)

Additionally, the equation Fr = (ω2
1 + ω2

2 + ω2
3 + ω2

4)
AClρ

2
is used to specify the desired total thrust.
Remark: notice that the torque parametrization used com-
pletely neglects the inertial terms in the dynamics which
depend on the angular velocities of the vehicle. However,
for small angular velocities, it can be expected to provide a
reasonable approximation of the actual torques.

The chosen approximate parametrization allows one to de-
sign three fully decoupled PD controllers that control the
attitude on a separate axis each:

τ = Kpe+Kdė, (13)

where e and ė are estimates of the roll, pitch and yaw errors
and their derivatives respectively and Kp and Kd are the
proportional and derivative diagonal matrix gains. Once the
desired torque vector τ has been computed according to (13),
the squared rotor speeds ωs can be efficiently computed by
solving the following linear system Aρ

2 Mωs = t, where

M :=


0 1 0 −1
−1 0 1 0
1 −1 1 −1
1 1 1 1

 , t := [
τ1J1

Cl

τ2J2

Cl

τ3J3

Cd

gm
Cl

]T
.

Notice that, the matrix Aρ
2 M is constant and it can be

pre-factorized offline in order to speed up the solution of
the linear system. The actual rotor speeds can be finally
obtained by computing the element-wise square root of ωs:
ωi =

√
ωs,i, i = 1, · · · , 4.

B. LQR Controller

The second controller that will be taken into account is
based on a reduced space LQR. Since the attitude dy-
namics in quaternion coordinates are not controllable, the
dynamics will be first projected onto a controllable sub-
space as proposed in [18]. In particular, using the fact



0 1 2 3 4 5 6 7 8 9 10
−2
−1
0
1
2

ro
ll

[r
ad

]

0 1 2 3 4 5 6 7 8 9 10
−2
−1
0
1
2

pi
tc

h
[r

ad
]

0 1 2 3 4 5 6 7 8 9 10
−2
−1
0
1
2

time [s]

ya
w

[r
ad

]

PD LQR NMPC ref.

Fig. 1: Attitude tracking simulation results comparing differ-
ent control strategies - closed-loop state trajectories: PD in
solid yellow, LQR in dashed red and converged-NMPC in
solid blue. The NMPC controller achieves a more accurate
tracking of the reference attitude.

max CPU time [ms] avg CPU time [ms] subopt. [%]

Ipopt 131.40 43.40 -

RTI 1.04 0.52 3.69

pt-RTI 0.22 0.18 17.67

TABLE II: maximum and average CPU time in ms and
relative closed-loop suboptimality with respect to converged
NMPC of the RTI and partially tightened RTI (pt-RTI)
schemes. Using the pt-RTI scheme a speedup of about a factor
5 can be achieved with a moderate increase in suboptimality.

that q0 =
√
1− q21 − q22 − q23 , the first component of the

quaternion vector can be eliminated yielding a differential
equation which, together with the angular velocity dynamics
in (8), will be used to design the LQR static gain. To this
end, the dynamics are linearized around the hovering steady
state and input (x̄, ū) and discretized using an explicit RK4
integration scheme:

xk+1 − x̄ = A(xk − x̄) +B(uk − ū). (14)

At this point, a discrete-time LQR controller can be designed
by solving the discrete time algebraic Riccati equation

ATPA− P − (ATPB)(BTPB +R)−1(BTPA) +Q = 0,

which provides a static state feedback u = Kx+ ū with

K = (BTPB +R)−1(BTPA), (15)

which, once an estimate of the state of the system has been
computed, allows one to readily compute the input to be
applied to the system.

C. NMPC Controller

Three different variants of NMPC-based controllers will
be compared in simulation. All of them use a nonlinear

0 1 2 3 4 5 6 7 8 9 10
30

40

50

ω
1

[r
ad

/s
]

0 1 2 3 4 5 6 7 8 9 10
30

40

50

ω
2

[r
ad

/s
]

0 1 2 3 4 5 6 7 8 9 10
30

40

50

ω
3

[r
ad

/s
]

0 1 2 3 4 5 6 7 8 9 10
30

40

50

time [s]

ω
4

[r
ad

/s
]

Fig. 2: Attitude tracking simulation results comparing differ-
ent control strategies - closed-loop input trajectories.

least-squares formulation with residual functions

η(x, u) :=


α(x)− αr

β(x)− βr
γ(x)− γr
x− xr
u− ur

 , ηN (x) :=


α(x)− αr

β(x)− βr
γ(x)− γr
x− xr

 ,
(16)
where α, β and γ define the attitude of the quadrotor in Euler
angles (roll, pitch and yaw) as functions of q. The quantities
in (16) with the r subscript denote the desired references
associated with each residual output.
1) Converged NMPC scheme: the problem formulation in
(1) has been implemented using CasADi [5] with a pre-
diction horizon of T = 1.0 s and N = 20 shooting nodes,
discretizing the dynamics using the explicit RK4 integration
scheme. The obtained OCPs are solved using the interior-
point solver Ipopt [17]. The Ipopt interface available
in CasADi is used where the possibility of just-in-time
compiling function evaluations is exploited in order to speed
up the computations. The linear system solver ma57 [9]
is used linked against a single threaded build of the high-
performance BLAS implementation OpenBLAS [15]. Al-
though real-time implementations of nonlinear interior-point
methods are present in the literature [19], the computation
times obtained when solving the OCPs to a local minimum
are often longer than the ones obtained with approximate
schemes like the RTI. However, the closed loop trajectories
obtained with this approach will be used as a reference
to assess the suboptimality associated with the approximate
schemes described below.
2) Standard RTI scheme: in order to reduce the computation
times associated with the solution of the OCPs, the RTI
scheme has been implemented using the software package
acados [1]. The same number of shooting nodes and
the same tuning has been used for the implementation.
The chosen QP solver is hpmpc [12] which relies on the
hardware-tailored linear algebra package BLASFEO [11].



3) Partially Tightened RTI scheme: finally, the partially
tightened RTI scheme (pt-RTI) described in Section II has
been implemented in acados using an untightened horizon
of M = 2 stages and an overall horizon of N = 20. The
same tuning used for the previous two schemes is used and
a fixed barrier value τ = 10 is used. As for the standard RTI
scheme, the solver hpmpc will be used to solve the reduced
QP (10) as well as to perform the Riccati-based elimination
for the terminal section of the horizon described in [20].
The code in the following simulations is set up to use the
ANSI C implementation BLASFEO RF [11] in order to
better resemble the CPU load distribution between different
routines (e.g. linearization and QP solution) expected on the
embedded hardware.

D. Comparison

The controllers described above are used in the following to
track a periodic attitude reference. For the NMPC formula-
tions the following weights are chosen:

W = blkdiag(5 · 102 · I3, 1 · 10−3 · I11)
WN = blkdiag(5 · 102 · I3, 1 · 10−3 · I7).

In order to tune the PD controller, the parametrization
Kp = κp · I3 and Kd = κd · I3, with κp ∈ [1, 60] and
κd ∈ [1, 20] has been chosen. After discretizing each
parameter interval into 100 equidistant values, a simulation
has been run for each combination of values (κp, κd) and the
squared deviation from the reference trajectories in the Euler
space has been taken into account as a performance metric.
The values κp = 23 and κd = 9 have been chosen, which
provide a reasonable trade-off between deviation from the
reference trajectory and chattering of the input trajectories.
The LQR controller could be in principle tuned by exploiting
a linearization of the transformation from Euler to the con-
trollable quaternion subspace. In this way, the control policy
obtained would be locally equivalent to the NMPC one.
However, possibly due to nonlinearity and to the presence of
constraints, the simulations showed the necessity to detune
the controller in order to achieve acceptable performance. To
this end, the weighting matrices have been chosen as follows:

Q = blkdiag(1 · 102 · I3, 1 · 10−3 · I3), R = 1 · 10−3 · I4.

A simulation with sampling time Ts = 0.05 s is per-
formed where the input bounds are imposed on the propeller
velocities: ωss − ∆ωmax ≤ ωi ≤ ωss + ∆ωmax, with
∆ωmax := 8 rad/s and where ωss := 39.939 rad/s denotes the
steady-state input associated with a mass of 10Kg (although
the controller only regulates the vehicle’s attitude, it is meant
to be used in a cascaded architecture, where also position is
controlled).
The closed loop trajectories obtained with PD, LQR and
NMPC controllers are reported in Figure 1 and 2. Only
trajectories obtained with Ipopt are shown for the sake
of clarity, as the results obtained with the RTI and pt-RTI
schemes do not differ much from the ones obtained using
converged NMPC. For the two approximate schemes, com-
putation times and closed-loop suboptimality are reported

Fig. 3: Human-sized quadrotor equipped with a low-
power Xilinx Zynq SoC with a dual-core ARM Cor-
tex A9 running at 800 MHz: snapshot from the experi-
ment video (https://www.youtube.com/watch?v=
-dsezQa7nzk&feature=youtu.be).

in Table II. From Figure 1 and 2, it can be seen that the
converged NMPC controller performs better than the other
two control schemes in the sense that smaller overshoots and
faster response to references changes can be achieved. This
might be due to the fact that nonlinearity and the presence of
constraints can degrade the performance of the PD and LQR
controllers for large reference changes like the ones used in
the benchmark.

V. EXPERIMENTAL RESULTS

The controller based on the pt-RTI scheme has been deployed
to the on-board embedded hardware of the quadrotor which
features a Xilinx Zynq system-on-chip with dual-core Cortex
A9 clocked at 800 MHz. Notice that, although the instruction
set available on such a CPU provides vectorized instruc-
tions, they are only available in single precision. Hence, the
GENERIC implementation BLASFEO package [11] has been
used, which exploits a panel-major format, but does not make
explicit usage of vectorized instructions.
For the embedded implementation, a horizon T = 1.0 s is
used with N = 10 shooting nodes and untightened horizon
M = 2. In order to achieve faster response to changes in
the reference and disturbance rejection, and to improve the
convergence of the pt-RTI scheme, the controller is run at a
sampling Ts = 10ms. Notice that, although to the knowledge
of the authors a formal stability proof for this setup does not
exist, the “over-sampled” implementation of NMPC schemes
is rather common among practitioners.
Similarly to what obtained in simulations, using the pt-RTI
scheme with M = 2 gives rise to a considerable speedup
reducing the average computation times from about 6ms for
the standard RTI to about 2ms. In this way, enough com-
putational time can be spared to carry out other tasks such
as telemetry, logging and executing lower level controllers
without approaching high CPU loads which might lead to
faults.
Figures 4 and 5 show the attitude and actuators trajectories
obtained during a test flight. Notice that, since no position
control has been implemented for the test, the attitude
reference during the test flight is provided by a human pilot
who is making sure that the vehicle is hovering safely above
the ground.

https://www.youtube.com/watch?v=-dsezQa7nzk&feature=youtu.be
https://www.youtube.com/watch?v=-dsezQa7nzk&feature=youtu.be


0 5 10 15 20 25 30 35 40

−20

0

20

ro
ll

[d
eg

]

0 5 10 15 20 25 30 35 40

−20

0

20

time [s]

pi
tc

h
[d

eg
] actual

reference

Fig. 4: Experimental results - attitude in Euler angles.

0 5 10 15 20 25 30 35 40

−0.6
−0.4
−0.2

0

ω
1

0 5 10 15 20 25 30 35 40

−0.6
−0.4
−0.2

0

ω
2

0 5 10 15 20 25 30 35 40

−0.6
−0.4
−0.2

0

ω
3

0 5 10 15 20 25 30 35 40

−0.6
−0.4
−0.2

0

time [s]

ω
4

Fig. 5: Experimental results - actuators.

VI. CONCLUSIONS

In this paper, the design, implementation and deployment of
an NMPC attitude controller for a human-sized quadrotor has
been presented. An approximate partially tightened formula-
tion is used that allows one to reduce the computation times.
Simulation results are discussed where it is shown that con-
siderable speedups can be achieved with a moderate increase
in suboptimality with respect to standard approaches. The
NMPC controller is deployed to the on-board computer of
the vehicle and flight test results are reported and discussed.

REFERENCES

[1] acados. https://github.com/acados/acados.
[2] Ehang Inc. Guangzhou, China. http://www.ehang.com.
[3] Kitty Hawk, Mountain View, CA, USA. https://kittyhawk.aero.
[4] T. Albin, D. Ritter, N. Liberda, R. Quirynen, and M. Diehl. In-vehicle

realization of nonlinear MPC for gasoline two-stage turbocharging
airpath control. IEEE Transactions on Control Systems Technology,
pages 1–13, 2017.

[5] J. Andersson, J. Akesson, and M. Diehl. CasADi – a symbolic
package for automatic differentiation and optimal control. In Recent
Advances in Algorithmic Differentiation, volume 87 of Lecture Notes
in Computational Science and Engineering, pages 297–307. Springer,
2012.

24 24.2 24.4 24.6 24.8 25 25.2 25.4 25.6 25.8 26
−0.6
−0.4
−0.2

0

ω
1

24 24.2 24.4 24.6 24.8 25 25.2 25.4 25.6 25.8 26
−0.6
−0.4
−0.2

0

ω
2

24 24.2 24.4 24.6 24.8 25 25.2 25.4 25.6 25.8 26
−0.6
−0.4
−0.2

0

ω
3

24 24.2 24.4 24.6 24.8 25 25.2 25.4 25.6 25.8 26
−0.6
−0.4
−0.2

0

time [s]

ω
4

Fig. 6: Experimental results - actuators (zoom in).

[6] P. Betsch and R. Siebert. Rigid body dynamics in terms of quater-
nions: Hamiltonian formulation and conserving numerical integra-
tion. International Journal for Numerical Methods in Engineering,
79(4):444–473, 2009.

[7] S. Bouabdallah, A. Noth, and R. Siegwart. Pid vs lq control techniques
applied to an indoor micro quadrotor. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sendai, Japan, Oct
2004.

[8] M. Diehl, H. G. Bock, J. P. Schlöder, R. Findeisen, Z. Nagy, and
F. Allgöwer. Real-time optimization and nonlinear model predictive
control of processes governed by differential-algebraic equations.
Journal of Process Control, 12(4):577–585, 2002.

[9] I. Duff. Ma57—a code for the solution of sparse symmetric definite
and indefinite systems. ACM Transactions on Mathematical Software,
30(2):118–144, June 2004.

[10] H. J. Ferreau, P. Ortner, P. Langthaler, L. del Re, and M. Diehl.
Predictive control of a real-world diesel engine using an extended
online active set strategy. Annual Reviews in Control, 31(2):293–301,
2007.

[11] G. Frison, D. Kouzoupis, T. Sartor, A. Zanelli, and M. Diehl. BLAS-
FEO: Basic linear algebra subroutines for embedded optimization.
arXiv:1704.02457, 2017.

[12] G. Frison, H. B. Sorensen, B. Dammann, and J. B. Jørgensen. High-
performance small-scale solvers for linear model predictive control.
In Proceedings of the European Control Conference (ECC), pages
128–133, June 2014.

[13] M. Kamel, K. Alexis, M. Achtelik, and R. Siegwart. Fast nonlinear
model predictive control for multicopter attitude tracking on so(3).
In IEEE Conference on Control Applications, Sidney, Australia, Sept
2015.

[14] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series
in Operations Research and Financial Engineering. Springer, 2 edition,
2006.

[15] OpenBLAS. OpenBLAS: An optimized BLAS library.
http://www.openblas.net/, 2011.

[16] S.J. Qin and T.A. Badgwell. An overview of nonlinear model
predictive control applications. In F. Allgöwer and A. Zheng, editors,
Nonlinear Predictive Control, volume 26 of Progress in Systems
Theory, pages 370–392, Basel Boston Berlin, 2000. Birkhäuser.

[17] Andreas Wächter and Lorenz T. Biegler. On the implementation of
an interior-point filter line-search algorithm for large-scale nonlinear
programming. Mathematical Programming, 106(1):25–57, 2006.

[18] Y. Yang. Spacecraft attitude determination and control: Quaternion
based method. Annual Reviews in Control, 36(2):198–219, Dec 2012.

[19] A. Zanelli, A. Domahidi, J. L. Jerez, and M. Morari. FORCES NLP:
An efficient implementation of interior-point methods for multistage
nonlinear nonconvex programs. International Journal of Control,
2017.

[20] A. Zanelli, R. Quirynen, G. Frison, and M. Diehl. A partially tightened
real-time iteration scheme for nonlinear model predictive control.
In Proceedings of 56th IEEE Conference on Decision and Control,
Melbourne, Australia, December 2017.


	INTRODUCTION
	Background and Contribution

	Preliminaries
	Nonlinear Model Predictive Control
	Real-Time Iteration

	Problem Formulation and Implementation
	Model and Optimal Control Formulation
	Partially Tightened Real-Time Iterations

	Simulation Results
	PD Controller
	LQR Controller
	NMPC Controller
	Converged NMPC scheme
	Standard RTI scheme
	Partially Tightened RTI scheme

	Comparison

	Experimental Results
	Conclusions
	References

