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Abstract: This paper introduces a homotopy-based nonlinear interior-point method that can
exploit warm-starts for an efficient real-time implementation of nonlinear model predictive
control (NMPC). The algorithm performs a homotopy on a tightened problem with a fixed
value of the barrier parameter during which the initial state is changed gradually. Once an
approximate solution to the tightened problem is obtained, a second homotopy is performed that
shrinks the barrier parameter in order to compute a solution to the original problem. Theoretical
results are presented on the local convergence, which provide a second order contraction estimate
for both phases of the algorithm. In order to assess the potential of the proposed scheme, it
has been implemented in the software package FORCES NLP. Its performance on a non-trivial
NMPC case study is shown, where a speedup of up to one order of magnitude is obtained.
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nonlinear interior-point methods.

1. INTRODUCTION

Nonlinear model predictive control (NMPC) has drawn
increasing attention in both academia and industry in the
past decades. Due to its inherent capability to handle
multivariable constrained nonlinear systems directly, it is a
promising control strategy in several fields (Qin and Badg-
well, 2000). In addition, theoretical results that provide
stability guarantees for NMPC schemes under reasonable
assumptions have been developed (Mayne et al., 2000).
However, due to the high computational burden associated
with the online solution of the nonlinear and in general
nonconvex optimal control problems (OCP), NMPC has
been historically employed mainly in the chemical indus-
try, where the sampling times are generally sufficiently
long (Garćıa et al., 1989; Qin and Badgwell, 2003).

More recently, as more efficient algorithms are being de-
veloped and more powerful embedded computing units
are becoming available, computation times in the milli-
and microsecond time-scale have been achieved for optimal
control problems arising in applications in the fields of au-
tomotive (Frasch et al., 2013), renewable energy (Ferreau
et al., 2011) and robotics (Diehl et al., 2006).

When using NMPC to control a system, a sequence of
closely related, parametric optimization problems has to
be solved online, each for a different initial state value.
This fact can be exploited to warm-start the algorithm
when solving successive instances of the nonlinear optimal
control problem. Indeed, efficient online methods such
as the Real-Time Iteration (RTI) scheme (Diehl et al.,

? This research was supported by the EU via ERC-HIGHWIND (259
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and by the DFG in context of the Research Unit FOR 2401.

2007) and the Continuation GMRES (C/GMRES) algo-
rithm (Ohtsuka, 2004) use warm-starting and continuation
to track the optimal solution manifold.

Although sequential quadratic programming (SQP) meth-
ods are well known to be able to exploit warm-starts, this
is less straightforward for interior-point methods (Gondzio
and Grothey, 2006). Several issues associated with warm-
starts are discussed and potential solutions are proposed in
the literature. In (Yildirim and Wright, 2002), for linear
programs, two strategies are proposed based on adjust-
ments of iterates available from previously solved neigh-
boring problems. It is shown that, for a sufficiently large
value of the barrier parameter, it is possible to obtain a
feasible point for the perturbed problem applying such cor-
rections to the stored iterates. Similarly, in (Gondzio and
Grothey, 2006), unblocking heuristics are presented that
can improve performance when solving linear programs.
In (Shahzad et al., 2010) and (Shahzad and Goulart,
2011), a warm- and a hot-start strategy for interior-point
methods are presented, respectively, with applications to
linear model predictive control. For nonlinear nonconvex
problems, in (Benson and Shanno, 2008), a warm-starting
technique is proposed based on a penalty approach.

1.1 Contributions and Outline

This paper proposes an interior-point method for nonlinear
nonconvex problems arising from NMPC formulations that
can exploit warm-starts. Similarly to what is proposed
in (Gondzio and Grothey, 2006) and (Yildirim and Wright,
2002), the algorithm uses an intermediate iterate on a
previously solved neighboring problem. The algorithm
consists of two separate phases. During the initial phase,
a homotopy is performed on a tightened problem with a
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fixed value of the barrier parameter, which can exploit
a warm-start from previous problem instances. Once
an approximate solution to the initial barrier problem
is obtained, a second homotopy is performed in which
the barrier parameter is decreased in order to compute
an optimal solution to the original optimization problem.
By storing the primal-dual solution to the initial barrier
problem, a warm-start for the next OCP instance is made
available. The local convergence of this continuation tech-
nique is analyzed and a contraction estimate is derived
for the proposed algorithm. The presented scheme is im-
plemented in the software package FORCES NLP (Zanelli
et al., 2016) that uses a structure-exploiting interior-point
method for multi-stage nonlinear nonconvex optimization.
The potential of this approach for NMPC applications is
assessed on a non-trivial example, where a speedup of up
to one order of magnitude can be achieved.

The paper is organized as follows: Section 2 presents the
preliminaries on NMPC and the problem formulation. In
Section 3, the algorithm is described and the theoretical
results are derived and discussed in Section 4. Finally,
Section 5 presents the numerical case study.

2. PRELIMINARIES

2.1 Nonlinear Model Predictive Control

Throughout the paper, the following discrete-time optimal
control problem will be considered:

min
x0,...,xN
u0,...,uN−1

N−1∑
i=0

li(xi, ui) + lN (xN )

s.t. x0 − x̂0 = 0

xi+1 = f(xi, ui), i = 0, . . . , N − 1

g(xi, ui) ≤ 0, i = 0, . . . , N − 1

gN (xN ) ≤ 0,

(1)

where the functions li, lN , f , g and gN are twice contin-
uously differentiable. States and inputs of the dynamical
system are represented by x and u, respectively. When
using NMPC to control a system, problem (1) has to be
solved, at every sampling instant, for a new x̂0 describing
the current state of the system. The first optimal input u∗0
is applied to the system and, at the next sampling instant,
a new optimization problem is solved. In this way, the
control algorithm can compensate for model uncertainty
and disturbances.

2.2 Newton-type Optimization

Problem (1) can be solved in several ways. In particular,
two main classes of methods can be identified (Nocedal and
Wright, 2006): the so-called sequential quadratic program-
ming (SQP) methods and interior-point methods. The
first relies on the solution of a series of convex quadratic
programs (QP) that locally approximate the original prob-
lem. The second directly solves the relaxed Karush-Kuhn-
Tucker (KKT) system associated with problem (1):

∇xl0(w0) +∇xf(w0)λ1 − λ0 −∇xg(w0)ν0 = 0

∇ul0(w0) +∇uf(w0)λ1 −∇ug(w0)ν0 = 0

x0 − x̂0 = 0

g(w0) + s0 = 0

S0ν0 = τ1

...
...

∇xlN (xN )− λN = 0

xN − f(wN−1) = 0

g(xN ) + sN = 0

SNνN = τ1,

(2)

where Si is the diagonal matrix having the elements of
the slack variable si on its diagonal and 1 denotes a
vector of ones. The compact notation wi := [xTi uTi ]T

has been introduced. The barrier parameter τ has been
introduced in order to circumvent the nonsmoothness of
the complementarity conditions. The equations in (2)
for τ = 0, together with the positivity conditions s ≥ 0
and ν ≥ 0, constitute the so-called first-order necessary
optimality conditions.

The Newton method can then be directly applied to (2) for
decreasing values of τ and, as τ → 0, a point that satisfies
first-order optimality conditions is recovered. Moreover,
under mild assumptions (Nocedal and Wright, 2006), the
iterates converge to a local minimum. Practical imple-
mentations of interior-point methods generally include ad-
ditional algorithmic ingredients, to ensure global conver-
gence and improve performance and reliability (Wächter
and Biegler, 2006), (Vanderbei, 1999).

2.3 Predictor-corrector Methods

In the following, problem (2) is referred to in compact form

F (z) + Cξ = 0, (3)

where z is the vector of stacked primal, dual and slack
variables and ξ := (x̂0, τ). An approximate solution to (3)
for a given (x̂0, τ) will be denoted by z̃(x̂0, τ) ≈ z̄(x̂0, τ),
where z̄(x̂0, τ) denotes the exact solution. Note that an
exact Newton step (Deuflhard, 2011) reads as

zk+1 = zk − ∂F

∂z
(zk)−1

(
F (zk) + Cξ

)
, (4)

for a given zk and ξ. As discussed in (Tran-Dinh et al.,
2012), a predictor-corrector step can be performed to
obtain an approximate solution zk+1 ≈ z̄(ξk+1) for a new
parameter value ξk+1, given zk ≈ z̄(ξk). This combined
predictor-corrector step takes the form

zk+1 = zk − ∂F

∂z
(zk)−1

(
F (zk) + Cξk

)
− ∂F

∂z
(zk)−1C

(
ξk+1 − ξk

)
= zk − ∂F

∂z
(zk)−1

(
F (zk) + Cξk+1

)
.

(5)

As the parameter ξ enters linearly in Eq. (3), the above
predictor-corrector step corresponds to a standard Newton
step (4) applied directly to the problem with the new
value ξk+1. This concept of introducing the parameter ξ
linearly in order to simplify the continuation procedure is
also referred to as parameter embedding in (Diehl, 2002).
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Note that, instead of using the exact Jacobian J(zk) :=
∂F
∂z (zk) and its factorization in (5), it is common practice

to use a Jacobian approximation Mk ≈ J(zk) in order
to reduce the overall computational burden (Deuflhard,
2011). We further consider the general class of Newton-
type methods, e.g., including Gauss-Newton or quasi-
Newton Hessian approximations.

3. THE HOMOTOPY-BASED ALGORITHM

When solving neighboring instances of (1) for different
initial conditions x̂0 with an interior-point method, in-
formation available from previously computed solutions
is difficult to exploit for warm-starting in general. If an
approximate solution z̃(x̂0, 0) to equation (3) is used to
initialize the Newton-type iterates for a different x̂0, a
number of problems can arise (Benson and Shanno, 2008).
These issues are generally related to the need to bring
the barrier parameter to some positive value τ0 in order
to be able to adjust the iterates, without violating the
positivity constraints imposed on inequality multipliers ν
and slacks s. In particular, certain components of ν and s
in z̃(x̂0, 0) might be very close to zero and the enforcement
of the positivity constraints can lead to very small steps.
Moreover, due to the presence of the complementarity con-
ditions, equations (3) become highly nonlinear for small
values of τ , resulting in a poor performance of Newton-
type algorithms.

Algorithm 1 Homotopy method: Phase I

1: input: ξ0 = (x̂−0 , τ0), z0 = z̃(ξ0), x̂+
0

2: for k = 0, . . . , kmax
1

3: x̂k+1
0 ← φ1(ξk, zk)

4: ξk+1 ← (x̂k+1
0 , τ0)

5: zk+1 ← zk −M−1
k

(
F (zk) + Cξk+1

)
6: if

∥∥F (zk+1) + Cξk+1
∥∥<ε1 and x̂k+1

0 = x̂+
0

7: return zk+1

8: end
9: end

In order to be able to exploit solutions available from
previous instances of the OCP, a homotopy-based interior-
point method is proposed in the following. Assume that
problem (3) for x̂0 = x̂−0 has been previously solved and a
new solution has to be computed for x̂0 = x̂+

0 . The main
additional ingredient with respect to a standard warm-
starting procedure, where z̃(x̂−0 , 0) would be used, is the
use of an approximate solution z̃(x̂−0 , τ0) for some τ0 > 0.
The idea consists in splitting the iterates on the relaxed
problem (3) into two different phases. In the first phase,
Newton-type iterates are performed on (3) for τ = τ0 and
x̂0 approaching x̂+

0 , starting from x̂−0 . This configuration
might be interpreted as the Newton-type method being
applied to a smooth, unconstrained problem and initialized
with z0 = z̃(x̂−0 , τ0). For modest perturbations of x̂0, the
iterates would quickly converge to a solution of the inter-
mediate barrier problems. Algorithm 1 summarizes this
first phase of the scheme, which is additionally illustrated
in Figure 1.

Once an approximate solution to (3) for τ = τ0 and
x̂0 = x̂+

0 has been obtained, the algorithm switches to a

z

x̂−0 x̂+0 x̂0

z̃(x̂−0 , τ0)

z̃(x̂+0 , τ
∗)

z̃(x̂+0 , τ0)

z̄(x̂0, τ0)

z̄(x̂0, 0)

Phase I

Phase II

Fig. 1. This figure illustrates the two phases of the
homotopy-based interior-point algorithm. During
Phase I, the barrier parameter τ = τ0 is kept fixed and
the initial state of the system x̂0 is updated. Once the
approximate solution z̃(x̂+

0 , τ0) is obtained, Phase 2 is
used to compute a solution to the original problem.

second phase in which τ is shrunk according to a standard
barrier strategy for interior-point methods. Before doing
so, the intermediate solution z̃(x̂+

0 , τ0) is stored in order to
be able to warm-start the algorithm for the next instance.
This final procedure is described in Algorithm 2 and
illustrated in Figure 1. Note that the performance of both
Algorithm 1 and 2 depends on the policy used to update
the homotopy parameter ξ, which is respectively defined
by the functions φ1(·) and φ2(·). Advanced strategies can
be used for this purpose, which are known in the context
of path-following or continuation methods. A detailed
discussion on the design of these update policies is outside
the scope of this paper and the interested reader is referred
to (Allgower and Georg, 1990; Deuflhard, 2011).

Algorithm 2 Homotopy method: Phase II

1: input: ξ0 = (x̂+
0 , τ0), z0 = z̃(ξ0)

2: for k = 0, . . . , kmax
2

3: τk+1 ← φ2(ξk, zk)
4: ξk+1 ← (x̂+

0 , τ
k+1)

5: zk+1 ← zk −M−1
k

(
F (zk) + Cξk+1

)
6: if

∥∥F (zk+1) + Cξk+1
∥∥ < ε1 and τk+1 < τ∗

7: return zk+1

8: end
9: end

Remark 1: In Algorithm 1, the initial state x̂0 is potentially
updated several times according to a given policy φ1(·).
However, in NMPC applications with sufficiently high
sampling rates, it might be sufficient to perform the
homotopy from x̂−0 to x̂+

0 in one iteration of Phase I. The
numerical results in Section 5 will indeed use this approach
to solve a series of neighboring optimization problems in
an NMPC implementation.

Remark 2: Notice that Algorithms 1 and 2 can be seen as
special cases of a single algorithm in which the homotopy
parameter ξ is updated, according to some policy φ. In
particular, as both x̂0 and τ enter the problem linearly,
the analysis presented in the following section holds for
both algorithms. On the one hand, it provides convergence
results for Phase I during which x̂0 is updated. On the
other hand, the same results apply to Phase II, where the
barrier parameter τ is changed.
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4. LOCAL CONVERGENCE RESULTS

In this section, theoretical results regarding the conver-
gence of the proposed method are derived. In particular,
we consider the Newton-type predictor-corrector step in
line 5 of Algorithm 1 and 2. As x̂0 and τ enter the problem
linearly, the following results hold for both Phase I and
Phase II of the algorithm.

4.1 Local Contraction Theorem

For a compact notation, the solution to (3) for ξ = ξk will
be referred to as z̄k. Consider the Newton-type update

zk+1 = zk −M−1
k (F (zk) + Cξk+1), (6)

where a Jacobian approximation Mk is used in (5). Notice
that, at the solution z̄k+1, the following holds:

z̄k+1 = z̄k+1 −M−1
k (F (z̄k+1) + Cξk+1), (7)

because F (z̄k+1) + Cξk+1 = 0.

Assumption 1. (Lipschitz continuity). There exists a con-
stant σ ≥ 0 such that for every solution z̄k and z̄k+1,
associated with ξk and ξk+1, respectively, the following
inequality holds:∥∥z̄k+1 − z̄k

∥∥ ≤ σ ∥∥ξk+1 − ξk
∥∥ .

Assumption 2. (ω- and κ-conditions). There exist ω < ∞
and κ < 1 such that, for any given solution z̄k, iterate zk

and iteration matrix Mk satisfy

(1)
∥∥M−1

k (J(zk)−Mk)
∥∥ ≤ κ

(2)
∥∥M−1

k (J(z)− J(z̄k))
∥∥ ≤ ω ∥∥z − z̄k∥∥ , ∀z.

The following Theorem provides a convergence proof for
the Newton-type predictor-corrector method in (6), based
on the results in (Tran-Dinh et al., 2012).

Theorem 3. Let Assumptions 1 and 2 hold. The following
inequality holds for the sequence

(
zk
)
k≥0

, generated by

the Newton-type predictor-corrector iterations (6):

‖∆zk+1‖ ≤ (κ+ ωσ
∥∥ξk+1−ξk

∥∥+
ω

2
‖∆zk‖) ‖∆zk‖

+ (κσ +
ωσ2

2

∥∥ξk+1−ξk
∥∥)
∥∥ξk+1−ξk

∥∥ , (8)

where ∆zk+1 := zk+1 − z̄k+1 and ∆zk := zk − z̄k.

Proof. Using (6) and (7), ∆zk+1 can be rewritten as

∆zk+1 = M−1
k (Mkz

k − F (zk)− Cξk+1)

−M−1
k (Mkz̄

k+1 − F (z̄k+1)− Cξk+1),

adding and subtracting M−1
k

(
Mkz̄

k + F (z̄k)
)

∆zk+1 = M−1
k (Mk(zk − z̄k)− F (zk) + F (z̄k))

−M−1
k (Mk(z̄k+1 − z̄k)− F (z̄k+1) + F (z̄k))

= M−1
k Mk(zk − z̄k)−M−1

k Mk(z̄k+1 − z̄k)

−M−1
k

∫ 1

0

J(z̄k + t(zk − z̄k))(zk − z̄k)dt

+M−1
k

∫ 1

0

J(z̄k + t(z̄k+1 − z̄k))(z̄k+1 − z̄k)dt,

adding and subtracting M−1
k J(zk)(zk+ z̄k+1 − 2z̄k)

∆zk+1 = M−1
k (Mk − J(zk))(zk − z̄k)

−M−1
k (Mk − J(zk))(z̄k+1 − z̄k)

−M−1
k

∫ 1

0

(J(z̄k + t(zk − z̄k))− J(zk))(zk − z̄k)dt

+M−1
k

∫ 1

0

(J(z̄k+ t(z̄k+1−z̄k))−J(zk))(z̄k+1−z̄k)dt.

Then, using the κ- and ω-conditions in Assumption 2

‖∆zk+1‖ ≤ κ
∥∥zk − z̄k∥∥+ κ

∥∥z̄k+1 − z̄k
∥∥

+ ω

∫ 1

0

∥∥z̄k + t(zk − z̄k)− zk
∥∥ dt

∥∥zk − z̄k∥∥
+ ω

∫ 1

0

∥∥z̄k + t(z̄k+1 − z̄k)− zk
∥∥dt

∥∥z̄k+1 − z̄k
∥∥

≤ (κ+
ω

2
‖∆zk‖) ‖∆zk‖

+ (κ+
ω

2

∥∥z̄k+1 − z̄k
∥∥+ ω ‖∆zk‖)

∥∥z̄k+1 − z̄k
∥∥

and, finally, due to the regularity Assumption 1

‖∆zk+1‖ ≤ (κ+ ωσ
∥∥ξk+1 − ξk

∥∥+
ω

2
‖∆zk‖) ‖∆zk‖

+ (κσ +
ωσ2

2

∥∥ξk+1 − ξk
∥∥)
∥∥ξk+1 − ξk

∥∥ . �

Theorem 3 shows how the update of the parameter ξ
affects contraction of the Newton-type iterates. In par-
ticular, it can be expected that, for small enough per-
turbations, the optimal manifold can be tracked by the
predictor-corrector scheme.

4.2 An Illustrative Example

In order to illustrate the results of Theorem 3, consider
the nonlinear root-finding problem (3) with

F (z) :=

[
20z1z2 − z2

log(3z2 + 3) + sin(z1) + log(z1)

]
(9)

and C = 3 · I2. Figure 2 shows the results obtained by
applying the homotopy method, with exact Jacobians, to
Eq. (9) for 50 iterations with

ξk = ξ0 +
(ξf − ξ0) · k

50
, k = 1, . . . , 50,

where ξ0 = [ 0 0 ]T and ξf = [ 5 5 ]T . Every 5 iterations,
the parameter is frozen and five exact Newton steps are
taken to illustrate the locally quadratic convergence.

5. NUMERICAL RESULTS

In the following, the computational advantages of the
proposed method are assessed on a non-trivial numerical
example. The nonlinear nonconvex optimization problems
arising from an NMPC formulation will be solved with
both a cold-started and a homotopy-based interior-point
method. For this purpose, the presented homotopy-based
algorithm has been implemented in the software package
FORCES NLP (Zanelli et al., 2016) that uses a structure-
exploiting primal-dual interior-point method for multi-
stage nonlinear nonconvex problems.

The benchmark consists in the swing-up of an inverted
pendulum, described by the differential equations:
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−1

−0.5
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0.5
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homotopy iterations
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o
n

z1
z2
z̄1
z̄2

0 5 10 15 20 25 30 35 40 45 50
10−16

10−12

10−8

10−4

100

homotopy iterations

‖∆
z k

+
1
‖ 2

0 5 10 15 20 25 30 35 40 45 50
0.2

0.4

0.6

0.8

homotopy iterations

κ̄

Fig. 2. Convergence of the homotopy method on the
simple root-finding problem described by (9). Every
five Newton iterations, ξ is fixed to illustrate the
locally quadratic convergence (dashed red). The

quantity κ̄ :=
‖∆zk+1‖2
‖∆zk‖2

shows the contraction rate

of the iterations, where ∆zk := zk − z̄k.

ẋ =


v
ω

−lmsθω2 + F + gmcθsθ
M +m−mc2θ

−lmcθsθω2 + Fcθ + gmsθ +Mgsθ
l(M +m−mc2θ)

 , (10)

where x = (p, θ, v, ω) is the state of the system, in which p
and v are the linear position and velocity of the cart and θ
and ω are the angle and angular velocity of the pendulum.
The input to the system is the force F applied to the cart,
while m, l, M and g are fixed parameters representing the
mass of the pendulum, its length, the mass of the cart,
and gravity respectively. Note that the compact notation
sθ := sin(θ) and cθ := cos(θ) is used in Eq. (10).

An OCP of the form in (1) is considered, where f(·)
represents the discretized dynamics obtained by applying
the explicit Runge-Kutta scheme of order four with fixed
step-size and ten intermediate integration steps. A control
horizon T = 2s is used and the trajectories are discretized
using N = 70 shooting nodes (Bock and Plitt, 1984).
Simple bounds are imposed on the input:

−10N ≤ F ≤ 10N (11)

and a quadratic cost

li(xi, ui) =
1

2

(
xTi Qxi + uTi Rui

)
+ qTxi + rTui

lN (xN ) =
1

2
xTNQNxN + qTNxN ,

has been used, with

Q = diag( 0.5, 1, 0.002, 0.002), R = 0.001

0 1 2 3 4 5 6 7 8 9 10 11

0

2

4

st
a
te
s

p
θ

0 1 2 3 4 5 6 7 8 9 10 11
−10
−5
0

5

10

F

Fig. 3. Closed-loop trajectories for the pendulum exam-
ple: both the cold-started and the homotopy-based
algorithm result in the same swing-up performance.

and q = −Qxr, r = 0 and qN = −QNxr. The reference
xr(t) is defined as follows:

xr(t) =

{
[0 π 0 0]

T
t ≤ 2s

[0 0 0 0]
T

t > 2s.

The proposed homotopy-based implementation uses a
fixed τ0 = 0.0001, a single step in Phase I and a mono-
tone strategy (Fiacco and McCormick, 1990) in Phase
II. The cold-started algorithm uses instead an adaptive
barrier strategy that, at every step, adjusts τ according
to a measure of progress on the complementarity condi-
tion (Vanderbei, 1999). Notice that, for the cold-started
algorithm, the adaptive strategy has been chosen over the
monotone one, since the latter led to poor performance in
the numerical experiments. Both implementations use a
blocked BFGS Hessian approximation described in (Bock
and Plitt, 1984).

Figure 3 shows the closed-loop trajectories obtained with
FORCES NLP using both algorithms, while Figure 4 com-
pares the two strategies in terms of number of iterations
required to solve the optimization problems and timings.
Note that a disturbance is applied to the system between
time t1 = 6.0s and t2 = 6.2s by replacing the optimal input
u∗0 with the perturbed input u∗0 + 8. Using the homotopy-
based approach the number of iterations can be largely
reduced, leading to considerable speedups. The worst-case
number of iterations of 280 is reduced to 57 iterations and,
for a considerable part of the scenario, a speedup of more
than an order of magnitude is achieved.

6. CONCLUSIONS AND OUTLOOK

A homotopy-based interior-point algorithm for NMPC ap-
plications that can exploit warm-starts has been proposed.
Theoretical results that provide a contraction estimate for
the algorithm are derived. In particular, it is shown that
the optimal manifold can be tracked with a single Newton-
type iteration for every homotopy parameter update. The
method has been implemented in the software package
FORCES NLP and the advantages of the algorithm have
been assessed on a non-trivial example where a speedup
of more than an order of magnitude can be achieved with
respect to a cold-started implementation.
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Fig. 4. Number of iterations and computation times for
the cold-started and homotopy-based interior-point
method, based on a BFGS Hessian approximation.
The number of iterations can be largely reduced,
resulting in a speedup of about an order of magnitude.

An additional implementation of the proposed approach
that exploits the hardware-tailored linear algebra routines
available in the software package HPMPC (Frison et al.,
2014) is part of ongoing development.
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lizing real-time implementation of nonlinear model pre-
dictive control. In L. Biegler, O. Ghattas, M. Heinken-
schloss, D. Keyes, and B. van Bloemen Waanders (eds.),
Real-Time and Online PDE-Constrained Optimization,
23–52. SIAM.

Diehl, M., Bock, H.G., Diedam, H., and Wieber, P.B.
(2006). Fast Motions in Biomechanics and Robotics,
volume 340, chapter Fast Direct Multiple Shooting
Algorithms for Optimal Robot Control, 65–93. Springer.

Ferreau, H.J., Houska, B., Geebelen, K., and Diehl, M.
(2011). Real-time control of a kite-model using an auto-
generated nonlinear MPC algorithm. In Proceedings of
the 18th IFAC World Congress.

Fiacco, A. and McCormick, G.P. (1990). Nonlinear
Programming: Sequential Unconstrained Minimization
Techniques. SIAM publications.

Frasch, J.V., Gray, A.J., Zanon, M., Ferreau, H.J., Sager,
S., Borrelli, F., and Diehl, M. (2013). An auto-generated
nonlinear MPC algorithm for real-time obstacle avoid-
ance of ground vehicles. In Proceedings of the European
Control Conference (ECC), 4136–4141.

Frison, G., Sorensen, H.B., Dammann, B., and Jørgensen,
J.B. (2014). High-performance small-scale solvers for
linear model predictive control. In Proceedings of the
European Control Conference (ECC), 128–133.
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Wächter, A. and Biegler, L.T. (2006). On the implemen-
tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical
Programming, 106(1), 25–57.

Yildirim, E. and Wright, S.J. (2002). Warm-start strate-
gies in interior-point methods for linear programming.
SIAM Journal on Optimization, 12(3), 782–810.

Zanelli, A., Domahidi, A., Jerez, J., and Morari, M.
(2016). FORCES NLP: An efficient implementation of
interior-point methods for multistage nonlinear noncon-
vex programs. International Journal of Control: Special
Issue on MPC Algorithms and Applications. (accepted
for publication).

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

13735


