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Abstract This paper presents a class of efficient Newton-type algorithms for solving
the nonlinear programs (NLPs) arising from applying a direct collocation approach
to continuous time optimal control. The idea is based on an implicit lifting technique
including a condensing and expansion step, such that the structure of each subprob-
lem corresponds to that of the multiple shooting method for direct optimal control. We
establish the mathematical equivalence between the Newton iteration based on direct
collocation and the proposed approach, and we discuss the computational advantages
of a lifted collocation integrator. In addition, we investigate different inexact versions
of the proposed scheme and study their convergence and computational properties.
The presented algorithms are implemented as part of the open-source ACADO code
generation software for embedded optimization. Their performance is illustrated on
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a benchmark case study of the optimal control for a chain of masses. Based on these
results, the use of lifted collocationwithin direct multiple shooting allows for a compu-
tational speedup factor of about 10 compared to a standard collocation integrator and
a factor in the range of 10–50 compared to direct collocation using a general-purpose
sparse NLP solver.

Keywords Newton-type methods · Direct optimal control · Collocation methods ·
Optimization algorithms

Mathematics Subject Classification 65M70 · 49M15 · 90C30

1 Introduction

Direct optimal controlmethods solve a continuous timeoptimal control problem (OCP)
by first performing a discretization and then solving the resulting nonlinear pro-
gram (NLP). This paper considers the direct numerical solution of a nonlinear OCP as
it often appears in nonlinear model predictive control (NMPC), which reads as follows
in continuous time:

min
x(·), u(·)

∫ T

0
�(x(t), u(t)) dt (1a)

s.t. 0 = x(0) − x̂0, (1b)

0 = f (ẋ(t), x(t), u(t)), ∀t ∈ [0, T ], (1c)

0 ≥ h(x(t), u(t)), ∀t ∈ [0, T ], (1d)

where T is the control horizon length, x(t) ∈ R
nx denotes the states of the system and

u(t) ∈ R
nu are the control inputs. This parametric OCP depends on the initial state

x̂0 ∈ R
nx through Eq. (1b) and the objective in (1a) is defined by the stage cost �(·).

The nonlinear dynamics in Eq. (1c) are formulated as an implicit system of ordinary
differential equations (ODE). The path constraints are defined by Eq. (1d) and can also
benonlinear in general.Weassume in the following that the functions �(·), f (·) andh(·)
are twice continuously differentiable in all their arguments. The discussion in this paper
can be easily extended to a general OCP formulation including an index 1 differential
algebraic equation (DAE) [70] and a terminal cost or terminal constraint [20].However,
for the sakeof simplicity regardingour presentationof the lifted collocation integrators,
we omit these cases in the following, and even dismiss the path constraints (1d). A
further discussion on the treatment of such inequality constraints in direct optimal
control methods can, for example, be found in [9,13,61,63].

Popular approaches to tackle the continuous time OCP in Eq. (1) are multiple
shooting [17] and direct transcription [9,11]. Both techniques treat the simulation and
optimization problem simultaneously instead of sequentially. Note that this paper will
not consider any sequential or quasi-sequential approaches, since they are generally
difficult to apply to unstable systems [44]. While direct multiple shooting can employ
any integration scheme, a popular transcription technique is known as direct colloca-
tion. It embeds the equations of a collocation method [42] directly into the constraints
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of the large-scale NLP [12]. A more detailed comparison will be made in the next sec-
tion. In both cases, a Newton-type algorithm is able to find a locally optimal solution
for the resulting NLP by solving the Karush–Kuhn–Tucker (KKT) conditions [56]. In
the presence of inequality constraints for Newton-type optimization, the KKT condi-
tions are solved via either the interior point (IP)method [13,56] or sequential quadratic
programming (SQP) [18].

Nonlinear model predictive control (NMPC) is an advanced technique for real-time
control, which can directly handle nonlinear dynamics, objective and constraint func-
tions [55]. For this purpose, one needs to solve an OCP of the form in Eq. (1) at each
sampling instant, where x̂0 denotes the current state estimate for the system of interest.
Tailored online algorithms for direct optimal control have been proposed [30,50] to
solve such a sequence of parametric OCPs. These methods can rely on other tools to
provide a good first initialization of all primal and dual variables in the optimization
algorithm. By using a continuation technique [30,57] for parametric optimization in
combination with a shifting strategy to obtain an initial guess for the new OCP from
the solution of the previous problem, the online algorithm can typically stay within
its region of local convergence [14]. This paper therefore omits globalization strate-
gies, even though the presented techniques can be extended to an offline framework
including such global convergence guarantees [13,56].

A real-time iteration (RTI) scheme for direct optimal control in the context ofNMPC
is proposed in [29], which uses themultiple shootingmethod in combinationwith SQP
to solve the resultingNLP.Directmultiple shooting typically profits fromusing solvers
for ODE or DAE with an efficient step size and order selection [17]. However, within
a real-time framework for embedded applications, one can also implement multiple
shooting using fixed step integrators [70,74] to result in a deterministic runtime and to
satisfy the real-time requirements. In case an implicit integration scheme is used for
either stiff or implicitly defined dynamics, one needs to implement a Newton method
for the integrator, which is used within the Newton-type optimization algorithm.

A novel approach based on the lifted Newton method [5] was recently proposed
for embedding these implicit integrators within a Newton-type optimization frame-
work [66]. It has been shown that direct multiple shooting using this lifted collocation
method results in the same Newton-type iterations as for the direct collocation NLP
formulation, and this based on either the Gauss-Newton (GN) [66] or an Exact Hessian
scheme [68]. In Sect. 3 we review these results in a general framework, independent
of the Newton-type optimization algorithm. An important advantage of the lifted col-
location approach is that one solves subproblems having the structure and dimensions
of the multiple shooting method, for which efficient embedded solvers exist, based on
dense linear algebra routines such as qpOASES [35], FORCES [33], qpDUNES [36]
and HPMPC [38]. The lifted collocation integrator can therefore be considered an alter-
native, parallelizable strategy to exploit the direct collocation problem structure within
multiple shooting without relying on a generic permutation of matrices within sparse
linear algebra packages. A similar idea of using specialized linear algebra to solve the
KKT system for direct collocation has been proposed in [49,77,78], based on interior
point methods and Schur complement techniques.

The lifted collocation scheme has been extended to exact Hessian based optimiza-
tion by using a symmetric forward-backward propagation technique as discussed
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in [68]. In addition, it has been proposed in [65] that this lifting approach can be
extended to the use of efficient inexact Newton-type methods for collocation. In the
present paper, we will consider general techniques to obtain a Jacobian approxima-
tion for the collocation method, which is cheap to evaluate, factorize and reuse for
the corresponding linear system solutions. Note that an alternative approach makes
use of inexact solutions to the linearized subproblems in order to reduce the over-
all computational burden of the Newton-type scheme [23,24]. Popular examples of
an efficient Jacobian approximation are the Simplified Newton [10,21] and Single
Newton [22,40] type iterations for implicit Runge–Kutta (IRK) methods. A stan-
dard inexact Newton-type optimization algorithm would rely on the computation
of adjoints to allow convergence to a local minimizer of the original NLP [16,32].
Instead, one could also implement a scheme to iteratively obtain the forward sen-
sitivities [65], which we will refer to as the Inexact Newton scheme with Iterated
Sensitivities (INIS) [67]. In the present article, we will consider these inexact lifted
collocation schemes in a general Newton-type framework [25,26], which allows us to
summarize their local convergence properties.

Following the active development of tailored optimization algorithms, many soft-
ware packages are currently available for direct optimal control. For example,
MUSCOD-II [31] is amultistage dynamic optimization software basedondirectmulti-
ple shooting and SQP [52]. The software dsoa [34] is an optimal control tool based on
single shooting. In addition to these shooting-based software packages, there are other
approaches based on direct collocation, which typically combine Algorithmic Differ-
entiation (AD) [41] with a general-purpose sparse NLP solver such as Ipopt [75].
A few examples of such software packages are CasADi [7], GPOPS-II [60] and
PROPT [73]. An important contribution of this article is the open-source implementa-
tion of the lifted collocation integrators in theACADOToolkit [46] for nonlinear optimal
control, as a part of its code generation tool, originally presented in [47,70]. Other
software packages for real-time NMPC are, for example, OptCon [72], NEWCON [71]
and VIATOC [48]. In the context of real-time optimal control on embedded hardware,
the technique of automatic code generation has experienced an increasing popularity
over the past decade [54,58]. The ACADO code generation tool allows one to export
efficient, self-contained C-code based on the RTI algorithm for real-time NMPC in
the milli- or even microsecond range [6,74].

1.1 Contributions and outline

This article presents a lifted collocation method. We discuss the connection of this
scheme to multiple shooting and direct collocation in a general framework, inde-
pendent of the Newton-type optimization method. This connection is illustrated in
Fig. 2, while the advantages and disadvantages of using lifted collocation are detailed
by Table 1. In addition, this article proposes and studies two alternative approaches
for inexact lifted collocation based on either an adjoint derivative propagation or on
iterated forward sensitivities. These variants of lifted collocation are detailed in Algo-
rithms 1–4 and an overview is presented in Table 2. Another important contribution of
this article is the open-source implementation of these novel lifting schemes within the
ACADO code generation tool for embedded applications of real-time optimal control.
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The performance of this software package is illustrated on the benchmark case study of
the optimal control for a chain of masses. Based on these numerical results, the use of
lifted collocation within direct multiple shooting allows for a computational speedup
factor of about 10 compared to a standard collocation integrator and a factor in the
range of 10–50 compared to direct collocation using a general-purpose sparse NLP
solver. In addition, these results illustrate that the INIS-type lifted collocation schemes
from Algorithms 3 and 4 often show a considerably improved local contraction rate
compared to an adjoint-based inexact Newton method, while using the same Jacobian
approximation.

The paper is organized as follows. Section 2 briefly presents simultaneous
approaches for direct optimal control and introduces Newton-type optimization. The
exact lifted collocation integrator for direct multiple shooting is presented in Sect. 3,
including a detailed discussion of its properties. Section 4 proposes a Newton-type
optimization approach based on inexact lifted collocation and an adjoint derivative
propagation.Advanced inexact lifted collocationmethods based on an iterative scheme
to compute sensitivities are discussed in Sect. 5. Section 6 presents an open-source
software implementation of the proposed algorithms in the ACADO code generation
tool, followed by a numerical case study in Sect. 7.

2 Direct optimal control methods

Direct optimal control [17] tackles the continuous time OCP (1) by forming a discrete
approximation and solving the resulting NLP. As mentioned earlier, the inequality
constraints (1d) will be omitted without loss of generality, because the presented
integrators only affect the system dynamics in Eq. (1c). For the sake of simplicity, we
consider here an equidistant grid over the control horizon consisting of the collection
of time points ti , where ti+1 − ti = T

N =: Ts for i = 0, . . . , N − 1. Additionally, we
consider a piecewise constant control parametrization u(τ ) = ui for τ ∈ [ti , ti+1).

2.1 Implicit integration and collocation methods

This article considers the dynamic system in Eq. (1c) to be either stiff or implicitly
defined, such that an implicit integration method is generally required to numerically
simulate this set of differential equations [42]. The aim is to compute a numerical
approximation of the terminal state x(ti+1) of the following initial value problem

0 = f (ẋ(τ ), x(τ ), ui ), τ ∈ [ti , ti+1], x(ti ) = xi . (2)

For this purpose, let us introduce the family of collocation methods, which form a sub-
class of Implicit Runge–Kutta (IRK) methods [42], even though the lifting techniques
proposed in the present paper can be readily generalized to any implicit single-step
integration method. The concept of a collocation method is illustrated by Fig. 1 for
one specific shooting interval [ti , ti+1), where i = 0, . . . , N − 1. The representation
of the collocation polynomial is adopted from the textbook [42] and is referred to as
the Runge–Kutta basis representation in [13]. To obtain the variables Ki describing
this polynomial, one needs to solve the following system of collocation equations
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Fig. 1 Illustration of direct multiple shooting and underlying collocation method: one shooting interval
Ts = ti+1 − ti using Ns integration steps of a collocation method

G(wi , Ki ) =
⎡
⎢⎣

gi,1(wi , Ki,1)
...

gi,Ns(wi , Ki,1, . . . , Ki,Ns)

⎤
⎥⎦ = 0,

where gi, j (·) =
⎡
⎢⎣
f (k1i, j , xi, j−1 + Tint

∑q
s=1 a1,sk

s
i, j , ui )

...

f (kqi, j , xi, j−1 + Tint
∑q

s=1 aq,sksi, j , ui )

⎤
⎥⎦ , (3)

where wi := (xi , ui ), q denotes the number of collocation nodes and the matrix
[A]i j := ai, j the coefficients of the method [42]. To later make a clear connection
with the direct collocation parametrization for optimal control, this paper restricts itself
to a constant integration step size Tint := Ts

Ns
based on a fixed number of integration

steps, Ns, which additionally simplifies the notation. The variables ksi, j ∈ R
nx are

collectively denoted by Ki := (Ki,1, . . . , Ki,Ns) ∈ R
nK with Ki, j := (k1i, j , . . . , k

q
i, j )

for i = 0, . . . , N − 1 and j = 1, . . . , Ns. The intermediate values xi, j are defined by
the collocation variables and by the weights bs of the q-stage method

xi, j = xi, j−1 + Tint

q∑
s=1

bsk
s
i, j , j = 1, . . . , Ns, (4)

where xi,0 = xi . The simulation result can then be obtained as xi,Ns = xi + B Ki in
which B is a constantmatrix that depends on the fixed step size Tint and the variables Ki

satisfy the collocation equations G(wi , Ki ) = 0. Note that the Jacobian matrix ∂G(·)
∂Ki

is nonsingular for a well defined set of differential equations in (2) and a sufficiently
small integration step size [42].
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2.2 Direct multiple shooting

A directmultiple shooting discretization [17] of the OCP in (1) results in the following
NLP

min
X,U

N−1∑
i=0

l(xi , ui ) + m(xN ) (5a)

s.t. 0 = x0 − x̂0, (5b)

0 = φ(xi , ui ) − xi+1, i = 0, . . . , N − 1, (5c)

with state X = [x�
0 , . . . , x�

N ]� and control trajectoryU = [u�
0 , . . . , u�

N−1]�. In what
follows, all the optimization variables for this NLP (5) can also be referred to as the
concatenated vector W = [x�

0 , u�
0 , . . . , x�

N ]� ∈ R
nW, where nW = nx + N (nx +

nu). The function φ(·) denotes a numerical simulation of the dynamics, e.g., based
on a fixed step collocation method as introduced in the previous subsection. Note
that step size control can provide guarantees regarding the accuracy of the numerical
simulation, which typically yields a reduced overall number of integration steps [42].
See, e.g., [4,8,43] for more details about the use of step size control especially within
direct optimal control. The present paper restricts itself to the fixed step case of direct
collocation [13], which is often acceptable for fast real-time applications [6,74]. The
absence of step size control will however be considered one of the disadvantages for
the proposed lifting scheme in Table 1.

In the case of a fixed step collocation method, the function φ(·) can be defined as

φ(xi , ui ) = xi + B Ki (xi , ui ), (6)

where the collocation variables are obtained by solving the system of equations in (3),
which depends on the state xi and control input ui . The Lagrangian of the NLP in (5)
is given by

L(W,Λ) =
N−1∑
i=0

l(wi ) + λ�−1

(
x0 − x̂0

) +
N−1∑
i=0

λ�
i (φ(wi ) − xi+1) + m(xN )

=
N−1∑
i=0

Li (wi , λi ) + m(xN ), (7)

where λi for i = 0, . . . , N − 1 denote the multipliers corresponding to the continuity
constraints (5c) and λ−1 denotes the multiplier of the initial value condition (5b).
Note that the stage cost l(·) in combination with the terminal cost m(·), represents a
discrete time approximation of the integral objective in Eq. (1a), which can be obtained
efficiently by, e.g., extending the dynamics (1c) with quadrature states [43]. More
information on quadrature variables and their efficient treatment within collocation
methods, can be found in [64].
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2.3 Direct collocation

Direct collocation differs from multiple shooting in the sense that it carries out the
numerical simulation of the continuous time dynamics directly in the NLP, see [13].
More specifically, one treats the collocation equations (3) as constraints in theOCP, and
the collocation variables as decision variables. The resulting structured NLP reads as

min
X,U, K

N−1∑
i=0

l(xi , ui ) + m(xN ) (8a)

s.t. 0 = x0 − x̂0, (8b)

0 = G(wi , Ki ), i = 0, . . . , N − 1, (8c)

0 = xi + B Ki − xi+1, i = 0, . . . , N − 1, (8d)

where wi := (xi , ui ) and zi := (wi , Ki ) and all optimization variables can be con-
catenated into one vector

Z� := (x0, u0, K0, . . . , xi , ui︸ ︷︷ ︸
wi

, Ki

︸ ︷︷ ︸
zi

, xi+1, ui+1, Ki+1, . . . , xN ) ∈ R
nZ , (9)

for which nZ = nW + NnK = nx + N (nx + nu + nK). The Lagrangian for the direct
collocation NLP (8) is given by

Lc(W, K ,Λ,μ) = λ�−1

(
x0 − x̂0

) +
N−1∑
i=0

λ�
i (xi + B Ki − xi+1)

+
N−1∑
i=0

μ�
i G(wi , Ki ) +

N−1∑
i=0

l(wi ) + m(xN )

=
N−1∑
i=0

Lc
i (wi , Ki , λi , μi ) + m(xN ), (10)

where λi for i = 0, . . . , N − 1 are defined as before in Eq. (7) and μi for i =
0, . . . , N − 1 denote the multipliers corresponding to the collocation equations (8c).
For simplicity of notation, we assume in this paper that the stage cost does not depend
on the collocation variables even though there exist optimal control formulationswhere
this function instead reads l̃(wi , Ki ), e.g., based on continuous output formulas [70].

We further rely on the following definition and assumption, regarding the local
minimizers of the NLPs in Eqs. (5) and (8).

Definition 1 A minimizer of an equality constrained NLP is called a regular KKT
point if the linear independence constraint qualification (LICQ) and the second-order
sufficient conditions (SOSC) are satisfied at this point [56].

Assumption 2 The local minimizers of the NLPs in Eqs. (5) and (8) are assumed to
be regular KKT points.
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Remark 3 Based on our expression for the continuity map φ(xi , ui ) in Eq. (5c) defin-
ing a fixed step collocation method, both multiple shooting and direct collocation
solve the same nonlinear optimization problem. Therefore, a regular KKT point
(W �, K �,Λ�, μ�) to the direct collocation based NLP (8) forms by definition also
a regular KKT point (W �,Λ�) to the multiple shooting problem in Eq. (5) and vice
versa.

2.4 Newton-type optimization

This paper considers the use of a Newton-type optimization method to solve the
necessary Karush–Kuhn–Tucker (KKT) conditions of the nonlinear program [56]. Let
us introduce this approach for equality constrained optimization for both the multiple
shooting (5) and collocation based (8) NLPs. In case of direct multiple shooting, a
Newton-type scheme iterates by sequentially solving the following linearized system

[
A C�
C 0

] [
ΔW
ΔΛ

]
= −

[
a
c

]
, (11)

using the compact notation ΔW := (Δw0, . . . , ΔwN ), wi := (xi , ui ), Δwi :=
wi − w̄i for i = 0, . . . , N − 1 and ΔwN := ΔxN . The values w̄i := (x̄i , ūi ) denote
the current linearization point instead of the optimization variables wi and they are
updated in each iteration by solving the QP subproblem (11), i.e., W̄+ = W̄ + ΔW
in the case of a full Newton step [56]. The matrices A ∈ R

nW×nW, C ∈ R
(N+1)nx×nW

are defined as

A =

⎡
⎢⎢⎢⎢⎣

A0
A1

. . .

AN−1
AN

⎤
⎥⎥⎥⎥⎦ , C =

⎡
⎢⎢⎢⎢⎢⎢⎣

1nx , 0
∂φ(w̄0)

∂w0
−1nx , 0
∂φ(w̄1)

∂w1
−1nx , 0

. . .
∂φ(w̄N−1)

∂wN−1
−1nx

⎤
⎥⎥⎥⎥⎥⎥⎦

,

in which Ci :=
[

∂φ(w̄i )
∂wi

, −1nx

]
and Ai := ∇2

wi
Li (w̄i , λ̄i ), AN := ∇2

xN m(x̄N ) when

using an exact Hessian based Newton method [56]. The Lagrangian term on each
shooting interval is thereby defined as Li (w̄i , λ̄i ) = l(w̄i ) + λ̄�

i (φ(w̄i ) − x̄i+1).
Note that the initial value condition is included with a term λ̄�−1

(
x̄0 − x̂0

)
for

the first shooting interval i = 0, as in Eq. (7). In case of a least squares
objective l(wi ) = 1

2‖F(wi )‖22, one could alternatively use a Gauss-Newton Hes-

sian approximation such that Ai := ∂F(w̄i )
∂wi

� ∂F(w̄i )
∂wi

[15]. The right-hand side

in the KKT system (11) consists of a ∈ R
nW and c ∈ R

(N+1)nx defined
by
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a =

⎡
⎢⎢⎢⎣

a0
...

aN−1
aN

⎤
⎥⎥⎥⎦ , c =

⎡
⎢⎢⎢⎣

x̄0 − x̂0
c0
...

cN−1

⎤
⎥⎥⎥⎦ ,

in which ci := φ(w̄i ) − x̄i+1 and ai := ∇wiL(W̄ , Λ̄), aN := ∇xNL(W̄ , Λ̄).
In a similar fashion, the linearized KKT system can be determined for the direct

collocation based NLP (8) as

⎡
⎣Ac E� D�
E 0 0

D 0 0

⎤
⎦

⎡
⎣ΔZ

ΔΛ

Δμ

⎤
⎦ = −

⎡
⎣ac
e
d

⎤
⎦ , (12)

where the matrices Ac ∈ R
nZ×nZ , D ∈ R

NnK×nZ are block diagonal and defined
by Ac,i := ∇2

ziLc
i (z̄i , λ̄i , μ̄i ) and Di := ∂G(z̄i )

∂zi
. In case of a Gauss–Newton Hessian

approximation when l(wi ) = 1
2‖F(wi )‖22, one has Ac,i :=

[
∂F(w̄i )

∂wi

� ∂F(w̄i )
∂wi

0

0 0

]
≈

∇2
ziLc

i (z̄i , λ̄i , μ̄i ) instead. The constant matrix E ∈ R
(N+1)nx×nZ corresponds to the

Jacobian for the continuity constraints (8d) and is given by

E =

⎡
⎢⎢⎢⎣

1nx
1nx 0 B −1nx

1nx 0 B −1nx
. . .

⎤
⎥⎥⎥⎦ . (13)

The Lagrangian term on each shooting interval now reads as Lc
i (z̄i , λ̄i , μ̄i ) = l(w̄i )+

λ̄�
i

(
x̄i + B K̄i − x̄i+1

) + μ̄�
i G(w̄i , K̄i ) in Eq. (10). The right-hand side components

ac ∈ R
nZ , e ∈ R

(N+1)nx and d ∈ R
NnK in the linear system (12) can be defined

similarly to those of (11) in which ac,i := ∇ziLc(Z̄ , Λ̄, μ̄), ac,N := ∇xNLc(Z̄ , Λ̄, μ̄),
di := G(w̄i , K̄i ) and ei := x̄i + B K̄i − x̄i+1.

3 Exact lifted collocation integrator for multiple shooting

Unlike [66,68], let us derive the proposed lifted collocation scheme directly from the
subproblem inEq. (12) arising from theNewton steps on the direct collocation problem
formulation. Figure 2 provides an overview of the equations for direct collocation and
multiple shooting, both using the standard integrator and with the proposed lifted
collocation method.

3.1 Structure exploitation for direct collocation

We propose a condensing technique deployed on the Newton step for the direct col-
location problem. This allows for the transformation of Eq. (12) into the form of (11)
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Fig. 2 An overview of the idea of using lifted collocation integrators, with combined properties from
multiple shooting and direct collocation

and thereby application of the tools developed for the multiple shooting approach. We
present this result as the following proposition.

Proposition 4 Algorithm 1 solves the linearized direct collocation KKT system in
Eq. (12)byperforminga condensing technique, followedby solvingamultiple shooting
type KKT system of the form (11) and a corresponding expansion procedure to obtain
the full solution (ΔZ ,ΔΛ,Δμ).

Proof Let us start with the following expressions resulting from the continuity and
collocation equations on the second and third line of the direct collocation based KKT
system (12), i.e.,

∂G(z̄i )

∂wi
Δwi + ∂G(z̄i )

∂Ki
ΔKi = −di and

Δxi + B ΔKi − Δxi+1 = −ei ,

for each i = 0, . . . , N − 1, where the previous definition of the matrices Di and
E has been used and, additionally, di = G(z̄i ) and ei = x̄i + B K̄i − x̄i+1. Since
the Jacobian ∂G(z̄i )

∂Ki
is nonsingular [42], one can eliminate the collocation variables

ΔKi = ΔK̃i + Kw
i Δwi from the subsystem, which reads as

Δxi + B Kw
i Δwi − Δxi+1 = −ẽi ,

where ẽi := ei + B ΔK̃i and the auxiliary variables

ΔK̃i = −∂G(z̄i )

∂Ki

−1

G(z̄i ) and

Kw
i = −∂G(z̄i )

∂Ki

−1 ∂G(z̄i )

∂wi

(14)
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have been defined. Subsequently, let us look at the first line of the direct collocation
based KKT system (12),

∇2
ziLc

i︸ ︷︷ ︸
=Ac,i

Δzi + E�
i Δλi −

⎡
⎣1nx

0

0

⎤
⎦ Δλi−1 + ∂G(z̄i )

∂zi

�

︸ ︷︷ ︸
=D�

i

Δμi = −∇ziLc︸ ︷︷ ︸
=ac,i

, (15)

where the matrix Ei = [
1nx 0 B

]
is defined. Since ΔKi = ΔK̃i + Kw

i Δwi , we may

writeΔzi =
[
Δwi

ΔKi

]
=

[
1nw
Kw
i

]
Δwi +

[
0

1nK

]
ΔK̃i which, when applied to (15), yields

(
∇2
zi ,wi

Lc
i + ∇2

zi ,Ki
Lc
i K

w
i

)
Δwi + E�

i Δλi −
⎡
⎣1nx

0

0

⎤
⎦Δλi−1 + ∂G(z̄i )

∂zi

�
Δμi

= −∇ziLc − ∇2
zi ,Ki

Lc
i ΔK̃i . (16)

Additionally, we observe that

∂G(z̄i )

∂zi

dzi
dwi

= ∂G(z̄i )

∂wi
+ ∂G(z̄i )

∂Ki
Kw
i

= ∂G(z̄i )

∂wi
− ∂G(z̄i )

∂Ki

∂G(z̄i )

∂Ki

−1 ∂G(z̄i )

∂wi
= 0,

where dzi
dwi

� =
[
1nw Kw�

i

]
. This can be used to simplify Eq. (16). Left multiplying

both sides of (16) with dzi
dwi

�
results in

AiΔwi +
[
1nx + K x�

i B�

Ku�
i B�

]
Δλi −

[
1nx
0

]
Δλi−1 = −ai ,

where the Hessian matrix can be written as

Ai =
(
∇2

wi
Lc
i + Kw�

i ∇2
Ki ,wi

Lc
i + ∇2

wi ,Ki
Lc
i K

w
i + Kw�

i ∇2
Ki
Lc
i K

w
i

)

= dzi
dwi

�
∇2
zi l(w̄i )

dzi
dwi

+ dzi
dwi

�
〈μ̄i ,∇2

zi Gi 〉 dzi
dwi

= ∇2
wi
l(w̄i ) + Hi , (17)

in which Hi := dzi
dwi

�〈μ̄i ,∇2
zi Gi 〉 dzi

dwi
is the condensed Hessian contribution from

the collocation equations. Here, the notation 〈μ̄,∇2
z G〉 = ∑nK

r=1 μ̄r
∂2Gr
∂z2

is used. The
right-hand side reads as

123



Lifted collocation integrators for direct optimal control

ai = dzi
dwi

�
∇ziLc + dzi

dwi

�
∇2
zi ,Ki

Lc
i ΔK̃i

= ∇wiLc + Kw�
i ∇KiLc + dzi

dwi

�
〈μ̄i ,∇2

zi ,Ki
Gi 〉ΔK̃i

= ∇wi l(w̄i ) +
[
1nx + K x�

i B�

Ku�
i B�

]
λ̄i −

[
1nx
0

]
λ̄i−1 + hi , (18)

where we used ∂G(z̄i )
∂zi

dzi
dwi

= 0 and hi := dzi
dwi

�〈μ̄i ,∇2
zi ,Ki

Gi 〉ΔK̃i .
Based on this numerical elimination or condensing of the collocation variables

ΔKi , the KKT system from Eq. (12) can be rewritten in the multiple-shooting form
of Eq. (11), where the matrices C and A are defined by

Ci = [
1nx + B K x

i B Ku
i −1nx

]
, Ai = ∇2

wi
l(w̄i ) + Hi , (19)

respectively. The vectors c and a on the right-hand side of the system are defined by

ci = ẽi , ai = ∇wi l(w̄i ) +
[
1nx + K x�

i B�

Ku�
i B�

]
λ̄i −

[
1nx
0

]
λ̄i−1 + hi (20)

for each i = 0, . . . , N − 1. After solving the resulting multiple shooting type KKT
system (11), one can obtain the full direct collocation solution by performing the
following expansion step for the lifted variables K and μ:

ΔKi = ΔK̃i + Kw
i Δwi

μ̄+
i = −∂Gi

∂Ki

−� (
B�λ̄+

i + 〈μ̄i ,∇2
Ki ,zi Gi 〉Δzi

)
,

(21)

using the Newton step (ΔW,ΔΛ) and λ̄+
i = λ̄i + Δλi . The expansion step (21) for

the Lagrange multipliers μi can be obtained by looking at the lower part of the KKT
conditions in Eq. (15),

∇2
Ki ,ziLc

i Δzi + B�Δλi + ∂Gi

∂Ki

�
Δμi = −∇KiLc,

which can be rewritten as

∂Gi

∂Ki

�
Δμi = −∂Gi

∂Ki

�
μ̄i − B�λ̄i − B�Δλi − 〈μ̄i ,∇2

Ki ,zi Gi 〉Δzi . (22)

��

Remark 5 Algorithm 1 can be readily extended to nonlinear inequality constrained
optimization, since the lifted collocation integrator is not directly affected by such
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Algorithm 1 Newton-type optimization step, based on the exact lifted collocation
integrator within direct multiple shooting (LC-EN).
Input: Current values z̄i = (x̄i , ūi , K̄i ) and (λ̄i , μ̄i ) for i = 0, . . . , N − 1.
Output: Updated values z̄+i and (λ̄+

i , μ̄+
i ) for i = 0, . . . , N − 1.

Condensing procedure
1: for i = 0, . . . , N − 1 do in parallel (forward sweep)
2: Compute the values ΔK̃i and Kw

i using Eq. (14):

ΔK̃i ← − ∂Gi
∂Ki

−1
G(z̄i ) and Kw

i ← − ∂Gi
∂Ki

−1 ∂Gi
∂wi

.
3: Hessian and gradient terms using Eqs. (17)–(18):

Hi ← dzi
dwi

�〈μ̄i , ∇2
zi Gi 〉 dzi

dwi
and hi ← dzi

dwi

�〈μ̄i ,∇2
zi ,Ki

Gi 〉ΔK̃i .
4: end for

Computation of step direction
5: Solve the linear KKT system (11) based on the data Ci , Ai and ci , ai in Eqs. (19) and (20) for i =

0, . . . , N − 1, in order to obtain the step (ΔW, ΔΛ).
w̄+
i ← w̄i + Δwi and λ̄+

i ← λ̄i + Δλi .
Expansion procedure

6: for i = 0, . . . , N − 1 do in parallel (backward sweep)
7: The full solution can be obtained using Eq. (21):

K̄+
i ← K̄i + ΔK̃i + Kw

i Δwi .

μ̄+
i ← − ∂Gi

∂Ki

−� (
B�λ̄+

i + 〈μ̄i ,∇2
Ki ,zi

Gi 〉Δzi
)
.

8: end for

inequality constraints. More specifically, the presence of inequality constraints only
influences the computation of the step direction based on the KKT conditions [56].
Therefore, the lifted collocation scheme can, for example, be implemented within an
SQP method [18] by linearizing the inequality constraints and solving the resulting
QP subproblem to compute the step direction in Algorithm 1. Note that such an SQP
type implementation is performed in the ACADO Toolkit as presented later in Sect. 6.
Similarly, an IP method [13] could be implemented based on the lifted collocation
integrator so that the step direction computation in Algorithm 1 involves the solution
of the primal-dual interior point system.

Remark 6 Proposition 4 presents a specific condensing and expansion technique that
can also be interpreted as a parallelizable linear algebra routine to exploit the specific
direct collocation structure in the Newton method. The elimination of the collocation
variables by computing the corresponding quantities in Eqs. (19) and (20) can be
performed independently and therefore in parallel for each shooting interval i =
0, . . . , N − 1 as illustrated by Fig. 3. The same holds true for the expansion step in
Eq. (21) to recover the full solution.

3.2 The exact lifted collocation algorithm

Algorithm 1 presents the exact lifted collocation scheme (LC–EN), which can be used
within direct multiple shooting based on the results of Proposition 4. The resulting
Newton-type optimization algorithm takes steps (ΔW,ΔK ,ΔΛ,Δμ) that are equiva-
lent to those for Newton-type optimization applied to the direct collocation basedNLP.
Given a regular KKT point, (W �, K �,Λ�, μ�), as in Definition 1 for this NLP (8),
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Fig. 3 Illustration of the condensing and expansion to efficiently eliminate and recover the collocation
variables from the linearized KKT system in a parallelizable fashion

the lifted collocation algorithm therefore converges locally with a linear rate to this
minimizer in the case of a Gauss–Newton Hessian approximation or with a quadratic
convergence rate in the case of an exact Hessian method [56]. Note that more recent
results on inexact Newton-type optimization algorithms exist, e.g., allowing locally
superlinear [32] or even quadratic convergence rates [45] under some conditions.

3.2.1 Connection to the standard lifted Newton method

The lifted Newton method [5] identifies intermediate values in the constraints and
objective functions and introduces them as additional degrees of freedom in the NLP.
Instead of solving the resulting equivalent (but higher dimensional) optimization prob-
lem directly, a condensing and expansion step are proposed to give a computational
burden similar to the non-lifted Newton type optimization algorithm. The present
paper proposes an extension of that concept to intermediate variables that are instead
defined implicitly, namely the collocation variables on each shooting interval. Similar
to the discussion for the lifted Newton method in [5], the lifted collocation integrator
offers multiple advantages over the non-lifted method such as an improved local con-
vergence. Unlike the standard lifted Newton method, the lifting of implicitly defined
variables avoids the need for an iterative scheme within each iteration of the Newton-
type optimization algorithm, and therefore typically reduces the computational effort.
These properties will be detailed next.

3.2.2 Comparison with direct collocation and multiple shooting

This section compares multiple shooting (MS), lifted collocation (LC) and direct
collocation (DC), all aimed at solving the same nonlinear optimization problem in
Eq. (8) (see Remark 3). Proposition 4 shows that lifted and direct collocation result
in the exact same Newton-type iterations and therefore share the same convergence
properties. The arguments proposed in [5] for the lifted Newton method suggest that
this local convergence can be better than for direct multiple shooting based on a
collocationmethod. However, themainmotivation for using lifting in this paper is that,
internally, multiple shooting requires Newton-type iterations to solve the collocation
equations (3) within each NLP iteration to evaluate the continuity map while lifted
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collocation avoids such internal iterations. In addition, let us mention some of the
other advantages of lifted collocation over the use of direct collocation:

– The elimination of the collocation variables, i.e., the condensing, can be performed
in a tailored, structure-exploitingmanner. Similarly to direct multiple shooting, the
proposed condensing technique can be highly and straightforwardly parallelized
since the elimination of the variables ΔKi on each shooting interval can be done
independently.

– The resulting condensed subproblem is smaller but still block structured, since
it is of the multiple-shooting form (11). It therefore offers the additional practi-
cal advantage that one can deploy any of the embedded solvers tailored for the
multi-stage quadratic subproblem with a specific optimal control structure, such
as FORCES [33], qpDUNES [36] or HPMPC [38].

– An important advantage of multiple shooting over direct collocation is the pos-
sibility of using any ODE or DAE solver, including step size and order control
to guarantee a specific integration accuracy [17,42]. Such an adaptive approach
becomes more difficult, but can be combined with direct collocation where the
problem dimensions change in terms of the step size and order of the polyno-
mial [11,53,59]. Even though it is out of the scope of this work, the presented
lifting technique allows one to implement similar approaches while keeping the
collocation variables hidden from the NLP solver based on condensing and expan-
sion.

The main advantage of direct collocation over multiple shooting is the better preser-
vation of sparsity in the derivative matrices. Additionally, the evaluation of derivatives
for the collocation equations is typically cheaper than the propagation of sensitivities
for an integration scheme. These observations are summarized in Table 1, which lists
advantages and disadvantages for all three approaches. It is important to note that direct
collocation is also highly parallelizable, although one needs to rely on an advanced
linear algebra package for detecting the sparsity structure of Eq. (12), exploiting it and
performing the parallelization. In contrast, the lifted collocation approach is paral-
lelizable in a natural way and independently of the chosen linear algebra. The relative
performance of using a general-purpose sparse linear algebra routine for direct col-
location versus the proposed approach depends very much on the specific problem
dimensions and structure, and on the solver used. It has been shown in specific con-

Table 1 Comparison of the three collocation based approaches to solve the NLP in Eq. (8)

Multiple shooting (MS) Lifted collocation (LC) Direct collocation (DC)

Step size control + 0 0

Embedded QP solvers + + −
Parallelizability + + 0

Local convergence 0 + +
Internal iterations − + +
Sparsity dynamics − − +
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texts that structure exploiting implementations of optimal control methods based on
dense linear algebra routines typically outperform general-purpose solvers [37]. This
topic will be discussed further for direct collocation in the numerical case study of
Sect. 7.

3.3 Forward-backward propagation

The efficient computation of second-order derivatives using algorithmic differentia-
tion (AD) is typically based on a forward sweep, followed by a backward propagation
of the derivatives as detailed in [41]. Inspired by this approach, Algorithm 1 proposes
to perform the condensing and expansion step using such a forward-backward prop-
agation. To reveal these forward and backward sweeps in Algorithm 1 explicitly, let
us recall the structure of the collocation equations from the formulation in (3), where
we omit the shooting index, i = 0, . . . , N − 1, to obtain the compact notation

G(w, K ) =
⎡
⎢⎣

g1(w, K1)
...

gNs(w, K1, . . . , KNs)

⎤
⎥⎦ =

⎡
⎢⎣

g1(w0, K1)
...

gNs(wNs−1, KNs)

⎤
⎥⎦ = 0. (23)

Here, w0 = (x, u), wn = (xn, u) and xn = xn−1 + BnKn denotes the intermediate
state values in Eq. (4) such that the numerical simulation result φ(w) = xNs is defined.
Let us briefly present the forward-backward propagation scheme for respectively the
condensing and expansion step of Algorithm 1 within one shooting interval.

3.3.1 Condensing the lifted variables: forward sweep

The condensing procedure inAlgorithm1aims to compute the dataC =
[
dxNs
dw0

, −1nx

]

and A = ∇2
wl(w) + H , where the matrix H = dz

dw
�〈μ,∇2

z G〉 dz
dw is defined similar

to Eq. (17). In addition, the vectors c = ei + B ΔK̃ and a = ∇wl(w) + dxNs
dw0

�
λi −[

1nx
0

]
λi−1+h, in which h = dz

dw
�〈μ,∇2

z,KG〉ΔK̃ , are needed to form the linearized

multiple shooting type KKT system (11). Note that this forms a simplified formulation
of the condensed expressions in Eqs. (19) and (20) within one shooting interval.

Given the particular structure of the collocation equations in (23) for Ns integration
steps, the variables Kn can be eliminated sequentially for n = 1, . . . , Ns. The lifted

Newton step ΔK̃ = − ∂G
∂K

−1
G(z̄) can therefore be written as the following forward

sequence

ΔK̃n = − ∂gn
∂Kn

−1 (
gn + ∂gn

∂xn−1
Δx̃n−1

)
, (24)

for n = 1, . . . , Ns and where gn := gn(w̄n−1, K̄n) and Δx̃0 = 0 so that Δx̃n =
Δx̃n−1 + Bn ΔK̃n . The same holds for the corresponding first order forward sensitiv-

ities Kw = − ∂G
∂K

−1 ∂G
∂w

, which read as
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Kw
n := dKn

dw0
= − ∂gn

∂Kn

−1 (
∂gn

∂wn−1

dwn−1

dw0

)
, (25)

where the first order derivatives dwn−1
dw0

=
[
Sn−1
0 1nu

]
and Sn = dxn

dw0
are defined. These

sensitivities are used to propagate the state derivatives

Sn = Sn−1 + Bn K
w
n (26)

for n = 1, . . . , Ns. This forward sequence, starting at S0 = [
1nx 0

]
, results in the

complete Jacobian SNs = dxNs
dw0

.

After introducing the compact notationμ�
n gn(w̄n−1, K̄n) = ∑q

r=1 μ�
n,r fn,r , where

fn,r := f (k̄n,r , w̄n,r ) denote the dynamic function evaluations in (3), the expressions
for the second-order sensitivities are

Kw,w
n =

q∑
r=1

dzn,r

dw0

�
〈μn,r ,∇2

zn,r
fn,r 〉dzn,r

dw0
, (27)

where zn,r := (kn,r , wn,r ), wn,r := (xn,r , u) and the stage values are defined by
xn,r = xn−1 + Tint

∑q
s=1 ar,skn,s . The derivatives dzn,r

dw0
are based on the first-order

forward sensitivity information in Eqs. (25) and (26). In a similar way to that described
in [68,69], one can additionally perform a forward symmetric Hessian propagation
sweep,

Hn = Hn−1 + Kw,w
n , (28)

for n = 1, . . . , Ns and H0 = 0 such that HNs = ∑Ns
n=1 K

w,w
n . Regarding the gradient

contribution, one can propagate the following sequence

hn = hn−1 +
q∑

r=1

dzn,r

dw0

�
〈μn,r ,∇2

zn,r
fn,r 〉Δz̃n,r , (29)

for n = 1, . . . , Ns, where the values Δx̃n,r = Δx̃n−1 + Tint
∑q

s=1 ar,sΔk̃n,s are
defined. Given the initial values H0 = 0 and h0 = 0, the forward sweeps (28)–(29)

result in HNs = dz
dw

�〈μ̄,∇2
z G〉 dz

dw and hNs = dz
dw

�〈μ̄,∇2
z,KG〉ΔK̃ .

Remark 7 The above computations to evaluate the condensed Hessian contribution
show a resemblance with the classical condensing method to eliminate the state vari-
ables in direct optimal control [17]. The main difference is that the above condensing
procedure is carried out independently for the state and control variable within each
shooting interval, such that the number of optimization variables does not increase in
this case.
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3.3.2 Expansion step for the lifted variables: backward sweep

Note that the first and second order sensitivities can be propagated together in the for-
ward condensing scheme, which avoids unnecessary additional storage requirements.
We show next that the expansion phase of Algorithm 1 can be seen as the subsequent
backward propagation sweep. For this purpose, certain variables from the forward
scheme still need to be stored.

The expansion step K̄+ = K̄ + ΔK̃ + KwΔw for the lifted collocation variables
can be performed as follows

K̄+
n = K̄n + ΔK̃n + Kw

n Δw0 for n = 1, . . . , Ns, (30)

where the values ΔK̃n and Kw
n are stored from the condensing procedure and Δw0

denotes the primal update from the subproblem solution inAlgorithm1. The expansion

step μ̄+ = − ∂G
∂K

−� (
B�λ̄+ + 〈μ̄,∇2

K ,zG〉Δz
)
for the lifted dual variables can be

performed as a backward propagation

μ̄+
n = − ∂gn

∂Kn

−� (
B�
n λ̄+

n +
Ns∑

m=n

〈μ̄m,∇2
Kn ,zm gm〉Δzm

)
,

where λ̄+
n−1 = λ̄+

n + ∂gn
∂xn−1

�
μ̄+
n ,

(31)

for n = Ns, . . . , 1, based on the initial value λ̄+
Ns

= λ̄+ from the subproblem solution,
and where Δxn = Δxn−1 + Bn ΔKn and Δzn = (Δwn,ΔKn). Note that the fac-
torization of the Jacobian ∂gn

∂Kn
is needed from the forward propagation to efficiently

perform this backward sweep.

3.4 Lifted collocation integrator within a Gauss–Newton method

The previous subsection detailed how the expressions in Algorithm 1 can be computed
by a forward-backward propagation, which exploits the symmetry of the exact Hessian
contribution. In the case when a Gauss–Newton or Quasi-Newton type optimization
method is used, the Hessian contribution from the dynamic constraints is Hi = 0
and the gradient hi = 0 for i = 0, . . . , N − 1, since no second-order derivative
propagation is needed. The multipliers μ corresponding to the collocation equations
are then not needed either, so that only the collocation variables are lifted. In this
context, Algorithm 1 boils down to a forward sweep for both the condensing and the
expansion steps of the scheme without the need for additional storage of intermediate
values, except for the lifted variables K and their forward sensitivities Kw.
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4 Adjoint-based inexact lifted collocation integrator

Any implementation of a collocation method needs to compute the collocation vari-
ables Ki from the nonlinear equations G(wi , Ki ) = 0, given the current values for
wi . The earlier definition of the auxiliary variable ΔK̃i in Eq. (14) corresponds to an

exact Newton step ΔK̃i = − ∂G(w̄i ,K̄i )
∂Ki

−1
G(w̄i , K̄i ). It is, however, common in prac-

tical implementations of collocation methods or implicit Runge–Kutta (IRK) schemes
in general to use inexact derivative information to approximate the Jacobian matrix,

Mi ≈ ∂G(w̄i ,K̄i )
∂Ki

, resulting in the inexact Newton step

ΔK̃i = −M−1
i G(w̄i , K̄i ). (32)

This Jacobian approximation can allow for a computationally cheaper LU factoriza-
tion, which can be reused throughout the iterations [42]. Monitoring strategies on
when to reuse such a Jacobian approximation is a research topic of its own, e.g.,
see [4,8]. Note that an alternative approach makes use of inexact solutions to the
linearized subproblems in order to reduce the overall computational burden [23,24].
Additionally, there exist iterative ways of updating the Jacobian approximation, e.g.,
based on Broyden’s method [19]. Efficient implementations of IRKmethods based on
such a tailored Jacobian approximation Mi , are, for example, known as the Simplified
Newton [10,21] and the Single Newton type iteration [22,40].

4.1 Adjoint-based inexact lifting algorithm

Even though it can be computationally attractive to use the inexact Newton scheme
from Eq. (32) instead of the exact method, its impact on the convergence of the
resulting Newton-type optimization algorithm is an important topic that is addressed
in more detail by [14,26,32,62]. A Newton-type scheme with inexact derivatives does
not converge to a solution of the original direct collocation NLP (8), unless adjoint
derivatives are evaluated in order to compute the correct gradient of the Lagrangian
ac,i = ∇ziLc(Z̄ , Λ̄, μ̄) on the right-hand side of the KKT system (12) [16,32].

Let us introduce the Jacobian approximation D̃i = [ ∂G(z̄i )
∂wi

, Mi ] ≈ ∂G(z̄i )
∂zi

∈
R
nK×nz , where Mi ≈ ∂G(z̄i )

∂Ki
is invertible for each i = 0, . . . , N − 1, and which

is possibly fixed. One then obtains the inexact KKT system

⎡
⎣Ac E� D̃�
E 0 0

D̃ 0 0

⎤
⎦

⎡
⎣ΔZ

ΔΛ

Δμ

⎤
⎦ = −

⎡
⎣ac
e
d

⎤
⎦ , (33)

where all matrices and vectors are defined as for the direct collocation based KKT
system in Eq. (12), with the exception of D̃, where the Jacobian approximationsMi are
used instead of ∂G(z̄i )

∂Ki
. This is known as an adjoint-based inexact Newton method [16,

32] applied to the direct collocation NLP in Eq. (8) because the right-hand side is

123



Lifted collocation integrators for direct optimal control

evaluated exactly, including the gradient of the Lagrangian, ac,i = ∇ziLc(Z̄ , Λ̄, μ̄).
We detail this approach in Algorithm 2 and motivate it by the following proposition.

Proposition 8 Algorithm 2 presents a condensing technique for the inexact KKT sys-
tem (33), which allows one to instead solve a system of the multiple-shooting form in
Eq. (11). The solution (ΔZ ,ΔΛ,Δμ) to the original system (33) can be obtained by
use of the corresponding expansion technique.

Proof The proof here follows similar arguments as that used for Proposition 4, with
the difference that the update of the collocation variables is instead given by ΔKi =
ΔK̃i + K̃w

i Δwi , where

ΔK̃i = −M−1
i G(z̄i ), K̃w

i = −M−1
i

∂G(z̄i )

∂wi
, (34)

andwhere K̃w
i denotes the inexact forward sensitivities. Toobtain themultiple shooting

type form of the KKT system in Eq. (11), the resulting condensing and expansion step
can be found in Algorithm 2. An important difference with the exact lifted collocation
integrator from Algorithm 1 is that the gradient term hi is now defined as

hi = zwi
�〈μ̄i ,∇2

zi ,Ki
Gi 〉ΔK̃i +

(
∂Gi

∂wi
+ ∂Gi

∂Ki
K̃w
i

)�
μ̄i , (35)

where zwi
� :=

[
1nw K̃w�

i

]
and includes a correction term resulting from the inexact

sensitivities K̃w
i . In addition, the expansion step for the Lagrange multipliers corre-

sponding to the collocation equations is now

Δμi = −M−�
i

(
∂G(z̄i )

∂Ki

�
μ̄i + B�λ̄+

i + 〈μ̄i ,∇2
Ki ,zi Gi 〉Δzi

)
, (36)

which corresponds to a Newton-type iteration on the exact Newton based expression
from Eq. (22). ��

Table 2 shows an overview of the presented variants of lifted collocation including
the exact method (LC–EN) in Algorithm 1, which can be compared to the adjoint
based inexact lifting scheme (LC–IN) in Algorithm 2.

4.2 Local convergence for inexact Newton-type methods (IN)

Let us briefly present the local contraction result for Newton-type methods, which we
will use throughout this paper to study local convergence for inexact lifted collocation.
To discuss the local convergence of the adjoint-based inexact lifting scheme, we will
first write it in a more compact notation starting with the KKT equations
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Algorithm 2 Newton-type optimization step, using the adjoint-based inexact lifted
collocation integrator within direct multiple shooting (LC-IN).
Input: Current values z̄i = (x̄i , ūi , K̄i ), (λ̄i , μ̄i ) and matrices Mi for i = 0, . . . , N − 1.
Output: Updated values z̄+i and (λ̄+

i , μ̄+
i ) for i = 0, . . . , N − 1.

Condensing procedure
1: for i = 0, . . . , N − 1 do in parallel (forward sweep)
2: Compute the values ΔK̃i and K̃w

i using Eq. (34):

ΔK̃i ← −M−1
i G(z̄i ) and K̃w

i ← −M−1
i

∂Gi
∂wi

.

3: In case of second-order sensitivities, using Eq. (35):
Hi ← zwi

�〈μ̄i , ∇2
zi Gi 〉 zwi

hi ← zwi
�〈μ̄i , ∇2

zi ,Ki
Gi 〉ΔK̃i +

(
∂Gi
∂wi

+ ∂Gi
∂Ki

K̃w
i

)�
μ̄i .

4: end for
Computation of step direction

5: Solve the linear KKT system (11) based on the data Ci , Ai and ci , ai in Eqs. (19) and (20) for i =
0, . . . , N − 1, in order to obtain the step (ΔW, ΔΛ).
w̄+
i ← w̄i + Δwi and λ̄+

i ← λ̄i + Δλi .
Expansion procedure

6: for i = 0, . . . , N − 1 do in parallel (backward sweep)
7: The full solution can be obtained using Eq. (36):

K̄+
i ← K̄i + ΔK̃i + K̃w

i Δwi .

μ̄+
i ← μ̄i − M−�

i

(
∂Gi
∂Ki

�
μ̄i + B�λ̄+

i + 〈μ̄i , ∇2
Ki ,zi

Gi 〉 Δzi

)
.

8: end for

F(Y ) :=
⎡
⎣∇ZLc(Z ,Λ,μ)

E Z
G(Z)

⎤
⎦ = 0, (37)

where Y := (Z ,Λ,μ) denotes the concatenated variables. Then, each Newton-type
iteration from Eq. (33) can be written as

ΔY = − J̃ (Ȳ )−1F(Ȳ ). (38)

Given a guess, Ȳ , the Jacobian approximation from Eq. (33) is

J̃ (Ȳ ) :=
⎡
⎣Ac(Ȳ ) E� D̃(Z̄)�

E 0 0

D̃(Z̄) 0 0

⎤
⎦ ≈ J (Ȳ ) := ∂F(Ȳ )

∂Y
. (39)

Because the system of equations in (37) denotes the KKT conditions [56] for the direct
collocation NLP in Eq. (8), a solutionF(Y �) = 0 by definition also needs to be a KKT
point (Z�,Λ�, μ�) for the original NLP.

The Newton-type optimization method in Algorithm 2 can now be rewritten as
the compact iteration (38). The convergence of this scheme then follows the classical
and well-known local contraction theorem from [14,26,32,62]. We use the following
version of this theorem from [27], providing sufficient and necessary conditions for
the existence of a neighborhood of the solution where the Newton-type iteration con-

123



Lifted collocation integrators for direct optimal control

verges. Let us define the spectral radius, ρ(P), as the maximum absolute value of the
eigenvalues of the square matrix P .

Theorem 9 (Local Newton-type contraction [27]) Let us consider the twice contin-
uously differentiable function F(Y ) from Eq. (37) and the solution point Y � with
F(Y �) = 0. We then consider the Newton-type iteration Yk+1 = − J̃ (Yk)−1F(Yk)
starting with the initial value Y0, where J̃ (Y ) ≈ J (Y ) is continuously differentiable
and invertible in a neighborhood of the solution. If all eigenvalues of the iteration
matrix have a modulus smaller than one, i.e., if the spectral radius

κ� = ρ
(
1 − J̃ (Y �)−1 J (Y �)

)
< 1, (40)

then this fixed point Y � is asymptotically stable. Additionally, the iterates Yk converge
linearly to Y � with the asymptotic contraction rate κ� if Y0 is sufficiently close. On the
other hand, if κ� > 1, then the fixed point Y � is unstable.

Theorem 9 provides a simple means of assessing the stability of a solution point Y �

and therefore provides a guarantee of the existence of a neighborhood of Y � where the
Newton-type iteration converges linearly to Y � with the asymptotic contraction rate
κ�.

Remark 10 The adjoint-based inexact lifting scheme converges locally to a solution
of the direct collocation NLP if the assumptions of Theorem 9 and condition (40)
are satisfied. As mentioned earlier, it is therefore possible to use a fixed Jacobian
approximation D̃i := [Gwi , Mi ] over the different Newton-type iterations [16] in
Eq. (33)where, additionally,Gwi ≈ ∂G(z̄i )

∂wi
. Theorem9 still holds for this case. It results

in the computational advantage that the factorization of D̃i needs to be computed only
once. Additionally, the inexact forward sensitivities K̃w

i = −M−1
i Gwi remain fixed

and can be computed offline. The use of fixed sensitivity approximations can also
reduce the memory requirement for the lifted collocation integrator considerably [66].

5 Inexact lifted collocation integrator with iterated sensitivities

This section presents an extension of the Gauss–Newton based iterative inexact lifting
scheme to the general Newton-type optimization framework. Unlike the discussion
in [65], we include the option to additionally propagate second-order sensitivities
within this iterative lifted Newton-type algorithm. We formulate this approach as an
inexact Newton method for an augmented KKT system and discuss its local conver-
gence properties. Based on the same principles of condensing and expansion, this
inexact lifting scheme can be implemented similar to a direct multiple shooting based
Newton-type optimization algorithm. Finally, we discuss the adjoint-free iterative
inexact lifted collocation integrator [65] as a special case of this approach.
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5.1 Iterative inexact lifted collocation scheme

An inexactNewton scheme uses the factorization of one of the aforementioned approx-

imations of the Jacobian, Mi ≈ ∂G(w̄i ,K̄i )
∂Ki

, for each linear system solution. To recover
the correct sensitivities in theNewton-type optimization algorithm, our proposed Inex-
act Newton scheme with iterated sensitivities (INIS) additionally includes the lifting
of the forward sensitivities Kw

i . More specifically, the forward sensitivities Kw
i are

introduced as additional variables into the NLP, which can be iteratively obtained
by applying a Newton-type iteration, K̄w

i ← K̄w
i + ΔKw

i , to the linear equation
∂Gi
∂wi

+ ∂Gi
∂Ki

Kw
i = 0. The lifting of the sensitivities results in additional degrees of free-

domsuch that the update for the collocationvariables becomesΔKi = ΔK̃i+K̄w
i Δwi ,

where K̄w
i are the current values for the lifted sensitivities. The forward sweep of the

condensing procedure in Algorithm 2 can then be written as

ΔK̃i = −M−1
i G(z̄i ),

ΔKw
i = −M−1

i

(
∂G(z̄i )

∂wi
+ ∂G(z̄i )

∂Ki
K̄w
i

)
,

(41)

instead of the standard inexact Newton step in Eq. (34).
In the case of aNewton-type optimization algorithm,which requires the propagation

of second-order sensitivities, one can apply a similar inexact update to the Lagrange
multipliers μi corresponding to the collocation equations. The Newton-type scheme
can equivalently be applied to the expression from Eq. (21), to result in the following
iterative update

Δμi = −M−�
i

(
∂G(z̄i )

∂Ki

�
μ̄i + B�λ̄+

i + 〈μ̄i ,∇2
Ki ,zi Gi 〉Δzi

)
, (42)

where μ̄i denotes the current values of the Lagrange multipliers corresponding to the
collocation equations. The inexactNewton iteration (42) only requires the factorization
of the Jacobian approximation Mi and corresponds to the expansion step in Eq. (36)
for the adjoint-based inexact lifting scheme. The Newton-type optimization algorithm
based on the iterative inexact lifting scheme (LC–INIS)within directmultiple shooting
is detailed in Algorithm 3.

5.1.1 Iterative inexact lifting as an augmented Newton scheme

By introducing the (possibly fixed) Jacobian approximation Mi ≈ ∂G(w̄i ,K̄i )
∂Ki

and the
lifted variables for the forward sensitivities Kw

i for i = 0, . . . , N − 1, let us define
the following augmented and inexact version of the linearized KKT system (12) for
direct collocation
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⎡
⎢⎢⎣
Ac E� D̃� 0

E 0 0 0

D̃ 0 0 0

0 0 0 1nW ⊗ M

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ΔZ
ΔΛ

Δμ

vec(ΔKw)

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣
ac
e
d
df

⎤
⎥⎥⎦ , (43)

where the matrix Ac ∈ R
nZ×nZ is block diagonal and defined earlier in Eq. (12), and

where Ac,i := ∇2
ziLc

i (z̄i , λ̄i , μ̄i ) andLc
i (z̄i , λ̄i , μ̄i ) = l(w̄i )+ λ̄�

i

(
x̄i + B K̄i − x̄i+1

)
+ μ̄�

i G(w̄i , K̄i ). Also, the constant matrix E ∈ R
(N+1)nx×nZ is defined as before in

Eq. (13). In addition, the blockdiagonalmatrix D̃ is definedby D̃i = [−Mi K̄w
i , Mi

] ∈
R
nK×nz for each i = 0, . . . , N − 1, because

D̃i = [−Mi K̄
w
i , Mi

]

≈ Di =
[
−∂G(w̄i , K̄i )

∂Ki
Kw
i ,

∂G(w̄i , K̄i )

∂Ki

]
= ∂G(z̄i )

∂zi
,

(44)

where the Jacobian approximation Mi ≈ ∂G(w̄i ,K̄i )
∂Ki

is used. The following terms on

the right-hand side are defined as before in Eq. (12) where ac,i := ∇ziLc(Z̄ , Λ̄, μ̄),
ei := x̄i + B K̄i − x̄i+1 and di := G(z̄i ). In addition, the remaining terms are
df,i := vec( ∂G(z̄i )

∂wi
+ ∂G(z̄i )

∂Ki
K̄w
i ). The following proposition states the connection

between this augmented KKT system (43) and Algorithm 3 for an iterative inexact
lifted collocation integrator.

Proposition 11 Algorithm 3 presents a condensing technique for the augmented and
inexact KKT system (43), which allows one to instead solve the multiple shooting type
system (11). The original solution (ΔZ ,ΔΛ,Δμ,ΔKw) can be obtained by use of
the corresponding expansion step.

Proof Similar to the proof for Proposition 4, let us look closely at the first line of the
KKT system in Eq. (43),

∇2
ziLc

i Δzi + E�
i Δλi −

⎡
⎣1nx

0

0

⎤
⎦ Δλi−1 + D̃�

i Δμi = −ac,i . (45)

For the inexact Newton case, we observe that the following holds

D̃i z
w
i = −Mi K̄

w
i + Mi K̄

w
i = 0,

where the approximate Jacobian matrices zwi
� =

[
1nw K̄w�

i

]
and D̃i = [−Mi K̄w

i ,

Mi ]. We can multiply Eq. (45) on the left by zwi
� and use Δzi =

[
1nw
K̄w
i

]
Δwi +

[
0

1nK

]
ΔK̃i to obtain the expression

123



R. Quirynen et al.

ÃiΔwi +
[
1nx + K̄ x�

i B�

K̄ u�
i B�

]
Δλi −

[
1nx
0

]
Δλi−1 = −ãi , (46)

where the Hessian matrix Ãi = ∇2
wi
l(w̄i ) + Hi with Hi = zwi

�〈μ̄i ,∇2
zi Gi 〉 zwi .

Furthermore, the right-hand side reads

ãi = zwi
�∇ziLc + zwi

�∇2
zi ,Ki

Lc
i ΔK̃i

= ∇wi l(w̄i ) +
[
1nx + K̄ x�

i B�

K̄ u�
i B�

]
λ̄i −

[
1nx
0

]
λ̄i−1 + h̃i ,

where h̃i = zwi
�〈μ̄i ,∇2

zi ,Ki
Gi 〉ΔK̃i +

(
∂Gi
∂wi

+ ∂Gi
∂Ki

K̄w
i

)�
μ̄i . The augmented KKT

system (43) can therefore indeed be reduced to the multiple shooting type form in
Eq. (11), using the condensing step as described in Algorithm 3.

The expansion step for the lifted K variables follows from D̃iΔzi = −di and
becomes ΔKi = ΔK̃i + K̄w

i Δwi . To update the Lagrange multipliers μi , let us look
at the lower part of Eq. (45):

∇2
Ki ,ziLc

i Δzi + B�Δλi + M�
i Δμi = −∇KiLc,

which canbe rewritten asΔμi = −M−�
i

(
∂G(z̄i )
∂Ki

�
μ̄i + B�λ̄+

i + 〈μ̄i ,∇2
Ki ,zi

Gi 〉Δzi
)

in Equation (42). Finally, the update of the lifted sensitivities Kw
i follows from the

last equation of the KKT system in (43)

ΔKw
i = −M−1

i

(
∂Gi

∂wi
+ ∂Gi

∂Ki
K̄w
i

)
.

��

Remark 12 To be precise, Algorithm 3 is an adjoint-based iterative inexact lifting
scheme since it corrects the gradient in the condensed problem (46) using the expres-

sion
(

∂Gi
∂wi

+ ∂Gi
∂Ki

K̄w
i

)�
μ̄i similar to Eq. (35) for the adjoint-based inexact scheme.

This correction term is equal to zero whenever the lifted sensitivities are exact, i.e.,

Kw�

i = − ∂Gi
∂Ki

−1 ∂Gi
∂wi

. The overview in Table 2 allows one to compare this novel
approach for inexact Newton based lifted collocation with the previously presented
lifting schemes.

Remark 13 The updates of the lifted forward sensitivities,

ΔKw
i = −M−1

i

(
∂Gi

∂wi
+ ∂Gi

∂Ki
K̄w
i

)
, (47)
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Algorithm 3 Newton-type optimization step, based on the iterative inexact lifted
collocation integrator within direct multiple shooting (LC-INIS).
Input: Current values z̄i = (x̄i , ūi , K̄i ), K̄

w
i , (λ̄i , μ̄i ) and matrices Mi for i = 0, . . . , N − 1.

Output: Updated values z̄+i , K̄w+
i and (λ̄+

i , μ̄+
i ) for i = 0, . . . , N − 1.

Condensing procedure
1: for i = 0, . . . , N − 1 do in parallel (forward sweep)
2: Compute the values ΔK̃i and ΔKw

i using Eq. (41):

ΔK̃i ← −M−1
i G(z̄i ) and ΔKw

i ← −M−1
i

(
∂Gi
∂wi

+ ∂Gi
∂Ki

K̄w
i

)
.

3: In case of second-order sensitivities, using Eq. (46):
Hi ← zwi

�〈μ̄i , ∇2
zi Gi 〉 zwi

hi ← zwi
�〈μ̄i , ∇2

zi ,Ki
Gi 〉ΔK̃i +

(
∂Gi
∂wi

+ ∂Gi
∂Ki

K̄w
i

)�
μ̄i .

4: end for
Computation of step direction

5: Solve the linear KKT system (11) based on the data Ci , Ai and ci , ai in Eqs. (19) and (20) for i =
0, . . . , N − 1, in order to obtain the step (ΔW, ΔΛ).
w̄+
i ← w̄i + Δwi and λ̄+

i ← λ̄i + Δλi .
Expansion procedure

6: for i = 0, . . . , N − 1 do in parallel (backward sweep)
7: The full solution can be obtained using Eq. (42):

K̄+
i ← K̄i + ΔK̃i + K̄w

i Δwi and K̄w+
i ← K̄w

i + ΔKw
i .

μ̄+
i ← μ̄i − M−�

i

(
∂Gi
∂Ki

�
μ̄i + B�λ̄+

i + 〈μ̄i , ∇2
Ki ,zi

Gi 〉 Δzi

)
.

8: end for

are independent of the updates for any of the other primal or dual variables, so that (47)
can be implemented separately. More specifically, one can carry out multiple Newton-
type iterations for the lifted variables K̄w

i followed by an update of the remaining
variables or the other way around. To simplify our discussion on the local convergence
for this INIS type scheme, we will however not consider such variations further.

5.2 Local convergence for inexact Newton with iterated sensitivities (INIS)

Similar to Sect. 4.2, let us introduce a more compact notation for the Newton-type
iteration from Algorithm 3. For this purpose, we define the following augmented
system of KKT equations:

Fa(Ya) :=

⎡
⎢⎢⎣

∇ZLc(Z ,Λ,μ)

E Z
G(Z)

vec( ∂G(Z)
∂W + ∂G(Z)

∂K Kw)

⎤
⎥⎥⎦ = 0, (48)

where the concatenated variables Ya := (Z ,Λ,μ, Kw) are defined. The INIS type
iteration then reads as J̃a(Ȳa)ΔYa = −Fa(Ȳa) and uses the following Jacobian approx-
imation
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J̃a(Ȳa) :=

⎡
⎢⎢⎣

Ac(Ȳ ) E� D̃(Z̄ , K̄w)� 0

E 0 0 0

D̃(Z̄ , K̄w) 0 0 0

0 0 0 1nW ⊗ M(Z̄)

⎤
⎥⎥⎦ ≈ Ja(Ȳa) := ∂Fa(Ȳa)

∂Ya
,

(49)
where Y := (Z ,Λ,μ) and using the Jacobian approximations Mi (z̄i ) ≈ ∂G(z̄i )

∂Ki
. We

show next that a solution to the augmented system Fa(Ya) = 0 also forms a solution
to the direct collocation NLP in Eq. (8).

Proposition 14 A solution Y �
a = (Z�,Λ�, μ�, Kw�

), which satisfies the LICQ and
SOSC conditions [56] for the nonlinear system Fa(Ya) = 0, forms a regular KKT
point (Z�,Λ�, μ�) for the direct collocation NLP in Eq. (8).

Proof The proof follows directly from observing that the first three equations of the
augmented system (48) correspond to the KKT conditions for the direct collocation
NLP in Eq. (8). A solution Y �

a of the system Fa(Ya) = 0 then provides a regular KKT
point (Z�,Λ�, μ�) for this NLP (8). ��

The Newton-type optimization method from Algorithm 3 has been rewritten as the
compact iteration J̃a(Ȳa)ΔYa = −Fa(Ȳa). The local convergence properties of this
scheme are described by the classical Newton-type contraction theory [14]. Under the
conditions from Theorem 9, the iterates converge linearly to the solution Y �

a with the
asymptotic contraction rate

κ�
a = ρ

(
1 − J̃a(Y

�
a )−1 Ja(Y

�
a )

)
< 1. (50)

A more detailed discussion on the contraction rate for an INIS type optimization
algorithm and a comparison to standard adjoint-based inexact Newton schemes is out
of scope, but can instead be found in [67]. The numerical case study in Sect. 7 shows
that the INIS algorithm typically results in better local contraction properties, i.e.,
κ�
a � κ� < 1 in that case.

5.3 An adjoint-free iterative inexact lifted collocation scheme

The inexact Newton scheme with iterated sensitivities from Algorithm 3 is based on
an adjoint propagation to compute the correct gradient of the Lagrangian on the right-
hand side of the KKT system from Eq. (43). Because of the lifting of the forward
sensitivities Kw

i for i = 0, . . . , N − 1, one can however avoid the computation of
such an adjoint and still obtain a Newton-type algorithm that converges to a solution
of the direct collocation NLP (8).

For this purpose, let us introduce the following adjoint-free approximation of the
augmented KKT system in Eq. (43),

⎡
⎢⎢⎣
Ac E� D̃� 0

E 0 0 0

D̃ 0 0 0

0 0 0 1nW ⊗ M

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ΔZ
ΔΛ

Δμ

vec(ΔKw)

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣
ãc
e
d
df ,

⎤
⎥⎥⎦ , (51)
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where all quantities are defined as in Eq. (43), but an approximate Lagrangian gradient
term is used, i.e.,

ãc,i := ∇zi l(w̄i ) +
⎡
⎣λ̄i − λ̄i−1

0

B�λ̄i

⎤
⎦ + D̂�

i μ̄i ≈ ∇ziLc(Z̄ , Λ̄, μ̄), (52)

where D̂i =
[
− ∂G(z̄i )

∂Ki
K̄w
i ,

∂G(z̄i )
∂Ki

]
≈ ∂G(z̄i )

∂zi
. Proposition 11 then still holds for

this variant of lifted collocation, where the multiple shooting type gradient is instead
defined without the adjoint-based correction term. The resulting algorithm is there-
fore referred to as an adjoint-free scheme (LC–AF–INIS) and it is detailed further in
Algorithm 4 based on a Gauss–Newton Hessian approximation. It is important for the
study of its local convergence that D̂i �= D̃i = [−Mi K̄w

i , Mi
]
, where D̃i is used

in the Jacobian approximation and D̂i is merely used to define the augmented KKT
system in Eq. (51).

Algorithm 4 Adjoint-free and multiplier-free Newton-type optimization step, based
on Gauss-Newton and the iterative inexact lifted collocation integrator within multiple
shooting (LC-AF-INIS).
Input: Current values z̄i = (x̄i , ūi , K̄i ), K̄

w
i and matrices Mi for i = 0, . . . , N − 1.

Output: Updated values z̄+i and K̄w+
i for i = 0, . . . , N − 1.

Condensing procedure
1: for i = 0, . . . , N − 1 do in parallel
2: Compute the values ΔK̃i and ΔKw

i using Eq. (41):

ΔK̃i ← −M−1
i G(z̄i ) and ΔKw

i ← −M−1
i

(
∂Gi
∂wi

+ ∂Gi
∂Ki

K̄w
i

)
.

3: Hi ← 0 and hi ← 0.
4: end for

Computation of step direction
5: Solve the linear KKT system (11) based on the data Ci , Ai and ci , ai in Eqs. (19) and (20), in order to

obtain the step ΔW and w̄+
i ← w̄i + Δwi for i = 0, . . . , N − 1.

Ai ← ∂F(w̄i )
∂wi

� ∂F(w̄i )
∂wi

and ∇wi l(w̄i ) ← ∂F(w̄i )
∂wi

�
F(w̄i ). (Gauss-Newton)

Expansion procedure
6: for i = 0, . . . , N − 1 do in parallel
7: The full solution can be obtained:

K̄+
i ← K̄i + ΔK̃i + K̄w

i Δwi and K̄w+
i ← K̄w

i + ΔKw
i .

8: end for

5.3.1 Local convergence for adjoint-free INIS scheme (AF–INIS)

To study the local convergence properties for the adjoint-free variant of the INIS based
lifted collocation scheme, we need to investigate the approximate augmented KKT
system from Eq. (51). It is written as J̃a(Ȳa)ΔYa = −F̂a(Ȳa) in its compact form,
where F̂a(Ya) = 0 represents the following approximate augmented system of KKT
equations,
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F̂a(Ya) :=

⎡
⎢⎢⎢⎣

∇Z L̃c(Z ,Λ) + D̂(Z , Kw)�μ

E Z
G(Z)

vec
(

∂G(Z)
∂W + ∂G(Z)

∂K Kw
)

⎤
⎥⎥⎥⎦ = 0, (53)

where the incomplete Lagrangian L̃c
i (z̄i , λ̄i ) = l(w̄i ) + λ̄�

i

(
x̄i + B K̄i − x̄i+1

)
and

the approximate Jacobian D̂i =
[
− ∂G(z̄i )

∂Ki
K̄w
i ,

∂G(z̄i )
∂Ki

]
are defined. Note that the

Jacobian approximation J̃a(Ȳa) in theNewton-type iteration is still defined byEq. (49),
equivalent to the adjoint-based INIS scheme. The following proposition then shows
that a solution to the approximate augmented system F̂a(Ya) = 0 is also a local
minimizer for the direct collocation NLP (8):

Proposition 15 A solution Y �
a = (Z�,Λ�, μ�, Kw�

), which satisfies the LICQ and
SOSC conditions [56] for the system of nonlinear equations F̂a(Ya) = 0, also forms a
solution to the nonlinear system Fa(Ya) = 0 and therefore forms a regular KKT point
(Z�,Λ�, μ�) for the direct collocation NLP in Eq. (8).

Proof We observe that the lower part of the KKT system in Eq. (53) for the solution
point Y �

a reads as

∂G(z�i )

∂wi
+ ∂G(z�i )

∂Ki
Kw�

i = 0, for i = 0, . . . , N − 1, (54)

so that Kw�

i = − ∂G(z�i )
∂Ki

−1 ∂G(z�i )
∂wi

holds at any solution of F̂a(Ya) = 0. The same

holds at a solution of Fa(Ya) = 0. Subsequently, we observe that D̂i (z�i , K
w�

i ) =[
− ∂G(z�i )

∂Ki
Kw�

i ,
∂G(z�i )
∂Ki

]
= ∂G(z�i )

∂zi
, such that the following equality holds at the solution

∇Z L̃c(Z�,Λ�) + D̂(Z�, Kw�

)�μ� = ∇ZLc(Z�,Λ�, μ�).

It follows thatY �
a forms a solution to the original augmentedKKTsystem fromEq. (48).

The result then follows directly from Proposition 14. ��
Under the conditions of Theorem9, the iterates defined by theNewton-type iteration

J̃a(Ȳa)ΔYa = −F̂a(Ȳa) converge linearly to the solution Y �
a with the asymptotic

contraction rate
κ̂�
a = ρ

(
1 − J̃a(Y

�
a )−1 Ĵa(Y

�
a )

)
< 1, (55)

based on the Jacobian approximation J̃a(Ya) ≈ Ĵa(Ya) := ∂F̂a(Ya)
∂Ya

from (49).

5.3.2 Adjoint-free and multiplier-free INIS based on Gauss–Newton

The motivation for the alternative INIS-type lifting scheme proposed in the previous
subsection is to avoid the computation of any adjoint derivatives, while maintaining a
Newton-type optimization algorithm that converges to a local minimizer of the direct
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collocation NLP (8). This equivalence result has been established in Proposition 15.
However, the propagation of second-order sensitivities still requires the iterative update

of the Lagrange multipliers, Δμi = −M−�
i

(
∂G(z̄i )
∂Ki

�
μ̄i + B�λ̄+

i + ∇2
Ki ,zi

Lc
i Δzi

)
,

based on adjoint differentiation. This alternative implementation would therefore not
result in a considerable advantage over the standard INIS method.

Instead, the benefits for this adjoint-free scheme are more clear in the case of a
least squares objective l(wi ) = 1

2‖F(wi )‖22 where one can use a Gauss–Newton (GN)
approximation Ac,i :=

[
∂F(w̄i )

∂wi

� ∂F(w̄i )
∂wi

0

0 0

]
≈ ∇2

ziLc
i (z̄i , λ̄i , μ̄i ) for the Hessian of

the Lagrangian [15]. In that case, the Jacobian approximation for the augmented KKT
system (49) is independent of the Lagrange multipliers as discussed in Sect. 3.4. After
applying Proposition 11 to condense this approximate augmented KKT system of the
form of Eq. (51) to the multiple shooting type system in (11), the resulting scheme
therefore does not depend on any of the Lagrange multipliers. This adjoint-free and
multiplier-free implementation of Gauss–Newton based INIS type lifted collocation
is detailed in Algorithm 4.

6 ACADO toolkit: code generation software

Let us provide a brief overview of the different proposed schemes for lifted collocation,
including a discussion on their relative advantages and disadvantages. In addition, we
will comment on the open-source implementation of these algorithms in the code
generation tool of the ACADO Toolkit. The software is free of charge and can be
downloaded from www.acadotoolkit.org.

6.1 Classification of lifted collocation integrators

Table 4 presents a classification of all the variants of lifted collocation integrators pre-
sented in this article. The most distinguishing characteristic is whether the algorithm
is based on exact (LC–EN) or inexact lifting, discussed respectively in Sect. 3 and in
Sects. 4 and 5. Unlike the inexact lifting techniques, exact lifted collocation relies on
computing a factorization of the Jacobian of the collocation equations. However, one
can still choose either an exact Hessian or a Gauss–Newton type approximation within
the optimization algorithm as shown in Table 4. Among the inexact lifting schemes,
we make a distinction between the standard adjoint-based technique (LC–IN) from
Sect. 4 and the inexact Newton scheme with INIS from Sect. 5. The latter INIS-
type algorithm allows for an adjoint-based (LC–INIS) as well as an adjoint-free and
multiplier-free (LC–AF–INIS) implementation using Gauss–Newton. Table 4 addi-
tionally includes multiple shooting (MS) without lifting the collocation variables
and direct collocation (DC). For the standard (MS) implementation, a method to
solve the nonlinear system of collocation equations needs to be embedded within the
Newton-type optimization Algorithm [66,70]. Similar to (DC), all lifted collocation
type schemes avoid such internal iterations as mentioned also in Table 1.
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Table 3 Computational cost comparison per integration step and iteration of the Newton-type schemes for
a Gauss collocation based method (nw = nx + nu) [65]

Factorization (#flops) Linear system (#flops)

Exact Newton 2
3 (q nx)3 2(q nx)2(nw + 1)

Simplified Newton 4 q
3 n3x

(4 q−2)
3 n3x

(4 q) n2x(nw + 1) [q even]
(4 q − 2) n2x(nw + 1) [q odd]

Single Newton 2
3 n

3
x (2 q) n2x(nw + 1)

Table 4 Variants of the collocation scheme

Scheme Algorithm Newton type Hessian type

(LC–EN) Algorithm 1 Exact lifting GN or EH

(LC–IN) Algorithm 2 Adjoint-based GN or EH

(LC–INIS) Algorithm 3 Adjoint-based INIS GN or EH

(LC–AF–INIS) Algorithm 4 Adjoint-free INIS GN

(MS) Equation (11) Without lifting GN or EH

(DC) Equation (12) Fully sparse GN or EH

EH exact Hessian, GN Gauss–Newton

The main advantage of the inexact schemes (LC–IN) and (LC–INIS) over the exact
lifted collocation (LC–EN) is the reduced computational effort. Even though their
local convergence is generally slower (due to the results from Theorem 9), the cost per
iteration can be reduced considerably based on the use of a Jacobian approximation for
the system of collocation equations. Since a relatively low accuracy of the solution is
often sufficient, e.g., for real-time optimal control on embedded applications [30,74],
the overall computational cost can be much better for inexact Newton-based lifting.
This is illustrated inTable 3,which shows the computational complexity per integration
step and for different Newton-type iterations. The comparison here assumes that an
LU factorization is used which, for a matrix of dimension n, requires ∼ 2

3n
3 flops and

the back substitutions accordingly require∼ 2n2 flops. The table has been constructed
for the Gauss collocation method, for which the coefficient matrix A has q

2 complex
conjugate pairs of eigenvalues when the number of stages q is even or it has one real
eigenvalue and q−1

2 complex conjugate pairs in case q is odd [42]. More information
on the use of Simplified and Single Newton iterations within lifted collocation can
be found in [65]. Between the two families of inexact schemes, the INIS algorithm
results typically in better local contraction properties as illustrated by the numerical
case study in the next section. In addition, it allows for an adjoint-free implementation
in Scheme (LC–AF–INIS) for optimal control problems involving a least squares type
objective as described by Algorithm 4. This method is both easy to implement based
on forward differentiation and computationally efficient.

Regarding memory requirements for the various lifting schemes in Table 4, it is
important to note that any algorithm based on an adjoint sweep requires the storage
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of variables during the preceding forward sweep as discussed in Sect. 3.3. This is a
benefit for the GN based exact lifting (LC–EN) and adjoint-free INIS scheme (LC–
AF–INIS), because both rely only on forward propagation of sensitivities. Another
noticeable effect is the storage of the first-order forward sensitivities Kw in both exact
and INIS-type lifting. The adjoint-based inexact lifting (LC–IN) has the advantage that
one could use Jacobian approximations, which are precomputed and fixed, in order to
further reduce the memory requirements of the corresponding implementation at the
cost of possibly slowing down the convergence. In the case of an inexact INIS type
algorithm, these forward sensitivities are additionally lifted and therefore need to be
stored from one iteration to the next.

6.2 Open-source ACADO code generation tool

All variants of the lifted collocation method from Table 4 are implemented in the
ACADO Toolkit [46] and are made available as open-source software. The collocation
methods are based on either Gauss-Legendre or Radau IIA points [42] and the pro-
posed Jacobian approximations are based on either Simplified or Single Newton-type
iterations as discussed in [65]. The software can be downloaded freely from [1] and
can be discussed on an active forum [3]. The ACADO code generation tool is a specific
part of this toolkit, which can be used to obtain real-time feasible codes for dynamic
optimization on embedded control hardware. In particular, it pursues the export of
highly efficient C-code based on the RTI scheme for Nonlinear MPC (NMPC) [47].
As illustrated in Fig. 4, a user friendly MATLAB interface is available that allows one
to export, compile and use auto generated code in an intuitive way and without direct
interaction with C/C++ programming [70]. It remains however possible to use the tool
directly from its C++ interface.

The ACADO software package supports many algorithmic features for nonlinear
optimal control, including the real-time iteration (RTI) scheme for NMPC [28]. This
online algorithm is based on sequential quadratic programming (SQP) to solve the
nonlinear optimization problem within direct multiple shooting [15]. Note that the
code generation tool targets fast embedded applications, with relatively small to

Fig. 4 Illustration of the
MATLAB interface for the
ACADO code generation tool
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medium-scale problem dimensions. Dense linear algebra routines are used to exploit
the collocation based optimal control problem structure or the structure in the form of
dynamic subsystems [64]. Therefore, it is currently not recommended to use this partic-
ular software implementation for rather large scale problems, e.g., involving hundreds
of states or more. Our implementation is mostly self-contained, except for relying
on tailored QP solvers for solving the multiple-shooting structured subproblems [51].
In addition to AD [46] and efficient integration schemes with sensitivity propaga-
tion [70], the convex solver used is important to obtain a high performance for the
overall SQP method [51]. More specifically, the open-source solvers qpOASES [35],
qpDUNES [36] and HPMPC [38] are interfaced to the ACADO code generation tool.
This algorithmic framework lends itself perfectly to the use of the proposed lifted col-
location integrators, to improve both the convergence and the computational properties
without changing the code for the SQP type algorithm.

7 Case study: chain of masses

This section illustrates the performance of the proposed variants of lifted implicit inte-
grators on the benchmark optimal control example, which consists of a chain of spring
connected masses. For this purpose, a multiple shooting type SQP method is gener-
ated using the ACADO code generation tool. In the numerical results of this article, the
QP solutions are obtained using the active-set solver qpOASES [35] in combination
with a condensing technique to numerically eliminate the state variables as proposed
by [17]. Mainly as a reference, the direct collocation problem is additionally solved
using the general-purpose sparse NLP solver Ipopt [75] from the software package
CasADi [7]. Note however that both implementations cannot be compared directly,
since Ipopt is a general-purpose solver and therefore includes many different fea-
tures. On the other hand, the ACADO generated SQP method can be warm started
more easily and respects all linearized constraints at each iteration, which are both
important features for real-time applications of optimal control [30]. We will there-
fore additionally report the computation times for solving the direct collocation QP
subproblem, using a general-purpose sparse solver in the OOQP software [39]. Note
that both the numerical results with OOQP and with Ipopt are based on the MA27
linear algebra code from the HSL library [2], in order to solve the sparse linear system
at each interior point iteration.

All numerical simulations are carried out on a standard computer, equipped with
Intel i7-3720QM processor, using a 64-bit version of Ubuntu 14.04 and the g++ com-
piler version 4.8.4. Note that the timings to set up the problem, generate the solver and
compile the resulting code, are further not reported. Instead, the focus is on the numer-
ical performance of the proposed algorithm implementations. The presented results
can be verified by running the MATLAB simulation scripts, which can be found on
the following public repository: https://github.com/rienq/liftedCollocation.

7.1 Optimal control problem formulation

We consider the chain mass control problem [76], which was already used to illustrate
exact lifted collocation in [66]. The task of the controller is to return a chain of
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Fig. 5 Benchmark case study: illustration of a chain of nm = 8 masses connected by springs

nm masses connected with springs to its steady state, starting from a perturbed initial
configuration. Themass at one end is fixed,while the control inputu ∈ R

3 to the system
is the direct force applied to the mass at the other end of the chain. The state of each
free mass x j := [p j�, v j�]� ∈ R

6 consists in its position p j := [p j
x , p

j
y , p

j
z ]� ∈ R

3

and velocity v j ∈ R
3 for j = 1, . . . , nm − 1, such that the dynamic system can

be described by the concatenated state vector x(t) ∈ R
6(nm−1). More details on the

resulting nonlinear ODE model ẋ(t) = fchain(x(t), u(t)) can be found in [76].
The OCP problem formulation includes simple bounds on the control inputs

ux , uy, uz ∈ [−10, 10] and the state constraint that the chain should not hit a wall

placed close to the equilibrium state as illustrated by Fig. 5, i.e., p j
y > −0.01 for

j = 1, . . . , nm − 1. In addition, both the initial and terminal state are constrained
resulting in a point-to-point motion

min
x(·), u(·)

∫ T

0
�(x(t), u(t)) dt (56a)

s.t. 0 = x(0) − x̂0, (56b)

ẋ(t) = fchain(x(t), u(t)), ∀t ∈ [0, T ], (56c)

0 = x(T ) − x̂T , (56d)

− 10 ≤ u(t) ≤ 10, ∀t ∈ [0, T ], (56e)

− 0.01 ≤ p j
y(t), j = 1, . . . , nm − 1, ∀t ∈ [0, T ], (56f)

where x̂0 and x̂T denote respectively the initial perturbed and the terminal equilibrium
state values. The stage cost in the objective represents minimizing the control effort,
such that �ME(·) := ‖u(t)‖22 is defined. Note that such a least squares type objective
will allow us to validate the Gauss–Newton based algorithms for this minimum-
effort (ME) type OCP. Alternatively, we include a time optimal reformulation where
we introduce the additional state variable Topt such that the scaled dynamics read as
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Fig. 6 Minimizing the control effort versus time optimal OCP formulation for the chain mass problem:
illustration of the optimal state and control trajectories (nm = 8)

ẋ(t) = Topt fchain(x(t), u(t))

Ṫopt(t) = 0,
(57)

which then replaces the original ODE model in Eq. (56c). The time scaling variable
itself is not constrained, but instead forms the optimization objective �TO(·) := Topt
in the time optimal (TO) formulation.

The horizon length is chosen to be T = 5s and a multiple shooting method is
applied to the OCP (56), using N = 20 equidistant intervals. This results in a shooting
interval of size Ts = 0.25s for theminimum-effort problem. In case of the time optimal
formulation, the horizon length is instead taken T = 1s such that the scaling variable
Topt directly represents the time in which the point-to-point motion is carried out. Note
that the definition of this additional state variable Topt, allows us to preserve the block
banded structure in the discrete time OCP (5). In both cases, three integration steps
Ns = 3 of a Gauss-Legendre collocation method using q = 4 stages, i.e., of order 8,
are used within each shooting interval. The resulting nonlinear OCP will be solved
for different numbers of masses nm to illustrate the numerical performance of the
lifted collocation integrators from Table 4. Figure 6 additionally shows the solution
trajectories of the minimum-effort versus time optimal OCP formulation for nm = 8
masses, including the position pnm−1 of the free mass at the controlled end of the
chain.

7.2 Numerical simulation results

Table 5 shows the average computation times for the Gauss–Newton type SQPmethod
on theminimum-effortOCPproblem formulation. The table shows the average compu-
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Table 5 Average Gauss–Newton based SQP timing results for the minimum effort chain mass problem
using a 4-stage Gauss collocation method (Ns = 3, q = 4), including different numbers of masses nm and
resulting numbers of states nx in the system

nm nx Without lifting
(MS) (ms)

Exact lifting
(LC–EN) (ms)

IN lifting (LC–
IN) (ms)

INIS lifting
(LC–AF–
INIS) (ms)

3 12 17.63 6.12 1.93 2.35

4 18 40.46 17.55 4.48 5.63

5 24 73.37 33.98 8.29 7.66

6 30 145.58 64.68 13.61 16.50

7 36 242.41 133.14 22.92 20.41

Table 6 Detailed timing results for Gauss–Newton based SQP on the minimum effort chain mass problem
using nm = 5 masses or nx = 24 states (Ns = 3, q = 4)

Without lifting
(MS) (ms)

Exact lifting
(LC–EN) (ms)

IN lifting (LC–
IN) (ms)

INIS lifting
(LC–AF–
INIS) (ms)

Simulation 71.86 32.48 6.73 6.09

Condensing 0.85 0.84 0.92 0.90

QP solution 0.60 0.62 0.61 0.64

Total SQP step 73.37 33.98 8.29 7.66

As a reference, one iteration of the solver Ipopt for the direct collocation NLP (8) takes about 500 ms,
and one sparse QP solution using OOQP takes 2.4 s on average

tation time per SQP iteration and this for different numbers of masses nm = 3, . . . , 7.
It includes the standard multiple shooting method (MS) without lifting, as well as
exact lifted collocation (LC–EN) and the inexact lifting schemes (LC–IN) and (LC–
AF–INIS). The table illustrates that for systems with more states, the computational
benefit of using inexactNewton based lifting schemes can be considerably higher.Note
that the Jacobian approximation in the (LC–IN) and the (LC–AF–INIS) schemes is
based on the Single Newton-type iteration in these experiments, as discussed in more
detail also in [65]. For a specific instance of the chain mass problem where nm = 5,
more detailed timing results are shown in Table 6. It includes the average computation
time spent in each component of the algorithm per SQP iteration, including the simu-
lation with sensitivity propagation, condensing of the structured QP subproblem and
the solution of the resulting condensed problem using qpOASES. It is the simulation
time that can be reduced considerably by using lifted collocation integrators, which
appears to account for the highest portion of the total computational effort for this
numerical case study. More specifically, a speedup factor of about 2 can be observed
when using lifted collocation instead of the standard method without lifting. When
using the INIS-type lifting scheme, this computational speedup increases to a factor
of about 10. Note that one iteration of the general-purpose sparse NLP solver Ipopt
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Table 7 Average exact-Hessian based SQP timing results for the time optimal chain mass problem using a
4-stage Gauss collocationmethod (Ns = 3, q = 4), including different numbers of masses nm and resulting
numbers of states nx in the system

nm nx Without lifting
(MS) (ms)

Exact lifting
(LC–EN) (ms)

IN lifting
(LC–IN) (ms)

INIS lifting
(LC–INIS) (ms)

3 13 18.98 16.4 10.96 8.87

4 19 44.86 30.22 16.26 15.01

5 25 96.77 61.55 25.09 24.92

6 31 169.53 101.56 40.72 39.83

7 37 285.06 157.39 62.40 59.27

Table 8 Detailed timing results for exact-Hessian based SQP on the time optimal chain mass problem
using nm = 5 masses or nx = 24+1 states (Ns = 3, q = 4)

Without lifting
(MS) (ms)

Exact lifting
(LC–EN) (ms)

IN lifting
(LC–IN) (ms)

INIS lifting
(LC–INIS) (ms)

Simulation 87.23 51.33 15.50 15.48

condensing 2.07 2.08 2.05 2.06

Regularization 1.72 1.82 1.86 1.86

QP solution 5.69 6.13 5.67 5.50

Total SQP step 96.77 61.55 25.09 24.92

As a reference, one iteration of the solver Ipopt for the direct collocation NLP (8) takes about 300 ms,
and one sparse QP solution using OOQP takes 5 s on average

takes about 500 ms in this case, while the solution of one direct collocation based QP
takes about 2.4 s using the sparse OOQP solver.

Table 7 shows the average computation times for an exact Hessian based SQP
iteration on the time optimal OCP using different numbers of masses nm while Table 8
presents the detailed timing results using nm = 5 masses. In a similar way as before
for the Gauss–Newton based implementation, it can be observed from the latter table
that both the exact and inexact lifting schemes can reduce the computational effort
over the standard multiple shooting method. More specifically, a speedup factor of
almost 2 can be observed when using the (LC–EN) scheme instead of the standard
collocation integrator without lifting. The table additionally shows that the inexact
lifted collocation integrators (LC–IN) and (LC–INIS) reduce the computation time less
in the context of second-order sensitivity propagation, compared to the Gauss–Newton
based implementation in Tables 5 and 6. However, a computational speedup factor of
about 5 can still be observed in Table 8 when using, for example, the INIS-type lifting
scheme over the standard (MS) method. Note that these timing results include a block
based regularization of the Hessian to guarantee a convex structured QP subproblem
in the exact Hessian based SQP implementation [69]. A more detailed discussion on
how the algorithm is affected by different techniques to perform a sparsity preserving
Hessian regularization is outside the scope of this article. Note that one iteration of the
general-purpose sparse NLP solver Ipopt on the time optimal OCP problem takes
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Fig. 7 Convergence of the SQP method with different lifting techniques for the minimum effort (Gauss–
Newton) and time optimal (exact Hessian) OCP formulation using nm = 5

about 300 ms in this case, while the solution of one direct collocation based QP takes
about 5 s using the sparse OOQP solver.

The convergence of the SQP method using the different variants of lifted colloca-
tion is illustrated in Fig. 7 for both the minimum effort and the time optimal OCP
formulation. The figure shows the distance ‖W −W �‖∞ of the current iterateW from
the local minimum W � of the direct collocation NLP for the continuous time OCP in
Eq. (56). Since the exact lifting scheme (LC–EN) is equivalent to direct collocation as
shown in Proposition 4, it is expected that its convergence is close to that of the stan-
dard multiple shooting method (MS), which is also confirmed by the results in Fig. 7.
In addition, the reduction in convergence speed by using a Jacobian approximation
in the INIS based lifted collocation integrators appears to be relatively small for this
numerical case study. More information on the design and use of efficient Jacobian
approximations for collocationmethods, taking into account the resulting convergence
and stability properties, can be found in [10,21,22,40]. In contrast to INIS, the adjoint-
based IN scheme from Algorithm 2 shows a considerably slower local convergence
rate based on the same Jacobian approximation for this example. This advantage of
INIS over the standard IN implementation is shown also theoretically in [67].

8 Conclusions

This article presents a novel family of lifted Newton-type optimization algorithms
for direct optimal control, based on collocation within direct multiple shooting. The
schemes result in multiple shooting type subproblems, while they all converge locally
to the solution of the direct collocation NLP. In case of the exact lifting scheme
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in Algorithm 1, the iterates are shown to be equivalent to those of a Newton-type
optimization method for direct collocation. As summarized by Table 1, the main
motivation for lifted collocation is the use of tailored solvers for the multiple shooting
type optimal control structure, as well as the possibility to include efficient Newton-
type implementations. This article proposes two types of inexact lifting schemes,
using either an adjoint-based implementation in Algorithm 2 or the inexact Newton
method with iterated sensitivities in Algorithms 3 and 4. In addition to discussing
their implementation as summarized by Table 2 and discussing their corresponding
properties, a connection has been made to Newton-type convergence theory.

Another important contribution of this article is the open-source software imple-
mentation of the proposed algorithms within the ACADO code generation tool for
real-time optimal control. The performance of the lifted collocation integrators within
this package has been illustrated based on the benchmark case study of the optimal con-
trol for a chain of masses. Based on these numerical results, a computational speedup
of factor 2 is typically observed when using the exact lifting scheme instead of the
standard collocation integrator within direct multiple shooting. In addition, a further
speedup factor in the range of 5–10 per iteration has been observed when using the
inexact Newton based lifted collocation schemes on this benchmark example.
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