
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Numerical Simulation
Methods for Embedded
Optimization

Rien Quirynen

Dissertation presented in partial
fulfillment of the requirements for the
joint degree of Doctor of Engineering
Science: Electrical Engineering and
Doctor Rerum Naturalium (Freiburg)

January 2017

Inexact Newton

Forward Simulation

Iterated Sensitivities

Numerical Simulation Methods for Embedded
Optimization

Rien QUIRYNEN

Examination committee:
Prof. Dr. A. Bultheel, chair
Prof. Dr. M. Diehl, supervisor
(University of Freiburg)

Prof. Dr. S. Vandewalle, supervisor
Prof. Dr. J. Suykens
Ass. Prof. Dr. P. Patrinos
Ass. Prof. Dr. G. Pipeleers
(all KU Leuven)
Prof. Dr. S. Bartels
Prof. Dr. D. Kröner
(all University of Freiburg)
Prof. Dr. Dres. h.c. H. G. Bock
(Heidelberg University)

Dissertation presented in partial
fulfillment of the requirements for the
joint degree of Doctor of Engineering
Science: Electrical Engineering and
Doctor Rerum Naturalium

Arenberg Doctoral School
Faculty of Engineering Science
KU Leuven

Faculty of Mathematics and Physics
University of Freiburg

January 2017

© 2017 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Rien Quirynen, Kasteelpark Arenberg 10 box 2446, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Acknowledgements

As I believe it should mostly be the case, it is with strongly mixed feelings
that I write this final section of my PhD thesis. On the one hand, of course,
relief and excitement about what the future still holds. While on the other
hand, nostalgia and also astonishment about how fast this period has gone by.
I can safely say that the last four years have formed a challenging but mostly
exciting journey that allowed me to broaden my horizon on both a personal
and professional level. I learned so many new things, experienced new places
and this while meeting the most amazing people. For this, I have to thank a lot
of people that have contributed to this experience.

My first and greatest thanks goes to Moritz Diehl, without whom you would
most likely not have been reading my PhD thesis to begin with. He provided
me with the initial spark of inspiration and motivation to perform research,
starting with my final master project under his supervision. Thanks to his clear
passion for research and the very flexible and comfortable working environment
that he creates, I discovered my own passion and determination to pursue a
PhD. Throughout this experience, Moritz provided me with many more research
ideas than one could possibly explore in one PhD project, with the support
and flexibility to direct my own research path and the continuous source of
enthusiasm and inspiration which makes him such an exceptional supervisor.
I also thank Moritz for creating a very fruitful environment for cooperation
and exchange of research ideas within the group, which greatly profits from a
particular attention to creating an enjoyable working atmosphere.

I owe my sincere gratitude to Stefan Vandewalle for his valuable feedback and
guidance, and especially for agreeing to become my supervisor at KU Leuven.
In addition to my two main supervisors, I would also like to thank Sébastien
Gros and Boris Houska, who contributed strongly by mentoring me both on a
personal and professional level. Sébastien was a postdoctoral researcher in our
group when I started and he helped me with becoming a productive researcher
from the very start of my PhD project. But also after he eventually became

i

ii ACKNOWLEDGEMENTS

assistant professor in Chalmers, we stayed in contact and continued a fruitful
cooperation. Similarly, I met Boris as a very bright and inspiring PhD researcher
in the same group when I was still a master student myself. I feel privileged to
have worked together on a daily basis during my research time in Shanghai and
also afterwards, I could always count on his quick but insightful feedback and
contributions to joint publications.

I would like to thank my colleagues and fellow researchers both in Leuven and
Freiburg but also during my visit in Geneva and Shanghai, for the inspiring
discussions and collaborations, the relaxing (coffee) breaks and generally the
great times we had together in- and outside of the office. From my research
period in Leuven, I especially want to thank Adeleh, Andrew, Attila, Boris,
Greg, Janick, Joachim, Joel, Joris, Kurt, Mario, Milan, Quoc, Sébastien and
Slava. I would like to thank Adrian, Andrea, Dang, Dimitris, Fabian, Gianluca,
Gianni, Jochem, Jonas, Jörg, Michael, Mikhail, Rachel, Robin and Thor for
creating a fruitful and enjoyable working environment together in Freiburg.
Considering the multiple locations where I gained a network of friends and
colleagues, it is unlikely that the above lists are close to complete.

In addition, I would like to thank both Thiva Albin and Dennis Ritter from the
control research group of Dirk Abel at the Aachen University, for our fruitful
collaboration resulting in multiple exciting publications. Especially, I would
like to express my gratitude to agree on using our algorithms and software for
their challenging real-world problem and on their experimental test setup, with
the corresponding results in this thesis. I am indebted to Dimitris, Fabian,
Rachel, Robin and Thor, as well as both of my supervisors for providing very
valuable comments and remarks on earlier versions of this manuscript. I would
also like to thank all the members of my PhD jury for reading my thesis and
for providing crucial feedback on my research results.

I gratefully acknowledge funding by the Research Foundation – Flanders (FWO),
through a personal 2 × 2 years PhD fellowship. I would additionally like to
thank all people involved at the FWO for their very smooth organization of
all administrative tasks, especially considering the multiple locations where I
have stayed during my PhD project. Also the funding by the DFG, via the
project “Numerical methods for optimization based control of cyclic processes”,
as part of the research unit FOR 2401 during the last three months of the PhD
is gratefully acknowledged. I would like to thank Leen Cuypers, Jacqueline De
bruyn, Elsy Vermoesen and John Vos from KU Leuven and Daniela Högerle,
Christine Paasch and Kerstin Pfeiffer from the University of Freiburg for their
crucial support with all administrative tasks and for making this joint PhD
possible. I also want to thank all people involved in the EMBOCON, SADCO,
HIGHWIND, TEMPO and AWESCO projects, since I was able to attend and
profit from many of their events with my own funding from FWO. Through

ACKNOWLEDGEMENTS iii

these various research networks, I met a lot of interesting people with whom I
had inspiring interactions and we had great times together.

In addition, I gratefully acknowledge the funding from the Junior Mobility
Programme (JuMo) in the form of a YouReCa travel grant at the KU Leuven.
Within this project on the topic of “Integration Methods for Real-Time Multiple
Shooting”, I was able to spend about four months at the University of Geneva
and three more months at the Shanghai Jiao Tong University in the period of
2013-2014. I especially thank Martin Gander and Boris Houska for hosting me
respectively in Geneva and Shanghai and for providing me with the chances to
interact and have interesting discussions with many other researchers. I would
additionally like to thank all the amazing people that I met during my time at
both locations, in- and outside of the university, since they made my stays such
an enjoyable and memorable experience.

Last but surely not least, I would like to thank all my friends on whom I could
count for support but even more for pleasant distractions from any workaholic
tendencies. Especially in the final stage of writing my thesis, many outdoor
activities around Freiburg reminded me of the beauty and adventures to be
had outside of LATEX. I most definitely cannot imagine this continuing journey
without the endless support from my amazing parents, Marleen and Willy, as
well as from both of my sisters, Geertrui and Melle.

Rien Quirynen

Abstract

Dynamic optimization based control and estimation techniques have gained
increasing popularity, because of their ability to treat a wide range of problems
and applications. They rely on the explicit formulation of a cost function, which
needs to be minimized given the constraints of the problem and the system
dynamics. Especially in the context of real-time applications of control and
estimation on embedded hardware, the computational burden associated with
the online solution of the optimal control problem forms the main limiting factor
in the deployment of such an advanced strategy.

For that purpose, this thesis considers the development of tailored algorithms of
simulation methods for embedded optimization that allows for an efficient
implementation of nonlinear model predictive control (NMPC) or moving
horizon estimation (MHE). A direct treatment of the optimal control problem
requires the numerical simulation of the continuous time nonlinear dynamics
and the solution of the resulting large but structured optimization problem. We
additionally propose a new format to define the dynamic model, which allows one
to directly exploit the present structure of linear or partially linear subsystems in
the formulation of the system dynamics. In addition, we also discuss embedded
optimization algorithms for a more general set of interconnected subsystems
based on a distributed multiple shooting technique.

As we focus on Newton-type optimization algorithms, it is important to extend
the numerical simulation method with an efficient propagation of its first
and possibly higher order derivative information. We discuss the tailored
implementation of such a sensitivity analysis for both explicit and implicit
integration, such as the collocation methods that form a specific family of
implicit Runge-Kutta schemes. In addition, a novel Hessian propagation scheme
is proposed for both a discrete and continuous time sensitivity analysis, which
allows one to maintain and exploit the symmetry of the second order derivatives.
Based on these symmetric sensitivity equations, an alternative three-sweep
propagation (TSP) technique is presented and analyzed.

v

vi ABSTRACT

When embedding an implicit integration scheme within a direct multiple shooting
based Newton-type optimization algorithm, one ends up with an outer and
inner level of iterations which is typically not the most efficient computational
approach. We therefore propose an alternative implementation, which we refer
to as a lifted collocation integrator, and discuss its advantages and disadvantages
compared to multiple shooting and direct collocation. Two alternative extensions
to inexact Newton based optimization are presented, using either an adjoint
differentiation technique or an iterative sensitivity propagation. We establish
new theoretical results on the local convergence of this inexact Newton scheme
with iterated sensitivities. Unlike for previously existing algorithms, we show
that local convergence for the inner scheme is necessary and often also sufficient
for asymptotic contraction of the new proposed optimization method.

In addition to the use of tailored optimal control algorithms, the performance
of embedded applications strongly relies on efficient code implementations.
This thesis therefore includes an implementation of the major new algorithmic
techniques as part of the automatic code generation tool within the open-
source ACADO Toolkit software package. We discuss some of the main real-
world control applications that were made possible using such an ACADO code
generated solver. More specifically, we discuss the airpath control for a two-stage
turbocharged gasoline engine in more detail. The resulting NMPC scheme on
the dSpace MicroAutoBox is shown to meet the challenging demands of this
control application, with a sampling time of 25 ms. It is validated based on
closed-loop simulations as well as in-vehicle experimental results.

Beknopte Samenvatting

Dynamische optimalisatie gebaseerde controle- en schattingstechnieken worden
steeds meer populair, omwille van hun vermogen om een wijde selectie aan
problemen en toepassingen te behandelen. Ze zijn afhankelijk van de expliciete
formulering van een kostfunctie, welke moet worden geminimaliseerd onder de
beperkingen van het probleem en de bijhorende systeemdynamica. Vooral in
de context van real-time toepassingen van controle en schatting op ingebedde
hardware, vormt de rekenkundige last voor het online oplossen van het optimaal
controleprobleem een belangrijke beperkende factor in de implementatie van
een dergelijke geavanceerde strategie.

Deze thesis beschouwt daarom de ontwikkeling van op maat gemaakte algoritmen
voor ingebedde optimalisatie- en simulatiemethoden, welke een efficiënte
implementatie toelaten van niet-lineaire model predictieve controle (NMPC) of
bewegende horizon schatting (MHE). Een directe behandeling van het optimaal
controleprobleem vereist de numerieke simulatie van de niet-lineaire dynamica
in continue tijd en de oplossing van het resulterend, groot maar gestructureerd
optimalisatieprobleem. We stellen bovendien een nieuwe formulering van het
dynamisch model voor, om de aanwezige structuur van (gedeeltelijk) lineaire
deelsystemen onmiddellijk te kunnen herkennen en dan ook te benutten.
Bovendien bespreken we ook het gebruik van ingebedde optimalisatie algoritmen
voor een meer algemene reeks van onderling verbonden deelsystemen, en dit op
basis van een gedistribueerde variant van multiple shooting.

Gezien we ons richten op Newton gebaseerde optimalisatie algoritmen, is
het belangrijk om de numerieke simulatiemethode uit te breiden met een
efficiënte propagatie van de bijhorende eerste en hogere orde afgeleiden.
We bespreken daarom de aangepaste implementatie van een dergelijke
sensitiviteitsanalyse voor zowel expliciete als impliciete integratie, zoals
bijvoorbeeld de collocatiemethoden die een specifieke klasse vormen van
impliciete Runge-Kutta schema’s. Daarnaast presenteren we ook een nieuw
schema voor de specifieke propagatie van de Hessiaan en dit zowel in discrete

vii

viii BEKNOPTE SAMENVATTING

als in continue tijd. Het laat ons toe om de symmetrie van deze tweede orde
afgeleiden te behouden en dan ook te benutten. Op basis van deze symmetrische
vergelijkingen, kan een alternatieve three-sweep propagatie (TSP) techniek
worden gebruikt voor de sensitiviteitsanalyse.

Bij het gebruik van een impliciet integratieschema binnen een Newton gebaseerd
optimalisatie algoritme, eindigt men met een buitenste en binnenste niveau van
iteraties en dat is typisch niet de meest efficiënte berekeningsaanpak. We stellen
daarom een alternatieve implementatie voor, welke we lifted collocatie noemen,
en we discussiëren de voor- en nadelen in vergelijking met multiple shooting en
directe collocatie. Twee alternatieve uitbreidingen zijn mogelijk voor inexacte
Newton gebaseerde optimalisatie, door gebruik van ofwel een achterwaartse
differentiatie techniek ofwel een iteratieve sensitiviteitsanalyse. We presenteren
nieuwe theoretische resultaten in verband met de lokale convergentie van dit
inexact Newton schema met iteratieve sensitiviteiten. In tegenstelling tot
standaard algoritmen, kunnen we aantonen dat de lokale convergentie voor
het binnenste schema nodig is en vaak ook voldoende voor de asymptotische
contractie van de voorgestelde optimalisatiemethode.

Naast het gebruik van op maat gemaakte optimale controlemethoden, is de
numerieke prestatie voor ingebedde toepassingen sterk afhankelijk van efficiënte
implementaties. Deze thesis bevat daarom ook een software implementatie van
de nieuwe algoritmische technieken als onderdeel van de automatische code
generatie tool binnen de open-source ACADO Toolkit. We vermelden een aantal
van de belangrijkste controle toepassingen, die mogelijk werden gemaakt dankzij
ACADO gebaseerde code. Meer specifiek, bespreken we bijvoorbeeld de airpath
besturing voor een tweefasige turbo benzinemotor. Het resulterend NMPC
algoritme op de dSpace MicroAutoBox kan de uitdagende eisen van deze controle
toepassing verwezenlijken, zoals bevestigd op basis van closed-loop simulaties
en experimentele resultaten met een echt voertuig.

Zusammenfassung

Auf numerischer Optimierung beruhende Regelungs- und Schätzungsverfahren
erfreuen sich zunehmender Beliebtheit aufgrund der erfolgreichen Verwendung
in zahlreichen Anwendungen. Diese Verfahren basieren auf einer explizit
formulierten Kostenfunktion, die unter Einhaltung von problemspezifischen
Randbedingungen und der dynamischen Eigenschaften des Systems minimiert
wird. Besonders bei Echtzeit-kritischen Anwendungen auf eingebetteten
Systemen ist der erhöhte Rechenaufwand, verursacht durch die erforderliche
Lösung eines optimalen Steuerungsproblems, ein limitierender Faktor für die
Verwendung einer solch fortgeschrittenen Regelungsstrategie.

Aus diesem Grund handelt diese Arbeit von der Entwicklung maßgeschneiderter
Algorithmen für Optimierungs- und Simulationsmethoden für eingebettete
Systeme, die eine effiziente Implementierung von Algorithmen aus der nichtline-
aren modellbasierten prädiktiven Regelung (NMPC) und Zustandsschätzung
auf bewegten Horizonten (MHE) ermöglichen. Diese Verfahren erfordern die
Simulation der zeitkontinuierlichen und häufig nichtlinearen Systemdynamik
sowie die Lösung eines großen, jedoch strukturieren Optimierungsproblems.
Hierfür wird eine neue Formulierung des dynamischen Modells eingeführt, die
es erlaubt lineare oder teilweise lineare Komponenten zu erkennen und effizient
zu nutzen. Basierend auf der Theorie des verteilten Mehrschussverfahrens
werden darüber hinaus Optimierungsalgorithmen speziell für Netzwerke aus
eingebetteten Systemen vorgestellt.

Für die hier betrachteten Newton-basierenden Optimierungsalgorithmen ist
eine Erweiterung der Simulationsmethoden um das effizientes Propagieren
von Ableitungen erster und eventuell höherer Ordnung von großer Bedeutung.
Maßgeschneiderte Implementierungen für eine Sensitivitätsanalyse von expliziten
und impliziten Integrationsverfahren, sowie von Kollokation Verfahren werden
diskutiert. Letztere bilden eine spezielle Gruppe von impliziten Runge-Kutta
Verfahren. Zudem wird eine neue Methode für die Propagation der Hesse Matrix
vorgestellt, die sowohl eine diskrete als auch kontinuierliche Sensitivitätsanalyse

ix

x ZUSAMMENFASSUNG

erlaubt und dabei vorhandene Symmetrien in der zweiten Ableitung ausnutzt
und erhält. Basierend auf diesen symmetrischen Sensitivitäts-Gleichungen wird
ein alternativer, auf drei Durchläufen basierender Ansatz (TSP) analysiert.

Durch die Verwendung eines impliziten Integrationsverfahrens innerhalb eines
Newton-basierten Optimierungsalgorithmus entstehen Iterationen auf zwei
verschiedenen Stufen. Das Lösen des Problems auf der inneren sowie der äußeren
Stufe bringt einen erhöhten Rechenaufwand mit sich. In dieser Arbeit wird
eine alternative Implementierung namens geliftete Kollokations-Integratoren
vorgestellt und die Vor- und Nachteile des Verfahrens werden im Vergleich
zur Mehrschuss- und direkte Kollokation Methode erläutert. Zwei alternative
Erweiterungen zur inexakten Newton-basierten Optimierung werden eingeführt,
wobei eine die Methodik der Rückwärts-Differenzierung und die andere eine
iterativen Propagation der Sensitivitäten verwendet. Das iterative Verfahren
wird um einen theoretischen Beweis für die lokale Konvergenz ergänzt. Im
Gegensatz zu bereits existierenden Algorithmen wird bewiesen, dass lokale
Konvergenz des inneren Problems notwendig, und häufig auch hinreichend
ist, um eine asymptotische Kontraktion des vorgestellten Newton-basierten
Optimierungsverfahrens zu erzielen.

Zusätzlich zu angepassten Algorithmen für die optimierungsbasierte Regelung ist
eine effiziente Implementierung notwendig, um die erforderliche Performanz auf
eingebetteten Systemen zu garantieren. Aus diesem Grund umfasst diese Arbeit,
die Integration der bedeutenden algorithmischen Erkenntnisse in das quelloffene
ACADO Toolkit. Die Software generiert problemspezifischen Quellcode, der
wiederum verwendet werden kann um gegenwärtige Regelungsprobleme zu
lösen. Im Detail wird die Regelung des Luftstroms eines zweistufig aufgeladenen
Turbomotors diskutiert. Es wird gezeigt, dass das hieraus resultierende NMPC
Regelungssystem auf einer dSpace MicroAutoBox den hohen Anforderungen
dieser Anwendung gerecht wird, was in Simulationen und in Fahrzeug-
Experimenten validiert wird.

Abbreviations

BLAS Basic Linear Algebra Subprograms
CPU central processing unit
FLOP floating point operation
FPGA field-programmable gate array
LGPL GNU Lesser General Public License
iff if and only if

Dynamic Systems
DAE Differential-Algebraic Equations
IVP Initial Value Problem
LTV Linear Time Varying
MIMO multiple-input multiple-output
NARX Nonlinear AutoRegressive eXogenous model
ODE Ordinary Differential Equations
PDE Partial Differential Equations
PID proportional–integral–derivative
SISO single-input single-output

Numerical Simulation
AB Adams-Bashforth
AM Adams-Moulton
BDF Backward Differentiation Formula
DIRK Diagonally Implicit RK
DOPRI Dormand–Prince
ERK Explicit Runge-Kutta
ESDIRK Explicit SDIRK
IRK Implicit Runge-Kutta
LM Linear Multistep
MOL Method Of Lines
RKF Runge–Kutta–Fehlberg

xi

xii Abbreviations

RK Runge–Kutta
SDIRK Singly Diagonally IRK

Sensitivity Analysis
END External Numerical Differentiation
FB Forward-Backward propagation
FOA Forward-Over-Adjoint
IFT Implicit Function Theorem
IND Internal Numerical Differentiation
TSP Three-Sweep Propagation
VDAE Variational Differential-Algebraic Equations
VDE Variational Differential Equations

Optimization Theory
FONC First Order Necessary Conditions
KKT Karush-Kuhn-Tucker
LICQ Linear Independence Constraint Qualification
NLP Nonlinear Programming
QP Quadratic Programming
SOSC Second Order Sufficient Conditions

Newton-Type Optimization
AF-INIS Adjoint-free INIS
BFGS Broyden-Fletcher-Goldfarb-Shanno
GGN Generalized Gauss-Newton
INIS Inexact Newton with Iterated Sensitivities
IN Inexact Newton
IP Interior Point
SCP Sequential Convex Programming
SQP Sequential Quadratic Programming

Optimal Control
BVP Boundary Value Problem
CMS Centralized Multiple Shooting
DMS Distributed Multiple Shooting
DP Dynamic Programming
HJB Hamilton-Jacobi-Bellman
MHE Moving Horizon Estimation
MPC Model Predictive Control
MS Multiple Shooting
OCP Optimal Control Problem
RTI Real-Time Iteration

List of Symbols

Direct Optimal Control

zk discrete-time algebraic variables

l(·) discrete-time stage cost

Ns number of integration steps per interval

Tint integration step size

Ts discretization length

xk discrete-time differential states

K collocation variables

N number of shooting intervals

q number of collocation nodes

Linear Algebra

0 zero matrix

1 identity matrix

N set of natural numbers

⊗ Kronecker product

R set of real numbers

ρ(·) spectral radius

Sn set of n× n symmetric matrices

Sn++ set of n× n positive definite matrices

xiii

xiv LIST OF SYMBOLS

σ(·) spectrum of a matrix

‖ · ‖ norm function

Nonlinear Programming

c(·) equality constraints

h(·) inequality constraints

F(·) first order necessary conditions

κ local contraction rate

L(·) Lagrangian function

ψ(·) objective function

Dynamic Optimization

`(·) continuous-time stage cost

h(·) path inequality constraints

m(·) mayer cost term

r(·) terminal constraints

R(·) residual function

T time horizon length

Dynamic Systems

fe(·) explicit set of differential equations

f(·) implicit set of differential equations

g(·) implicit set of algebraic equations

u(t) continuous-time control inputs

x(t) continuous-time differential states

ẋ(t) continuous-time differential state derivatives

y(t) continuous-time system outputs

z(t) continuous-time algebraic variables

Contents

Abstract v

Contents xv

List of Figures xix

List of Tables xxiii

Introduction 1

1 Fast Nonlinear Model Predictive Control and Estimation 9

1.1 Controlled Dynamic Systems 10

1.2 Direct Optimal Control . 14

1.3 Nonlinear Programming Methods 21

1.4 Tailored Convex Solvers for Optimal Control 32

1.5 Real-Time Algorithms for MPC and MHE 36

2 Numerical Simulation and Sensitivity Propagation 51

2.1 Numerical Integration Methods 52

2.2 Implicit Runge-Kutta Methods 58

2.3 Efficient Sensitivity Propagation 66

xv

xvi CONTENTS

2.4 Collocation for Embedded Optimization 82

2.5 Continuous Output for Optimal Control 90

2.6 Conclusions and Outlook . 95

3 Symmetric Hessian Propagation Technique 97

3.1 Problem Statement . 99

3.2 Discrete-Time Sensitivity Propagation 101

3.3 Continuous-Time Sensitivity Propagation 106

3.4 Three-Sweep Hessian Propagation Scheme 110

3.5 Numerical Case Study . 115

3.6 Conclusions and Outlook . 119

4 Structure Exploitation for Linear Subsystems 121

4.1 A Three-Stage Dynamic Structure 122

4.2 Tailored Structure Exploiting IRK methods 124

4.3 Optimal Control Application Examples 128

4.4 Conclusions and Outlook . 134

5 Compression Algorithm for Distributed Multiple Shooting 135

5.1 Distributed Multiple Shooting 136

5.2 The Compression Algorithm . 139

5.3 NMPC Application: Chain of Masses 143

5.4 Conclusions and Outlook . 148

6 Lifted Newton-Type Collocation Integrators 149

6.1 Simultaneous Direct Optimal Control 150

6.2 Exact Lifted Collocation Integrator 155

6.3 Adjoint-based Inexact Lifted Collocation 166

6.4 Inexact Newton with Iterated Sensitivities 170

CONTENTS xvii

6.5 Lifted Collocation in ACADO Code Generation 179

6.6 Case Study: Chain of Masses 180

6.7 Conclusions and Outlook . 186

7 Local Convergence of Inexact Newton with Iterated Sensitivities 189

7.1 Problem Formulation . 190

7.2 Inexact Newton with Iterated Sensitivities (INIS) 194

7.3 Adjoint-Free INIS Optimization 203

7.4 Numerical Optimal Control Results 206

7.5 Conclusions and Outlook . 208

8 Open-Source ACADO Code Generation Software 211

8.1 ACADO Code Generation Tool 212

8.2 Real-Time Control Applications 218

8.3 ACADO Integrator Code Generation 222

8.4 Conclusions and Outlook . 226

9 Two-Stage Turbocharged Gasoline Engine 227

9.1 Introduction to Airpath Control 228

9.2 Two-Stage Turbocharged Gasoline Engine 230

9.3 Modeling of the Airpath System 233

9.4 Nonlinear MPC and State Estimation 238

9.5 Simulative Assessment of NMPC 242

9.6 In-Vehicle Experimental Results 246

9.7 Conclusions and Outlook . 248

10 Conclusions and Outlook 251

Bibliography 257

xviii CONTENTS

Curriculum Vitae 287

List of Publications 289

List of Figures

1 Illustration of the considered principle of using embedded
optimization for real-time estimation and feedback control. . . 2

1.1 Illustration of the unconverged (left) and converged (right) state
and control trajectories of a multiple shooting method. 19

1.2 Block condensing with qpDUNES: trade-off in choosing the block
sizeM for the optimal control of a chain of 4 masses with horizon
length N = 200. 37

1.3 Overview of an SQP-type numerical treatment of multiple
shooting based real-time optimal control. 37

1.4 Illustration of the receding horizon principle: model predictive
control based on the successive solution of optimal control problems. 40

1.5 Illustration of the estimation horizon Te in MHE and the
prediction horizon Tp in MPC, and the corresponding state and
control trajectories at a given time point (inspired by [313]). . . . 41

1.6 Illustration of the RTI scheme for nonlinear MPC and MHE,
including their interactions within the closed-loop system
(inspired by [115]). 48

1.7 Illustration of the scheduling in time of the computations within
the RTI framework for embedded optimization (inspired by [313]). 49

2.1 An incomplete overview of numerical integration schemes. . . . 53

2.2 Illustration of single-step versus multistep integration methods. 53

2.3 Structure of the matrix A for different families of RK methods [199]. 58

xix

xx LIST OF FIGURES

2.4 Illustration of one integration step of a collocation method based
on a polynomial interpolation through a set of points ci, i = 1, . . . , q. 61

2.5 The roots of the shifted Legendre polynomials of order 1, 2 and
3, which are respectively used as nodes for the Gauss methods of
order 2, 4 and 6. 63

2.6 The cube toy example setup, used in the multi-rate estimation
problem to illustrate a continuous output based MHE implemen-
tation. 94

3.1 Illustration of the optimal state and control trajectories,
corresponding to the periodic OCP for the nonlinear bioreactor
in Eq. (3.33). 118

4.1 Schematic of the three-stage dynamic system structure, illustrat-
ing the workflow in the structure exploiting collocation based
integrators. 123

4.2 Closed-loop trajectories for the velocity of both trolley and cable,
before (dashed) and after extra penalization of high frequencies
(solid). 130

4.3 Illustration of a closed-loop trajectory of the position and
orientation of the quadcopter in a point-to-point motion based
on NMPC. 133

4.4 Schematic of a multi-stage dynamic system structure, illustrating
the workflow in an extended structure exploiting collocation
based integrator. 134

5.1 Benchmark case study example for optimal control: illustration
of a chain of nm = 8 masses connected by springs. 144

5.2 Chain mass optimal control example: illustration of the different
partitioning options to identify the coupled subsystems. 145

5.3 Comparison of the NMPC closed-loop trajectories for a CMS and
a DMS based direct optimal control implementation. 146

6.1 Illustration of Ns fixed integration steps of a collocation scheme
over one shooting interval [ti, ti+1], including the corresponding
equations. 151

LIST OF FIGURES xxi

6.2 An overview of the idea of using lifted collocation integrators, with
combined properties from multiple shooting and direct collocation.156

6.3 Illustration of the parallelizable condensing and expansion to
efficiently eliminate and recover the collocation variables from
the linearized KKT system. 160

6.4 Minimizing the control effort versus time optimal OCP formu-
lation for the chain mass example: optimal state and control
trajectories (nm = 8). 183

6.5 SQP convergence using different lifting techniques for the
minimum effort (Gauss-Newton) and time optimal OCP (exact
Hessian) with nm = 5. 187

7.1 Illustration of the divergence of the IN and the convergence of the
INIS scheme for the QP in Eq. (7.9). In addition, the asymptotic
rate of convergence for INIS can be observed to be the same as
for the forward problem. 195

7.2 Illustration of the divergence of the IN and the convergence
of the INIS scheme for the NLP in Eq. (7.20). In addition, the
asymptotic rate of convergence for INIS can be observed to be the
same as for the forward problem unlike the adjoint-free AF-INIS
implementation for this NLP example. 200

7.3 Convergence results of the Gauss-Newton based SQP method
with different inexact Newton-type techniques for the chain mass
optimal control problem using nm = 4 masses. 208

8.1 Illustration of (a) a general-purpose solver versus (b) the principle
of code generation to obtain a custom solver for solving instances
of a certain problem formulation (inspired by [222]). 213

8.2 Illustration of the layers in the typical workflow when using the
MATLAB interface of the ACADO code generation tool. 215

8.3 MATLAB code example to implement NMPC using ACADO code
generation for the optimal swing-up of an inverted pendulum on
top of a cart. 217

8.4 Schematic of the overhead crane experimental setup [316]. . . . 219

8.5 Illustration of the kite carousel setup in motion at KU Leuven [313].220

xxii LIST OF FIGURES

8.6 Sketch of a diesel engine airpath with its main components [41]. . 221

8.7 The miniature race car setup at the University of Freiburg. . . 222

8.8 Illustration of the two modules in the ACADO code generation tool.223

8.9 Overview of the main ACADO code generation classes to export
tailored algorithms. 224

9.1 System overview of the investigated two-stage turbocharging
concept . 231

9.2 Illustration of the demonstrator vehicle and the testing track. . . 231

9.3 Validation of the stationary transfer behaviour of the DAE model,
based on corresponding measurement data at neng = 2500 min−1. 237

9.4 Illustration of the closed-loop system on the dSpace MicroAu-
toBox: NMPC based on ACADO code generation with dead time
compensator (DTC) and extended Kalman filter (EKF). 238

9.5 Overview on design parameters of the different components that
are crucial for the real-time feasible NMPC scheme. 243

9.6 Closed-loop hardware-in-the-loop simulations: comparison of LTI,
LTV and NMPC for a step in the boost pressure reference signal. 244

9.7 Steady state measurement data for neng = 2500 min−1, with an
illustration of the change in boost pressure for 10% wastegate
actuation. 245

9.8 Vehicle dynamometer experiments: closed-loop control for a step
in the boost pressure reference signal at engine speed neng =
2500 min−1. 247

9.9 Vehicle dynamometer experiments: closed-loop control for a step
in the boost pressure reference signal for different engine speeds. 248

9.10 Closed-loop experimental results with the vehicle on the road. . 249

List of Tables

2.1 Computational cost of the Newton-type schemes per integration
step for a Gauss collocation based method (nk = nx + nz and
nw = nx + nu). 87

2.2 Order of accuracy for the end point and of the continuous output
for the 1-, 2- and 3-stage Gauss-Legendre and Radau IIA methods. 91

2.3 Average computation time for approximate infinite horizon NMPC. 94

2.4 Average computation time of one CGN iteration, using respec-
tively an auto generated ACADO solver and MATLAB’s general-
purpose DAE solver ode15s. 95

3.1 Theoretical cost comparison of second order sensitivity propagation.112

3.2 Storage cost for the second order sensitivity propagation techniques.113

3.3 The proposed second order sensitivity propagation techniques. 114

3.4 Computation times for a numerical simulation of the chain
mass [325] using explicit RK4: TSP-SYM versus FB-FOA
sensitivity propagation. 114

3.5 Parameter values and bounds for the bioreactor. 116

3.6 Detailed computation times for exact Hessian based SQP using
the explicit RK4 method: TSP-SYM versus FB-FOA sensitivity
propagation. 119

3.7 Average computation times for exact Hessian based SQP using
the implicit RK4 method: FB-SYM versus FB-FOA sensitivity
propagation. 119

xxiii

xxiv LIST OF TABLES

4.1 Average computation times: RTI based NMPC of an overhead
crane. 129

4.2 Average computation times for RTI based NMPC of an overhead
crane, including the penalization of higher frequency state
information. 131

4.3 Average computation times for RTI based NMPC of a quadcopter.133

5.1 Computational complexity analysis based on a q-stage collocation
scheme: CMS versus DMS with compression (nw = nx + nu). . 143

5.2 Average computation times for CMS and DMS based RTI schemes
on the optimal control example of the chain of masses. 147

5.3 Average computation times for the compression procedure in the
DMS implementation: Algorithm 4 versus a dense linear solver. 147

5.4 Average timing results for DMS based RTI using different
partitions for the chain of masses in coupled subsystems (q = 2). 148

6.1 Comparison of the three collocation based approaches to solve
the nonlinear optimal control problem in Eq. (6.7). 162

6.2 Overview of the presented algorithms for (inexact) Newton based
lifted collocation integrators. 168

6.3 Overview on the different variants of collocation based optimal
control algorithms (EH = Exact Hessian, GN = Gauss-Newton). 181

6.4 Average Gauss-Newton based SQP timing results for the
minimum effort chain mass OCP using 4-stage Gauss colloca-
tion (Ns = 3, q = 4), including different numbers of masses nm
and resulting numbers of states nx. 184

6.5 Detailed timing results for Gauss-Newton based SQP on the
minimum effort OCP using nm = 5 masses or nx = 24 states
(Ns = 3, q = 4). Note that one iteration of direct collocation (6.7)
based on Ipopt takes about 500 ms, and one sparse QP solution
using OOQP takes 2.4 s on average. 185

6.6 Average exact Hessian based SQP timing results for the time
optimal chain mass problem using a 4-stage Gauss collocation
method (Ns = 3, q = 4), including different numbers of masses
nm and resulting numbers of states nx. 186

LIST OF TABLES xxv

6.7 Detailed timing results for exact Hessian based SQP on the
time optimal OCP using nm = 5 masses or nx = 24 + 1 states
(Ns = 3, q = 4). Note that one iteration of direct collocation (6.7)
based on Ipopt takes about 300 ms, and one sparse QP solution
using OOQP takes 5 s on average. 186

7.1 Average timing results per Gauss-Newton based SQP iteration
on the chain mass optimal control problem using direct
collocation (Ns = 3, q = 4), including different numbers of masses
nm and states nx. 207

9.1 Comparison of rise time t95 between nonlinear MPC (NMPC),
linear time varying (LTV) MPC and linear MPC. 243

Introduction

Our quality of life, the world’s productivity and its sustainability become
more and more determined by the outcome and benefits of process automation.
In this domain of automatic control, an important distinction can be made
between offline and online tasks. The offline context refers to the problems
that can be solved while the process is not yet running, such as the system
design, analysis and identification. These activities are not limited by real-time
feasibility constraints and typically require considerable amounts of brainwork
and computer-human interaction. It includes the implementation and tuning of
an automatic control scheme, which can be used to stabilize the system and,
for example, steer it to a specific desired state. The latter is referred to as a
controller for the dynamic system and executes itself continuously as long as
the process is running, i.e., it forms part of the online context.

This work is concerned mostly with the online problems related to the control
of fast dynamic systems. In addition to the task of computer based automatic
control, this includes online state and system parameter estimation. Since
many systems operate in a repetitive manner such as, for example, robot arm
manipulators or chemical batch processes, the field of iterative learning can play
an important role. In this context, the control performance can be improved
iteratively based on previous repetitions. In addition to this online information
that can be either learned, measured or estimated, there are typically many
remaining effects or disturbances which cannot be taken into account. This is
the motivation for closing the loop with feedback control, in order to reject such
unknown disturbances or any mismatch. A typical case is when the difference
between the observed system output and the desired reference is provided as
the feedback signal to the controller.

A popular viewpoint among researchers on mathematical optimization is that all
relevant decisions can and should be cast into an optimization problem. Based
on a quantitative representation and suitable approximation of the considered
environment, one can typically identify a certain objective or performance index

1

2 LIST OF TABLES

System

Estimation

measurements

Control

estimate

actuation

reqs.

reqs.

Figure 1: Illustration of the considered principle of using embedded optimization
for real-time estimation and feedback control.

and corresponding constraints or limitations of the problem task. Many of
these cases result in static optimization formulations, i.e., without explicitly
considering dynamic system evolutions. Application examples of the latter
include supply chain management, scheduling or portfolio optimization in
economics as well as setpoint calculation, optimal design and regression analysis
in modeling and engineering. On the other hand, throughout this thesis, we
are more interested in dynamic optimization problems which directly take
a model for the dynamic process behaviour into account. In the context of
systems engineering, the resulting field is typically referred to as optimal control.
The corresponding formulation of a dynamic optimization problem consists
of the system dynamics in addition to the problem objective and constraint
functions. Examples of optimal control applications include the optimization
of an actuation profile in order to perform a certain task, system state and
parameter estimation or optimal experiment design.

This thesis focuses more specifically on the real-time optimal control of nonlinear
small to medium-scale systems with relatively fast dynamics, in order to
design an advanced feedback control strategy. For this purpose, both the
online estimation and control task can be carried out by embedded dynamic
optimization tools. Technically, the term embedded in this case refers to the
situation of having any dedicated computer system as part of a larger (typically
mechanical or electrical) device, often with limited processing resources and
with real-time computing constraints. Figure 1 illustrates the resulting closed-
loop system. In the context of model predictive control (MPC) and moving
horizon estimation (MHE), both the control and estimation task correspond to

LIST OF TABLES 3

an online sequence of dynamic optimization problems based on the receding
horizon principle. More specifically, the system parameters or actuation profile
are optimized over a certain time horizon using specific measurements and
directly taking into account the problem objective, the system dynamics and
additional constraints or specifications. These desirable properties also account
for the increasing popularity of such dynamic optimization based closed-loop
control and estimation techniques.

The main disadvantage of embedded optimization based approaches is the
resulting computational effort, especially in case of complex nonlinear problems.
One needs to solve a large, typically non-convex dynamic optimization problem
online and this under strict timing constraints in order to stabilize and control
the potentially fast process dynamics. One attractive alternative therefore relies
on the explicit and offline computation of the resulting feedback control law,
even though this approach unfortunately suffers from the curse of dimensionality
when solving this problem and storing the results. Instead, we focus on the
direct and online solution of the optimal control problem at each sampling time
point. In order to widen the range of applications that can be treated by using
such online optimization based techniques, it becomes crucial to use efficient
implementations of tailored algorithms on suitable computational hardware.
For that reason, this thesis considers the development of real-time feasible
numerical algorithms for embedded optimization and it includes open-source
software implementations. In the case of complex nonlinear systems with fast
dynamics, the numerical simulation of the continuous time differential equations
forms an important computational component of any direct optimal control
method. In addition, the use of derivative based optimization algorithms results
in the need for an efficient propagation of corresponding first and possibly higher
order sensitivity information.

Contributions and Outline of this Thesis

Let us introduce the structure of this thesis, by describing the specific topics
that are discussed in the different chapters as well as their corresponding main
contributions.

4 LIST OF TABLES

Chapter 1 - Fast Nonlinear Model Predictive Control and Estimation This
chapter introduces the class of dynamic systems and the corresponding optimal
control problem formulation, which we handle throughout this thesis. It provides
a detailed overview on direct optimal control, including a discussion on the
theory and numerical algorithms for nonlinear programming. In addition, the
current state of the art is presented regarding tailored solvers for optimal control
and online algorithms for fast nonlinear MPC and MHE. More specifically, the
Real-Time Iteration (RTI) scheme is introduced which forms the algorithmic
framework for many of the new developments in the following chapters.

Chapter 2 - Numerical Simulation and Sensitivity Propagation In direct
optimal control, one relies on a numerical integration scheme to simulate the
system of differential equations. This chapter provides an overview on numerical
simulation methods with a specific focus on explicit and implicit Runge-Kutta
formulas. Within a Newton-type optimization method, it also becomes crucial to
accurately and efficiently evaluate first and possibly higher order sensitivities for
each simulation result. Different approaches for performing the corresponding
sensitivity analysis are presented and compared for both explicit and implicit
integration schemes. A detailed discussion is provided on collocation methods
and their efficient implementation for embedded optimization. In addition
to the introduction of these concepts, the chapter contributes new optimal
control applications based on continuous output. For example, it shows that the
continuous output feature allows for an efficient implementation of closed-loop
costing for MPC and of an MHE scheme with multi-rate measurements.

LIST OF TABLES 5

The first two chapters introduced and provided an overview of the state of
the art regarding numerical algorithms for both embedded optimization and
simulation. Building on these concepts, all subsequent chapters present the
main contributions of the thesis.

Chapter 3 - Symmetric Hessian Propagation Technique This chapter
presents an efficient second order differentiation scheme for both discrete- and
continuous-time sensitivity analysis. A novel Hessian propagation technique is
proposed, which allows one to maintain and exploit the symmetry of the
directional derivative contributions for any explicit or implicit integration
method. In addition, the discussion in a continuous-time framework allows for
a generic sensitivity analysis before applying a numerical discretization scheme.
Based on the proposed symmetric sensitivity equations, a new alternative
three-sweep Hessian propagation (TSP) scheme will be presented. Unlike the
classical forward-backward approach, this technique can result in a considerable
reduction of the corresponding memory requirements. An implementation
of these symmetric Hessian propagation techniques in the open-source ACADO
Toolkit software is presented and its performance is illustrated on the case
study of a nonlinear biochemical reactor.

Chapter 4 - Structure Exploitation for Linear Subsystems The chapter
proposes a new format for defining nonlinear dynamic models and shows
how the three-stage structure therein can be strongly exploited especially
by implicit integration methods. The structure of linear subsystems in the
differential equations is introduced and motivated, followed by a discussion on
the consequences for the implementation of direct optimal control methods. Two
real-world control examples are used to illustrate the relevance of the proposed
three-stage model structure. Numerical experiments show that considerable
speedups can be achieved with these structure exploiting integrators, which are
implemented as part of the ACADO code generation tool.

Chapter 5 - Compression Algorithm for Distributed Multiple Shooting We
propose and discuss algorithmic techniques for the efficient implementation
of real-time feasible NMPC for decomposable systems based on Distributed
Multiple Shooting (DMS). The chapter describes how tailored collocation based
integrators with continuous output can be used to efficiently parameterize the
coupling between subsystems. In addition, a novel compression algorithm is
presented as an effective way of reducing the computational burden for the
embedded convex solver. As a particular example, we discuss the numerical
exploitation of a tridiagonal coupling structure. The resulting DMS-RTI

6 LIST OF TABLES

scheme is implemented based on the ACADO code generation and is illustrated
using the example of a chain of spring connected masses. Already within a
serial implementation, the presented algorithm is shown to be able to provide
impressive speedups over the conventional scheme.

Chapter 6 - Lifted Newton-Type Collocation Integrators We present an
implicit extension of the lifted Newton method for collocation schemes and
discuss its connection to multiple shooting and direct collocation in a general
framework, independent of the Newton-type optimization method. It allows us
to interpret this technique as a direct and parallel exploitation of the specific
collocation problem structure, for which we discuss both the advantages and
disadvantages over classical approaches. In addition, the chapter proposes and
analyzes two alternative approaches for inexact Newton based lifted collocation,
using either an adjoint derivative propagation or iterated forward sensitivities. A
more practical contribution of this chapter is the open-source implementation of
these novel lifting schemes within the ACADO code generation tool for embedded
optimal control applications. The numerical performance of the proposed
algorithmic techniques is illustrated on the benchmark case study of the optimal
control for a chain of masses.

Chapter 7 - Local Convergence of Inexact Newton with Iterated Sensitivities
The chapter presents the Inexact Newton method with Iterated Sensitivi-
ties (INIS) in the most general nonlinear programming framework in order
to discuss its local convergence. We show that this scheme allows us to
recover a strong connection between the local contraction rate of the forward
problem and the local convergence properties of the resulting Newton-type
optimization algorithm. Unlike the case for standard inexact Newton methods,
local contraction based on the Jacobian approximation for the forward problem
is necessary and, under mild conditions, even sufficient for local convergence of
the INIS optimization scheme. In addition, an adjoint-free (AF-INIS) variant
for Newton-type optimization is proposed and its local convergence properties
are also studied. This alternative approach is preferable whenever the algorithm
can be carried out independently of the respective values for the multipliers
corresponding to the equality constraints, but it generally does not preserve
the local convergence properties of the forward scheme. Finally, the numerical
performance and theoretical results for the presented algorithms are illustrated
based on an optimal control case study.

Chapter 8 - Open-Source ACADO Code Generation Software As mentioned
earlier, an important contribution of the thesis consists of the implementation

LIST OF TABLES 7

of the presented new algorithmic techniques as part of the open-source ACADO
code generation software package. This chapter therefore introduces the concept
of automatic code generation and discusses the implementation as part of the
ACADO Toolkit. In addition, we describe the typical workflow needed to export
a tailored optimal control solver and we present the ACADO integrator suite,
which forms the main software result of this thesis, in more detail. The tool
provides the option to generate a stand-alone, embeddable integrator code with
tailored sensitivity propagation, which can be used, e.g., to prototype new
algorithms. We discuss some of the many real-world control applications that
were made possible by using the newly developed algorithmic techniques within
the open-source ACADO code generation tool.

Chapter 9 - Two-Stage Turbocharged Gasoline Engine A particularly
challenging optimal control application consists of the development of a nonlinear
MPC (NMPC) scheme which allows one to meet the tough demands on closed-
loop control of a two-stage turbocharged gasoline engine. This forms a promising
airpath concept in order to reduce the fuel consumption, even though it exhibits
strong nonlinear behaviour while having high demands on the control quality
and system limitations. The overall goal is that the control scheme makes use
of the specific turbocharging architecture to overcome the trade-off between
a fast transient raise of the boost pressure and a high specific power. The
main contribution in this chapter is the proposed implementation of a real-time
feasible NMPC algorithm, with a sampling time of 25 ms, based on an ACADO
code generated solver on the dSpace MicroAutoBox as the embedded control
hardware. The resulting system is thoroughly validated by performing closed-
loop simulations and real-world experiments using the implementation within a
demonstrator vehicle, both on a dynamometer and on the road.

Chapter 1

Fast Nonlinear Model
Predictive Control and
Estimation

Computation times below one microsecond are typically associated with explicit
approaches for linear Model Predictive Control (MPC), for example, as presented
in [30] and implemented in the Multi-Parametric Toolbox MPT3 [163]. Given
the modern computer architectures and the algorithmic techniques presented
in this chapter, it is however possible to achieve such real-time requirements
using online, embedded optimization for relatively small applications. Based on
the control example from [68], numerical results for Nonlinear MPC (NMPC)
simulations with a sampling time below one microsecond have been presented
in [270]. Moreover, the proposed direct methods do not suffer from the curse of
dimensionality [29] in the same way as explicit solution strategies, such that
also larger applications can be considered [315].

Outline The chapter is organized as follows. Section 1.1 briefly presents the
class of systems and corresponding dynamic models in which we are interested.
The optimal control problem formulation and direct solution approaches are
introduced in Section 1.2, followed by an overview on nonlinear programming
and Newton-type optimization in Section 1.3. Sequential quadratic programming
can rely on structure exploiting solvers for optimal control, as described in
Section 1.4. Finally, Section 1.5 presents online algorithms that allow real-time
implementations of fast nonlinear model predictive control and estimation.

9

10 FAST NONLINEAR MODEL PREDICTIVE CONTROL AND ESTIMATION

1.1 Controlled Dynamic Systems

Let us start by introducing the class of dynamic systems, which we are interested
in throughout this thesis. We mostly consider controlled dynamic systems, i.e.,
systems that can be manipulated externally. In most of this thesis, the particular
nature of this controlled system will not be specified even though the focus is
on fast dynamic systems with sampling times in the milli- or even microsecond
range. A typical domain of application therefore consists of mechatronic systems
(see Chapter 9) but the proposed algorithmic techniques can also be used for
other classes of dynamic systems [218].

The system of interest can be described by a deterministic set of differential
equations. Note that our discussion further omits other interesting modeling
classes for dynamic systems, such as stochastic differential equations [33] or black
box modeling [216, 293]. Instead, we focus on systems of Ordinary Differential
Equations (ODE) and Differential-Algebraic Equations (DAE) which will be
introduced in the next two subsections.

1.1.1 Ordinary Differential Equations

The following definition introduces an implicit ODE system.

Definition 1.1 (Ordinary Differential Equations) We define the time t ∈ R,
the differential states x(t) ∈ Rnx and control inputs u(t) ∈ Rnu . A system of
Ordinary Differential Equations (ODE) to describe the dynamic evolution of
this state vector x(t) then reads as

0 = f(ẋ(t), x(t), u(t)), (1.1)

where the notation ẋ(t) = dx(t)
dt is used for the differential state derivatives and

the Jacobian matrix ∂f
∂ẋ (·) is assumed to be invertible, ∀t.

Note that an explicit system of ODE equations belongs to a special subclass,
where the state instead is described by

ẋ(t) = fe(x(t), u(t)), (1.2)

such that the differential state derivatives ẋ(t) are defined explicitly. A set of
differential equations (1.1) in combination with an initial condition x(t0) = x̂0
is often referred to as an initial value problem (IVP)

0 = f(ẋ(t), x(t), u(t)), x(t0) = x̂0, (1.3)

CONTROLLED DYNAMIC SYSTEMS 11

given a control trajectory u(t) over a certain time interval t ∈ [t0, tf]. The
following well-known theorem [69] then describes the existence and uniqueness
of a solution x(t) of the IVP in Eq. (1.3).

Theorem 1.2 (Picard-Lindelöf Theorem) Consider the initial value problem
from Eq. (1.3) for which the Jacobian matrix ∂f

∂ẋ (·) is assumed to be invertible,
corresponding to the ODE system as described in Definition 1.1, and where
the continuous-time system dynamics f(·) are Lipschitz continuous in x(t) and
continuous in the control inputs u(t). Then, for some value ε > 0, there exists
a unique solution x(t) to the IVP on the interval [t0 − ε, t0 + ε].

This result will be important for direct optimal control methods, which typically
rely on a piecewise polynomial control parameterization. The theorem can then
be applied on each interval where the control inputs u(t) remain continuous,
corresponding to a piecewise formulated initial value problem. Note that stronger
assumptions will typically be made throughout this thesis on the smoothness
of the system dynamics f(·), especially in the context of sensitivity analysis
starting with Chapter 2.

1.1.2 Differential-Algebraic Equations

Many modeling techniques do not directly result in an ODE formulation for the
dynamic system as in Definition 1.1, but instead result in a set of DAE equations.
An interesting example of such an approach for multi-body systems is based on
Lagrange mechanics [148, 242, 248], which can be used to directly obtain the
DAE system from the Lagrange functions and the algebraic constraints.

Definition 1.3 (Differential-Algebraic Equations) We introduce the differential
states x(t) ∈ Rnx , control inputs u(t) ∈ Rnu and the algebraic variables z(t) ∈
Rnz to define the following set of Differential-Algebraic Equations (DAE) to
describe the behaviour of a dynamic system

0 = f(ẋ(t), x(t), z(t), u(t)). (1.4)

If the Jacobian matrix ∂f
∂z,ẋ (·) is invertible, the DAE is said to be of index 1.

The definition corresponds to a fully implicit formulation of a DAE system [65,
66]. It is additionally important to introduce the following common semi-explicit
formulation of a DAE system:

ẋ(t) = fe(x(t), z(t), u(t))

0 = g(x(t), z(t), u(t)),
(1.5)

12 FAST NONLINEAR MODEL PREDICTIVE CONTROL AND ESTIMATION

where the function g(·) defines the algebraic equations. Note that often a relaxed
formulation of these algebraic equations is used for dynamic optimization, on
which more information can be found in [46, 175, 208]. The DAE system in (1.5)
is of index 1 when the Jacobian matrix ∂g

∂z (·) is invertible. We refer to the
differential index or differentiation index whenever we mention the index of a
DAE system throughout this thesis.

Definition 1.4 (Differential index) The index [281] of the DAE in (1.4) is the
minimum value for i such that the following set of differential equations

0 = di
dti f(ẋ(t), x(t), z(t), u(t)),

corresponds to an ODE system as described in Definition 1.1.

Even though many interesting processes are naturally described by higher
index DAEs, we assume all systems in this thesis to be of differential index 1.
The class of models based on the Euler-Lagrange equations [242], for example,
typically corresponds to DAE systems of index 3 in case of constrained dynamics
described by non-minimal coordinates [248]. In practice, one often reformulates
higher index DAEs into systems of index 1 or even ODE systems by use of
index reduction techniques [241]. The Pantelides algorithm is based on a time
differentiation of the constraint equations to obtain an index-1 DAE with
associated consistency conditions. The resulting index-reduced system typically
retains a reasonable symbolic complexity [148].

Remark 1.5 A third interesting type of systems consists of Partial Differential
Equations (PDE), which can depend on multiple other space variables in addition
to the time dependency [26]. Note that ODE systems form a special case of
DAEs, which in their turn form a special case of PDE systems. In addition,
numerical methods for PDEs often rely on a particular discretization technique
such as the Method of Lines (MOL) [302]. This particular approach performs
the discretization first in space and then in time, resulting in a large structured
set of ODEs or DAEs. More information on PDE-constrained optimization
and direct optimal control for PDE systems can be found in [37, 167, 252] and
references therein.

Remark 1.6 A final type consists of Delay Differential Equations (DDE)
to describe time-delay systems [98]. They are not further considered in this
thesis. Many practical applications involve actuators, sensors or communication
networks that result in such delays. It is often crucial to take these delays into
account within the control design [224].

CONTROLLED DYNAMIC SYSTEMS 13

1.1.3 Additional Model Parameters

It is often the case that system dynamics are influenced by time-constant model
parameters p ∈ Rnp such that the model function would instead be defined as
f(ẋ(t), x(t), u(t), p) in the case of an implicit ODE formulation. It is possible
to reformulate such a system into the form of Definition 1.1 by extending the
state dimension with additional variables that satisfy

ẋnx+i(t) = 0, xnx+i(t0) = pi, i = 1, . . . , np.

In practice, the system dynamics could also be time-dependent f(t, ẋ(t), x(t), u(t))
which can be considered a special case of including a time-variable model
parameter. In a similar fashion, this can be transformed in our standard
formulation by defining the following additional state variable

ẋnx+1(t) = 1, xnx+1(t0) = t0.

Finally, it is interesting to note that an IVP has been introduced over a certain
time interval t ∈ [t0, tf] in Eq. (1.3). Based on the definition t(τ) := t0 + τ T
where T = tf − t0 denotes the time horizon, the system dynamics could however
be rescaled in time by using

dx
dτ = dx

dt
dt
dτ , or x′(τ) = T ẋ(t), or ẋ(t) = 1

T
x′(τ),

resulting in the following scaled dynamics

0 = f

(
1
T
x′(τ), x(τ), u(τ)

)
, τ ∈ [0, 1].

In this case, the time horizon could be either a constant T = tf − t0 or a
model parameter as introduced earlier. Note that the above reformulations
are introduced mainly for notational convenience, while a separate treatment
of these model parameters within the presented algorithmic techniques can
typically be computationally more efficient.

1.1.4 Numerical Simulation

Based on the results of Theorem 1.2, we know that a unique state trajectory
x(t) exists as a solution to the IVP in Eq. (1.3). Note that an extension of this
existence and uniqueness theorem can be made to DAE systems such as those
in Definition 1.3. More information on this topic can, for example, be found
in [279, 280]. In what follows, we often refer to the simulation of differential
equations as a numerical approximation of this solution at discrete time points.

14 FAST NONLINEAR MODEL PREDICTIVE CONTROL AND ESTIMATION

An overview on numerical simulation methods can be found in Chapter 2 based
on [56, 157, 158]. But we already introduce a few basic concepts in this domain.
Let si(ti−1, xi−1) denote the numerical approximation of the solution x(ti) at
time point ti, given the state values xi−1 at time point ti−1. In that case,
si−1(ti−1, xi−1) = xi−1 holds by definition.
Definition 1.7 (Numerical integration error) The local error for the numerical
simulation result is defined as

e(ti) = x(ti)− si(ti−1, x(ti−1)),

where Tint = ti − ti−1 is typically referred to as the integration step size1. The
global or transported error is accordingly defined as

E(ti) = x(ti)− si(t0, x(t0)),

which describes how errors are propagated by the integration scheme.

Based on these error definitions, let us additionally introduce the properties of
convergence and order for a numerical integration scheme.
Definition 1.8 (Order of accuracy) A numerical method is said to be convergent
when its values converge to the exact solution for Tint → 0, where Tint represents
the integration step size. The method has order P if the local error satisfies

lim
Tint→0

e(ti) = O(TP+1
int).

Note that P > 0 is a necessary condition for convergence.

1.2 Direct Optimal Control

NMPC is an approach of increasing popularity for real-time control due to the
ability to explicitly handle constraints and nonlinear dynamics that characterize
the system of interest. This approach is based on the solution of a nonlinear
Optimal Control Problem (OCP) at each sampling instant. Numerical methods
to solve OCPs are typically classified into three main categories:

• Dynamic Programming (DP) schemes are based on Bellman’s principle
of optimality in order to propagate a cost-to-go function backwards in
time [29]. This approach can either result in the continuous time Hamilton-
Jacobi-Bellman (HJB) [214] partial differential equations or in a discrete
time dynamic programming recursion [32].

1Unlike the standard notation in [157], the symbol Tint is used to denote the integration
step size to avoid confusion, e.g., in the optimal control problem parameterization.

DIRECT OPTIMAL CONTROL 15

• Indirect methods for optimal control, also known as first-optimize-then-
discretize approaches are typically based on Pontryagin’s maximum
principle [251] to formulate the infinite dimensional first-order necessary
optimality conditions. The resulting nonlinear multi-point boundary value
problem (BVP) can then be solved numerically [42, 239].

• Direct methods for optimal control, also known as first-discretize-then-
optimize approaches are based on the numerical solution of a finite
dimensional optimization problem which corresponds to a discrete
approximation of the original continuous-time OCP. It can be shown that
this direct approach converges to the original continuous-time solution as
the discretization error decreases [119].

There are multiple difficulties when applying an indirect approach in practice,
such as the conditioning of the resulting BVP [34]. In addition, direct methods
can be implemented in a rather flexible manner while expert knowledge is
typically needed whenever the problem formulation is changed within the
indirect approach. This work therefore focuses on direct methods for real-time
optimal control. The main advantage of dynamic programming is that the
globally optimal solution can be found, unlike for the other two schemes. In
general, this however comes at the cost of performing a tabulation of the cost-
to-go function on a state space discretization grid. The DP approach therefore
suffers from the curse of dimensionality [29] such that it can be applied to
systems with only a few states, except for special cases. A more elaborate
comparison of all three approaches can be found in [34, 59].

1.2.1 Parametric Optimal Control Problem

This thesis aims at solving parametric optimal control problems (OCPs) as
they typically arise in Model Predictive Control (MPC) and Moving Horizon
Estimation (MHE), on which more information can be found in Section 1.5. We
introduce the following standard problem formulation

min
x(·), u(·)

∫ T

0
`(x(t), u(t)) dt+m(x(T)) (1.6a)

s.t. 0 = x(0)− x̂0, (1.6b)

0 = f(ẋ(t), x(t), z(t), u(t)), ∀t ∈ [0, T], (1.6c)

0 ≥ h(x(t), u(t)), ∀t ∈ [0, T], (1.6d)

0 ≥ r(x(T)), (1.6e)

16 FAST NONLINEAR MODEL PREDICTIVE CONTROL AND ESTIMATION

where x(t) ∈ Rnx denote the differential states, ẋ(t) are the differential state
derivatives, z(t) ∈ Rnz are the algebraic variables and u(t) ∈ Rnu denote the
control inputs at time t. The objective in Eq. (1.6a) consists of the functions `(·)
and m(·), which typically are referred to as respectively a Lagrange and a Mayer-
type objective term. The optimization problem depends on the parameter value
x̂0 through the initial value condition of Eq. (1.6b). The nonlinear dynamics
in Eq. (1.6c) are described by an implicit DAE system of index 1, based on
Definition 1.3. Additionally, Eqs. (1.6d) and (1.6e) denote respectively the path
and terminal inequality constraints.

For the sake of simplicity, the algebraic variables only enter the DAE
equations (1.6c) in the proposed continuous-time OCP formulation. In practice,
both the objective and constraint functions can however additionally depend
on these variables and a more general presentation of direct methods for DAE-
constrained optimal control can be found in [50, 131, 208]. The time horizon T
will typically be considered constant throughout this thesis, even though many
interesting OCP problems rely on a variable end time such as, for example, in
time-optimal formulations. Note that this can however be transformed in our
standard formulation (1.6) based on a rescaling of the dynamics, presented in the
previous section. We are mainly interested in the solution u∗(t, x̂0) ∀t ∈ [0, T],
which denotes a locally optimal control trajectory to be applied as a function of
the current system state x̂0.

1.2.2 Multiple Shooting Parameterization

The continuous-time OCP formulation from (1.6) leaves us with an infinite
dimensional optimization problem, which can be tackled using either one of
the approaches mentioned earlier. We consider direct optimal control methods
based on a parameterization of the state and control trajectory, resulting in
a Nonlinear Programming (NLP) formulation which denotes a discrete-time
approximation of the original problem. In this chapter, we focus on the direct
multiple shooting method which was originally proposed as an approach to
solve two-point BVPs [226, 239]. The idea was later adopted by Bock and Plitt
into a direct method to solve optimal control problems [51]. Let us introduce
the different ingredients for this problem parameterization.

Multiple shooting grid We first define a grid of N + 1 fixed control
discretization points

0 = t0 < t1 < . . . < tN = T,

which partition the control horizon into N shooting intervals. For the sake
of simplicity, we consider here an equidistant grid over the control horizon

DIRECT OPTIMAL CONTROL 17

consisting of the collection of time points ti, where ti+1 − ti = T
N =: Ts for

i = 0, . . . , N − 1. Note however that a non-equidistant grid can be treated in a
similar fashion within direct multiple shooting.

Control parameterization Next, one needs to decide on a parameterization
of the control trajectory u(t) ∀t ∈ [0, T] by a finite number of parameters which
yield a suitable approximation. Typically, one relies on a piecewise polynomial
approximation given the N shooting intervals of the control discretization
grid [209]. For notational convenience, we use the simplest form based on a
piecewise constant parameterization

u(τ) = ui for τ ∈ [ti, ti+1).

State parameterization The multiple shooting grid and the control parameter-
ization result in a natural representation of the state trajectory as the solution
to N coupled initial value problems

0 = f(ẋ(τ), x(τ), z(τ), ui), x(ti) = xi, τ ∈ [ti, ti+1), (1.7)

for i = 0, . . . , N−1 and x(0) = x̂0 is defined. When the initial condition for x(ti)
refers to the solution of the previous IVP, one obtains a sequential approach
to direct optimal control which is typically referred to as single shooting [288].
This method relies on a sequential evaluation of the full state trajectory, where
the solution of each IVP depends on the simulation result of the previous
one. Instead, the direct multiple shooting method introduces additional state
variables xi ∈ Rnx for i = 0, . . . , N on the grid points in order to explicitly
couple the initial value problems. Note that this method is consistent with the
sequential approach by including the continuity constraints

xi+1 = si+1(ti, xi, ui), i = 0, . . . , N − 1,

where s(·) denotes a numerical simulation for the IVP (1.7) given the value
x(ti) = xi. For notational convenience, we further consider the same integration
method to be used to solve the IVP on each interval of the equidistant multiple
shooting grid. We therefore rewrite these conditions as

xi+1 = φ(xi, ui), i = 0, . . . , N − 1,

resulting in a discrete-time and autonomous representation of the system
dynamics. Throughout this thesis, we refer to the function φ(·) as the result of
calling an integrator.

18 FAST NONLINEAR MODEL PREDICTIVE CONTROL AND ESTIMATION

Path inequality constraints The inequality constraints (1.6d) need to be
imposed on the full time horizon [0, T], resulting in a semi-infinite programming
problem [165] which is generally not tractable. More information on how to
practically avoid violations of these semi-infinite path constraints within direct
optimal control methods can, for example, be found in [254]. For notational
convenience, we simply relax these path constraints by imposing them directly
on the shooting grid points

0 ≥ h(xi, ui), i = 0, . . . , N − 1,

which in practice often already limits the violations of these constraints in
between the grid points of a sufficiently fine discretization.

Nonlinear Programming (NLP) formulation To arrive at the finite dimen-
sional NLP approximation of the OCP, we additionally approximate the
continuous time objective (1.6a) by the discrete time sum

N−1∑
i=0

l(xi, ui) +m(xN),

which can be obtained, for example, by extending the dynamics (1.6c) with
quadrature states [166]. The discrete time stage cost can be evaluated efficiently
as part of the solution of the state trajectory IVP [208].

Based on the above ingredients for parameterization of the OCP in Eq. (1.6),
the resulting structured Nonlinear Program (NLP) reads

min
X,U

N−1∑
i=0

l(xi, ui) +m(xN) (1.8a)

s.t. 0 = x0 − x̂0, (1.8b)

0 = xi+1 − φ(xi, ui), i = 0, . . . , N − 1, (1.8c)

0 ≥ h(xi, ui), i = 0, . . . , N − 1, (1.8d)

0 ≥ r(xN), (1.8e)

with state trajectory X = [x>0 , . . . , x>N]> where xi ∈ Rnx and control trajectory
U = [u>0 , . . . , u>N−1]> where ui ∈ Rnu . When one addresses this problem
directly in a nonlinear optimization framework, the variables in X and U
generally represent a feasible state and control trajectory only at convergence.
This is additionally illustrated in Figure 1.1, which visualizes the converged and
unconverged multiple shooting trajectories.

DIRECT OPTIMAL CONTROL 19

Figure 1.1: Illustration of the unconverged (left) and converged (right) state
and control trajectories of a multiple shooting method.

Remark 1.9 Direct multiple shooting is often referred to as a simultaneous
approach because the optimization and simulation problem are solved together.
In comparison, a sequential approach carries out the simulation task separately
from solving the optimization problem. This technique is also known as single
shooting [288], where a reduced OCP formulation is obtained after replacing
the variables xi by the results of a forward simulation (1.7). Since the variable
space of this problem is strongly reduced in dimension from (N + 1)nx +Nnu
to only Nnu, the task of solving this NLP appears to be simplified. However,
it has been shown [8] that the cost per Newton iteration can be made equal
for both approaches because of the sparsity structure in (1.8). Advantages of
multiple shooting over single shooting are the stronger flexibility in initializing the
problem and parallelizing the algorithm, and the improved convergence properties
especially in the case of an unstable system [8].

1.2.3 Direct Transcription Methods

Direct transcription methods formulate an optimization problem where the
equations to simulate the system dynamics are embedded as nonlinear equality
constraints [34, 250]. This is therefore an alternative simultaneous approach for
direct optimal control. These methods have the same property of representing
a feasible state and control trajectory only at convergence, as illustrated by
Figure 1.1 for multiple shooting. More specifically, this approach requires that
all intermediate results for numerical simulation need to be lifted as additional
degrees of freedom [8]. A rather popular example of such a direct transcription
method is direct collocation [39, 160], where the additional constraints and
variables are based on the equations to define the corresponding collocation
polynomials. This family of collocation methods is discussed for numerical
simulation as part of Chapter 2. The efficient solution of the resulting direct
collocation NLP will be the topic of discussion in Chapter 6.

20 FAST NONLINEAR MODEL PREDICTIVE CONTROL AND ESTIMATION

Let us introduce the following general representation of a numerical simulation
method applied to one shooting interval

xi+1 = F (xi, zi, ui)

0 = G(xi, zi, ui),

where zi for i = 0, . . . , N − 1 denote all intermediate variables of the integration
scheme to solve the IVP (1.7). They are defined either explicitly or implicitly by
the function G(·) and they are necessary to evaluate the numerical simulation
result xi+1 = F (xi, zi, ui). The resulting structured NLP reads as

min
X,U,Z

N−1∑
i=0

l(xi, ui) +m(xN) (1.9a)

s.t. 0 = x0 − x̂0, (1.9b)

0 = xi+1 − F (xi, zi, ui), i = 0, . . . , N − 1, (1.9c)

0 = G(xi, zi, ui), i = 0, . . . , N − 1, (1.9d)

0 ≥ h(xi, ui), i = 0, . . . , N − 1, (1.9e)

0 ≥ r(xN). (1.9f)

Even though this NLP formulation is much larger than the multiple shooting
type problem (1.8), direct transcription methods have the important property
that the sparsity of the dynamics can typically be preserved within the additional
constraints (1.9c) and (1.9d). In addition, the solution of the augmented NLP
formulation in Eq. (1.9) relies on the evaluation of the functions F (·) and G(·)
and their respective derivatives. For direct multiple shooting, one needs to
propagate the sensitivities directly through the dynamics as discussed in the
next chapter. On the other hand, multiple shooting can rely on any (general-
purpose) solver to simulate the system dynamics. Many of these solvers include
step size and order control to provide guarantees regarding the accuracy of the
simulation results, which typically allows a reduced overall number of integration
steps [158]. See [7, 27, 166] for more details about the use of step size control,
especially within direct optimal control. Alternatively, it is less trivial but not
impossible to extend the direct transcription formulation in Eq. (1.9) with such
an adaptive approach [36, 215, 246]. A more detailed comparison between the
multiple shooting method and the direct collocation approach can be found as
part of Chapter 6 on lifted collocation integrators.

NONLINEAR PROGRAMMING METHODS 21

1.3 Nonlinear Programming Methods

This section introduces a few important concepts and algorithmic techniques
from the field of nonlinear optimization, with a focus on the tools needed
for real-time optimal control applications. A detailed overview can be found
in [39, 112, 232] and references therein. For this purpose, we consider a compact
Nonlinear Programming (NLP) formulation that covers both optimal control
problems in Eqs. (1.8) and (1.9). All optimization variables are collected into
the vector y ∈ Rny such that the standard NLP form reads

min
y

ψ(y) (1.10a)

s.t. 0 = c(y) (1.10b)

0 ≥ h(y), (1.10c)

where ψ : Rny → R, c : Rny → Rneq , h : Rny → Rnineq . Because of the numerical
methods presented in this section and also further in this thesis, we introduce
the following assumption on all problem functions.

Assumption 1.10 The objective ψ(y) and constraint functions c(y) and h(y) in
the NLP from Eq. (1.10) are twice continuously differentiable in all arguments.

1.3.1 Optimality Conditions

We are interested in the conditions for optimality of the NLP in Eq. (1.10),
which is not necessarily convex in general. Because of our focus on real-time
feasible implementations of direct optimal control methods, it will typically be
sufficient to find a locally optimal solution.

Definition 1.11 (Feasible point) A vector ȳ is called a feasible point, iff the
constraints in Eqs. (1.10b) and (7.21c) are satisfied

0 = c(ȳ), 0 ≥ h(ȳ).

The feasible set Ω is then defined to include all such points, i.e., Ω = {y ∈
Rny | 0 = c(y), 0 ≥ h(y)}.

Definition 1.12 (Local minimizer) A vector y? is called a local minimizer or a
locally optimal solution, iff this point is feasible y? ∈ Ω and there exists a local
neighborhood N of y?, i.e., an open ball around y?, such that

∀y ∈ Ω ∩ N : ψ(y) ≥ ψ(y?). (1.11)

22 FAST NONLINEAR MODEL PREDICTIVE CONTROL AND ESTIMATION

A local minimizer can also be the global solution when the latter condition holds
for the complete feasible set Ω instead of a local neighborhood N . Even though
many recent developments have been made with respect to algorithms for global
optimization [113, 174], they are generally not yet tractable especially for real-
time optimal control of nontrivial systems with relatively fast dynamics. The
online optimization algorithms in this thesis are even based on the approximative
solution of the optimization problem at one sampling time, starting from the
approximative solution of the previous problem. Based on a good initialization
and a sufficiently high sampling rate, these methods result in a local convergence
over time as will be discussed in Section 1.5.

In order to present the optimality conditions that characterize a local minimizer,
we first need to introduce a few more concepts.

Definition 1.13 (Active constraint) An inequality constraint hi : Rny → R is
called active in a feasible point ȳ ∈ Ω, iff

hi(ȳ) = 0.

The index set A(ȳ) ⊂ {1, . . . , nineq} of active inequality constraints is typically
referred to as the active set.

Definition 1.14 (LICQ) The linear independence constraint qualification (LICQ)
holds at a feasible point ȳ ∈ Ω, iff all vectors ∇ci(ȳ) for i ∈ {1, . . . , neq} and
∇hi(ȳ) for i ∈ A(ȳ) are linearly independent.

Note that weaker constraint qualifications exist as discussed in [232], even though
the above LICQ condition can often be satisfied in practice and will therefore
be sufficient for our purposes. Let us introduce the Lagrangian function, which
plays an important role in the optimality conditions.

Definition 1.15 (Lagrangian function) For the NLP formulation in Eq. (1.10),
the Lagrangian function is defined as

L(y, λ, ν) = ψ(y) + λ>c(y) + ν>h(y). (1.12)

The vectors λ ∈ Rneq and ν ∈ Rnineq denote the Lagrange multipliers or the dual
variables, which can be interpreted as shadow prices [232].

The following theorem then specifies the first order necessary conditions (FONC)
to characterize a local minimizer.

Theorem 1.16 (Karush-Kuhn-Tucker (KKT) conditions) Let y? be a local
minimizer for the NLP in (1.10) which satisfies the LICQ condition. Then,

NONLINEAR PROGRAMMING METHODS 23

there exist Lagrange multipliers λ? and ν? for which holds

∇yL : ∇ψ(y?) +∇c(y?)λ? +∇h(y?)ν? = 0 (1.13a)

∇λL : c(y?) = 0 (1.13b)

∇νL : h(y?) ≤ 0 (1.13c)

ν? ≥ 0 (1.13d)

ν?i hi(y?) = 0, i = 1, . . . , nineq. (1.13e)

A primal-dual solution (y?, λ?, ν?) is called a KKT point.

Note that we use the notation ∂c
∂y (ȳ) = ∇c(ȳ)> = cy(ȳ) to denote a Jacobian.

When the LICQ holds at the local minimizer y?, the optimal Lagrange multipliers
(λ?, ν?) are unique. A proof for this and Theorem 1.16 can be found in [232].
Eqs. (1.13b) and (1.13c) are typically referred to as the primal feasibility
conditions, while Eq. (1.13a) denotes the stationarity conditions, Eq. (1.13d)
states the dual feasibility and Eq. (1.13e) forms the complementarity conditions.
In the case of a convex NLP, every local minimizer is also a global solution
and these first order KKT conditions are then both necessary and sufficient.
For the general non-convex form, we introduce the second order sufficient
conditions (SOSC) after defining strict complementarity.

Definition 1.17 (Strict complementarity) Let (y?, λ?, ν?) be a KKT point of
the NLP in (1.10). Strict complementarity then holds for this solution if all
active inequality constraints are strictly active, i.e., if ν?i > 0 for all i ∈ A(y?).

In order to state the second-order sufficient conditions, we additionally define
the critical cone at a KKT point.

Definition 1.18 (Critical cone) Let (y?, λ?, ν?) be a KKT point of the NLP
in (1.10), then the critical cone corresponds to the set

d ∈ C(y?, ν?)⇔


∇ci(y?)>d = 0, ∀i ∈ {1, . . . , neq}
∇hi(y?)>d = 0, ∀i ∈ A(y?) with ν?i > 0
∇hi(y?)>d ≤ 0, ∀i ∈ A(y?) with ν?i = 0.

(1.14)

Theorem 1.19 (Second-order sufficient conditions) Let (y?, λ?, ν?) be a KKT
point of the NLP in (1.10). If the Hessian of the Lagrangian is strictly positive
definite in the directions of the critical cone, i.e., if the following condition holds

d>∇2
yL(y?, λ?, ν?) d > 0, ∀d ∈ C(y?, ν?), d 6= 0,

then the point y? is a local minimizer of (1.10).

24 FAST NONLINEAR MODEL PREDICTIVE CONTROL AND ESTIMATION

We then define a regular KKT point, based on the collection of conditions which
we assume throughout this thesis, to simplify our discussion.

Definition 1.20 (Regular KKT point) A local minimizer of the constrained
NLP in (1.10) is called a regular KKT point (y?, λ?, ν?) if LICQ, strict
complementarity and SOSC are satisfied at this point.

Assumption 1.21 The local minimizers of the optimal control problems in
Eqs. (1.8) and (1.9) are assumed to be regular KKT points.

1.3.2 Newton-Type Optimization

An overview of algorithms for nonlinear optimization can be found in [39, 112,
232]. In this thesis, we only consider Newton-type optimization algorithms to
solve the NLP (1.10) with a focus on Sequential Quadratic Programming (SQP).
In order to discuss optimization algorithms and their convergence properties,
we briefly introduce some of the common convergence rates [232].

Definition 1.22 (q-linear convergence rate) Let y(k) ∈ Rny denote the iterates
where y(k) → y? for k →∞. We say that y(k) converges q-linearly if there exists
a constant r ∈ (0, 1) such that

‖y(k+1) − y?‖
‖y(k) − y?‖

≤ r, ∀k ≥ k̄ ∈ N.

Definition 1.23 (q-superlinear convergence rate) Let y(k) ∈ Rny denote the
iterates where y(k) → y? for k →∞. We say y(k) converges q-superlinearly if

lim
k→∞

‖y(k+1) − y?‖
‖y(k) − y?‖

= 0.

Definition 1.24 (q-quadratic convergence rate) Let y(k) ∈ Rny denote the
iterates where y(k) → y? for k →∞. We say that y(k) converges q-quadratically
if there exists a constant K ∈ (0,∞) such that

‖y(k+1) − y?‖
‖y(k) − y?‖2

≤ K, ∀k ≥ k̄ ∈ N.

Equality constrained optimization

Let us first consider the equality constrained case, i.e., nineq = 0 and L(y, λ) =
ψ(y) + λ>c(y). Newton-type optimization algorithms are based on the direct

NONLINEAR PROGRAMMING METHODS 25

solution of the first order necessary conditions

∇yL(y, λ) = 0

c(y) = 0,

from Theorem 1.16 and this using a Newton-type root finding method [79, 82].
An exact Newton iteration on these KKT conditions reads as[

∇2
yL(ȳ, λ̄) c>y (ȳ)
cy(ȳ) 0

]
︸ ︷︷ ︸

= J(ȳ,λ̄)

[
∆y
∆λ

]
= −

[
∇yL(ȳ, λ̄)
c(ȳ)

]
︸ ︷︷ ︸

=F(ȳ,λ̄)

, (1.15)

where cy(ȳ) := ∂c
∂y (ȳ) = ∇c(ȳ)> denotes the Jacobian matrix and the values ȳ

and λ̄ denote the current primal and dual variables. To arrive at a more compact
notation, we refer to the exact Newton iteration as J(ȳ, λ̄)

[
∆y
∆λ

]
= −F(ȳ, λ̄)

based on the Jacobian matrix J(ȳ, λ̄) := ∂F
∂(y,λ) (ȳ, λ̄).

There exist many Newton-type optimization methods that are based on specific
approximations of the KKT matrix J(·) in Eq. (1.15), in order to result in
desirable convergence properties at a considerably reduced computational cost.
Such an approach can be based on the approximation of the Hessian of the
Lagrangian H̃ ≈ H := ∇2

yL(ȳ, λ̄) using only first order derivative information
as performed in the family of Quasi-Newton methods [80, 232]. A compact
overview of Hessian approximation schemes will be provided further in the
context of SQP methods. Other Newton-type optimization algorithms even use
an inexact Jacobian matrix for the equality constraints [49, 94, 175], as will be
the topic of discussion in Chapter 7.

One iteration of any such inexact Newton-type method can be written as follows
in the compact form

J̃(ȳ, λ̄)
[

∆y
∆λ

]
= −F(ȳ, λ̄), (1.16)

based on a Jacobian approximation J̃(ȳ, λ̄) ≈ J(ȳ, λ̄) := ∂F
∂(y,λ) (ȳ, λ̄) and

where the function F(·) denotes the KKT right-hand side in Eq. (1.15). The
convergence of this scheme then follows the classical and well-known local
contraction result from [44, 82, 94, 252]. We use a particular version of this
theorem from [86], providing sufficient and necessary conditions for the existence
of a neighborhood of the solution where the Newton-type iteration converges.
For this purpose, we consider the full-step iteration

w̄+ = w̄ − J̃(w̄)−1F(w̄), (1.17)

26 FAST NONLINEAR MODEL PREDICTIVE CONTROL AND ESTIMATION

where the current primal-dual iterate w̄ := (ȳ, λ̄) is defined. We first present
a classical result from nonlinear systems theory [218], which we do not prove
here. Let ρ(P) denote the spectral radius, i.e., the maximum absolute value of
the eigenvalues for the square matrix P .

Lemma 1.25 (Linear stability analysis) We regard an iteration of the form
w̄+ = G(w̄) with G(·) a continuously differentiable function in a neighborhood
of a fixed point w? = G(w?). If the spectral radius of the Jacobian matrix
is smaller than one, ρ

(
∂G
∂w (w?)

)
< 1, then the fixed point is asymptotically

stable. More specifically, the iterates converge to w? with a q-linear convergence
rate with asymptotic contraction factor ρ

(
∂G
∂w (w?)

)
. On the other hand, if

ρ
(
∂G
∂w (w?)

)
> 1, then the fixed point is unstable and the iterations can move

away, even if the initial guess is arbitrarily close to w?.

We can apply this lemma to the Newton-type iteration G(w) = w−J̃(w)−1F(w),
based on the extra assumption that the Jacobian approximation J̃(·) is
continuously differentiable, in addition to being invertible. This assumption
is satisfied for an exact Newton method, for schemes based on fixed Jacobian
approximations as well as for the Gauss-Newton (GN) method for nonlinear least
squares optimization, which will be introduced further. We can now present
the main local contraction theorem.

Theorem 1.26 (Local Newton-type contraction) We consider the twice contin-
uously differentiable function F(y, λ) from Eq. (1.15) given Assumption 1.10
and the regular KKT point F(y?, λ?) = 0. We apply the Newton-type iteration
from Eq. (1.16), where the Jacobian approximation J̃(ȳ, λ̄) ≈ J(ȳ, λ̄) is assumed
to be continuously differentiable and invertible in a neighborhood of the solution.
If all eigenvalues of the iteration matrix have a modulus smaller than one, i.e.,
if the spectral radius

κ? := ρ
(
J̃(y?, λ?)−1J(y?, λ?)− 1

)
< 1, (1.18)

then this fixed point (y?, λ?) is asymptotically stable. In addition, the iterates
(ȳ, λ̄) converge linearly to the KKT point (y?, λ?) with the asymptotic contraction
rate κ? when initialized sufficiently close. On the other hand, if κ? > 1, then
the fixed point (y?, λ?) is unstable.

Proof. We apply Lemma 1.25 directly to the Newton-type iteration G(w) =
w − J̃(w)−1F(w), where w := (y, λ) denotes all the optimization variables.
First, we observe that w? = G(w?) holds, due to F(w?) = 0. We then compute

NONLINEAR PROGRAMMING METHODS 27

the Jacobian of G(·) at the fixed point w?:

∂G
∂w

(w?) = 1− ∂(J̃−1)
∂w

(w?)F(w?)︸ ︷︷ ︸
=0

−J̃(w?)−1 ∂F
∂w

(w?)

= 1− J̃(w?)−1J(w?),

where 1 denotes the identity matrix.

In summary, the spectral radius of the iteration matrix is a tight criterion for
local Newton-type convergence. If it is larger than one, the Newton-type method
diverges, while if it is smaller than one, the method converges. More advanced
convergence results, under weaker assumptions, can be found in [77, 82, 206].
Note that the exact Newton method from Eq. (1.15) has a locally quadratic
convergence rate [79, 82]. Even though Theorem 1.26 holds for any method
that satisfies the corresponding conditions, other Newton-type variants exist
that, for example, allow locally superlinear convergence [94, 143] based on
quasi-Newton Jacobian updates. In the case of optimal control for differential-
algebraic equations, even quadratic convergence rates have been shown for a
specific Newton-type optimization method with inexact derivatives in [175].

Remark 1.27 Results on global convergence will not be discussed throughout
this thesis, even though a lot of research has focused on globalization strategies
such as line search, trust-region or filter methods [39, 112, 232]. In the context
of embedded optimization where a good initial guess is typically available from the
previous iterate of the online algorithm, local convergence results and contraction
rates instead become more valuable in practice [90].

Inequality constrained optimization

In order to extend Newton-type optimization algorithms to the inequality
constrained case, one needs to decide on a way to treat these inequality
constraints in the KKT conditions (1.13). We briefly discuss two popular
classes of algorithms for nonlinear optimization: Interior Point (IP) methods
and Sequential Quadratic Programming (SQP).

Interior point or barrier methods are among the most powerful algorithms for
nonlinear optimization, especially for large-scale programming problems [232].
The main idea is to approximate the non-smooth complementarity condition in
Eq. (1.13e) by the smooth version νihi(y) = τ for i = 1, . . . , nineq and where
τ > 0 is typically referred to as the barrier parameter. The resulting perturbed
KKT system is subsequently solved for a sequence of positive barrier parameter

28 FAST NONLINEAR MODEL PREDICTIVE CONTROL AND ESTIMATION

values for which τ → 0. The corresponding primal and dual solutions ȳ(τ),
λ̄(τ) and ν̄(τ) can then be shown to locally coincide with the primal-dual
central path, which converges to the solution of the original KKT system (1.13).
This approach can also be interpreted as solving the KKT conditions of a
barrier problem that handles the inequality constraints by means of a barrier
function, and this for a sequence of positive parameter values. As the name
suggests, the iterates of an IP method remain in the strict interior of the feasible
region even though an infeasible start is typically possible based on a slack
reformulation. More information on this family of optimization algorithms
can be found in [39, 232, 327]. A widely used general-purpose IP method is
implemented for sparse NLPs in the open-source code Ipopt [317, 318].

Unlike the smoothening technique of interior point methods, Sequential
Quadratic Programming (SQP) is based on sequentially approximating the NLP
by a quadratic subproblem. The combinatorial complexity of determining the
correct active set then needs to be addressed for each simpler subproblem. This
approximation is typically done using a convex Quadratic Programming (QP)
subproblem. But generalizations of this idea exist under the collective name
of Sequential Convex Programming (SCP) as discussed in [304, 305], including
Sequential Semidefinite Programming (SSDP) in [120, 300]. One important
motivation for SQP methods is based on the observation that for a fixed
active set, Newton iterations on the KKT optimality conditions (1.15) can be
interpreted as solving equality constrained QP approximations of the original
NLP [232]. Unlike IP techniques, which do not easily benefit from a good
initial guess [296], the natural warm-starting capabilities of SQP methods make
them especially popular for embedded optimization [90]. This thesis therefore
focuses on the family of SQP methods for nonlinear programming and a compact
overview is provided next.

1.3.3 Sequential Quadratic Programming

An SQP method applied to the general NLP in Eq. (1.10) proceeds in each
iteration by solving the following QP subproblem

min
∆y

1
2∆y>H∆y +∇yψ(ȳ)>∆y (1.19a)

s.t. 0 = c(ȳ) + cy(ȳ)∆y | λQP (1.19b)

0 ≥ h(ȳ) + hy(ȳ)∆y | νQP, (1.19c)

where cy(ȳ) := ∂c
∂y (ȳ) and hy(ȳ) := ∂h

∂y (ȳ) denote the constraint Jacobian
matrices. In the case of an exact SQP method, the matrix H = ∇2

yL(ȳ, λ̄, ν̄)

NONLINEAR PROGRAMMING METHODS 29

denotes the Hessian of the Lagrangian. The current primal and dual variables
are updated based on the solution of the QP (1.19) as follows

ȳ+ = ȳ + α∆y

λ̄+ = λ̄+ α(λQP − λ̄)

ν̄+ = ν̄ + α(νQP − ν̄),

where the step size α is typically determined using a globalization strategy [232].
Throughout this thesis, we omit such globalization techniques in the context
of online algorithms for embedded optimization (see Remark 1.27) and we
therefore consider α = 1. As mentioned earlier, we have a special focus on
SQP methods for real-time optimal control applications because of their warm-
starting capabilities. In addition, SQP methods satisfy linearized versions of the
inequality constraints (1.19c) in each iteration which will show to be especially
important within online algorithms for Nonlinear MPC in Section 1.5. In what
follows, we provide a compact overview of Hessian approximation techniques
and local convergence results for SQP methods.

Hessian approximation techniques

Exact Hessian based SQP methods rely on the computation of the second
order derivatives H = ∇2

yL(ȳ, λ̄, ν̄) which can be computationally expensive in
general [268]. Many popular variants of SQP methods are therefore based
on Hessian approximation techniques that often result in a slower local
convergence rate but this at a considerably lower computational cost per
iteration, typically resulting in a reduction of the overall computation time.
An important class of such SQP algorithms uses exact constraint Jacobians
but approximates the Hessian matrix H, using an update formula based on
first order derivative information [255]. These schemes are better known as
Quasi-Newton methods and the most widely used formula is the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update [232]. Quasi-Newton methods are
very successful for nonlinear optimization, e.g., in the form of the software
packages SNOPT [133] and MUSCOD-II [209]. Based on our experience, these
techniques are however less recommendable in the context of real-time optimal
control due to their fluctuating convergence rate. For example, after a state
jump due to external noise, the Hessian approximation can be poor such that
many BFGS updates are needed to recover a reasonable convergence rate. This
is in conflict with the real-time or deterministic run-time requirements as they
will be specified in Section 1.5.

30 FAST NONLINEAR MODEL PREDICTIVE CONTROL AND ESTIMATION

Another popular Hessian approximation technique is used in the Constrained
or Generalized Gauss-Newton (GGN) method as presented in [48, 292]. This
scheme is applicable to optimization problems with a (nonlinear) least squares
type objective ψ(y) = 1

2‖R(y)‖22 which is quite common in optimal control
problems. The function R(·) is often referred to as the residual function, since
it typically denotes an error or misfit [48]. The GGN method approximates the
Hessian of the Lagrangian using the matrix

HGN(ȳ) = Ry(ȳ)>Ry(ȳ) ≈ ∇2
yL(ȳ, λ̄, ν̄), (1.20)

where Ry(ȳ) := ∂R
∂y (ȳ) denotes the Jacobian of the residual at the current

optimization values ȳ. Note that the Gauss-Newton Hessian approximation
HGN(y) does not depend on the dual variables and is therefore also called a
multiplier-free approach. This is an important advantage in practice, because it
means that its performance does not depend on the availability of a good initial
guess for these Lagrange multipliers. The resulting objective (1.19a) in the QP
subproblem reads as

1
2‖R(ȳ) +Ry(ȳ)∆y‖22 = 1

2∆y>Ry(ȳ)>Ry(ȳ)∆y +R(ȳ)>Ry(ȳ)∆y + constant

= 1
2∆y>HGN∆y +∇yψ(ȳ)>∆y + constant.

The GGN method is based on the observation that the matrix in Eq. (1.20) forms
a good Hessian approximation, as long as the residual evaluations R(·) remain
small or the problem functions have small second order derivatives [232]. This is
typically the case in parameter estimation problems or tracking formulations of
optimal control, which are two important application examples [48]. In case of
a perfect fit, i.e., zero residuals at the solution, a locally quadratic convergence
rate can even be observed. In all other situations, the GGN method results in a
typically (fast) linear convergence rate.

Subproblem convexification

For a regular KKT point, based on the SOSC condition from Theorem 1.19, the
Hessian of the Lagrangian is locally positive definite on the null space of the
active constraints. This, however, does not mean that each QP subproblem (1.19)
will be convex when initializing the SQP method further away from this KKT
point. In general, regularization or convexification techniques are therefore used
to result in convex QP subproblems [133, 134, 232]. Both of the aforementioned
Hessian approximation techniques allow one to avoid this issue in a rather
convenient way. The Gauss-Newton Hessian approximation is positive definite

NONLINEAR PROGRAMMING METHODS 31

by definition, if ∂R∂y has full rank, and therefore does not require regularization.
Quasi-Newton methods often rely on a modified update formula in order to
maintain a positive definite Hessian approximation as discussed in [232]. In
case of optimal control problems such as Eq. (1.8) for direct multiple shooting,
it is important to apply an efficient convexification technique that additionally
preserves the sparsity structure of the problem as proposed in [310].

Alternative inexact SQP methods

In addition to Quasi-Newton and Gauss-Newton methods, even fixed Hessian
approximations are sometimes used in practice because of computational
advantages. An SQP scheme with a fixed Hessian approximation is equivalent
to a preconditioned proximal gradient method with fixed step size [230, 336]
as discussed in [193]. Another important family of algorithms relies on
the approximation of the constraint Jacobian matrices in addition to the
Hessian approximation technique, in order to further reduce the computational
effort [49, 94, 324]. The SQP subproblem then reads as

min
∆y

1
2∆y>H∆y + a(ȳ, λ̄, ν̄)>∆y (1.21a)

s.t. 0 = c(ȳ) +A∆y | λQP (1.21b)

0 ≥ h(ȳ) +B∆y | νQP, (1.21c)

based on the Jacobian approximations A ≈ cy(ȳ) and B ≈ hy(ȳ). These
methods typically rely on adjoint derivative computation techniques [141] to
efficiently evaluate the modified gradient a(ȳ, λ̄, ν̄) = ∇yL(ȳ, λ̄, ν̄)−A>λ̄−B>ν̄
in the QP objective (1.21a). This gradient correction is needed in order to
allow local convergence to solutions of the original NLP [49, 94, 324]. These
algorithms will therefore be referred to as adjoint based inexact SQP methods,
as discussed further as part of Chapter 7.

Local convergence results

This thesis will focus on local convergence results for equality constrained
optimization problems such as those in Theorem 1.26. This is motivated by
the following standard result on the local stability of the active set within SQP
type methods [49, 52, 232, 284].

Theorem 1.28 (Stability of QP active set) Consider a local minimizer
(y?, λ?, ν?) of the NLP (1.10), for which LICQ and strict complementarity

32 FAST NONLINEAR MODEL PREDICTIVE CONTROL AND ESTIMATION

holds, and the Hessian matrix H in the QP subproblem is positive definite on
the nullspace of the linearized active constraints. If a current iterate (ȳ, λ̄, ν̄) is
sufficiently close to the minimizer (y?, λ?, ν?), then the solution of the QP (1.19)
has the same active set as the original NLP.

The fact that the active set remains stable near a solution allows us to study local
convergence properties of SQP methods for a given active set. This explains why
exact Hessian schemes locally converge quadratically, Quasi-Newton methods
typically result in a superlinear convergence while other techniques such as Gauss-
Newton methods converge linearly based on standard Newton-type convergence
theory [232]. This is also the reason why our presentation in Chapter 6 and 7
considers equality constrained optimization problems when discussing local
Newton-type convergence. Even though Theorem 1.28 is crucial to locally
obtain the equivalence of the SQP method with a Newton-type algorithm, the
region of full step convergence is typically much larger than the neighborhood
where the QP active set is always the same [49].

1.4 Tailored Convex Solvers for Optimal Control

In the previous section, we gave an overview on Nonlinear Programming (NLP)
and the popular Newton-type optimization algorithms. When applying an SQP
method to the multiple shooting type OCP in Eq. (1.8), each iteration solves
the following structured QP subproblem

min
∆X,∆U

N−1∑
i=0

1
2

[
∆xi
∆ui

]>
Hi

[
∆xi
∆ui

]
+ g>i

[
∆xi
∆ui

]

+ 1
2∆x>NHN∆xN + g>N∆xN (1.22a)

s.t. 0 = ∆x0 −∆x̂0, (1.22b)

0 = ci + ∂φ(x̄i, ūi)
∂(xi, ui)

[
∆xi
∆ui

]
−∆xi+1, i = 0, . . . , N − 1, (1.22c)

0 ≥ hi + ∂h(x̄i, ūi)
∂(xi, ui)

[
∆xi
∆ui

]
, i = 0, . . . , N − 1, (1.22d)

0 ≥ r + ∂r(x̄N)
∂xN

∆xN , (1.22e)

TAILORED CONVEX SOLVERS FOR OPTIMAL CONTROL 33

where X̄ = [x̄>0 , . . . , x̄>N]> and Ū = [ū>0 , . . . , ū>N−1]> denote the current state
and control trajectory which form the linearization point for the problem
functions. In addition, we define the vectors gi := ∇l(x̄i, ūi) and gN := ∇m(x̄N),
∆x̂0 = x̂0 − x̄0, ci := φ(x̄i, ūi) − x̄i+1, hi := h(x̄i, ūi) and r := r(x̄N). The
terminal cost matrix HN := ∇2

xm(x̄N) is defined, while the stage Hessian blocks
Hi for i = 0, . . . , N − 1 depend on the used approximation technique. The
Lagrangian of the NLP in (1.8) is given by

L(X,U,Λ, ν) =
N−1∑
i=0

l(xi, ui) +m(xN) + λ>−1 (x0 − x̂0) + ν>Nr(xN)

+
N−1∑
i=0

λ>i (φ(xi, ui)− xi+1) +
N−1∑
i=0

ν>i h(xi, ui),

(1.23)

where λi for i = 0, . . . , N − 1 denote the multipliers corresponding to the
continuity constraints (1.8c), λ−1 denotes the multiplier of the initial value
condition (1.8b) and νi for i = 0, . . . , N denote the multipliers corresponding
the inequality constraints in (1.8d) and (1.8e). In case of an exact Hessian
SQP method, these block matrices correspond to the following second order
derivatives Hi := ∇2

(xi,ui)L(X̄, Ū , Λ̄, ν̄). In case of the common (nonlinear) least
squares type objective l(xi, ui) = 1

2‖R(xi, ui)‖22, the Gauss-Newton Hessian
approximation reads HGN,i := ∇R(x̄i, ūi)∇R(x̄i, ūi)>.

The QP subproblem in Eq. (1.22) has a particular sparsity structure, such that
general-purpose sparse algorithms are typically not recommendable for real-time
optimal control applications as discussed in more detail in [121, 123]. There are
two common approaches for solving the band structured QP subproblems (1.22)
arising in optimal control. The first approach exploits the sparsity structure
of the problems by employing tailored direct linear algebra routines within
the convex QP solver, while the second eliminates all state deviations via the
continuity constraints of Eq. (1.22c) and solves instead a dense QP of significantly
smaller dimension. The state elimination is better known as condensing as
proposed by [51]. As we will show, these approaches can be competitive and
they both benefit from rather recent research.

1.4.1 Direct Sparsity Exploitation

As mentioned earlier, convex solvers exist that specifically tackle the sparse
block banded structure of the multi-stage QP for direct optimal control. The
main advantage of these sparsity exploiting solvers is that their computational
complexity can typically scale linearly in the horizon length N due to the use of

34 FAST NONLINEAR MODEL PREDICTIVE CONTROL AND ESTIMATION

tailored linear algebra routines [274, 313]. One popular example is the FORCES
code generation framework [97], which exports efficient primal-dual interior
point solvers. Note that extensions of these embedded IP techniques can be
made to more general convex optimization problems such as quadratically
constrained QPs (QCQPs) and second-order cone programs (SOCP) [95].
Another implementation of this structure exploiting IP method for embedded
optimization can be found in the HPMPC package [123]. The latter uses improved
Riccati recursion based solvers to treat the linear-quadratic (LQ) control
problems at each iteration [121]. An efficient implementation of a structure
exploiting, primal-barrier IP method can be found in [323].

The dual Newton strategy [117] is another efficient, sparsity exploiting method
to solve the multi-stage QP (1.22) as implemented in the qpDUNES software.
This algorithm is based on a dual decomposition approach in the equality
constraints, in combination with a non-smooth Newton method on the dual
problem. The resulting two-level optimization problem is unconstrained in
the dual variables and separable in the primal stage variables, resulting in a
naturally parallelizable approach. Another important advantage of the dual
Newton strategy over interior point methods is that it can benefit from warm-
starting in the context of embedded optimization [115].

In addition to the aforementioned Newton-type algorithms, also the family
of first-order gradient methods [230] has been shown to provide desirable
properties for fast embedded optimization [135, 182, 245, 283]. More specifically,
these techniques are typically shown to be relatively easy to code, with a low
computational cost per iteration which also scales linearly in the horizon length
and with generally good warm-starting capabilities [282]. In addition, for the
solution of QPs, these first-order methods have the advantage over general
Newton-type algorithms that the required number of iterations to reach a given
accuracy can typically be tightly estimated which allows a priori computational
complexity certification [230]. Note that this class of algorithms includes the
alternating direction method of multipliers (ADMM) [53] and other operator
splitting methods that have been shown to be quite favorable for fast MPC
applications [234, 299]. For example, efficient software implementations can be
found in QPgen [135], POGS [243] and FiOrdOs [306]. These splitting techniques
have recently even been extended to the non-convex case, tailored to real-time
NMPC [172].

TAILORED CONVEX SOLVERS FOR OPTIMAL CONTROL 35

1.4.2 Condensing and Expansion

As mentioned earlier, the continuity constraints ∆xi+1 = ci + ∂φ(x̄i,ūi)
∂(xi,ui)

[
∆xi
∆ui

]
for i = 0, . . . , N−1 can be used to numerically eliminate the state variables from
the QP in the form of a condensing procedure [51]. Although the subproblem
can then be solved in the reduced variable space consisting of the control inputs
Nnu instead of the full space of dimension (N + 1)nx +Nnu, the current state
variables in X̄ are still updated in each SQP iteration using an expansion step [8].
The fact that the NLP iterations are still performed in the full variable space,
is the crucial difference with using a single shooting method directly in the
space of the control variables. Note that the condensed, small scale QP can be
solved by an efficient, dense linear algebra solver such as qpOASES which is a
parametric active-set method [109].

The computational complexity analysis of condensing has recently been revisited
in [19, 25, 122]. These novel results have shown that the corresponding
computational cost can be made asymptotically of order O(N2), including
the factorization cost as discussed in [25, 122]. Employing the condensing
technique is known to perform very well for relatively short horizon lengths.
But in case of longer horizon lengths N , it can be favorable to use one
of the aforementioned structure exploiting solvers which typically have an
asymptotically linear complexity O(N). Comparative simulation results can
be found in [313]. Classical condensing is generally a good approach in case
of many state variables nx > nu, while complementary condensing [189] was
proposed as a competitive alternative in case of many controls nu > nx.

1.4.3 Block Condensing: optimal level of sparsity

Whether the sparse or condensed formulation is more appropriate for a certain
problem depends mainly on the horizon length and the ratio between number
of states and controls [313]. Recently, a hybrid method that tries to combine
the advantages of both approaches has been proposed [24]. The idea is based
on collecting multiple stages of the QP subproblem, e.g., into groups consisting
each of M consecutive stages. For each of these Ñ = N

M groups of stages
or blocks, one can then eliminate all but the first state variable based on a
condensing procedure carried out independently within each block. Note that
this approach is naturally parallelizable since the condensing can be performed
for each block in parallel. This technique has been referred to as either partial
condensing [24, 121] or block condensing [115, 192] in the literature.

36 FAST NONLINEAR MODEL PREDICTIVE CONTROL AND ESTIMATION

Depending on the structure exploiting algorithm that is used to solve the multi-
stage QP (1.22), there is a specific trade-off to be made in the computational
complexity analysis related to the dimension of the block variables nx +Mnu
and the total number of blocks Ñ = N

M . By varying the block size M , one can
directly impact this trade-off such that an optimal block size can typically be
found, resulting in an optimal level of sparsity. A detailed study on this optimal
choice of the block size for Riccati based algorithms to solve the linear-quadratic
control problems can be found in [24, 121]. It has however been shown that the
previously mentioned dual Newton strategy can often profit even more from
this block condensing approach, because of the effect that an increased block
size has on the number of dual Newton iterations [192].

Let us briefly comment on this combination of the dual Newton strategy, as
implemented efficiently in the solver qpDUNES [117], together with the block
condensing technique as implemented in the ACADO code generation tool for
real-time NMPC [177] and presented in more detail in [192]. Figure 1.2 was
taken as a highlight from [192], which illustrates the computational trade-off
when varying the block size M . It can be seen in the upper right part of the
figure that the solution of each subproblem, which comprises nx +Mnu block
variables, naturally becomes more expensive for increasing values of M . At the
same time, the number of subproblems Ñ = N

M decreases and typically also the
average number of dual Newton iterations as shown in the upper left part of the
figure. As a result, the optimal block size can be observed to be about M = 10
for the overall computation time in the bottom part of Figure 1.2 on this specific
chain mass control example [192]. Because of a similar effect of the block size
on the convergence of the outer iterations, this blocking technique has also
been shown beneficial for the augmented Lagrangian based alternating direction
inexact Newton (ALADIN) method [178] to directly tackle the nonlinear OCP
problem in Eq. (1.8) as presented in [194].

1.5 Real-Time Algorithms for MPC and MHE

In the past few sections, we have provided a compact overview on the different
algorithmic tools that can be used to implement dynamic optimization based
control and estimation techniques. Figure 1.3 repeats the necessary problem
transformations to solve the parametric, continuous time OCP in Eq. (1.6). For
this purpose, a direct multiple shooting method can be used to parameterize the
continuous time problem resulting in a finite dimensional NLP in Eq. (1.8). The
nonlinear optimization problem can then be solved using an SQP-type algorithm.
This section briefly introduces Model Predictive Control (MPC) and Moving
Horizon Estimation (MHE) to respectively compute the next control input or

REAL-TIME ALGORITHMS FOR MPC AND MHE 37

10
0

10
1

N
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

2

2.5

3

3.5

4
Average number of iterations

10
0

10
1

10
2

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
]

0

0.5

1

1.5

2
Average time per iteration, per block

Block size
10

0
10

1
10

2

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
m

s
]

8

10

12

14

16

18

20
(Average time per iteration, per block)x(Average number of iterations)x(Number of blocks)

Figure 1.2: Block condensing with qpDUNES: trade-off in choosing the block size
M for the optimal control of a chain of 4 masses with horizon length N = 200.

MPC/MHE
sampling time

solve parametric OCP
OCP in Eq. (1.6)

multiple shooting (see Section 1.2.2)
NLP in Eq. (1.8)

SQP-type method (see Section 1.3.3)
QP in Eq. (1.22)

Figure 1.3: Overview of an SQP-type numerical treatment of multiple shooting
based real-time optimal control.

state estimate for the system of interest. Both approaches are based on real-time
dynamic or embedded optimization within a receding horizon framework. We
introduce the corresponding online algorithms for optimal control, with a focus
on the SQP based real-time iteration (RTI) scheme.

38 FAST NONLINEAR MODEL PREDICTIVE CONTROL AND ESTIMATION

1.5.1 Model Predictive Control

In order to carry out a certain control task, one could formulate and solve a
corresponding optimal control problem, e.g., of the form in Eq. (1.6) and simply
apply the computed trajectory of control inputs in open loop to the system.
In an ideal situation, the result of this implementation would be optimal by
definition, according to the provided OCP formulation. For any real-world
application, one would however have to deal with many uncertainties, such as
modeling errors, unforeseen external disturbances and imperfect information
regarding the current state of the system. One way to deal with this challenge
is by instead using robust optimal control formulations which optimize the
control trajectory to be applied, under the consideration of the various possible
worst-case scenarios. More information on this active topic of research can be
found in [31, 173, 312] and references therein. Instead, this thesis focuses on
closing the loop with feedback control, where one observes the system in order
to correct the control actions online [114].

Model Predictive Control (MPC) is an advanced dynamic optimization based
strategy for feedback control, that can be used to control a large class of
systems [151, 257, 277]. The increasing popularity especially of Nonlinear
MPC (NMPC) is due to its ability to directly handle nonlinear dynamics,
constraints and objectives which allows one to naturally translate design
requirements into mathematical statements. The scheme is based on the
solution of a parametric OCP at each sampling instant, for which a quite
standard formulation was provided earlier in (1.6). This optimization problem
is parametric, since it depends on the current state of the system x̂0 that can be
either measured directly or estimated as will be discussed further. The model
in Eq. (1.6c) should correspond to an accurate representation of the system
dynamics of interest, i.e., it can be based on a set of ODE equations (1.1) or an
index-1 DAE system (1.4).

Note that the objective in Eq. (1.6a) consists of the stage cost `(·) and the
terminal cost m(·), for which the following tracking formulation is quite common∫ Tp

0

1
2‖R(t, x(t), u(t))‖22 dt+ 1

2‖RN (x(T))‖22, (1.24)

based on a nonlinear least squares type cost and where Tp will be further
referred to as the prediction horizon length. As mentioned earlier, such
an objective function typically results in computationally more tractable
optimization problems because Gauss-Newton based Hessian approximations
can be used. This is in contrast with more general economic MPC formulations
where the stage cost can, for example, represent a minimization of risk or a
direct maximization of profit [278]. More specifically, the following tracking

REAL-TIME ALGORITHMS FOR MPC AND MHE 39

type cost function is quite common for practical formulations of MPC∫ Tp

0

1
2
(
‖x(t)− xref(t)‖2Q + ‖u(t)− uref(t)‖2R

)
dt+ 1

2‖x(T)− xref(T)‖2P ,
(1.25)

where the deviation from a specific reference state and control trajectory is
directly penalized. The corresponding weighting matrices Q ∈ Snx

++, R ∈ Snu
++

and P ∈ Snx
++ are important tuning parameters in the resulting MPC formulation.

For simplicity, these cost matrices are typically chosen to be constant even
though they could also be time-varying.

In order to implement the MPC scheme, one additionally needs to decide on a
sampling frequency with which the optimal control problems are solved. The
sampling time Ts should be short enough with respect to the fast dynamics
in the process to be controlled; while it should be long enough to allow the
necessary computations to be carried out in time. The resulting receding horizon
control strategy can be summarized as follows:

1. get the current state of the system x̂0 from the estimator

2. solve (approximately) the parametric optimization problem in (1.6)

3. apply the optimal control solution u(t), ∀t ∈ [0, Ts] to the system

4. repeat step 1-3 after the fixed sampling time of Ts

This concept is additionally illustrated in Figure 1.4 which shows the state
and control trajectories at two consecutive sampling time points. The figure
demonstrates how the use of the current state estimate introduces feedback into
the process and therefore closes the loop. It can be observed in Figure 1.4 that
the planned control trajectory and the corresponding predicted states change
from one time instant to the next, because of the deviation of the state estimate
from the model based prediction. Note that this procedure can be simplified
further when the control discretization in Section 1.2.2 is designed such that
step 3 corresponds directly to applying the first control input in the discrete
time trajectory. For some applications, it can also be useful to implement
a shrinking horizon version of the above scheme, e.g., in batch operation of
chemical engineering processes [257].

40 FAST NONLINEAR MODEL PREDICTIVE CONTROL AND ESTIMATION

Figure 1.4: Illustration of the receding horizon principle: model predictive
control based on the successive solution of optimal control problems.

Because practical implementations of NMPC employ a finite prediction horizon
length Tp, it is important to investigate the stability of the resulting feedback
control strategy. In addition to the computational attractiveness of a tracking
type MPC scheme based on the objectives in either (1.24) or (1.25), these
positive definite formulations also considerably simplify the nominal and robust
stability analysis of the resulting closed-loop system [17, 151, 277]. Techniques
to guarantee stability are typically based on the use of an appropriate terminal
ingredient in the form of an (in-)equality constraint and/or a corresponding
terminal cost [68]. Other stability results use problem formulations with a
sufficiently long control horizon [149] or an additional prediction horizon and a
locally stabilizing control law [231]. Recent extensions of such results have also
been proposed towards stability of economic MPC formulations [18, 87, 150, 228],
even though these topics are outside the scope of this thesis. An alternative
approach is based on the design of a tracking cost that locally approximates
the economic MPC formulation with the corresponding advantages regarding
stability guarantees and the used algorithms, as discussed in [329, 330].

1.5.2 Moving Horizon Estimation

The performance of any feedback control strategy is strongly affected by the
accuracy with which the current state of the system can be obtained. In many
practical applications, the full state of the system cannot be measured directly
such that the design of an observer or state estimator becomes crucial [225].
Note that in addition to the current state of the system, also other system
parameters can often be estimated online to aid the control task. One way
to tackle this estimation task is by formulating it as a dynamic optimization
problem. Moving Horizon Estimation (MHE) considers an estimation horizon
of fixed length Te in the past, on which the deviation of the model based

REAL-TIME ALGORITHMS FOR MPC AND MHE 41

predictions from the actual measurements can be directly minimized [273].
Similar to predictive control, MHE can naturally and optimally take constraints
into account. While MPC can be seen as an extension of the Linear Quadratic
Regulator (LQR), MHE can be seen as an extension of the Kalman filter for
constrained nonlinear systems [276]. In many cases, MHE can outperform an
Extended Kalman Filter (EKF) at an increased computational cost [161].

Figure 1.5: Illustration of the estimation horizon Te in MHE and the prediction
horizon Tp in MPC, and the corresponding state and control trajectories at a
given time point (inspired by [313]).

The dynamic optimization problem that needs to be solved is nearly a dual of
the problem in MPC, because it uses the same optimal control structure even
though MPC looks into the future while MHE provides an estimate based on
measurements in the past. The relation between these two concepts is illustrated
in Figure 1.5, showing both the prediction and estimation horizon with respect
to a specific time point. The main difference in the optimal control formulation
for MHE is that the initial state is free, such that no constraint like Eq. (1.6b)
is necessary. The control inputs over the past estimation horizon are already
known to the estimator and therefore also do not need to be optimized further.
Let us additionally introduce disturbances w(t) to account for a plant-model
mismatch, resulting in the following DAE formulation

0 = f(ẋ(t), x(t), z(t), u(t), w(t)), (1.26)

where the control input u(t) can be considered a known, time-varying parameter.
Based on this extended dynamic model, the following continuous time MHE

42 FAST NONLINEAR MODEL PREDICTIVE CONTROL AND ESTIMATION

problem formulation could be proposed

min
x(·), w(·)

∫ Te

0

1
2‖R(t, x(t), u(t), w(t))‖22 dt+ 1

2‖R0(x(0))‖22 (1.27a)

s.t. 0 = f(ẋ(t), x(t), z(t), u(t), w(t)), ∀t ∈ [0, Te], (1.27b)

0 ≥ h(x(t), u(t), w(t)), ∀t ∈ [0, Te], (1.27c)

where the estimate for the current state of the system is provided by x(Te)
at the end of the horizon. Note that practical MHE applications sometimes
treat the controls as additional degrees of freedom, using the applied values as
measurements in order to account for actuator uncertainty.

Most MHE formulations are based on a convex function to penalize the mismatch
between the real measurements and the model based predictions, such as the
least squares objective formulation in Eq. (1.27a). In order to increase robustness
of the estimates against measurement outliers, the so-called Huber penalty [180]
can sometimes be used instead as proposed in [130]. A discussion on how to
efficiently deal with this alternative cost function in optimization can be found
in [54, 144, 193]. Note that the objective in (1.27a) includes an arrival cost
term [275], defined by the function R0(·), which is important for the stability
analysis of the resulting MHE scheme [277]. The conceptual idea of this arrival
cost is to summarize all prior information that cannot be considered because of
the finite length of the estimation horizon. This can be interpreted somewhat
similar to the purpose of the terminal cost in MPC, which summarizes the
behaviour of the system past the prediction horizon. Practical implementations
to update the arrival cost are typically based on variants of an Extended Kalman
Filter (EKF), as discussed in [197, 200].

It is important to note that the introduction of path constraints (1.27c) in MHE
should be done carefully. Even when the same constraints are imposed in the
MPC formulation, it is still possible in practice for the real system to violate
them, e.g., due to unknown disturbances. In such a case, one does not want
MHE to be negatively biased by these constraints but instead it should correctly
estimate these violations. However, such constraints can still be included in the
problem formulation, e.g., to avoid unphysical behaviour in the model based
predictions. For more information on this and other MHE related topics, the
reader is referred to [273, 276]. Note that the disturbances w(t) in the MHE
problem (1.27) take a similar role as the control inputs for predictive control.
From an algorithmic point of view, we can therefore refer exclusively to the
optimization problem in (1.6) to discuss direct optimal control methods and
the corresponding online algorithms.

REAL-TIME ALGORITHMS FOR MPC AND MHE 43

1.5.3 Real-Time Considerations

It would be the dream in nonlinear MPC and MHE to obtain the solution to
the next OCP instantly at each sampling point, which is of course impossible
because of computational delays. There are, however, online algorithms available
to deal with this issue such as described in [13, 183, 190, 211, 235]. A survey
and classification of some of these algorithms can be found in [90], on which also
this discussion is mainly based. Let us mention some of the common ingredients
that are used for real-time optimal control:

• The successive solution of rather similar optimal control problems allows
one to effectively initialize the algorithm, using the (approximate) solution
at the previous sampling instant. Many continuation techniques are based
on sensitivity analysis [61] as will be discussed further.

• It can be beneficial to do as many computations offline as possible and
this can go from code optimizations and precomputations to the explicit
solution of the control law for small-scale problems [30].

• Instead of solving the MPC problem starting at the current state of the
system, it can be a good idea to compensate the computational delay by
predicting the state at the time when the problem will be solved [111].

• The necessary computations in each sampling time can be divided into a
preparation and a feedback phase [88]. The preparation phase is typically
the most CPU intensive one and the feedback phase quickly delivers an
approximate solution, once the current state of the system is available.

• Instead of performing iterations for a problem that is getting older and
older, it is also possible to work with the most recent information in each
new iteration. This idea of postponing computations and allowing the
algorithm to converge over time is used, e.g., in [88, 212, 235].

More specifically, we are interested in online algorithms for embedded
optimization which combine the following key properties:

• deterministic: In order to guarantee real-time feasibility, it is important
to allow a close to deterministic runtime for the used algorithms. For
example, this can rely on a certification of the computational complexity
as discussed in [282] or the strict limitation of adaptivity in embedded
numerical simulation schemes as discussed in Chapter 2.

• parallelizability: Since multi-core platforms become more and more
the standard also for embedded control hardware, parallelizability of the

44 FAST NONLINEAR MODEL PREDICTIVE CONTROL AND ESTIMATION

proposed algorithms plays a big role. Even though it is a recurring topic
throughout this thesis, extra focus on this aspect is made in Chapter 5.

• structure exploitation: Related to the earlier mentioned preparation
and optimization of the online computations for embedded optimization,
it is important to identify and exploit any common problem structures.
One example of this is discussed in Chapter 4 and the concept is directly
in line with the principle of automatic code generation in Chapter 8.

Further, we will present the online optimization framework of the Real-Time
Iteration (RTI) scheme [89] based on Sequential Quadratic Programming (SQP)
which allows one to combine many of the properties above.

1.5.4 Continuation Methods

In Nonlinear MPC, a sequence of optimal control problems with different initial
values x̂[0]

0 , x̂
[1]
0 , . . . needs to be solved. For the transition from one optimization

problem to the next, it is beneficial to take into account the fact that the optimal
solution depends almost everywhere differentiably on x̂0. Using the concept
of parametric NLP sensitivities, one can design a predictor step to obtain a
good guess for the solution of the next problem. This is the general idea behind
a numerical continuation method as discussed in more detail in [16, 90]. The
solution manifold has smooth parts whenever the active set does not change,
but non-differentiable points occur where the active set changes [152]. After
linearizing at such a point in the context of a nonlinear IP method, a simple
tangential predictor would lead to a relatively bad approximation. One remedy
would be to increase the path parameter τ , which decreases the nonlinearity but
it comes at the expense of generally less accurate solutions. Such a tangential
predictor is, for example, used in the C/GMRES method presented in [235], the
advanced step NMPC controller [333] and a more recent decomposition based
algorithm for distributed NMPC [172].

One can deal with these active set changes more naturally in an SQP type
framework by the following procedure proposed and analyzed in [88, 304, 332].
First, the parameter x̂0 needs to enter the NLP linearly which is automatically
the case for a simultaneous OCP formulation such as in Eq. (1.8). The
optimization problem needs to be addressed using an exact Hessian based SQP
method [232]. Finally, the solution trajectories for the current problem in x̂[k]

0
are used as initial guess to formulate and solve the SQP subproblem for the new
parameter value x̂[k+1]

0 . Note that shift initialization strategies are typically used
to account for the horizon moving forward in time [38, 93, 212]. The resulting
generalized tangential predictor can work across active set changes [90] and is

REAL-TIME ALGORITHMS FOR MPC AND MHE 45

also referred to as initial value embedding [88]. This alternative continuation
strategy is used in the RTI scheme [89] as well as the multi-level iterations [49],
which are presented next. Note that in practical NMPC applications, an
approximate variant of this tangential predictor can be used, e.g., based on a
Gauss-Newton Hessian approximation.

1.5.5 Real-Time Iterations

Based on the previous discussion of online algorithms for Nonlinear MPC
and corresponding continuation methods to exploit the similarity between
subsequent dynamic optimization problems, we finally introduce the RTI scheme
as presented in [88, 89]. The method is based on SQP (see Section 1.3.3) to
iteratively solve the direct multiple shooting OCP in Eq. (1.8). Since it is an
online algorithm that avoids performing iterations for a problem that is only
getting older, each iteration attempts to use new information from the system.
This results in one SQP type iteration per sampling time for the RTI scheme,
including either new measurements in the case of MHE or a new state estimate
in the case of MPC. The standard implementation is based on the Generalized
Gauss-Newton (GGN) method for least squares type objectives [48], as presented
in Algorithm 1. Note that extensions of this approach have been proposed,
including Jacobian approximations [49] or even second order sensitivities [268]
(see Chapter 3). In the latter case, it is important to include sparsity preserving
regularization techniques as described in [310].

46 FAST NONLINEAR MODEL PREDICTIVE CONTROL AND ESTIMATION

Algorithm 1 Real-Time Iteration (RTI) scheme using Gauss-Newton

Input: initial guess X [0] = (x[0]
0 , . . . , x

[0]
N), U [0] = (u[0]

0 , . . . , u
[0]
N−1), k = 0

while true do
Preparation phase

1. Call an integrator to obtain the results φ(x[k]
i , u

[k]
i) and their first

order sensitivities ∂φ(x[k]
i
,u

[k]
i

)
∂(xi,ui) for i = 0, . . . , N − 1 (see Chapter 2).

2. Linearize the path constraints as in (1.22) and evaluate the Gauss-
Newton Hessian blocks HGN,i = ∇R(x[k]

i , u
[k]
i)∇R(x[k]

i , u
[k]
i)>.

3. Optional: one can apply condensing to eliminate the state variables
and prepare the dense QP as described in Section 1.4.2.

4. Wait until the current state estimate x̂0 arrives.

Feedback phase
5. Solve the structured QP subproblem in (1.22), apply the full SQP

step X [k+1] = X [k] + ∆X, U [k+1] = U [k] + ∆U and send the new
control input u[k+1]

0 to the process.
6. Increment k and shift the trajectories X and U forward in time.

end while

The first important property to observe in Algorithm 1 is that the computations
in each iteration are divided into a preparation and a feedback phase [88]. The
typically more CPU intensive preparation phase is performed with a predicted
state, before the current state estimate is even available. This part of the
algorithm is naturally parallelizable, because each linearization for i = 0, . . . , N−
1 in steps 1-2 can be done independently and therefore in parallel. Once the
value x̂0 becomes available, the feedback phase quickly delivers a solution guess
to the new problem by solving the prepared, convex SQP subproblem. This
idea is in line with the earlier mentioned concept of using the most current
information in each iteration, i.e., to allow the algorithm to converge over time.
Note that the solution of the QP subproblem in step 5 employs the initial value
embedding strategy. By performing the problem linearization in steps 1 and 2
using the previous shifted solution guess, but including the new state estimate
in the initial value condition, a combined predictor-corrector step is obtained
at the cost of only one QP solution [90]. This algorithmic technique arises
naturally here by using the multiple shooting problem formulation in Eq. (1.8),
where the parameter value x̂0 enters linearly.

REAL-TIME ALGORITHMS FOR MPC AND MHE 47

It has been shown in [91] that, under some reasonable assumptions, the nominal
stability of the closed-loop system using the RTI scheme in Algorithm 1 can be
guaranteed also in presence of inaccuracies, model errors or disturbances. And
even though the RTI scheme was originally proposed as an efficient algorithm for
Nonlinear MPC [88], it has been shown to be quite competitive also for nonlinear
MHE including corresponding convergence guarantees [328]. It is thereby
important to include a numerically efficient arrival cost update scheme within the
MHE algorithm such as, e.g., based on a QR factorization as proposed in [200].
Examples of real-world applications using MHE in combination with nonlinear
MPC, based on the concept of performing real-time iterations independently
for both problem formulations, have been presented in [145, 198, 315]. This
idea is illustrated in Figure 1.6, where the interactions within the closed-loop
system between the MHE estimator, the MPC controller and the real process are
depicted. In this figure, x̂0 denotes the current state estimate, u0 is the control
input applied to the system and ye denotes the latest measurement. Efficient
implementations exist, based on the concept of automatic code generation [222,
237], of the RTI scheme for fast nonlinear MPC [177] as well as fast MHE [107].
More information can also be found in Chapter 8 on the open-source ACADO
code generation tool.

48 FAST NONLINEAR MODEL PREDICTIVE CONTROL AND ESTIMATION

Figure 1.6: Illustration of the RTI scheme for nonlinear MPC and MHE,
including their interactions within the closed-loop system (inspired by [115]).

The specific scheduling in time of the computations within the RTI framework
is illustrated in Figure 1.7. The feedback phase in the context of MHE is
thereby also referred to as the estimation phase. It can be observed in this
figure how the RTI scheme allows one to minimize the computational delay
between obtaining a new measurement ye from the system and applying the
next control input u0. An interesting extension of this concept is known as
the multi-level or mixed-level iterations, as presented in [49, 118]. This online
algorithm typically consists of 4 different levels of QP updates, which we refer
to as level A, B, C and D. An iteration on the highest level (D) corresponds
to the standard RTI scheme since it computes a Newton-type step based on
a complete problem linearization. The other three levels attempt to reduce
the overall computational burden, or alternatively to increase the sampling
frequency, by reusing specific parts of the QP data. At the lowest level (A), one
solves the same QP but only with the new state estimate x̂0 which corresponds
to a linear MPC scheme that at least takes active set changes into account [90].
The intermediate levels are typically performed less frequently and are based
on partial updates of the QP data, excluding the matrices such that, e.g.,
factorizations can be reused. A feasibility improvement in level (B) is based on

REAL-TIME ALGORITHMS FOR MPC AND MHE 49

the evaluation of the nonlinear constraints, while the optimality improvement
in level (C) computes the Lagrange gradient in the form of the adjoint based
SQP [324] method in Eq. (1.21). Note that a full SQP step on the highest
level (D) needs to be performed whenever the system linearization does not
allow Newton-type contraction as discussed in [49].

Figure 1.7: Illustration of the scheduling in time of the computations within
the RTI framework for embedded optimization (inspired by [313]).

Chapter 2

Numerical Simulation and
Sensitivity Propagation

Shooting based optimal control methods rely on an accurate discretization of
the original continuous-time OCP, resulting in a finite dimensional NLP [36, 48].
In the context of NMPC, these OCPs have to be solved under strict timing
constraints [90]. In many practical control applications, the numerical simulation
of the nonlinear dynamics as well as the propagation of first or even higher order
derivative information is the main bottleneck in terms of computation time.
The current chapter provides an overview on numerical integration schemes and
on the task of performing a corresponding sensitivity analysis. A more detailed
discussion will be presented for the collocation methods, which form a subclass
of Implicit Runge-Kutta (IRK) schemes, and their implementation within an
embedded optimization algorithm.

This chapter includes the continuous output based optimal control formulations
as presented originally in [261] and [271]. In addition, it presents the embedded
integrators based on the article in [269] and the master thesis in [259].

Outline The chapter is organized as follows. Section 2.1 first presents a few of
the important families of numerical integration schemes, with a focus on single-
step methods. The class of Implicit Runge-Kutta (IRK) schemes is discussed
in Section 2.2 as a popular approach to simulate both stiff or implicit systems
of differential equations. Section 2.3 then provides a detailed discussion on
the tailored propagation of sensitivities for numerical integration schemes, in
the context of direct optimal control methods. The implementation of the

51

52 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

specific class of collocation methods within embedded optimization algorithms
is discussed in Section 2.4, including efficient sensitivity propagation schemes.
Finally, Section 2.5 presents and motivates the use of a continuous output
feature within the optimal control problem formulation.

2.1 Numerical Integration Methods

Section 1.1.4 gave already an introduction into the domain of the numerical
simulation of differential equations, e.g., including the concepts of local and
global error propagation and convergence of the integration scheme. This section
aims at providing a compact overview on the numerical solution of ordinary
differential equations (ODE), with a further discussion on the treatment of
algebraic equations in the next section. For this purpose, let us consider the
following explicit version of the IVP from Eq. (1.3)

ẋ(t) = fe(t, x(t)), x(t0) = x̂0, (2.1)

where the initial value x̂0 is given. Note that there are no control inputs
u(t) included in this IVP, because they are assumed to be known from the
perspective of the numerical simulation routine. The existence and uniqueness
of the solution is guaranteed under the assumptions in Theorem 1.2.

2.1.1 General Linear Methods

Each numerical integration method takes a step forward in time, e.g., over the
interval t ∈ [tn, tn+1] in order to find an approximate value for the solution point
x(tn+1). A first distinguishing feature is then whether this numerical method
employs merely the previous point xn ≈ x(tn) or a set of previously computed
solution values xn, xn−1, . . . (and their function values). The first approach is
typically referred to as single-step methods, while the latter is called a multistep
method as illustrated also in Figure 2.2. These two families are collectively
referred to as general linear methods, based on a linear combination of solution
points and function evaluations [63]. A compact and therefore incomplete
overview of these numerical integration schemes is provided in Figure 2.1. Note
that most single-step methods use additional, auxiliary function evaluations
in order to obtain a certain order of accuracy (see Definition 1.8). Multistep
methods, on the other hand, provide their order of accuracy by storing more
solution points and they therefore require a good starting procedure [157].

NUMERICAL INTEGRATION METHODS 53

Figure 2.1: An incomplete overview of numerical integration schemes.

General Linear Methods

Multistep Single-step

Linear Multistep Runge-Kutta

explicit implicit implicitexplicit

AB, . . . AM, BDF, . . . IRK
(E)(S)DIRK, . . .

ERK

(a) Single-step: uses previous solution point

(b) Multistep: uses certain amount of previous points

Figure 2.2: Illustration of single-step versus multistep integration methods.

In this thesis, the focus will be on single-step methods. They do not need
a starting procedure, which makes them rather suitable for short simulation
times as they are needed in simultaneous approaches for direct optimal control
(see Section 1.2). Especially for embedded optimization where a relatively low
accuracy is required, a few integration steps of a high order Runge-Kutta (RK)

54 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

method is typically sufficient. Similar advantages of single-step schemes over
multistep methods for the solution of dynamic optimization problems have been
observed by [199, 291]. Nevertheless, we briefly mention some of the linear
multistep (LM) methods for completeness.

Linear multistep methods

An s-step Linear Multistep (LM) method uses the solution points xi and the
corresponding function evaluations fi = fe(ti, xi), for i = n − s + 1, . . . , n to
compute the next solution value xn+1 ≈ x(tn+1)

xn+1 +αs−1xn + . . . + α0xn−s+1 =

Tint (βsfn+1 + βs−1fn + . . . + β0fn−s+1) , (2.2)

where Tint refers to the integration step size and αi, βi are the constants defining
the method, with at least α0 or β0 different from zero. The scheme can be
written more compactly as

xn+1 = Tint

s+1∑
i=1

βi−1fn−s+i −
s∑
i=1

αi−1xn−s+i, (2.3)

which defines the value xn+1 explicitly in the case βs = 0 and implicitly when
βs 6= 0. In the latter case of an implicit LM method, a procedure is needed in
order to solve the resulting nonlinear equation (2.3).

One popular family of LM schemes is known as the Adams methods, on
which more information can be found in [157]. These numerical methods are
constructed by integrating a polynomial interpolation as an approximation of the
system right-hand side in (2.1). When including the new value (tn+1, fn+1) in the
interpolation points, an implicit Adams method can be obtained. These explicit
and implicit formulas are also respectively referred to as Adams-Bashforth (AB)
and Adams-Moulton (AM) methods [39]. Another important class of LM
methods consists of the Backward Differentiation Formulas (BDF). Unlike
the Adams methods, BDF formulas are based on numerical differentiation.
The BDF methods of order up to 5 are quite popular also for direct optimal
control [7, 27, 166], because of their good stability properties for stiff differential
equations as discussed in the next section.

Remark 2.1 The main distinction in our presentation of integration methods
will be between stiff and nonstiff problems, considering general differential
equations. There are however other important classes of problems with a special
geometric structure, such as Hamiltonian dynamics [207]. For this purpose,

NUMERICAL INTEGRATION METHODS 55

different types of structure-preserving or geometric integrators have been proposed
and studied extensively [72, 156, 205]. An interesting application example in the
optimal control for mechatronic systems is based on the SO(3) orthogonal Lie
group, typically used to represent the orientation of a body in a 3-dimensional
space [184, 297]. As discussed further in [28, 146], an alternative to using
tailored integrators to preserve the corresponding invariants is to perform a
Baumgarte stabilization directly into the system dynamics in order to avoid
numerical drift. It is important to note that these effects occur more prominently
for long simulation times and therefore will not be our main concern in embedded
optimization for direct optimal control, where the horizon length is relatively
short and the required accuracy is rather low.

2.1.2 Single-Step Methods

Unlike LM formulas, single-step methods refer to only one previous solution
point and its function evaluation to determine the current value. The family of
Runge-Kutta (RK) methods is the most important class of single-step schemes,
which are generically applicable to ODEs. Unlike LM methods based on a
linear combination of previous solution points as in (2.3), RK methods perform
additional function evaluations at intermediate stage points in order to achieve
a high order of accuracy. Let us introduce the following general formulation of
an RK method with q stages

k1 = fe(tn + c1Tint, xn + Tint

q∑
j=1

a1jkj),

...

kq = fe(tn + cqTint, xn + Tint

q∑
j=1

aqjkj),

xn+1 = xn + Tint

q∑
i=1

biki,

(2.4)

in which bi denote the weights and aij the internal coefficients of the method
for i = 1, . . . , q and j = 1, . . . , q. These expressions are sometimes referred to
as the differential formulation, since ki ∈ Rnx for i = 1, . . . , q denote the state
derivatives at the stages points [39]. An alternative formulation of the same RK
method, based directly on the stage values Xi ∈ Rnx for the differential states,

56 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

can be written as

X1 = xn + Tint

q∑
j=1

a1jfe(tn + cjTint, Xj),

...

Xq = xn + Tint

q∑
j=1

aqjfe(tn + cjTint, Xj),

xn+1 = xn + Tint

q∑
i=1

bife(tn + ciTint, Xi),

(2.5)

which is then referred to as the integral formulation. It is mathematically
equivalent to Eq. (2.4). In numerical experiments, one can however experience
a different conditioning for both formulations, especially in the case of implicit
methods as shown in [23].

The internal coefficients aij satisfy the following consistency condition

ci =
q∑
j=1

aij , (2.6)

which simplifies the derivation of order conditions [157]. For the method to
have at least order 1, the values bi must satisfy

q∑
i=1

bi = 1, (2.7)

which is the first of the Runge-Kutta order conditions. The formulas in either
Eq. (2.4) or (2.5) are typically represented uniquely using a Butcher [63] tableau
such as found below.

c A
bT

=

c1 a11 · · · a1q
...

...
...

cq aq1 · · · aqq
b1 · · · bq

(2.8)

2.1.3 Explicit Runge-Kutta Schemes

Explicit RK (ERK) methods have the property that the stage values ki in (2.4)
or Xi in (2.5) can be obtained explicitly, and this successively for i = 1, . . . , q.

NUMERICAL INTEGRATION METHODS 57

This means that the coefficient matrix A = (aij) is strictly lower triangular
in the Butcher tableau (2.8). The simplest RK method is the forward Euler
method, xn+1 = xn + Tintfe(tn, xn), which is only of order 1. A more practical
explicit RK method is the following 4-stage scheme of order 4

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

(2.9)

This RK method is so commonly used that it is often referred to as the classical
Runge-Kutta method of order 4 (RK4). ERK methods of order up to 8 are
among the most widely used schemes for nonstiff problems [157].

2.1.4 Implicit Runge-Kutta Schemes

Implicit RK (IRK) methods are described by a matrix A = (aij) that is not
strictly lower triangular, but rather fully dense in general. This means that
the expressions in (2.4) or (2.5) correspond to a system of nx × q nonlinear
equations, which need to be solved in order to obtain the stage values. For
this purpose, Newton-type methods are typically used, as detailed further in
Section 2.4. It is therefore clear that the implementation of implicit RK methods
typically requires an increased computational effort compared to an explicit
variant. However, IRK methods often have a higher order of accuracy for the
same amount of stages q and they exhibit better stability properties in case of
stiff differential equations [157, 158].

The simplest example of an implicit RK method is the backward or implicit
Euler method, described by xn+1 = xn + Tintfe(tn + Tint, xn+1). Even though
this scheme is still only of order 1, it has superior stability properties over
its explicit forward variant. Another well-known, implicit RK method is the
trapezoidal rule which is defined by the following Butcher tableau:

xn+1 = xn + Tint

2 (fe(tn, xn) + fe(tn+1, xn+1))

0 0 0
1 1/2 1/2

1/2 1/2

(2.10)

Note that the trapezoidal rule is stiffly accurate [14], which means that the
last stage value corresponds to the solution at the end of the integration step.

58 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

More specifically for a q-stage method, this means that cq = 1 and aqi = bi for
i = 1, . . . , q. This property will be important in the discussion on stiff problems
and systems with algebraic equations [256]. Further examples of implicit RK
methods will follow in the next section.

2.1.5 Semi-Implicit Runge-Kutta

When the coefficient matrix of the RK method is neither strictly lower
triangular nor fully dense but instead exhibits a particular structure which has
computational advantages, then such a method is often called semi-implicit [223].
In the case of fully implicit RK methods, a large nonlinear system of nx × q
equations (2.4) needs to be solved. For Diagonally Implicit RK (DIRK) methods,
on the other hand, the sequential computation of each stage value corresponds
to a separate nonlinear system that needs to be solved. The coefficient matrix A
is then lower triangular, as illustrated in Figure 2.3. When DIRK methods have
only identical diagonal elements in the matrix A (all equal to γ in Figure 2.3),
they are called Singly DIRK (SDIRK) methods. For the nonlinear system
corresponding each stage, the same Jacobian approximation and its factorization
can then be reused in the Newton-type iterations. As a special case, an explicit
SDIRK (ESDIRK) method additionally has an explicit first stage. Even though
such methods can significantly lower the computational cost, they can often still
offer good stability properties as discussed in [199] for a specific 4-stage ESDIRK
method. For an overview on semi-implicit RK methods, see [14, 64, 158, 233].

Figure 2.3: Structure of the matrix A for different families of RK methods [199].

2.2 Implicit Runge-Kutta Methods

In addition to their desirable properties as discussed in this section, it is
important to note that implicit integration methods can handle implicit systems
of differential equations as easily as the explicit ODE formulation in (2.1). Let
us therefore consider the following implicitly defined IVP

0 = f(t, ẋ(t), x(t)), x(t0) = x̂0. (2.11)

IMPLICIT RUNGE-KUTTA METHODS 59

In addition, this section includes a discussion on the treatment of index-1 DAE
systems by IRK schemes

0 = f(t, ẋ(t), x(t), z(t)), x(t0) = x̂0,

0 = g(t, x(t), z(t)),
(2.12)

which corresponds to the semi-explicit formulation in (1.5) where the algebraic
variables z(t) are defined by a separate set of algebraic equations g(·) = 0 for
notational convenience. These methods can however also be applied directly to
the fully implicit DAE formulation from Eq. (1.4).

2.2.1 Stiff Differential Equations

Even though they are not as straightforward to implement as explicit schemes,
implicit integration methods are quite popular because of their superior
performance on stiff problems which are rather common in practice. Many
references would even describe stiff differential equations as those for which
certain implicit methods perform considerably better than explicit ones [158].
As we will discuss next, the eigenvalues of the Jacobian of the system equations
certainly play a role but also many other quantities such as the system dimension
and smoothness of the solution are important. We introduce one typical
characterization of stiffness, followed by a discussion on desirable stability
properties for numerical simulation.

Characterization of stiffness

An important class of stiff problems consists of processes with multiple time
scales, i.e., including fast as well as relatively slow dynamics. For this purpose, we
introduce a simple characterization of stiffness based on the following linearized
dynamics at a certain time point

ẋ(t) = A(t)x(t) + φ(t), (2.13)
where A is a nx × nx matrix with nx eigenvalues λi and we assume that
Re(λi) < 0 holds for i = 1, . . . , nx. A relatively small value of |Re(λi)| then
corresponds to slow dynamics, for which it would be desirable to take rather
large integration steps. On the other hand, a larger value of |Re(λi)| typically
requires a smaller integration step size Tint for numerical stability. The following
concept of a stiffness ratio [203] can therefore be used

max
i=1,...,nx

|Re(λi)|

min
i=1,...,nx

|Re(λi)|
, (2.14)

60 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

which becomes larger for systems that are more likely to be stiff. Note that
this ratio is generally time-dependent for a nonlinear system, such that stiffness
needs to be defined within a certain domain. As mentioned earlier and discussed
in more detail by [63, 158, 203], this definition does not cover all possible cases
of stiff differential equations.

Numerical stability properties

Let us apply an RK method as in Eq. (2.4) to the linear test equation ẋ(t) =
λx(t), which is often referred to as Dahlquist’s equation [75]. After solving the
resulting expressions for the next solution point xn+1, an explicit function can
be obtained in terms of the previous point xn

xn+1 = R(Tintλ)xn = R(z)xn, (2.15)

where the shorthand notation z = Tintλ is used. This function R(·) is typically
referred to as the stability function of the numerical integration method. Using
Eq. (2.15), it should be clear that the relation between the solution point xn
and the initial value x0 can be written as xn = R(z)nx0. The region of absolute
stability is defined as

{z ∈ C| |R(z)| < 1}. (2.16)

For the values of z within this region, it holds that the numerical solution to
the linear test problem decays to zero xn → 0 as n → ∞. A large region of
absolute stability is therefore a desirable property for a method.

More specifically, a numerical integration method whose region of absolute
stability contains the left complex half-plane C− is called A-stable. Note that
also the exact solution of Dahlquist’s equation x(t) = x0e

λt is stable if λ ∈ C−.
When applying an A-stable integration method to a stiff system of differential
equations, the step size Tint is generally not limited anymore because of stability
issues. Another desirable property that needs to be mentioned is stiff A-stability
or L-stability [14, 256], which is stronger than A-stability. If |R(z)| → 1 for
z → −∞, then it is possible that the stiff components of the numerical method
are damped out rather slowly compared to the exact solution. A method is
called L-stable if it is A-stable and if the stability function satisfies |R(z)| → 0
for z → −∞. It is interesting to note that an A-stable RK method with
nonsingular coefficient matrix A and which additionally is stiffly accurate, can
be shown to be L-stable [158]. Even though the mentioned stability definitions
will be sufficient for our purposes throughout this thesis, alternative concepts
can further be found in [14, 63, 158, 203, 256].

IMPLICIT RUNGE-KUTTA METHODS 61

2.2.2 Collocation Methods

Let us now introduce an important family of IRK schemes, the collocation
methods, which are known to have good stability properties. For ordinary
differential equations, the idea corresponds to defining a polynomial p(t) of
degree q whose derivative coincides at q given nodes with the vector field of
the differential equation [157]. For this purpose, q distinct collocation points
0 ≤ c1 < c2 < . . . < cq ≤ 1 need to be provided which uniquely define the
corresponding integration method. This is also illustrated in Figure 2.4 for one
specific integration step. The collocation polynomial p(t) needs to satisfy the
following q + 1 conditions:

p(tn) = xn

0 = f(ti, ṗ(ti), p(ti)) for i = 1, . . . , q,
(2.17)

using the implicit ODE formulation in (2.11) and based on the time points
ti := tn + ciTint for i = 1, . . . , q.

Figure 2.4: Illustration of one integration step of a collocation method based
on a polynomial interpolation through a set of points ci, i = 1, . . . , q.

Based on this definition of the collocation polynomial, a numerical approximation
for the solution at time tn+1 = tn + Tint can be obtained simply by evaluating
the polynomial, i.e., xn+1 = p(tn + Tint). The resulting integration method
can be shown to be equivalent to an implicit RK method [157, 158], where the
values in the Butcher tableau (2.8) read as

aij =
∫ ci

0
`j(τ) dτ, bi =

∫ 1

0
`i(τ) dτ, i, j = 1, . . . , q, (2.18)

62 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

where `i(t) denote the Lagrange interpolating polynomials

`i(t) =
q∏
j=1
j 6=i

t− cj
ci − cj

, i = 1, . . . , q. (2.19)

Even though all collocation methods are part of the IRK family, not all IRK
methods can be interpreted as collocation schemes. For example, the coefficients
ci need to be distinct for a collocation method which is also referred to as a
nonconfluent RK method [203]. It is interesting to note that collocation methods
offer a continuous approximation of the solution for the system of differential
equations on the complete interval [tn, tn+1], which is a useful feature also for
optimal control as discussed further in Section 2.5.

For an overview of collocation methods and their numerical properties, the
reader is referred to [157, 158]. We introduce two popular classes of collocation
schemes: the Gauss and Radau IIA methods.

The Gauss-Legendre collocation methods

From the previous discussion, it is clear that only the quadrature nodes ci are
needed to define a collocation method. We first introduce the Gauss-Legendre
schemes, for which the q nodes are placed at the roots of a shifted Legendre
polynomial as illustrated in Figure 2.5. The methods corresponding to q = 1, 2
and 3 (order P = 2, 4 and 6) are often used and they have as collocation points

c1 = 1
2 , q = 1, P = 2, (2.20)

c1 = 1
2 −
√

3
6 , c2 = 1

2 +
√

3
6 , q = 2, P = 4, (2.21)

c1 = 1
2 −
√

15
10 , c2 = 1

2 , c3 = 1
2 +
√

15
10 , q = 3, P = 6. (2.22)

The complete Butcher tableaus, corresponding to the expressions in (2.18), can
be found in [157, 158]. The Gauss methods are quite popular because they
can be shown to be optimal in terms of the order of accuracy [158], i.e., they
provide the highest possible order of accuracy P = 2 q for a specific number of
stages. In addition, the Gauss-Legendre collocation schemes are A-stable which
is important for stiff systems of equations. Note that the order result refers to
the end point order P , while the internal stages of any collocation method have
an order of at least q [39].

IMPLICIT RUNGE-KUTTA METHODS 63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

s = 1, p = 2

s = 2, p = 4

s = 3, p = 6

Figure 2.5: The roots of the shifted Legendre polynomials of order 1, 2 and 3,
which are respectively used as nodes for the Gauss methods of order 2, 4 and 6.

The Radau IIA collocation methods

The Gauss methods are attractive because of their high order of accuracy, even
though this class of collocation schemes can be shown not to be L-stable. The
alternative is to use a q-stage Radau IIA method which has order P = 2 q − 1
(one order lower than the corresponding Gauss method), but they are L-stable
and therefore provide a desirable damping property for very stiff problems.
These methods are based on choosing the zeros of particular polynomials as the
collocation nodes

c1 = 1, q = 1, P = 1, (2.23)

c1 = 1
3 , c2 = 1, q = 2, P = 3, (2.24)

c1 = 4−
√

6
10 , c2 = 4 +

√
6

10 , c3 = 1, q = 3, P = 5. (2.25)

In addition to their improved stability properties, it can be observed that
Radau IIA methods always include the end point cq = 1 in the collocation
nodes. This property was previously referred to as being stiffly accurate [14],
which is desirable for very stiff systems and for differential-algebraic equations
as discussed further. These two classes will be used throughout this thesis,

64 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

while other interesting families of A-stable methods can be found such as the
various Lobatto collocation formulas [158].

2.2.3 Alternative Methods for Stiff Problems

We further focus mainly on collocation methods for direct optimal control,
but it is important to mention some of the other popular integration schemes
especially for stiff systems of differential equations. A first important family
consists of the earlier mentioned Backward Differentiation Formulas (BDF).
Even though the BDF methods of order up to 5 are quite popular in practice
for stiff problems, none of the linear multistep methods of order larger than 2 is
A-stable. Instead, the higher order BDF schemes are A(α)-stable which is a
weaker but still practical condition as specified in [158].

BDF and collocation methods are quite popular for stiff problems, but they
are both fully implicit and therefore require an implementation based on a
Newton-type method. Alternative schemes are based on a single linear system
solution in order to retain certain stability properties, which are often referred to
as linearly implicit methods. One simple example is the linearly implicit Euler
method, for which an integration step reads as (1−Tint

∂fn
∂x)(xn+1−xn) = Tintfn,

when fn = fe(xn) for an explicit ODE (2.1). Also higher order methods can be
constructed such as, for example, the family of Rosenbrock methods [158, 159].
Because of their computational advantages, linearly implicit integration schemes
are quite popular also for real-time applications [21].

A third and final family of alternative integration schemes for stiff problems,
which should be mentioned here, is based on the exponential of the Jacobian
matrix. These schemes are known as exponential integration methods [168, 169].
They recently gained an increased interest because of efficient iterative methods
to compute vector-products of a matrix exponential based, for example, on
Krylov subspace projection methods [158]. The general idea of an exponential
integrator is to integrate the linear part of the continuous-time system exactly,
which often helps to mitigate the stiffness of the differential equations. Note
that this class of integration methods forms an interesting connection between
linear or linear time varying (LTV) MPC schemes and online algorithms for
nonlinear MPC as discussed in [147].

2.2.4 Differential-Algebraic Equations

Most integration methods can be extended to DAE systems of index 1 in a
rather straightforward manner, since the algebraic variables can in principle

IMPLICIT RUNGE-KUTTA METHODS 65

be eliminated numerically (see Definition 1.3). More specifically, the implicit
function theorem states that a locally unique solution z = G(x) exists such that
the index-1 DAE in (2.12) can be rewritten as an implicit ODE

0 = f(t, ẋ(t), x(t), G(x(t))), x(t0) = x̂0. (2.26)

Because these variables z(t) are generally defined implicitly by the algebraic
equations, explicit DAE solvers are typically not very competitive [22, 294] and
implicit integration schemes are therefore preferred. For the numerical analysis
using the DAE formulation in (2.12), it is interesting to note that it corresponds
to a singular perturbation problem

0 = f(t, ẋ(t), x(t), z(t)), x(t0) = x̂0,

ε ż(t) = g(t, x(t), z(t)),
(2.27)

for the limit case of the parameter ε→ 0, as discussed in [158]. The numerical
simulation of an index-1 DAE by reformulating it into an ODE system as in (2.26)
is often referred to as an indirect approach. We are however interested in a
direct treatment of differential-algebraic equations using implicit RK methods,
such that the result is equivalent to the indirect approach.

Similar to Eq. (2.4) for an explicit ODE system, the differential formulation of
an IRK method applied to the DAE system (2.12) reads as

0 = f(tn + ciTint, ki, xn + Tint

q∑
j=1

aijkj , Zi), i = 1, . . . , q, (2.28a)

0 = g(tn + ciTint, xn + Tint

q∑
j=1

aijkj , Zi), i = 1, . . . , q, (2.28b)

xn+1 = xn + Tint

q∑
i=1

biki, (2.28c)

0 = g(tn+1, xn+1, zn+1), (2.28d)

where tn+1 = tn + Tint and the additional variables Zi ∈ Rnz for i = 1, . . . , q
denote the stage values for the algebraic variables. Note that also an integral
formulation of the IRK method could be used, similar to Eq. (2.5) for the
explicit ODE system. The expression in Eq. (2.28b) forces the stage values Zi
to be consistent at each of the collocation nodes i = 1, . . . , q, as defined directly
by the algebraic equations in an index-1 system. In a similar fashion, Eq. (2.28d)
is needed in order to obtain a fully consistent solution point (xn+1, zn+1) at

66 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

the end of the integration step. Note that the structure due to the algebraic
stage variables can be exploited when solving the nonlinear system consisting
of Eqs. (2.28a) and (2.28b), as discussed in more detail in [259].

Stiffly accurate IRK schemes form a particularly interesting class of numerical
simulation methods for DAE systems since their last stage corresponds to the
end of the integration step, i.e., cq = 1 and zn+1 = Zq such that Eq. (2.28d) is
automatically satisfied because of (2.28b). As mentioned earlier, an A-stable
and stiffly accurate IRK method with invertible coefficient matrix A can be
shown to be L-stable. This turns out to be an important property both for
very stiff problems and for differential-algebraic equations, as discussed in more
detail in [56, 158]. A popular family of IRK methods for DAE systems therefore
consists of the Radau IIA collocation methods.

Remark 2.2 Many interesting processes are described naturally by higher
index DAE systems. One can rely on index reduction techniques [39, 241] to
reformulate such a set of equations into an index-1 DAE system with associated
consistency conditions. The alternative is the direct solution of these higher
index DAEs, using specialized numerical methods as discussed in more detail
in [22, 56, 158]. Note that also stiffly accurate collocation methods can be
extended to higher index DAE systems [158].

2.3 Efficient Sensitivity Propagation

This section introduces different approaches to compute directional sensitivities
of the simulation result with respect to the initial conditions. More specifically,
let xT (x0, u) denote the numerical approximation of the solution for the
explicit (2.1) or implicit (2.12) IVP over the interval [0, T]. Using Newton-
type optimization for direct optimal control as discussed in Sections 1.2-1.4,
one typically needs the following first order derivatives

dxT (x0, u)
d(x0, u) ∈ Rnx×(nx+nu), (2.29)

where x0 = x̂0 denotes the initial state value and u are the control inputs
applied to the dynamic system. For simplicity, the control values are assumed
constant over the integration interval [0, T] which corresponds to a piecewise
constant parameterization in direct optimal control. In addition, a dynamic
optimization formulation as in Eq. (1.6) is considered such that the sensitivities
of the algebraic variables are not generally needed even though we will comment
on how they can be computed easily. In the case of adjoint based Newton-type
optimization techniques such as in Eq. (1.21), one is additionally interested in

EFFICIENT SENSITIVITY PROPAGATION 67

the adjoint first order sensitivities

dxT (x0, u)
d(x0, u)

>
λ ∈ R(nx+nu), (2.30)

where λ ∈ Rnx denotes the backward seed. For a detailed discussion on the
propagation of second order sensitivities, the reader is referred to the next
chapter. This is needed for the computation of the Hessian of the Lagrangian
in Newton-type optimization. Note that also other applications require the
efficient and accurate computation of sensitivities, e.g., in the analysis of dynamic
systems or in model reduction strategies [204].

2.3.1 Algorithmic Differentiation

We start by briefly introducing the concept of Algorithmic Differentiation (AD),
which allows the efficient evaluation of first and higher order derivatives of
factorable, computer represented functions. Directional derivatives can be
computed up to machine precision and this at a computational cost that is of
the same order of magnitude as the cost of evaluating the original, differentiable
function. More details on these concepts and efficient implementations can be
found in [6, 19, 40, 141]. These AD techniques can be used further within an
implementation of sensitivity propagation for numerical integration schemes.

Each differentiable function consists of several elementary functions and
operations such as multiplication, addition, trigonometric functions etc. The
evaluation of such a function can be represented as an expression graph or
algorithm description. The principle of AD is then to apply the chain rule and
differentiate each of the elementary operations separately in order to obtain
a new algorithm to evaluate the derivatives of the original function. There
are generally two different ways to implement AD. The first approach is based
on computing the derivatives during or right after the evaluation of the non-
differentiated function and is typically referred to as operator overloading. The
name of this technique originates from the fact that it is mostly implemented
using operator overloading in advanced programming languages such as C++.
Efficient implementations can be found, for example, in ADOL-C [142] and
CppAD [2]. The alternative is to represent the differentiated algorithm as a
separate expression graph that can be evaluated. This approach is known as
source code transformation. Efficient implementations of the latter technique
can be found in ADIC [1] and CasADi [20].

Independent of the specific AD implementation, the expression graph for the
differentiated function can be traversed either in the same order as the original
function evaluation or in the reverse order. These two options are referred to

68 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

as respectively the forward and reverse or backward mode of AD to compute
first order derivatives. Let us consider a specific function f : Rn1 → Rn2 of
input dimension n1 and output dimension n2. The forward mode of AD to
compute a directional derivative is then much cheaper than the reverse mode in
case n1 � n2. Note that the forward mode of AD is slightly more expensive
than using numerical finite differences, but it is exact up to machine precision,
while finite differences generally lead to a numerical loss of about half the valid
digits [6]. Conversely, the backward mode of AD can be much faster than both
finite differences and the forward mode of AD in case the function has much
less outputs than inputs, i.e., n2 � n1.

The main disadvantage of the backward mode of AD is that it typically
has a much higher memory footprint than forward schemes, because of the
intermediate variables and partial derivatives which need to be stored. Practical
implementations of reverse AD therefore often rely on a certain trade-off between
the computational cost and memory requirements, by using checkpointing
techniques as described in [141, 319]. It allows one to store only the intermediate
variables at certain checkpoints during the forward evaluation. A more detailed
analysis of the implementation and computational complexity for these AD
techniques can be found in [40, 141]. Note that the distinction between forward
and backward techniques becomes especially important when combining these
approaches in order to compute higher order derivatives [141, 240], as discussed
also in the next chapter.

2.3.2 Sensitivities for Direct Optimal Control

We focus in the following sections on the required first order sensitivities
within direct methods for dynamic optimization. A discussion on higher order
differentiation techniques can be found in [6] or in the next chapter. The model
functions in the IVP are assumed to be sufficiently smooth, in accordance with
Assumption 1.10. There are generally two classes of sensitivity propagation
techniques considered, which differ from each other depending on whether they
are based on a differentiate-then-discretize or a discretize-then-differentiate type
of approach. Before we detail how either of these approaches could be applied
together with the aforementioned numerical simulation methods, let us discuss
some of their advantages and disadvantages.

The differentiate-then-discretize approach is based on a continuous-time
sensitivity propagation. The original system of differential equations is extended
with the appropriate set of linear variational equations, depending on which
directional derivatives are required. The main advantage of this approach is that
it naturally allows a sensitivity analysis for the exact solution of the original

EFFICIENT SENSITIVITY PROPAGATION 69

continuous-time dynamic system. The resulting system of variational equations
can be discretized with an arbitrary accuracy, using any numerical integration
scheme. When using derivative-based optimization for direct optimal control
(see Section 1.2), one is however interested in accurate derivative information
for the approximately discretized representation of the state trajectory solution.
In embedded optimization especially where the discretization accuracy is often
rather low, it is still important to accurately compute the corresponding
sensitivities in order to obtain convergence for the Newton-type algorithm.

Because of the above observation, a discrete-time sensitivity propagation
following the discretize-then-differentiate principle is typically preferred for
direct optimal control as well as for embedded optimization applications. This
class of techniques will therefore be the main focus throughout this thesis. As
discussed in more detail further, a discrete-time propagation of the sensitivities
can sometimes be shown to be equivalent to using the exact same integration
scheme for the numerical simulation of the sensitivity equations. But even in such
a case where both approaches become mathematically equivalent, a discretize-
then-differentiate technique automatically results in a tailored exploitation of
the structure in the linear variational equations and therefore can often be
computationally more efficient [6].

2.3.3 Differentiate-then-Discretize

By applying forward differentiation directly to the IVP, one can obtain a new
system of equations for the corresponding forward sensitivities as discussed
in [67, 106]. Let us do this for Eq. (1.2) based on an explicit ODE formulation,
by differentiating with respect to both the initial state value x0 and the constant
control inputs u which results in

Ṡx(t) = ∂fe

∂x
(x(t), u(t))Sx(t), Sx(0) = 1,

Ṡu(t) = ∂fe

∂x
(x(t), u(t))Su(t) + ∂fe

∂u
(x(t), u(t)), Su(0) = 0,

(2.31)

where the additional state derivative variables Sx(t) := dx(t)
dx0

∈ Rnx×nx and
Su(t) := dx(t)

du ∈ Rnx×nu are defined. Eq. (2.31) corresponds to a fully
determined IVP, since the initial values read as Sx(0) = dx(0)

dx0
= 1 and

Su(0) = dx(0)
du = 0. This set of sensitivity equations would typically be

referred to as the system of Variational Differential Equations (VDE). By
forward simulation over the interval [0, T], one obtains directly the full Jacobian
dx(T)

d(x0,u) =
[
Sx(T) Su(T)

]
. Note that we can construct this VDE system also for

70 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

a specific set of ns forward directions dx(T)
d(x0,u) S̄, where the matrix S̄ ∈ R(nx+nu)×ns

would be referred to as the forward seed.

This technique can be applied in a similar fashion to implicit systems and to
DAEs, where the resulting sensitivity equations would typically be referred to
as the Variational Differential-Algebraic Equations (VDAE). Let us do this
once for the fully implicit DAE formulation of index-1 from Definition 1.3, by
differentiating with respect to the control inputs resulting in

0 = ∂f

∂ẋ
(t)Ṡx(t) + ∂f

∂x
(t)Sx(t) + ∂f

∂z
(t)Sz(t) + ∂f

∂u
(t), Sx(0) = 0, (2.32)

where the additional differential Sx(t) := dx(t)
du ∈ Rnx×nu and algebraic Sz(t) :=

dz(t)
du ∈ Rnz×nu state derivative variables are defined. Note that both versions of

forward sensitivity equations are linear and they clearly have the same stiffness
properties as the original IVP. Furthermore, the VDAE system in (2.32) is of
index 1 as a direct corollary of Definition 1.3.

Adjoint sensitivity propagation

Inspired by the earlier discussion on the forward and reverse mode of Algorithmic
Differentiation (AD), it can sometimes also be more efficient to propagate the
continuous-time sensitivity results backward in time. The resulting linear
variational equations are typically referred to as the adjoint system, for which a
detailed derivation can be found in [65, 66]. Instead of repeating these results
here, we briefly present the adjoint variant of the forward system of variational
equations (2.31). For this purpose, we need to introduce a backward seed
λ̄ ∈ Rnx in order to define the directional derivative dx(T)

d(x0,u)
>
λ̄. The adjoint

system for the explicit ODE formulation in (1.2), for which the VDE system
was written in (2.31), then reads as follows

−λ̇x(t) = ∂fe

∂x
(x(t), u(t))>λx(t), λx(T) = λ̄,

−λ̇u(t) = ∂fe

∂u
(x(t), u(t))>λx(t), λu(T) = 0,

(2.33)

where the additional state derivative variables λx(t) := dx(T)
dx(t)

>
λ̄ ∈ Rnx and

λu(t) ∈ Rnu are defined. This system of equations denotes an IVP that needs
to be solved backward in time, given the values λx(T) = dx(T)

dx(T)
>
λ̄ = λ̄ and

λu(T) = 0 at the end of the interval. The adjoint simulation result then

corresponds to the directional derivative dx(T)
d(x0,u)

>
λ̄ =

[
λx(0)
λu(0)

]
.

EFFICIENT SENSITIVITY PROPAGATION 71

The adjoint system for the fully implicit index-1 DAE equations can similarly
be found in [65], including a discussion on the augmented reformulation which is
often used for reasons of stability in [66]. Note that adjoint sensitivity analysis
can be more efficient than the standard forward propagation, whenever the
derivatives with respect to many inputs are needed. For example, in the case
where the full Jacobian matrix dx(T)

d(x0,u) needs to be evaluated and (nx +nu)� nx,
such that a lot of forward sensitivity directions would be needed. The main
drawback of this alternative approach is that the original IVP and the adjoint
variational system cannot be solved simultaneously, but the simulation results of
the nominal system are generally needed for the solution of the adjoint IVP. The
resulting implementation consists typically of a forward-backward propagation
where the original system is simulated first using a forward sweep, in which most
of the intermediate results need to be stored in order to perform a subsequent
backward sweep to simulate the adjoint system in (2.33).

Implementation details

For the forward simulation of the system of sensitivity equations in (2.31)
or (2.32), one could provide the extended dynamic system together with the
equations from the original IVP to a general-purpose numerical integration code
in a black-box manner. This would however generally not be computationally
efficient because the structure in the linear variational equations would not
be exploited in that case. More specifically, the close relation between the
original and the variational IVP allows one to reuse many variables throughout
the solution process. For this reason, tailored solver implementations have
been developed such as in the software DASSL/DASPK [56, 220] and as part
of the SUNDIALS package [166]. Note that a discretize-then-differentiate type
of approach, as discussed further in more detail, automatically exploits this
structure in the variational equations by construction.

The presented adjoint sensitivity propagation techniques rely on the ability to
simulate a certain system of differential equations both forward and backward
in time. Otherwise, one could employ a time reversing transformation as
discussed in [65]. An efficient implementation of the resulting forward-backward
propagation for first order derivatives can be found in [166], which employs
checkpointing in order to reduce the storage requirements for an adjoint
sensitivity analysis. There is the additional complication that the discretization
grids for the original IVP and the adjoint system in general do not coincide,
such that the necessary values in the backward propagation are possibly not
computed in the prior forward sweep. A typical practical solution to this
problem is based on an interpolation, using the stored solution values on the
discretization grid of the forward propagation [56]. This again increases the

72 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

computational effort and possibly introduces extra numerical errors, compared
to a tailored discrete-time sensitivity propagation.

2.3.4 Discretize-then-Differentiate

In order to perform the differentiation task after discretization, resulting in
a discrete-time sensitivity propagation, one needs a way to differentiate the
integration scheme itself. For this purpose, there are two rather different types
of approaches. The first and most classical technique was already mentioned
earlier as an alternative to AD in order to evaluate derivatives of a factorable
function. One can consider the integrator as a black box and compute its
derivatives, just like any other black-box function that can be called externally,
by using finite differences (FD). When xT (x0, u) again denotes the numerical
simulation result for the IVP, let us, e.g., compute the derivative with respect to
one of the control inputs dxT (x0,u)

du ū ∈ Rnx where the seed ū ∈ Rnu contains once
the value 1 and zeros everywhere else. Using finite differences, this sensitivity
result can be numerically approximated as

dxT (x0, u)
du ū ≈ xT (x0, u+ δū)− xT (x0, u)

δ
, (2.34)

where δ is the quantity of the perturbation of the input in the direction ū.
Because the same integrator is simply called multiple times with different values
for the input, this technique is typically referred to as External Numerical
Differentiation (END). The standard rule of thumb for FD applies here that,
in case the value δ is optimally chosen, about half of the valid digits are
typically lost compared to the numerical accuracy of the function evaluation.
In the case of an adaptive integrator with error control, there is however the
additional problem that each call with different inputs might lead to a different
discretization grid. Small values for δ can therefore lead to discontinuous
perturbations, e.g., due to a change in the step size and order selection strategy.
For this reason, the perturbation should be chosen large enough, e.g., δ =

√
TOL

in case TOL denotes the integrator accuracy and the FD result preserves about
half the valid digits with respect to this accuracy [6]. Note that this technique
requires (nu + 1) times the cost of a forward simulation in order to compute
the Jacobian dxT (x0,u)

du . Even though the obtained numerical derivatives are
relatively inaccurate, the END scheme is easy to implement.

The alternative idea, which instead is typically referred to as Internal Numerical
Differentiation (IND) [43, 48], is to freeze the adaptive components of the
integrator such as, e.g., the step size, order, iteration matrices and number of
Newton-type iterations, and to differentiate the resulting discretization scheme
instead of the adaptive code itself. The fixed integrator function can then

EFFICIENT SENSITIVITY PROPAGATION 73

be differentiated using any technique, including finite differences (FD) and
algorithmic differentiation (AD). One thereby sometimes distinguishes between
IND based on FD, versus the term internal algorithmic differentiation when
using AD. We will collectively refer to these techniques as IND, but rather make
a distinction based on whether the iterative procedures in an implicit integration
scheme are differentiated or instead a direct approach is used. These two options
will respectively be denoted as either an iterative or direct IND scheme. Any
type of IND approach to sensitivity analysis generally requires a more involved
implementation of an integrator with tailored sensitivity propagation, but it
has the computational advantage that a lot of intermediate values from the
nominal simulation can be reused. As mentioned earlier, the IND scheme also
provides the exact derivatives of the numerical simulation result directly, which
is important for Newton-type optimization. In what follows, we discuss more
detailed the application of IND to the family of RK methods including both
explicit (ERK) and implicit (IRK) schemes.

Remark 2.3 Even though we considered adaptive integration schemes with
error control in the above discussion of external versus internal differentiation
techniques, it was mentioned already in the previous chapter that often fixed
step integrators are used for embedded applications because of the resulting
deterministic runtime and ease of parallelization. It has been observed here
that there is an additional advantage for the implementation of the sensitivity
analysis when fixing the step size and order, because the resulting integrator then
depends continuously on its inputs. The importance of adaptivity for embedded
optimization will however be discussed in Section 2.4.

2.3.5 Sensitivity Propagation for ERK Methods

The implementation of an explicit integration scheme does not include any
iterative procedure such that a relatively easy differentiable mapping is obtained
after fixing the step size and order for sensitivity analysis. Let us recall the RK
formulation from Eq. (2.4) and rewrite the explicit variant in a more compact
way as follows

ki = fe(tn + ciTint, xn + Tint

i−1∑
j=1

aijkj), i = 1, . . . , q,

xn+1 = xn + Tint

q∑
i=1

biki.

(2.35)

When applying forward differentiation directly to these explicit expressions, one
obtains a new numerical integration scheme to propagate the corresponding

74 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

sensitivities. It has been observed in [15, 287, 320] that the forward differentiated
equations are exactly equivalent to those obtained when applying the same
explicit method directly to the forward VDE system (2.31). We illustrate this
principle, by differentiating the ERK method in (2.35) with respect to the initial
value x0, resulting in

dki
dx0

= ∂fe

∂xn
(tn + ciTint)

Sn + Tint

i−1∑
j=1

aij
dkj
dx0

 , i = 1, . . . , q,

Sn+1 = Sn + Tint

q∑
i=1

bi
dki
dx0

,

(2.36)

where the additional variables Sn = dxn
dx0

have been introduced, for which the
initial value S0 = 1. These expressions indeed denote the same ERK formula,
but applied to the differential equation for the sensitivity matrix Sx(t) in (2.31).
Note that the partial derivatives of the dynamics in (2.36) could still be evaluated
with finite differences, even though we further prefer to use AD for its numerical
accuracy as well as its computational efficiency.

Also adjoint sensitivity results for an ERK method can be obtained directly by
applying the reverse mode of AD to the integration scheme, after fixing the
discretization grid following the IND principle. As mentioned earlier, such an
adjoint sensitivity propagation scheme can be more efficient than the forward
method, whenever the state derivatives with respect to relatively many inputs
are needed. The main disadvantage of using an adjoint propagation technique
is the typically high corresponding memory requirement, since the intermediate
values in the forward simulation need to be stored. Alternatively, a checkpointing
technique could be applied [319]. Note that the connection between an AD based
approach and the adjoint system of variational equations in (2.33) has been
studied in [154, 155, 320]. As part of their results, they state mild symmetry
conditions that need to be satisfied by an ERK method such that the reverse
mode of AD results in an integration scheme for the adjoint system of sensitivity
equations with the same convergence properties.

Adjoint sensitivity propagation: the RK4 method

We look at an interesting example that is considered also in [320], featuring the
4-stage RK method from Eq. (2.9) which is of order 4. Let us write this scheme

EFFICIENT SENSITIVITY PROPAGATION 75

in the standard ERK formulation (2.35) as follows

k1 = fe(tn, xn),

k2 = fe(tn + Tint

2 , xn + Tint

2 k1),

k3 = fe(tn + Tint

2 , xn + Tint

2 k2),

k4 = fe(tn + Tint, xn + Tintk3),

xn+1 = xn + Tint

6 (k1 + 2k2 + 2k3 + k4).

(2.37)

By applying the reverse mode of AD to these expressions, in order to propagate
the adjoint variables λn = dxn+1

dxn
>
λn+1, with respect to the states, one obtains

the following equations

l1 = ∂f4
e

∂x

>
Tint

6 λn+1 = Tint

6
∂f4

e
∂x

>

λn+1,

l2 = ∂f3
e

∂x

>(
2Tint

6 λn+1 + Tint l1

)
= 2Tint

6
∂f3

e
∂x

>(
λn+1 + 6

2 l1
)
,

l3 = ∂f2
e

∂x

>(
2Tint

6 λn+1 + Tint

2 l2

)
= 2Tint

6
∂f2

e
∂x

>(
λn+1 + 6

4 l2
)
,

l4 = ∂f1
e

∂x

>(
Tint

6 λn+1 + Tint

2 l3

)
= Tint

6
∂f1

e
∂x

>(
λn+1 + 6

2 l3
)
,

λn = λn+1 + l1 + l2 + l3 + l4,

(2.38)

where we used the compact notation f ie := fe(tn + ciTint, xn + Tint
∑i−1
j=1 aijkj)

to denote the function evaluations for i = 1, . . . , 4. Let us define auxiliary

76 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

variables k̃i = li
Tintbi

, such that the expressions can be rewritten as

k̃1 = ∂f4
e

∂x

>

λn+1,

k̃2 = ∂f3
e

∂x

>(
λn+1 + Tint

2 k̃1

)
,

k̃3 = ∂f2
e

∂x

>(
λn+1 + Tint

2 k̃2

)
,

k̃4 = ∂f1
e

∂x

> (
λn+1 + Tint k̃3

)
,

λn = λn+1 + Tint

6
(
k̃1 + 2k̃2 + 2k̃3 + k̃4

)
,

(2.39)

which corresponds to the same 4-stage ERK scheme applied backwards to the
adjoint system −λ̇(t) = ∂fe

∂x (t, x(t))>λ(t), where the final value is given by the
backward seed λT = λ̄. Note that the stored values from the forward simulation
and the corresponding function evaluations and their derivatives are used in
the reversed order i = 4, . . . , 1, because of the backward in time propagation of
the sensitivities.

2.3.6 Sensitivity Propagation for IRK Methods

It becomes even more important to exploit the structure that is present in
the system of variational equations, such as in Eq. (2.31) or (2.32), when
using an implicit integration scheme. The reason for this is the relatively high
computational cost of the linear algebra routines which are typically needed in
the standard implementation of an IRK method such as in Eq. (2.28). A discrete-
time sensitivity propagation approach would however automatically exploit such
a structure and it additionally allows the reuse of many intermediate values,
as will be discussed in Section 2.4. Regarding a discretize-then-differentiate
based sensitivity analysis for IRK methods, there are two alternative approaches
as discussed also in [6]. A strict application of the IND principle to the
implementation of an implicit integrator leads to a differentiation of the iterative
procedure to solve the nonlinear equations and will therefore be referred to
as an iterative IND scheme. One can alternatively assume that the implicit
equations are solved exactly, even if that is not precisely the case in practice,
and derive a direct expression for the corresponding sensitivities by applying
the implicit function theorem (IFT).

EFFICIENT SENSITIVITY PROPAGATION 77

Direct differentiation approach

Similar to the case in (2.36) for ERK methods, one can directly apply forward
differentiation to the fully implicit RK formula from Eq. (2.4) or Eq. (2.28) for
DAEs. Let us perform this once with respect to the initial value x0 for the
general IRK formulation in (2.28), resulting in

0 = ∂f i

∂ẋ

dki
dx0

+ ∂f i

∂x

Sn + Tint

q∑
j=1

aij
dkj
dx0

+ ∂f i

∂Z

dZi
dx0

, i = 1, . . . , q,

(2.40a)

0 = ∂gi

∂x

Sn + Tint

q∑
j=1

aij
dkj
dx0

+ ∂gi

∂Z

dZi
dx0

, i = 1, . . . , q,

(2.40b)

Sn+1 = Sn + Tint

q∑
i=1

bi
dki
dx0

, (2.40c)

where the following compact notation has been used for the partial derivatives
∂fi

∂? := ∂f
∂? (tn+ciTint, ki, xn+Tint

∑q
j=1 aijkj , Zi) and

∂gi

∂? := ∂g
∂? (tn+ciTint, xn+

Tint
∑q
j=1 aijkj , Zi). Additionally, the state derivative variables Sn = dxn

dx0
are

defined for which the initial value reads as S0 = 1. These expressions can
then be shown to correspond to the same IRK method, but applied to the
VDAE system for the original formulation. The IND scheme therefore provides
derivatives that converge to the continuous-time sensitivities with the same
order as for the state trajectory [6, 44]. The equations in (2.40) are linear and
they define the stage variables dki

dx0
, dZi

dx0
for i = 1, . . . , q. Note that the IFT

can additionally be used on the consistency condition in (2.28d), in order to
obtain the corresponding derivatives for the algebraic variables dzn

dx0
which have

been omitted in (2.40). It is important to stress that these linear sensitivity
equations can be used independent of the Newton-type implementation for the
original nonlinear system of equations to compute the stage variables ki and
Zi in (2.28). As will be discussed further in Section 2.4, it can however be
interesting to design an efficient implementation where the Newton-type scheme
and the direct IFT approach are intertwined.

We define this concept of a direct differentiation approach for implicit schemes
more generally, by first introducing the following compact notation for the

78 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

integration method in (2.4) or (2.28)

xn+1 = F (xn,Kn, u)

0 = G(xn,Kn, u),
(2.41)

where Kn ∈ RnK refers collectively to the internal variables defined by the
function G(·) such that the Jacobian ∂Gn

∂K (xn,Kn, u) ∈ RnK×nK needs to be
invertible. For example, K = (k1, . . . , kq, Z1, . . . , Zq) for a specific integration
step of a q-stage RK method on a DAE system, and u forms an appropriate
representation for the applied control inputs. The idea is then to obtain the
first order derivatives dxn+1

dx0
and dxn+1

du , based on the sensitivity results from
the previous integration step, using the IFT[

dxn+1
dx0

dxn+1
du

]
=
[
∂Fn
∂x

dxn
dx0

∂Fn
∂x

dxn
du + ∂Fn

∂u

]
+ ∂Fn
∂K

[
dKn
dx0

dKn
du

]
[

dKn
dx0

dKn
du

]
= −∂Gn

∂K

−1 [
∂Gn
∂x

dxn
dx0

∂Gn
∂x

dxn
du + ∂Gn

∂u

]
,

(2.42)

where the compact notation ∂Gn
∂K = ∂G

∂K (xn,Kn, u), ∂Gn∂x = ∂G
∂x (xn,Kn, u) and

∂Gn
∂u = ∂G

∂u (xn,Kn, u) is used and the same holds for the derivatives of the
function F (·). Note that the required derivative evaluations, e.g., of the form
∂Gn
∂x

dxn
du or ∂Gn

∂u can be obtained efficiently using AD techniques, based on either
the forward or reverse mode [141]. Note that the function F (·) is linear when
Eq. (2.41) represents an RK formula (2.4). Typically, the main computational
effort in a direct approach for the sensitivity propagation of implicit integration
schemes is therefore the factorization of the Jacobian ∂Gn

∂K and the corresponding
linear system solutions [6, 259, 269].

Note that one can also use such a direct approach in combination with the
reverse mode of AD in order to perform a backward sensitivity analysis. For
example, one can propagate the derivatives λn = dxn+1

dxn
>
λn+1 with respect to

the state value as follows

λn = ∂Fn
∂x

>
λn+1 + ∂Gn

∂x

>
λKn+1

0 = ∂Fn
∂K

>
λn+1 + ∂Gn

∂K

>
λKn+1,

(2.43)

where an auxiliary variable λKn+1 ∈ RnK has been defined. A general derivation
of the above expressions can be found as part of Chapter 3. Similar to the
forward set of equations in (2.42), the adjoint scheme results in a linear system
which can be solved based on a factorization of the Jacobian ∂Gn

∂K . As discussed

EFFICIENT SENSITIVITY PROPAGATION 79

in [6] and unlike the case for some ERK methods, an adjoint IND scheme for
an implicit integrator generally does not correspond to a simulation of the
continuous-time adjoint sensitivity equations in (2.33). However, since an IND
approach provides the exact derivative of the numerical simulation result, the
computed adjoint derivatives converge to the continuous-time sensitivities with
the same order as for the state trajectory. A special case is, for example, the
implicit midpoint rule xn+1 = xn + Tintfe(tn + Tint

2 , 1
2 (xn + xn+1)), for which

an adjoint propagation reads as

λn = λn+1 + Tint
∂fe

∂x

> 1
2(λn + λn+1), (2.44)

where the Jacobian denotes ∂fe
∂x = ∂fe

∂x (tn + Tint
2 , 1

2 (xn + xn+1)). The above
expression can be derived, based on

λn = dxn+1

dxn

>
λn+1 = λ̃n+1 + Tint

2
∂fe

∂x

>
λ̃n+1,

and λn+1 = λ̃n+1 −
Tint

2
∂fe

∂x

>
λ̃n+1.

Similar to the case for the explicit RK4 method, note that the adjoint
scheme (2.44) corresponds to the implicit midpoint rule applied backwards
to the adjoint system −λ̇(t) = ∂fe

∂x (t, x(t))>λ(t). Such a connection between an
adjoint IND scheme and the adjoint variational system of equations has also
been studied numerically for BDF methods in [6].

Iterative differentiation approach

As mentioned earlier, a direct differentiation scheme relies on the assumption that
the implicit equations are solved exactly. In case of a practical implementation
where a limited number of Newton-type iterations are used to solve the nonlinear
system, it might be advisable to instead directly differentiate the integrator
implementation itself. In order to specify this alternative iterative approach to
perform an IND based sensitivity propagation for implicit integration schemes,
we introduce the following Newton-type method [79, 82] to solve the nonlinear
system of equations 0 = G(xn,Kn, u)

K [i+1]
n = K [i]

n −M [i]−1
G(xn,K [i]

n , u), i = 0, . . . , L− 1, (2.45)

and this for a given value of the states xn, the control inputs u and an initial
guess K [0]

n . In this simplified representation of a Newton-type scheme, L
denotes the number of iterations and the matrix M [i] ≈ ∂G

∂K (xn,K [i]
n , u) defines

80 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

a sufficiently accurate Jacobian approximation for i = 0, . . . , L − 1 to result
in local contraction of the algorithm. As discussed earlier in Section 1.3.2,
globalization strategies would generally be needed to guarantee convergence
for such a Newton-type method. The integration scheme, as defined in (2.41),
subsequently evaluates the next simulation result based on the computed values
from the iterative scheme, i.e., xn+1 = F (xn,K [L]

n , u).

The idea of the iterative IND scheme is then based on the direct differentiation
of the Newton-type method in (2.45), including the update formula for the next
result. When applying the forward mode of AD with respect to the initial state
value x0, the resulting iterative scheme reads as

dKn

dx0

[i+1]
= dKn

dx0

[i]
−M [i]−1

(
∂Gn
∂K

[i] dKn

dx0

[i]
+ ∂Gn

∂x

[i] dxn
dx0

)
, i = 0, . . . , L− 1,

dxn+1

dx0
= ∂Fn

∂K

[L] dKn

dx0

[L]
+ ∂Fn

∂x

[L] dxn
dx0

,

(2.46)
where the compact notation ∂Gn

∂K

[i] = ∂G
∂K (xn,K [i]

n , u), ∂Gn∂x
[i] = ∂G

∂x (xn,K [i]
n , u)

is used and the same holds for the derivatives of the function F (·). Note
that the directional function derivatives can be evaluated efficiently using AD
techniques. Similar to the direct expressions in (2.42), one can also derive an
iterative forward IND scheme to compute the derivatives with respect to the
control inputs. As discussed also in [6, 44, 259], this forward IND scheme can
be interpreted as an iterative procedure to solve the IFT based direct sensitivity
equations in (2.42). The method therefore corresponds to an implementation
of the same implicit integration formula (2.41) applied directly to the forward
system of variational equations, using the same sequence of iteration matrices
from the nominal simulation in (2.45). When alternatively applying the reverse
mode of AD directly to the integrator, one can obtain the adjoint variant of the
iterative IND scheme as described in [6, 7]. It is interesting to note that also
the adjoint technique can be interpreted as a Newton-type method to solve the
IFT based adjoint sensitivity equations in (2.43).

One clear advantage of the iterative scheme in (2.46) is that it merely requires
the factorization of the Jacobian approximationsM [i] for i = 0, . . . , L−1, which
can be reused rather easily from the original Newton-type method in (2.45). In
case of the forward IND approach, both iterative schemes can be carried out
simultaneously. An alternative implementation of the iterative IND technique
has been proposed in [259], by using only the converged values K [L]

n and a
corresponding Jacobian approximation from the Newton-type method. This is
in contrast with the direct approach where a factorization of the exact Jacobian
matrix is always needed. A quite elaborate comparison between the direct

EFFICIENT SENSITIVITY PROPAGATION 81

and iterative type implementation of an IND approach including numerical
experiments, can be found tailored to IRK schemes in [259, 269] and for BDF
methods in [6, 7]. A direct approach for sensitivity analysis can typically
be the most competitive in case the full forward sensitivity information is
needed [210]. The efficient implementation of a direct IND scheme for IRK
methods is discussed in the next section. This however does not exclude the
benefits of an iterative scheme for the computation of relatively few forward
sensitivity directions or, e.g., for an efficient adjoint sensitivity analysis. In
addition, the iterative IND scheme will return in Chapter 6 and 7 in a lifted
form as part of an inexact Newton-type optimization algorithm, where the
factorization of a complete Jacobian matrix is avoided altogether.

Some interesting implementations

Note that the direct IND scheme is also referred to as the staggered direct
method in the literature [67] because of its sequential nature by first solving the
state equations iteratively in (2.45), followed by a direct solution of the IFT
based sensitivity equations. On the other hand, the standard implementation
of an iterative IND technique is then often called a simultaneous corrector
method [220] where both iterative schemes are carried out simultaneously. As
mentioned earlier, an alternative implementation is however possible as proposed
first by [106] and which can be referred to as a staggered corrector method. The
scheme also first solves the state equations, followed by a Newton-type method
to iteratively solve the sensitivity equations. An overview and discussion of
these three different approaches can be found in [210].

Most of the literature on discrete-time sensitivity propagation has focused
on BDF methods, such as [6, 67, 106, 220]. This has led to rather popular
implementations, e.g., in the software DASSL/DASPK [56, 220], the DAESOL
solver [27, 99] and more recently DAESOL-II [7] as part of the SolvIND suite
and CVODES/IDAS as part of the SUNDIALS package [166]. However, the first
IND based schemes were proposed by [43, 48] for the semi-implicit and explicit
midpoint rule, by [44, 249] and later [188, 295, 320] for Runge-Kutta methods.
In addition, tailored IND based sensitivity propagation schemes have been
developed for extrapolation methods in [291], for semi-implicit RK formulas
in [199] and Rosenbrock-type methods in [159].

82 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

2.4 Collocation for Embedded Optimization

Even though the title suggests that only collocation methods are covered, this
section further discusses some specific embedded implementation aspects which
are applicable to any implicit RK formula. It should however be noted that the
most popular IRK methods often belong to the family of collocation schemes,
such as those based on Gauss-Legendre and Radau IIA points. In addition, a
collocation method can be naturally extended with an interesting continuous
output feature as presented in the next section.

2.4.1 Monitoring of Error and Convergence

Even though we focus on fixed order and step size integrators for embedded
optimization throughout this thesis, it should be stressed that advanced
simulation codes benefit from using adaptive integration schemes. In order to
guarantee a certain numerical accuracy with a minimal computation effort by
adapting the step size and order of the method, a suitable procedure for online
error estimation is needed. Within the family of explicit RK methods, embedded
formulas exist that provide computationally cheap error indicators by using
the same function evaluations [157]. Popular examples of this consist of the
Runge–Kutta–Fehlberg (RKF) and Dormand–Prince (DOPRI) methods. Such
an embedded pair of methods can similarly be constructed for implicit or semi-
implicit RK schemes as discussed further in [158]. Also other techniques can
generally be used for error estimation such as Richardson extrapolation [81, 83],
which additionally provides an extrapolated simulation result with a numerical
accuracy of one order higher. Specific implementations of step size and order
selection strategies can be found, for example, as part of the LIMEX [291] code
for extrapolation methods, DAESOL-II [6, 7] for BDF schemes or the many
solvers presented in [157, 158].

In addition to error control, advanced implementations of implicit integrators
typically include a monitoring strategy on when to reuse a Jacobian
approximation within the Newton-type algorithm, while preserving a good
convergence rate [79, 82]. This is discussed specifically for BDF integration
schemes in [7, 27]. Applying such a technique allows one to use the Jacobian
information and its factorization as long as possible, in order to reduce the overall
computational effort, e.g., combined with an IND based sensitivity analysis. As
will be discussed further, the computation of a new Jacobian and its factorization
in each integration step combined with a direct differentiation scheme can
however also provide a competitive alternative implementation [199, 269].
Because of the many advantages of using these adaptive techniques for numerical

COLLOCATION FOR EMBEDDED OPTIMIZATION 83

simulation, it is expected that they will soon find their way also into fast
embedded implementations of dynamic optimization while respecting the real-
time considerations from Section 1.5.3.

2.4.2 Newton-Type Implementations

The computational bottleneck in an implicit integration scheme is typically the
solution of the nonlinear system to compute the implicitly defined variables. For
this purpose, tailored Newton-type methods have been developed for different
classes of integrators. Here, we mention three efficient techniques for the
implementation of IRK schemes. They will be used further in this thesis when
we discuss inexact Jacobian based optimization algorithms.

Reuse of Jacobian information

The first approach is based on the reuse of Jacobian information and the
corresponding factorization over multiple iterations or even several integration
steps, which is quite common in a practical implementation for any implicit
integration scheme. Given the Newton-type method from Eq. (2.45) using
the compact notation in (2.41), one would typically use the same Jacobian
approximation over the L iterations such as

K [i+1]
n = K [i]

n −M−1G(xn,K [i]
n , u), i = 0, . . . , L− 1, (2.47)

given the invertible iteration matrix M and a corresponding factorization.
Similarly, such a Jacobian approximation could be reused also over multiple
integration steps when the corresponding sensitivity analysis is performed
iteratively, unlike a direct differentiation technique which requires an exact
Jacobian evaluation and factorization. Note that the reuse of an iteration matrix
in a Newton-type method, especially over multiple integration steps, should be
done cautiously in order to maintain a sufficiently fast convergence rate, e.g.,
by using a monitoring strategy as proposed in [7, 27, 99].

Simplified Newton iterations

The following two implementation techniques are tailored to IRK methods,
exploiting the multi-stage structure of the system of nonlinear equations. For
this purpose, we relate the compact notation from Eq. (2.41) and the IRK
formulation from Eq. (2.28) for an implicit DAE system. The function G(·)
which denotes the implicit equations, corresponds to the expressions in (2.28a)

84 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

and (2.28b) for an IRK method. In the case of an IRK scheme with, for example,
q = 3 stages, the corresponding Jacobian reads as

∂G

∂K
=

H1 + Tint a11J1 Tint a12J1 Tint a13J1
Tint a21J2 H2 + Tint a22J2 Tint a23J2
Tint a31J3 Tint a32J3 H3 + Tint a33J3

 , (2.48)

where the matrices Hi =
[
∂fi
∂ẋ

∂fi
∂z

0 ∂gi
∂z

]
and Ji =

[
∂fi
∂x 0
∂gi
∂x 0

]
have been defined.

The compact notation fi = f(tn + ciTint, ki, xn + Tint
∑q
j=1 aijkj , Zi) and gi =

g(tn + ciTint, xn + Tint
∑q
j=1 aijkj , Zi) for i = 1, . . . , q has been used for the

stage function evaluations in (2.28) and the concatenated stage variables read
as K = (k1, Z1, . . . , kq, Zq). A factorization of the Jacobian matrix would be
needed for an exact Newton scheme to iteratively compute the stage variables
in order to evaluate the integration step xn+1 = xn + Tint

∑q
i=1 biki. The

computational cost per iteration can be reduced considerably, based on a
specific approximation of this Jacobian matrix, e.g., resulting in the Simplified
Newton iterations as proposed originally by [35, 62].

Consider a 3-stage IRK method, for which the internal coefficient matrix
A = (aij) ∈ R3×3 is assumed to be invertible. There exists a decomposition
A−1 = V ΓV −1 with a block diagonal matrix Γ. In that case, it is typical for the
matrix A−1 to have one real eigenvalue γ and one complex conjugate eigenvalue
pair α ± iβ [158]. Using the same notation, the exact Jacobian ∂G

∂K in (2.48)
can be approximated by the following matrix

M = 13 ⊗H + TintA⊗ J =H + Tint a11J Tint a12J Tint a13J
Tint a21J H + Tint a22J Tint a23J
Tint a31J Tint a32J H + Tint a33J

 , (2.49)

where ⊗ denotes the Kronecker product of matrices. We can, for example,
choose the fixed Jacobians H = H1 and J = J1 at the first stage.

We consider the Newton-type iteration from (2.47) based on the Jacobian
approximation in (2.49), which can be written as

(13 ⊗H + TintA⊗ J)∆K = −G, (2.50)

where G = G(xn,K [i]
n , u) denotes the function evaluation. The Newton step

reads ∆K = K
[i+1]
n −K [i]

n , in the ith iteration. However, premultiplying this
equation on both sides by V −1(TintA)−1 ⊗ 1nk results in

(Γ̃⊗H + 13 ⊗ J)∆K̃ = −(Γ̃V −1 ⊗ 1nk)G, (2.51)

COLLOCATION FOR EMBEDDED OPTIMIZATION 85

where nk = nx +nz, ∆K̃ = (V −1⊗1nk)∆K and Γ̃ = 1
Tint

Γ. It is then important
to observe that

Γ̃⊗H + 13 ⊗ J =

γ̃ H + J 0 0
0 α̃H + J −β̃ H
0 β̃ H α̃H + J

 , (2.52)

where the scaled eigenvalues are defined as γ̃ = 1
Tint

γ, α̃ = 1
Tint

α and β̃ = 1
Tint

β.
The transformed linear system (2.51) can therefore be split into two subsystems
of dimension nk = nx + nz and 2nk. The latter (2nk)-dimensional subsystem
can be further transformed into a nk-dimensional but complex subsystem as
discussed in [158]. Note that this Jacobian approximation and the corresponding
transformation technique can be deployed for solving both the nominal state
equations and the corresponding sensitivity equations.

Single Newton iterations

A third and final Newton-type implementation for IRK schemes is often referred
to as a Single Newton iteration, as proposed by [71, 138]. It is based on the
observation that if A−1, the inverse of the coefficient matrix, has only one real
eigenvalue γ, then the matrix (2.52) reads asγ̃ H + J 0 0

0 γ̃ H + J 0
0 0 γ̃ H + J

 . (2.53)

This makes the linear system in (2.51) equivalent to three separate linear
subsystems with the same real nk × nk-matrix. Note that the computational
cost of one Newton-type iteration then reduces to that of a Singly Diagonally
IRK (SDIRK) method [158] even though the converged solution of the nonlinear
system still corresponds to the original IRK scheme. For most high order
methods, A−1 however does not have this property [158].

In the following, we therefore approximate the coefficient matrix by Ã, which
is selected such that its inverse has only one real eigenvalue γ. More details
on how to wisely construct such a non unique approximation can be found
in [138]. The matrix Ã needs to be invertible and has a decomposition of the
form Ã−1 = γ W (13 − E)W−1, where E is a strictly lower triangular matrix.
Using the approximate matrix Ã in (2.50) and premultiplying the linear system
by W−1(Tint Ã)−1 ⊗ 1nk , one obtains the equivalent expression

(13 ⊗ (γ̃ H + J)) ∆K̂ =− (γ̃ (13 − E)W−1 ⊗ 1nk)G

+ (E ⊗ γ̃ H)∆K̂,
(2.54)

86 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

where γ̃ = 1
Tint

γ and ∆K̂ = (W−1⊗1nk)∆K. The solution of this linear system
requires the computation of just one factorization of the nk×nk-matrix γ̃ H+J .
Since matrix E is strictly lower triangular, the linear system in (2.54) results in
three separable subsystems of dimension nk which can be solved sequentially.
For example, specific Single Newton-type schemes tailored to the 3- and 4-stage
Gauss method, can be found in [138, 139].

Computational complexity

The three proposed inexact Newton schemes allow for considerably reducing
the computational cost of the implicit integrator. Table 2.1 shows a comparison
of the computational complexity per integration step, including the presented
Jacobian approximation and corresponding linear system transformation
techniques. It distinguishes between the effort needed to factorize the matrix
and the effort to perform the corresponding linear system solutions in each
iteration. Note that the table shows the computational cost for solving the
state equations and nw forward sensitivity directions, where nw = nx + nu
in case the full Jacobian is computed. It can be observed that the need for
sensitivity analysis strongly affects the computational cost. More specifically,
either the factorization or the corresponding system solutions generally become
the bottleneck when using direct linear algebra, respectively if either nk � nw
or nw � nk holds. The comparison here assumes that an LU factorization is
used which, for a matrix of dimension n, requires ∼ 2

3n
3 flops and the back

substitutions accordingly require ∼ 2n2 flops [137].

The table has been constructed for the Gauss collocation method, for which
the coefficient matrix A has q

2 complex conjugate pairs of eigenvalues when
the number of stages q is even or it has one real eigenvalue and q−1

2 complex
conjugate pairs in case q is odd [158]. Note that one complex multiplication
typically corresponds to 4 real multiplications, which is important for analyzing
the Simplified Newton scheme. Both the Simplified and Single Newton iterations
are performed with the reuse of the Jacobian as proposed in the first approach.
As can be seen from Table 2.1, the Single Newton scheme is generally the cheapest
to implement but it additionally approximates the coefficient matrix which
typically affects the convergence as studied in more detail by [35, 62, 71]. Both
the Simplified and Single Newton iterations become relatively more competitive
for IRK methods with a higher number of stages [158]. The use of these inexact
Jacobian based implementations within a Newton-type optimization algorithm
for direct optimal control will be studied further as part of Chapter 6 and 7,
including also numerical experiments.

COLLOCATION FOR EMBEDDED OPTIMIZATION 87

Table 2.1: Computational cost of the Newton-type schemes per integration step
for a Gauss collocation based method (nk = nx + nz and nw = nx + nu).

factorization (#flops) linear system (#flops)
Exact Newton 2

3 (q nk)3 × L 2(q nk)2(nw + 1)× L

Inexact with reuse 2
3 (q nk)3 2(q nk)2(nw + 1)× L

Simplified Newton
4 q
3 n

3
k

(4 q−2)
3 n3

k

(4 q)n2
k(nw + 1)× L [q even]

(4 q − 2)n2
k(nw + 1)× L [q odd]

Single Newton 2
3n

3
k (2 q)n2

k(nw + 1)× L

2.4.3 Efficient Sensitivity Propagation

Section 2.3.5 and 2.3.6 presented how to perform a tailored sensitivity analysis
respectively for explicit and implicit RK formulas. We briefly discuss some of the
implementation aspects, related to the two alternative sensitivity propagation
techniques. One can either use an exact Jacobian evaluation and factorization
for the direct computation of the necessary derivatives or implement an iterative
scheme based on inexact Jacobian information. Note that sometimes a third
option exists based on the use of inexact derivatives, e.g., within the Newton-type
optimization algorithms discussed in Chapter 7.

Iterative differentiation

As mentioned earlier, either a staggered or simultaneous implementation of the
iterative IND scheme such as in Eq. (2.46) can be made. Both variants are
readily combined with the Newton-type methods for IRK schemes from the
previous section. Let us summarize some of the advantages, which an iterative
approach to sensitivity analysis could have also for embedded optimization and
this unlike a direct IND scheme:

• It is based on the differentiation of the integrator implementation itself
and therefore does not require the exact solution of the implicit equations.

• The iterative procedure can be computationally cheap in case only a few
forward or backward sensitivity directions are needed.

88 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

• Any Newton-type implementation can be used and this both for the state
and the sensitivity equations, possibly in a simultaneous manner. One
can, e.g., reuse Jacobian information over multiple integration steps.

An efficient direct approach

Even though an iterative implementation of sensitivity analysis generally has
multiple advantages, we will mostly rely on a direct computation of derivatives for
optimal control throughout this thesis. The main reason is that relatively many
(forward) sensitivity directions need to be computed in a standard algorithm for
direct optimal control. In this particular context, an iterative solution of the
sensitivity equations can be rather costly as discussed in more detail by [210, 259].
The alternative is to use a direct IND scheme which has also been referred to
as a staggered direct method [6, 67]. The idea is to first solve the nonlinear
system of equations corresponding to the implicit integration scheme, followed
by a direct solution of the sensitivity equations. An efficient implementation of
this technique is presented in Algorithm 2 for one implicit integration step of
the form in (2.41), where the full Jacobian

[
dxn+1

dx0

dxn+1
du

]
of the simulation

result is computed with forward differentiation as in Eq. (2.42). The algorithm
is based on the reuse of the Jacobian from the sensitivity computation for
the Newton-type iterations on the state equations, as proposed in [199, 269].
Note that also adjoint sensitivity propagation could be included, based on the
expressions in (2.43). We summarize some of the important advantages of this
direct differentiation approach:

• The direct scheme does not require an iterative procedure, but instead
relies on a direct solution of the linear sensitivity equations. This forms a
considerable advantage for problems with expensive function evaluations
or a large number of required sensitivity directions [210].

• The Jacobian evaluation and its factorization for the sensitivity com-
putation can be reused within the Newton-type iterations for the next
integration step (see implementation in Algorithm 2).

• In order to solve the sensitivity equations exactly, a new Jacobian needs
to be factorized at least once per integration step. However, this can be
desirable for highly nonlinear problems, by resulting in a good Newton-
type convergence for the state equations.

• When using error control for the numerical simulation (see Section 2.4.1),
the sensitivities can be computed only for the accepted integration steps
unlike a simultaneous iterative scheme [199].

COLLOCATION FOR EMBEDDED OPTIMIZATION 89

Algorithm 2 Integration step with direct IND and Jacobian reuse (IFT-R)

Input: (xn, u), dxn
d(x0,u) , initial guess K

[0]
n and factorized M .

Newton-type scheme (2.47)
1: for i = 0→ L− 1 do
2: K

[i+1]
n ← K

[i]
n −M−1G(xn,K [i]

n , u).
3: end for
4: xn+1 ← F (xn,K [L]

n , u).
Evaluate and factorize Jacobian

5: M ← ∂G
∂K (xn,K [L]

n , u).
Derivatives collocation variables

6: dKn
dx0
← −M−1

(
∂Gn
∂x

dxn
dx0

)
.

dKn
du ← −M

−1 (∂Gn
∂x

dxn
du + ∂Gn

∂u

)
.

Forward sensitivities result
7: dxn+1

dx0
← ∂Fn

∂x
dxn
dx0

+ ∂Fn
∂K

dKn
dx0

.
dxn+1

du ← ∂Fn
∂x

dxn
du + ∂Fn

∂K
dKn
du + ∂Fn

∂u .

8: Initialize K [0]
n+1 for next integration step [259].

Output: xn+1, dxn+1
d(x0,u) , next guess K

[0]
n+1 and factorized M .

The forward sensitivity propagation in Algorithm 2 requires the computation of
the quantities ∂Fn

∂K
dKn
dx0

and ∂Fn
∂K

dKn
du , based on the factorization of the Jacobian

matrix M . As discussed in [259], it can be computationally more efficient to
first evaluate the expression ∂Fn

∂K M−1 in case of many sensitivity directions,
i.e., when (nx + nu)� nx. This alternative approach bears resemblance to an
adjoint sensitivity analysis. It is however not attractive anymore when many
extra outputs need to be computed, as discussed in the next section. Note
that Algorithm 2 has been referred to as the IFT based scheme with reuse of
the Jacobian, abbreviated IFT-R in [259, 269]. In these references, a detailed
comparison with other IND implementations can be found for collocation
methods, based on numerical experiments.

Remark 2.4 Most real-time optimal control implementations are based on
tailored structure exploiting optimization and simulation algorithms, such as the
techniques presented in Chapter 4, 5 and 6. They require efficient direct linear
algebra routines for small to medium-scale problems. Most general-purpose
implementations of the Basic Linear Algebra Subprograms (BLAS) standard are
however not optimized for these problem sizes, such that more efficient custom
implementations can be made for embedded optimization. For this, we refer the
reader to [121, 123] and references therein.

90 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

2.5 Continuous Output for Optimal Control

An important property of numerical simulation methods is whether they allow
for a continuous representation of the solution to the system of differential
equations. For example, the family of collocation methods naturally provides
this feature. But also other schemes can be extended with such a dense or
continuous output formula. This concept can be practically relevant to obtain
graphical output, for event localization or the treatment of discontinuities in
differential equations [157]. An interesting example of the latter is the detection
of implicit switches between different sub-models as discussed in [55, 188].
Continuous output could be used for the implementation of adjoint sensitivity
analysis, in order to efficiently interpolate the forward solution while performing
the adjoint model simulation [15].

The feature of continuous output can also be computationally attractive to be
used within algorithms for direct optimal control, in order to efficiently define
certain objective or constraint functions. Let us mention some examples of
optimal control related applications:

• For the accurate numerical evaluation of continuous objectives [188].

• To impose path constraints on a grid, that can be (much) finer than the
discretization grid. This can, for example, be used to efficiently implement
closed-loop costing for NMPC as discussed in Section 2.5.3.

• In order to evaluate the simulation results, corresponding to high frequency
measurements for dynamic estimation problems (see Section 2.5.4).

• It can also be used for the parameterization of coupling variables in a
distributed optimal control framework as presented in Chapter 5.

2.5.1 Continuous Extension of Integration Formulas

Note that the alternative to the continuous extension of a numerical simulation
method, is to guarantee the integration step size to be sufficiently small
corresponding to the required resolution for the output evaluation grid. This
is however typically undesirable because the resulting simulation procedure
would become computationally inefficient. One of the first dense output schemes
was constructed for the Runge–Kutta–Fehlberg (RKF) formula of order 4-5
by [171]. Eventually, the large family of RK methods can be divided in a
continuous and a discrete group [102]. Schemes in the first group naturally
provide a continuous representation of the numerical solution, such as the class

CONTINUOUS OUTPUT FOR OPTIMAL CONTROL 91

of collocation methods which is discussed in the next section. But also BDF
methods can naturally and efficiently provide a continuous output by using
interpolation polynomials as discussed in [47, 55]. An overview on how to
generally construct continuous extensions for the other RK methods can be
found in [101, 102] and references therein. Multiple techniques can be used that
differ in their applicability, the continuity of the interpolant across integration
steps and the resulting computational cost, which is proportional to the required
amount of extra function evaluations.

2.5.2 Family of Collocation Methods

Each q-stage collocation method defines a polynomial which is a continuous
representation for the numerical simulation of order q as shown in [157]. Note
that the end point order of the scheme can still be constructed to be higher
by selecting the collocation nodes, e.g., P = 2 q for the Gauss methods [158].
This property for the Gaussian quadrature formula is sometimes referred to
as superconvergence. Based on the qth order collocation polynomial p(t) in
Eq. (2.17), the corresponding continuous output evaluation results in a local
interpolation error O(T q+1

int). As argued in more detail by [70], this relation
however also holds for the global error resulting in a higher order of q + 1 in
case the end point order P > q. Therefore, the continuous approximation of the
state trajectory is of order P̃ = min(P, q + 1) for a q-stage collocation method.
More specifically, Table 2.2 presents the end point P and continuous output
order P̃ for the first three Gauss (GL2, GL4 and GL6) and Radau IIA (RIIA1,
RIIA3 and RIIA5) methods with q = 1, 2 and 3 stages [158]. Even though the
class of collocation methods provides a natural continuous extension without
extra function evaluations, a clear and undesirable discrepancy can be observed
in the order of accuracy for higher order methods.

RIIA1 GL2 RIIA3 GL4 RIIA5 GL6
number of stages q 1 1 2 2 3 3
end point order P 1 2 3 4 5 6
continuous output P̃ 1 2 3 3 4 4

Table 2.2: Order of accuracy for the end point and of the continuous output for
the 1-, 2- and 3-stage Gauss-Legendre and Radau IIA methods.

92 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

Continuous output evaluation

Collocation methods form a specific family of IRK schemes as in (2.4), for which
their continuous extension arises naturally. Using the state derivative variables
k1, . . . , kq, a polynomial interpolation p(t) is defined for the state trajectory as
in (2.17) over the interval t ∈ [tn, tn+1]

x(tn + c Tint) ≈ xn + Tint

q∑
i=1

ki

∫ c

0
`i(τ) dτ, (2.55)

at a specific time point tn + c Tint, where 0 ≤ c ≤ 1 and `i(t) =
∏
j 6=i

t−cj
ci−cj

are the Lagrange interpolating polynomials as in (2.19). Note that for c = 1,
this corresponds to the evaluation of xn+1 = xn + Tint

∑q
i=1 biki based on the

coefficients in (2.18). As mentioned earlier, this continuous output evaluation
can be shown to be of order P̃ = min(P, q + 1).

It is possible to also construct such a polynomial representation for the algebraic
states z(t) and differential state derivatives ẋ(t), in the case of a collocation
method (2.28) applied to a DAE system. As discussed also in [259, 261], in
addition to the computed stage variables K = (k1, . . . , kq, Z1, . . . , Zq), this
would also require consistent values of the variables at time tn in order to obtain
the same order of accuracy P̃ as for the differential state trajectory. In the
case of a discontinuous jump in the value of a parameter or control input, the
differential states vary continuously while their derivatives and the algebraic
states can also exhibit such a jump as a result. In practice, the assumption of
having consistent values for these variables at the beginning of each integration
step is therefore not always evident. An interpolating polynomial of one order
less could then be used for these variables

z(tn + c Tint) ≈
q∑
i=1

`i(c)Zi,

ẋ(tn + c Tint) ≈
q∑
i=1

`i(c)ki.

(2.56)

Therefore, the differential as well as the algebraic variables and state derivatives
can efficiently be evaluated on any set of grid points which can be chosen
independently from the discretization grid. In the context of an optimal control
problem formulation, there would typically be an output function of the form
y(t) = ψ(t, ẋ(t), x(t), z(t)) which needs to be evaluated on a fine grid. This can
be performed by using the polynomial interpolations in Eqs. (2.55) and (2.56).
Even though continuous output can be used as a feature to efficiently implement

CONTINUOUS OUTPUT FOR OPTIMAL CONTROL 93

adjoint sensitivity analysis, note that it is conversely not a good idea to use
adjoint sensitivity propagation to compute first order derivative information
for a relatively high dimensional output function. Instead, one could directly
evaluate the output sensitivities using the forward derivatives of the collocation
variables, e.g., from Algorithm 2.

2.5.3 Closed-Loop Costing based on Continuous Output

The issue of closed-loop stability for an NMPC scheme has briefly been discussed
in Section 1.5 of the previous chapter. Instead of determining a suitable terminal
region or sufficiently prolonging the control horizon [17], we look into the
technique of infinite horizon closed-loop costing [219, 231] as an example for
the use of continuous output within algorithms for direct optimal control. The
scheme is based on a local control law and uses a prediction horizon in which the
state and input constraints are still imposed. Stability of the closed-loop system
can then be proven in a rigorous way [231]. To formulate a practical scheme,
the prediction horizon can be truncated without losing this stability guarantee
as is the topic of discussion in [219]. Furthermore, the path constraints will
only be imposed at specific time points. The main advantage of introducing
the prediction horizon is that it allows us to enlarge the region of attraction
around a reference point without increasing the control horizon, i.e., with the
same number of decision variables [93].

An efficient implementation of the approximate infinite horizon closed-loop
costing approach has been presented in [271], in order to implement a stable
NMPC scheme for the example of an inverted pendulum system on top of a
cart. In this tutorial case study, an LQR controller was designed as the local
control law around the unstable steady state reference point. In addition, the
collocation method from Algorithm 2 has been used, including the continuous
output feature with forward sensitivity propagation as detailed in the previous
section. An efficient implementation of this scheme can be found in the open-
source ACADO code generation tool, as discussed in [271] but this software is
also presented further in Chapter 8. The goal of the integrator is to take
relatively large integration steps, but to use continuous output in order to
efficiently evaluate the additional path constraints over the prediction horizon
as well as the corresponding terminal cost. The numerical results for an RTI
implementation can be found in [271], based on a Gauss method of order 4
(q = 2), integration step size Tint = 0.05 s, sampling time Ts = 0.05 s and using
FORCES to solve the structured QP subproblem at each time step. Table 2.3
shows the average computation times, both for a formulation with and without
a prediction horizon. It can be observed that the closed-loop costing scheme

94 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

Table 2.3: Average computation time for approximate infinite horizon NMPC.1

(Nc = 20, Np = 0) (Nc = 10, Np = 20)
Simulation and sensitivities:
• control horizon 60 µs 30 µs
• prediction horizon - 14 µs

QP solution (FORCES) 155 µs 114 µs
Total RTI step 215 µs 158 µs

Figure 2.6: The cube toy example setup, used in the multi-rate estimation
problem to illustrate a continuous output based MHE implementation.

based on continuous output can provide a rather efficient way to improve the
stability properties of the NMPC implementation.

2.5.4 MHE with Multi-Rate Measurements

As a final motivating example for the use of continuous output within direct
optimal control, we look at an MHE scheme with multi-rate measurements
as presented in [261]. Figure 2.6 depicts the setup that is considered as a toy
example, which consists of a cube hanging to a rod by one of its corners. The
corresponding index-1 DAE model can be obtained from Lagrange mechanics
as described in more detail in [261]. The goal of the problem is to accurately
estimate the position and orientation of the moving cube, using two different
types of measurements [128]. Absolute location information is available at a

1These numerical simulations are performed using the ACADO code generation tool on a
computer equipped with Intel i7-3720QM processor, running a 64-bit version of Ubuntu 12.04.

CONCLUSIONS AND OUTLOOK 95

ACADO solver MATLAB’s ode15s

Simulation and sensitivities 0.02 s 10.65 s
Total time per CGN iteration 0.04 s 10.69 s

Table 2.4: Average computation time of one CGN iteration, using respectively an
auto generated ACADO solver and MATLAB’s general-purpose DAE solver ode15s.2

low frequency of 10 Hz using a Global Positioning System (GPS). In addition,
measurements of the angular velocity and linear acceleration are provided by an
Inertial Measurement Unit (IMU) at a relatively high frequency of, e.g., 800 Hz.

The resulting OCP formulation consists of an equality constrained nonlinear
optimization problem with a least squares objective. Let us consider a number
of estimation intervals N = 10 and the corresponding horizon length of T = 1 s.
In order to implement the MHE scheme, this OCP can be solved at each time
point using multiple shooting in combination with the Constrained Gauss-
Newton (CGN) method from [44]. Similar to the previous numerical example,
we can use the ACADO generated collocation integrators with continuous output
and forward sensitivity propagation. This allows one to use an integration step
size that is significantly larger than the time between two IMU measurements
without any loss of information, by evaluating the corresponding simulation
results on the fine grid using continuous output. As an alternative approach,
the same CGN algorithm can be implemented using a standard DAE solver
from MATLAB such as ode15s, which also supports the evaluation of additional
outputs. Table 2.4 shows the computation times for both implementations,
where numerical differentiation is used to generate the sensitivities for the
ode15s solver. The table illustrates the importance of using an integration
scheme with tailored sensitivity propagation for direct optimal control. It is
however important to note that both implementations are quite different and
difficult to compare directly as discussed in [261].

2.6 Conclusions and Outlook

This chapter provided an overview on numerical integration schemes and tailored
first order sensitivity analysis for the efficient implementation of embedded
optimization algorithms for direct optimal control. The efficient implementation

2The numerical experiments were run on an ordinary computer (Intel P8600 3MB cache,
2.40 GHz, 64-bit Ubuntu 12.04 LTS and MATLAB R2011a 64 bit).

96 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

of Implicit Runge-Kutta (IRK) methods for embedded optimization is discussed
in more detail. For this purpose, one can use tailored Newton-type methods
in addition to the reuse of Jacobian factorizations for both the numerical
simulation and the sensitivity propagation. A promising feature of collocation
methods, which form a subclass of IRK schemes, is that they can provide
continuous output evaluations at an additional computational cost which is
relatively small. The use of continuous output for direct optimal control has
been illustrated, based on the concept of closed-loop costing for NMPC and the
efficient implementation of MHE with multi-rate measurements.

The next chapters will build further on these proposed algorithmic techniques,
e.g., in order to include a tailored exploitation of particular dynamic system
structures in Chapter 4 and 5, as well as the efficient propagation of second
order sensitivities for Newton-type optimization in Chapter 3.

Chapter 3

Symmetric Hessian
Propagation Technique

This chapter proposes an efficient scheme for both discrete- and continuous-
time second order sensitivity propagation within direct methods for optimal
control. Unlike the classical forward-over-adjoint (FOA) techniques [141, 240]
to compute second order derivative information, we propose a novel Hessian
propagation technique to maintain and exploit the symmetric property of
Hessian computations in Newton-type optimization. The scheme is presented in
combination with any explicit or implicit integration method. In addition, we
present an extension of these results to continuous-time sensitivity propagation
for an implicit system of Differential-Algebraic Equations (DAE) of index 1.
This discussion in a continuous-time framework allows for a generic sensitivity
analysis, before applying a numerical discretization scheme.

Based on the symmetric sensitivity equations, a three-sweep Hessian propa-
gation (TSP) scheme is proposed. This novel technique is studied here both
in discrete- and continuous-time, and shown to considerably reduce both the
computational burden and the memory requirements over classical approaches.
In the case of adjoint or second order sensitivity analysis, one important issue
is the memory footprint for the resulting propagation scheme consisting of
consecutive forward and backward sweeps. With the use of this TSP technique
based on the symmetric sensitivity equations, one can reduce the storage
requirements. An implementation of these symmetric Hessian propagation
techniques in the open-source ACADO Toolkit software package is illustrated
numerically on the case study of a nonlinear biochemical reactor.

97

98 SYMMETRIC HESSIAN PROPAGATION TECHNIQUE

Note that this chapter is largely based on the article in [266], following the
initial results in [267] and [268].

Notation and preliminaries This thesis denotes first order total and partial
derivatives, respectively using the compact notation DaF (a, b) = dF (a,b)

da and
∂aF (a, b) = ∂F (a,b)

∂a . In addition, let us write the second order directional
derivatives:

〈c,D2
a,bF (a, b)〉 =

n∑
k=1

ck
d2Fk(a, b)

da db , (3.1)

where c ∈ Rn is a constant vector and F : Rl×Rm → Rn is a twice differentiable
function. Notice that the map 〈·, ·〉 : Rn × Rn×l×m → Rl×m does not denote a
standard scalar product, since the first argument is a vector while the second
argument is a tensor. We occasionally use the shorthand notation 〈c,D2

a,bF 〉, if
it is clear from the context that F depends on a and b. We write 〈c,D2

aF (a)〉
rather than 〈c,D2

a,aF (a)〉, in case F has only one argument. If the second order
derivatives of F are continuous, the matrix 〈c,D2

aF (a)〉 is symmetric. When
using partial instead of total derivatives, a similar compact notation for the
directional second order derivatives is adopted:

〈c, ∂2
a,bF (a, b)〉 =

n∑
k=1

ck
∂2Fk(a, b)
∂a ∂b

. (3.2)

When it is clear whether they are the result of partial or total differentiation,
first and second order derivatives can sometimes be denoted more compactly
as, e.g., Fa = ∂F (a,b)

∂a , respectively Fa a = ∂2F (a,b)
∂a2 or Fa b = ∂2F (a,b)

∂a ∂b .

Outline The chapter is organized as follows. Section 3.1 briefly introduces
a simplified problem formulation in order to illustrate the need for efficient
sensitivity analysis within direct optimal control. Section 3.2 discusses discrete-
time propagation techniques for a generic implicit integration method. We
first present the classical first and second order techniques, then we propose
and motivate our alternative symmetric propagation scheme. Section 3.3 then
presents the continuous-time extension of these novel sensitivity equations,
considering an implicit DAE system. The three-sweep Hessian propagation
technique is introduced and discussed in Section 3.4, including implementation
aspects. Section 3.5 finally presents numerical results on an illustrative case
study, using the open-source ACADO Toolkit software.

PROBLEM STATEMENT 99

3.1 Problem Statement

Let us briefly introduce the problem formulation in which we are interested,
including the DAE system and the need for first and second order sensitivity
analysis for Newton-type optimization within direct optimal control.

3.1.1 Differential-Algebraic Equations

We consider the following semi-explicit DAE system, in which we omitted the
dependency on control inputs in Eq. (1.5) for simplicity of notation:

ẋ(t) = f(x(t), z(t)), x(0) = x0(p),

0 = g(x(t), z(t)),
(3.3)

where x(t) ∈ Rnx denotes the differential states, z(t) ∈ Rnz the algebraic
variables and f : Rnx × Rnz → Rnx , g : Rnx × Rnz → Rnz . The parameters
p ∈ Rnp are additional variables that define the initial value x0 : Rnp → Rnx .
The DAE system is of index 1 (see Definition 1.4) if the Jacobian ∂zg(·) is
non-singular. When there are no algebraic variables, the set of equations instead
denotes an explicit ODE system:

ẋ(t) = fODE(x(t)), x(0) = x0(p). (3.4)

We introduce the following two important assumptions.
Assumption 3.1 The functions f(x(t), z(t)), g(x(t), z(t)) and x0(p) are twice
continuously differentiable in all arguments (see also Assumption 1.10).

Assumption 3.2 The DAE system (3.3) has differential index 0 or index 1,
which means that either nz = 0, or the Jacobian matrix ∂zg(·) must be invertible.

Finally, we refer to the following definition for consistent initial conditions such
that the initial value problem in Eq. (3.3) has a unique solution x(t, p) and
z(t, p) ∀t ∈ [0, T], p given the previous two assumptions [67, 158, 279, 280].
Definition 3.3 (Consistent initial conditions) The values x(0, p), z(0, p) are
called consistent when the following conditions hold:

x(0, p) = x0(p)

0 = g(x(0, p), z(0, p)).
(3.5)

This is a well defined nonlinear system in the variables x(0, p), z(0, p) given the
parameter values p and an index 1 DAE.

100 SYMMETRIC HESSIAN PROPAGATION TECHNIQUE

Note that the sensitivity propagation techniques presented in this chapter can
be readily extended to the fully implicit DAE formulation from Definition 1.3.
To keep the notation relatively simple, let us however focus on the semi-explicit
formulation from Eq. (3.3) instead.

3.1.2 Direct Optimal Control

Based on the initial value problem from Eq. (3.3), we consider the following
continuous-time OCP formulation

min
x(·),z(·), p

m (x(T)) (3.6a)

s.t. 0 = x(0)− x0(p), (3.6b)

ẋ(t) = f(x(t), z(t)), ∀t ∈ [0, T], (3.6c)

0 = g(x(t), z(t)), ∀t ∈ [0, T], (3.6d)

where the objective in Eq. (3.6a) consists of a terminal cost defined by the twice
continuously differentiable function m(·), depending only on the differential
states for notational convenience. For the ease of exposition, note that this
is a simplified form of the OCP in Eq. (1.6), which could comprise additional
time-varying control inputs, inequality constraints on states and controls, or
more general objective functionals.

The unique solution of the initial value problem in Eq. (3.3) can be referred
to as x(t, p) and z(t, p) ∀t ∈ [0, T] and for a specific parameter value p. As
discussed earlier in Section 1.2.2, a single shooting type discretization of the
OCP (3.6) then results in the following unconstrained NLP:

min
p

M(p), (3.7)

where M(p) = m (x(T, p)). A minimizer for this finite dimensional problem
exists if and only if the continuous-time OCP (3.6) has an optimal, bounded
solution. To preserve a more compact notation, single shooting will be used
throughout this chapter even though all presented techniques can also readily
be employed within the direct multiple shooting method [48]. Note that direct
transcription methods [34] do not require a propagation of sensitivities as
in shooting based approaches, but they can still benefit from the proposed
symmetric evaluation of the Hessian contributions. In practice, the function
x(T, p) is obtained approximately by the use of a numerical simulation scheme
as discussed in the previous chapter.

DISCRETE-TIME SENSITIVITY PROPAGATION 101

3.1.3 Newton-Type Optimization

Exact Newton methods of the form

p[k+1] = p[k] −D2
pM(p[k])−1 DpM(p[k])>, for k = 0, 1, . . . (3.8)

converge locally quadratically to stationary points of problem (3.7) under mild
conditions; see Section 1.3.2. In general, one needs a well designed globalization
strategy to guarantee convergence, but this topic is outside of the scope here.
The first and second order derivatives in Eq. (3.8) are given by:

DpM(p)> = Dpx(T, p)>λ̄(p)

D2
pM(p) = 〈λ̄(p),D2

px(T, p)〉+ Dpx(T, p)>∂2
xm (x(T, p)) Dpx(T, p),

(3.9)

where the notation λ̄(p)> = ∂xm (x(T, p)) is used. Here, λ̄(p) is called the
“backward seed” for the sensitivity propagation techniques. The evaluation
of partial derivatives for the function m(·) is assumed to be relatively cheap
using AD techniques as discussed in Section 2.3.1 of the previous chapter. The
main computational effort is therefore typically the numerical simulation to
evaluate x(T, p) and the propagation of its first and second order sensitivities.
Note that these directional second order derivatives 〈λ̄(p),D2

px(T, p)〉 =∑nx
k=1 λ̄k(p)D2

pxk(T, p) are defined as in (3.1).

3.2 Discrete-Time Sensitivity Propagation

For a discussion on discrete-time propagation techniques for the sensitivities
in (3.9), let us denote an integration scheme to simulate the index-1 DAE system
in Eq. (3.3) by the following semi-explicit set of equations:

xn+1 = F (xn, zn)

0 = G(xn, zn),
(3.10)

for n = 0, . . . , Ns− 1 where x0 = x0(p), the Jacobian matrix ∂zG(·) is invertible
and the functions F : Rnx × Rnz → Rnx , G : Rnx × Rnz → Rnz are twice
continuously differentiable when Assumption 3.1 holds. In what follows, the
dependency of the variables xn, zn on the parameter value p for n = 0, . . . , Ns−1
will be omitted to arrive at a compact notation.

Note that the formulation in Eq. (3.10) can be considered a simplified form of
Eq. (2.41) which includes both the explicit and implicit integration methods

102 SYMMETRIC HESSIAN PROPAGATION TECHNIQUE

that have been presented in the previous chapter, where the function G(·)
remains empty in case of an explicit scheme. The additional variables zn ∈
Rnz for n = 0, . . . , Ns − 1 denote all internal variables that are necessary to
formulate the integration scheme. In the case of a collocation method, for
example, these variables denote the values of the differential state derivatives
and algebraic variables at the collocation nodes such as in Eq. (2.28). The
number of integration steps Ns is chosen to be fixed for notational convenience.
This section is concerned with a discrete-time sensitivity analysis, following the
discretize-then-differentiate principle as introduced in Section 2.3.2. For this
purpose, a direct differentiation approach will be adopted even though the same
techniques can be readily used to derive an iterative propagation scheme as
illustrated earlier in Section 2.3.6 for the IRK methods.

3.2.1 First Order Sensitivity Analysis

In what follows, we will refer to the function evaluations in Eq. (3.10) using
the compact notation Fn = F (xn, zn) and Gn = G(xn, zn). Similarly, the first
order derivatives read:

Fnx = ∂xF
n, Fnz = ∂zF

n and Gnx = ∂xG
n, Gnz = ∂zG

n, (3.11)

of which the Jacobian matrix Gnz is invertible. Before we discuss second order
derivatives and present our novel symmetric algorithm, let us recall the first
order sensitivity analysis for the integration scheme in (3.10).

Forward propagation We define the sensitivities Sxn := Dpxn ∈ Rnx×np and
Szn := Dpzn ∈ Rnz×np , which can be propagated forward using the following
semi-explicit system of equations:

Sxn+1 = Fnx S
x
n + Fnz S

z
n

0 = Gnx S
x
n +Gnz S

z
n,

(3.12)

for n = 0, . . . , Ns−1 where the initial value Sx0 = Dpx0 is known. The sensitivity
equations in (3.12) can be obtained directly by differentiating Eq. (3.10) with
respect to the parameter p. Note that the matrix Gnz is invertible such that
Szn = −Gn−1

z Gnx S
x
n could be computed explicitly. The end value SxNs

can be
used to obtain the result DpM(p)> = Dp(xNs)> λ̄ = Sx

>

Ns
λ̄ in the Newton-type

optimization scheme from Section 3.1.3.

Adjoint propagation The gradient result DpM(p)> can alternatively be
computed directly by use of an adjoint propagation scheme where λ̄ denotes

DISCRETE-TIME SENSITIVITY PROPAGATION 103

the backward seed. For this purpose, let us define the adjoint variables
λxn := Dxn(xNs)> λ̄ ∈ Rnx and λzn ∈ Rnz that can be propagated backward
using the following semi-explicit system of equations:

λxn = Fn
>

x λxn+1 +Gn
>

x λzn+1

0 = Fn
>

z λxn+1 +Gn
>

z λzn+1,

(3.13)

for n = Ns − 1, . . . , 0 where the initial value λxNs
= λ̄ is given by the seed. The

backward propagation scheme results in the sensitivity λx0 = Dx0(xNs)> λ̄ such
that DpM(p)> = Dp(x0)> λx0 . These adjoint sensitivity equations (3.13) can be
obtained directly by differentiating (3.10) with respect to xn and multiplying
the first equation with λx>n+1:

Dxn(xn+1)> λxn+1 = Fn
>

x λxn+1 + Dxn(zn)> Fn
>

z λxn+1

0 = Gn
>

x + Dxn(zn)>Gn
>

z ,

which defines Dxn(zn)> = −Gn>x Gn
−>

z . By introducing λzn+1 = −Gn−>z Fn
>

z λxn+1,
one obtains the expressions in Eq. (3.13).

3.2.2 Second Order Sensitivity Propagation

Next, we are interested in computing second order directional derivatives of
the form 〈λ̄,D2

pxNs〉 = 〈λ̄,D2
px(T, p)〉 as required in Eq. (3.9) and following our

notation in Eq. (3.1). Such directional second order derivatives can be computed
by combining forward and backward techniques for first order sensitivity analysis.
Combining the two techniques for first order derivatives results in four possible
propagation schemes [141, 240]. However, in the forward-over-forward approach,
computational effort would be spent in computing sensitivity directions that are
not necessarily needed to form the Hessian result. Similarly, it is not efficient
to perform more than one reverse sweep as discussed in [141]. In the following,
among the two remaining approaches, preference will be given to the more
standard forward-over-adjoint (FOA) approach.

We introduce the following compact notation for the second order derivatives of
the functions Fn = F (xn, zn) and Gn = G(xn, zn):

Fna b = ∂2
a,bF

n and Gna b = ∂2
a,bG

n. (3.14)

Forward-over-adjoint (FOA) propagation Let us apply forward differentiation
directly to the adjoint propagation scheme in Eq. (3.13), where we also regard the

104 SYMMETRIC HESSIAN PROPAGATION TECHNIQUE

dependency of the variables λn on the parameter p. This results in the additional
variables Hx

n ∈ Rnx×np and Hz
n ∈ Rnz×np , for which the corresponding FOA

type equations read as:

Hx
n = Fn

>

x Hx
n+1 +Gn

>

x Hz
n+1

+
[
〈λxn+1, F

n
xx〉+ 〈λzn+1, G

n
xx〉 〈λxn+1, F

n
xz〉+ 〈λzn+1, G

n
xz〉
] [Sxn
Szn

]
0 = Fn

>

z Hx
n+1 +Gn

>

z Hz
n+1

+
[
〈λxn+1, F

n
zx〉+ 〈λzn+1, G

n
zx〉 〈λxn+1, F

n
zz〉+ 〈λzn+1, G

n
zz〉
] [Sxn
Szn

]
,

(3.15)
for n = Ns − 1, . . . , 0 where the initial value is given by Hx

Ns
= 0. This

backward propagation results in the sensitivity Hx
0 = 〈λ̄,D2

x0,pxNs〉 such that
the Hessian matrix 〈λ̄,D2

pxNs〉 = Hx>

0 Dpx0 + 〈λx0 ,D2
px0(p)〉 can be evaluated.

It is important to note that the FOA variables Hx
n ∈ Rnx×np and Hz

n ∈ Rnz×np

are not symmetric or even square, and the same holds for the equations in the
FOA type propagation scheme (3.15). The desired Hessian result 〈λ̄,D2

pxNs〉 is
however symmetric by definition.

3.2.3 Symmetric Second Order Sensitivity Propagation

We are here interested in an approach that can efficiently propagate a symmetric
Hessian variable HS

n ∈ Rnp×np directly. In what follows, we show that such
a symmetric propagation scheme provides multiple benefits over the classical
FOA approach, while both provide the same second order sensitivities. The
following theorem summarizes this result.

Theorem 3.4 (Symmetric Hessian propagation) Let (xn+1, zn), (Sxn+1, S
z
n) and

(λxn, λzn+1) be defined for n = 0, . . . , Ns − 1 respectively by Eqs. (3.10), (3.12)
and (3.13) and the corresponding initial and terminal values. The following
propagation scheme then generates a symmetric variable HS

n:

HS
n+1 = HS

n

+
[
Sxn
Szn

]> [〈λxn+1, F
n
xx〉+ 〈λzn+1, G

n
xx〉 〈λxn+1, F

n
xz〉+ 〈λzn+1, G

n
xz〉

〈λxn+1, F
n
zx〉+ 〈λzn+1, G

n
zx〉 〈λxn+1, F

n
zz〉+ 〈λzn+1, G

n
zz〉

] [
Sxn
Szn

]
,

(3.16)

DISCRETE-TIME SENSITIVITY PROPAGATION 105

for n = 0, . . . , Ns − 1 starting from the initial value HS
0 = 〈λx0 ,D2

px0(p)〉. This
symmetric variable satisfies HS

n = 〈λxn,D2
pxn〉 ∈ Rnp×np and yields the desired

Hessian result HS
Ns

= 〈λ̄,D2
pxNs〉.

Proof. The proof uses induction over n. For the case n = 0, the statement
HS

0 = 〈λx0 ,D2
px0〉 for the symmetric Hessian result holds by initialization. Let us

now assume that HS
n = 〈λxn,D2

pxn〉 holds for n. From the symmetric sequence
in Eq. (3.16), the following then holds for the case n+ 1:

HS
n+1 = 〈λxn,D2

pxn〉

+
[
Sxn
Szn

]> [〈λxn+1, F
n
xx〉+ 〈λzn+1, G

n
xx〉 〈λxn+1, F

n
xz〉+ 〈λzn+1, G

n
xz〉

〈λxn+1, F
n
zx〉+ 〈λzn+1, G

n
zx〉 〈λxn+1, F

n
zz〉+ 〈λzn+1, G

n
zz〉

] [
Sxn
Szn

]
.

(3.17)
From this expression, we can prove the desired result HS

n+1 = 〈λxn+1,D2
pxn+1〉

based on the second order chain rule and the implicit function theorem. Using
equation xn+1 = F (xn, zn) from (3.10), this second order chain rule reads:

〈λxn+1,D2
pxn+1〉 = 〈λ̃xn,D2

pxn〉+ 〈λ̃zn,D2
pzn〉

+
[
Sxn
Szn

]> [〈λxn+1, F
n
xx〉 〈λxn+1, F

n
xz〉

〈λxn+1, F
n
zx〉 〈λxn+1, F

n
zz〉

] [
Sxn
Szn

]
,

(3.18)

where auxiliary variables λ̃x>n := λx
>

n+1F
n
x and λ̃z>n := λx

>

n+1F
n
z are defined. Let

us recall the adjoint propagation from (3.13), where 0 = Fn
>

z λxn+1 +Gn
>

z λzn+1
and therefore λz>n+1 = −λx>n+1F

n
z G

n−1

z = −λ̃z>n Gn
−1

z holds. The implicit function
theorem for the equation 0 = G(xn, zn) then allows us to write the following
directional second order derivatives as:

〈λ̃zn,D2
pzn〉 = 〈µ̃xn,D2

pxn〉+
[
Sxn
Szn

]> [〈λzn+1, G
n
xx〉 〈λzn+1, G

n
xz〉

〈λzn+1, G
n
zx〉 〈λzn+1, G

n
zz〉

] [
Sxn
Szn

]
, (3.19)

where additionally µ̃x>n := λz
>

n+1G
n
x is defined and λz>n+1G

n
z = −λ̃z>n has been

used. After combining the expression for 〈λ̃zn,D2
pzn〉 in (3.19) into the result

106 SYMMETRIC HESSIAN PROPAGATION TECHNIQUE

from Eq. (3.18), one obtains:

〈λxn+1,D2
pxn+1〉 = 〈λ̃xn,D2

pxn〉+ 〈µ̃xn,D2
pxn〉

+
[
Sxn
Szn

]> [〈λxn+1, F
n
xx〉+ 〈λzn+1, G

n
xx〉 〈λxn+1, F

n
xz〉+ 〈λzn+1, G

n
xz〉

〈λxn+1, F
n
zx〉+ 〈λzn+1, G

n
zx〉 〈λxn+1, F

n
zz〉+ 〈λzn+1, G

n
zz〉

] [
Sxn
Szn

]
= 〈λxn,D2

pxn〉

+
[
Sxn
Szn

]> [〈λxn+1, F
n
xx〉+ 〈λzn+1, G

n
xx〉 〈λxn+1, F

n
xz〉+ 〈λzn+1, G

n
xz〉

〈λxn+1, F
n
zx〉+ 〈λzn+1, G

n
zx〉 〈λxn+1, F

n
zz〉+ 〈λzn+1, G

n
zz〉

] [
Sxn
Szn

]
,

(3.20)
where we used that λxn = Fn

>

x λxn+1 + Gn
>

x λzn+1 = λ̃xn + µ̃xn from Eq. (3.13).
This concludes the induction proof, because (3.20) shows that HS

n+1 =
〈λxn+1,D2

pxn+1〉 holds, based on the original expression in Eq. (3.17).

Let us briefly compare the classical FOA sensitivity propagation in Eq. (3.15)
with the symmetric scheme in Eq. (3.16). One can observe that the novel
equations propagate much less variables HS

n ∈ Rnp×np in case np � (nx + nz),
while the FOA variables are Hx

n ∈ Rnx×np and Hz
n ∈ Rnz×np . In addition,

the sensitivity equation (3.16) is symmetric, such that one can propagate only
the lower triangular part of the variable HS

n ∈ Rnp×np . Since this symmetric
equation does not directly depend on HS

n itself, the Hessian variable can be
propagated in any direction. In Section 3.4, a three-sweep propagation scheme
will be proposed in which these properties are exploited.

3.3 Continuous-Time Sensitivity Propagation

This section presents continuous-time sensitivity equations to propagate the
first and second order directional derivatives with respect to the parameter p.
This follows a differentiate-then-discretize type of approach as discussed in
Section 2.3.3 of the previous chapter. We introduce the shorthand f(t) =
f(x(t), z(t)) and g(t) = g(x(t), z(t)) for the DAE system in Eq. (3.3) whenever
it is clear from the context at which point f and g are evaluated. Additionally,
the partial derivatives of these functions are denoted by

fx(t) = ∂xf(t), fz(t) = ∂zf(t) and gx(t) = ∂xg(t), gz(t) = ∂zg(t).

The dependence of the simulation result x(T, p) and the function x0(p) on the
parameter value p is further omitted to allow a more compact notation.

CONTINUOUS-TIME SENSITIVITY PROPAGATION 107

Remark 3.5 The continuous-time sensitivity equations could be derived from
the discrete-time results in Section 3.2, by applying the limit for the discretization
step size going to zero. For completeness, we however present these continuous-
time results and instead provide a self-contained proof of correctness for the
proposed symmetric Hessian propagation scheme.

3.3.1 First Order Sensitivity Equations

Forward propagation Let us define the sensitivities Sx(t) := Dpx(t) ∈ Rnx×np

and Sz(t) := Dpz(t) ∈ Rnz×np . The forward system of sensitivity equations [67,
106] corresponding to the DAE in (3.3) can be written as:

Ṡx(t) = fx(t)Sx(t) + fz(t)Sz(t), with Sx(0) = Dpx0

0 = gx(t)Sx(t) + gz(t)Sz(t),
(3.21)

which is also of index 0 or 1 under Assumption 3.2. The end value Sx(T) can
be used to obtain the gradient result DpM(p)> = Dp(xT)> λ̄ = Sx(T)> λ̄ in
the Newton-type optimization scheme.

Adjoint propagation The sensitivity result DpM(p)> can alternatively be
computed directly by use of an adjoint propagation scheme. For this purpose,
we define the adjoint variables λx(t) := Dx(t)x(T)> λ̄ ∈ Rnx and λz(t) ∈ Rnz .
As derived in detail by [65, 66], the adjoint system then reads as:

−λ̇x(t) = fx(t)>λx(t) + gx(t)>λz(t)

0 = fz(t)>λx(t) + gz(t)>λz(t),
(3.22)

which is again of index 0 or 1 and the initial value λx(T) = λ̄ is the backward
seed. The adjoint result Dp(xT)> λ̄ = Dp(x0)> λx(0) is then obtained directly
by this backward sensitivity propagation.

3.3.2 Second Order Sensitivity Equations

Now, we are interested in computing second order directional derivatives of
the form 〈λ̄,D2

pxT 〉 as required in Eq. (3.9) and following our notation in
Eq. (3.1). Let us start by presenting the classical forward-over-adjoint (FOA)
type sensitivity equations in continuous-time.

108 SYMMETRIC HESSIAN PROPAGATION TECHNIQUE

Forward-over-adjoint (FOA) Applying forward differentiation directly to
the adjoint system (3.22) yields Hx(t) := Dpλ

x(t) ∈ Rnx×np and Hz(t) :=
Dpλ

z(t) ∈ Rnz×np . These variables are described by the FOA system [240]:

−Ḣx(t) = fx(t)>Hx(t) + gx(t)>Hz(t)

+
[
〈λx, fx x〉+ 〈λz, gx x〉 〈λx, fx z〉+ 〈λz, gx z〉

] [Sx(t)
Sz(t)

]
0 = fz(t)>Hx(t) + gz(t)>Hz(t)

+
[
〈λx, fz x〉+ 〈λz, gz x〉 〈λx, fz z〉+ 〈λz, gz z〉

] [Sx(t)
Sz(t)

]
,

(3.23)

where the first order sensitivities are defined earlier and the second order
derivatives read fa b = ∂2

a,bf(t) and ga b = ∂2
a,bg(t). The initial value needs to

be chosen Hx(T) = 0 and consistent values for Hz(T) can be obtained similar
to Definition 3.3. The Hessian result can then be evaluated as 〈λ̄,D2

pxT 〉 =
Dp(x0)>Hx(0) + 〈λx(0),D2

px0(p)〉. It is interesting to note that the sensitivity
equation (3.23) is not symmetric, unlike the resulting Hessian.

3.3.3 Symmetric Second Order Sensitivity Equations

Instead of the FOA system in Eq. (3.23), we would like to directly propagate
a symmetric variable HS(t) ∈ Rnp×np . We show that both approaches can
provide the same second order sensitivities 〈λ̄,D2

pxT 〉.

Theorem 3.6 (Symmetric sensitivity equations) Let (x(t), z(t)), (Sx(t), Sz(t))
and (λx(t), λz(t)) be defined for t ∈ [0, T] respectively by Eqs. (3.3), (3.21)
and (3.22) and the corresponding consistent initial values. Let us introduce the
following symmetric sensitivity equations to propagate HS(t):

ḢS(t) =
[
Sx(t)
Sz(t)

]> [〈λx, fx x〉+ 〈λz, gx x〉 〈λx, fx z〉+ 〈λz, gx z〉
〈λx, fz x〉+ 〈λz, gz x〉 〈λx, fz z〉+ 〈λz, gz z〉

] [
Sx(t)
Sz(t)

]
,

(3.24)
for t ∈ [0, T], starting from the initial value HS(0) = 〈λx(0),D2

px0(p)〉. The
symmetric variable satisfies HS(t) = 〈λx(t),D2

px(t)〉 and provides the desired
Hessian result HS(T) = 〈λ̄,D2

pxT 〉.

Proof. The expression HS(t) = 〈λx(t),D2
px(t)〉 is satisfied for t = 0 because of

the initialization HS(0) = 〈λx(0),D2
px0(p)〉. It is sufficient to show that the

time derivative of this expression satisfies the differential equation system (3.24),

CONTINUOUS-TIME SENSITIVITY PROPAGATION 109

in order to obtain the desired Hessian result. We start by differentiating
HS(t) = 〈λx(t),D2

px(t)〉 with respect to time:

ḢS(t) = 〈λ̇x(t),D2
px(t)〉+ 〈λx(t),D2

pẋ(t)〉. (3.25)

The second order chain rule for the derivative 〈λx(t),D2
pẋ(t)〉 reads as:

〈λx(t),D2
pẋ(t)〉 = −〈λ̇x(t),D2

px(t)〉+ Sx(t)>〈λx(t),D2
xẋ(t)〉Sx(t), (3.26)

where λx(t)>Dx(t)ẋ(t) = −λ̇x(t)> has been used and the directional derivative
is defined as 〈λx,D2

pẋ〉 =
∑nx
k=1 λ

x
k D2

pẋk following our notation in Eq. (3.1).
The expression (3.26) can be used to simplify Eq. (3.25):

ḢS(t) = 〈λ̇x(t),D2
px(t)〉+ 〈λx(t),D2

pẋ(t)〉

= Sx(t)>〈λx(t),D2
xẋ(t)〉Sx(t).

(3.27)

By differentiating the differential equation ẋ(t) = f(x(t), z(t)) twice with respect
to x, we can write the directional second order derivative:

〈λx(t),D2
xẋ(t)〉 =

[
1

Dx(t)z(t)

]> [〈λx, fx x〉 〈λx, fx z〉
〈λx, fz x〉 〈λx, fz z〉

] [
1

Dx(t)z(t)

]
+ 〈λ̃z(t),D2

xz(t)〉,

(3.28)

where λ̃z(t)> := λx(t)>fz(t) has been defined. Let us derive the remaining
directional derivative 〈λ̃z(t),D2

xz(t)〉 by also differentiating the algebraic
equation 0 = g(x(t), z(t)) twice with respect to x:

0 =
[

1
Dx(t)z(t)

]> [〈λz, gx x〉 〈λz, gx z〉
〈λz, gz x〉 〈λz, gz z〉

] [
1

Dx(t)z(t)

]
− 〈λ̃z(t),D2

xz(t)〉, (3.29)

where we used that λ̃z(t)> = λx(t)>fz(t) = −λz(t)>gz(t), based on the
second expression in the adjoint system (3.22). Combining the expressions
from Eqs. (3.29) and (3.28) into Eq. (3.27), yields the differential equation:

ḢS(t) = Sx(t)>〈λx(t),D2
xẋ(t)〉Sx(t)

=
[
Sx(t)
Sz(t)

]> [〈λx, fx x〉+ 〈λz, gx x〉 〈λx, fx z〉+ 〈λz, gx z〉
〈λx, fz x〉+ 〈λz, gz x〉 〈λx, fz z〉+ 〈λz, gz z〉

] [
Sx(t)
Sz(t)

]
,

(3.30)
where we used Sz(t) = Dx(t)z(t)Sx(t) and which corresponds to the desired
symmetric sensitivity equation (3.24), concluding our proof.

110 SYMMETRIC HESSIAN PROPAGATION TECHNIQUE

The symmetry of System (3.24) can be exploited by propagating its lower
triangular part only. Notice also that unlike the classical FOA approach, the
symmetric scheme results in an ODE system describing the propagation of the
Hessian result HS(t), although the original system is in general an implicit DAE
system of index 1. In addition, the time direction in which these equations
are simulated is arbitrary and can therefore be reversed. Note that a rather
similar theorem and proof could therefore be constructed for a backward in
time propagation of the symmetric system.

3.4 Three-Sweep Hessian Propagation Scheme

A stored trajectory for the state variables x(t), z(t) from (3.3) for t ∈ [0, T]
is needed to simulate the adjoint equations and similar requirements hold for
the second order sensitivity equations. This section presents an alternative
approach for second order sensitivity propagation, based on the symmetric right
hand of Eq. (3.24). Even though the algorithm description will be based on the
continuous-time sensitivity equations from Section 3.3, the same techniques can
be applied to the discrete-time propagation schemes from Section 3.2 based on
the symmetric matrix equations in (3.16).

The classical approach for second order sensitivity propagation performs a
forward sweep, followed by a backward sweep. We will therefore refer to
this as the forward-backward (FB) propagation technique. As illustrated in
Algorithm 1, the trajectories of x(t), z(t) and Sx(t), Sz(t) from the forward
simulation over t ∈ [0, T] need to be stored. In the following backward sweep,
the adjoint derivatives λx(t), λz(t) as well as the second order derivatives are
propagated. The latter can be based either on the FOA equations from (3.23)
using Hx(t), Hz(t) or based on the proposed symmetric scheme in (3.24) which
propagates directly the symmetric variable HS(t).

Algorithm 1: Forward-backward Hessian propagation

Input: The initial value x0(p).
−→ Propagate and store x(t), z(t) in (3.3) and Sx(t), Sz(t) in (3.21).

Evaluate backward seed λ̄> = ∂xm (x(T, p)) in Eq. (3.9).
←− Propagate backward λx(t), λz(t) in Eq. (3.22) and Hx(t), Hz(t) in

Eq. (3.23) or HS(t) in Eq. (3.24).
Output: The results for x(T, p), Dpx(T, p)>λ̄ and 〈λ̄,D2

px(T, p)〉.

THREE-SWEEP HESSIAN PROPAGATION SCHEME 111

As mentioned earlier, the symmetric equations represent a plain summation
independent of the current value of HS(·) such that the time direction in which
they are simulated can be reversed. This yields an alternative to the above
forward-backward propagation, which consists of three consecutive sweeps.
Algorithm 2 illustrates this three-sweep propagation (TSP) technique [268].
Note that it can be computationally better to perform less sweeps in order
to allow more reuse of expressions in the derivative evaluations [141], even
though the TSP will show other advantages over the FB propagation. The
main advantage is that storage of the full forward trajectory of Sx(t), Sz(t) can
be avoided, since these first order derivatives are propagated together with the
symmetric Hessian results in the third sweep.

Algorithm 2: Three-sweep Hessian propagation (TSP) for symmetric scheme

Input: The initial value x0(p).
−→ Propagate forward and store x(t), z(t) in Eq. (3.3).

Evaluate backward seed λ̄> = ∂xm (x(T, p)) in Eq. (3.9).
←− Propagate backward and store λx(t), λz(t) in Eq. (3.22).
−→ Propagate forward Sx(t), Sz(t) in Eq. (3.21) and HS(t) in Eq. (3.24).

Output: The results for x(T, p), Dpx(T, p)>λ̄ and 〈λ̄,D2
px(T, p)〉.

3.4.1 Implementation Details: TSP versus FB Scheme

Table 3.1 shows a comparison between the FOA and the symmetric sensitivity
equations. Note that the table presents the dimensions of the propagated
matrix variables in both schemes, which does not directly correspond to the
computational complexity. The latter depends on the efficient evaluation of the
derivatives, on which more information can be found in [141]. In summary, the
symmetric Hessian propagation from Eq. (3.24) in continuous time or Eq. (3.16)
in discrete time provides the following advantages over the classical FOA scheme
respectively from Eqs. (3.23) or (3.15):

• The matrix valued right hand in Eq. (3.24) or (3.16) is symmetric, i.e.,
only the lower or upper triangular part needs to be propagated. In the
case where sensitivities are needed with respect to all states, which is
common in direct optimal control, Table 3.1 shows that nx(nx + 1)/2
equations need to be propagated instead of n2

x. This could result in a
speedup factor of about 2, depending on the sparsity of the problem.

112 SYMMETRIC HESSIAN PROPAGATION TECHNIQUE

Table 3.1: Theoretical cost comparison of second order sensitivity propagation.

Discrete-time D-FOA eqs. (3.15) D-SYM eqs. (3.16)

dimension
(#variables)

Sxn, S
z
n, H

x
n , H

z
n:

2nxnp + 2nznp
Sxn, S

z
n, H

S
n:

nxnp + nznp +
np(np + 1)/2

Continuous-time C-FOA eqs. (3.23) C-SYM eqs. (3.24)

dimension
(#variables)

Sx(t), Sz(t),
Hx(t), Hz(t):
2nxnp + 2nznp

Sx(t), Sz(t), HS(t):
nxnp + nznp +
np(np + 1)/2

• In case of implicit systems, the symmetric scheme is explicit and needs no
additional variables. This is in contrast to the FOA equations.

• The derivatives in (3.24) or (3.16) can be evaluated using a symmetric
AD technique for factorable functions as discussed in [140, 268].

• Since the direction of propagation for the symmetric equations can be
reversed, one can avoid the storage of a trajectory of forward sensitivities
based on the TSP scheme. Unlike the technique of checkpointing [141],
this additional sweep typically causes a negligible amount of extra
computational effort in the case of explicit differential equations [268].

Table 3.2 illustrates the storage costs for the FB and the TSP scheme respectively
from Algorithm 1 and 2. The table shows that the TSP scheme can considerably
reduce the memory requirements by propagating the first order forward
sensitivities together with the symmetric Hessian propagation in a separate
third sweep. A detailed comparison of these differentiation schemes would
need to include additional factors such as the used integration method, the
evaluation of derivatives in the sensitivity equations and the sparsity of the
system dynamics as discussed in [141].

The presented sensitivity propagation techniques rely on the ability to simulate
a certain system of differential equations both forward and backward in time.
If this is not the case, one could employ a time reversing transformation as
discussed in [65]. An efficient implementation of first order techniques can be
found, e.g., in [166], which employs checkpointing to reduce storage requirements
for adjoint sensitivity analysis. This approach could be applied in a similar way
to the second order propagation schemes in this chapter.

THREE-SWEEP HESSIAN PROPAGATION SCHEME 113

Table 3.2: Storage cost for the second order sensitivity propagation techniques.

Discrete-time Forward-backward (D-FB) Three-sweep (D-TSP)
trajectory
storage

xn, zn, S
x
n, S

z
n:

(nx + nz)(1 + np)
xn, zn, λ

x
n, λ

z
n:

2 (nx + nz)

Continuous-time Forward-backward (C-FB) Three-sweep (C-TSP)
trajectory
storage

x(t), z(t), Sx(t), Sz(t):
(nx + nz)(1 + np)

x(t), z(t), λx(t), λz(t):
2 (nx + nz)

3.4.2 The TSP Scheme for Implicit Equations

It should be noted that the advantages of the TSP scheme regarding its storage
requirements can become less apparent or even disappear in the case of implicit
integration methods. To illustrate this, let us look at the integration scheme in
Eq. (3.10) and its first order sensitivity propagation in Eq. (3.12) and (3.13). A
Newton-type method to solve the implicit equation 0 = G(xn, zn) in (3.10)
requires a factorization of the Jacobian Gnz , which is also needed for the
sensitivity equations (3.12) and (3.13). One needs to either store these Jacobian
factorizations in the first sweep of Algorithm 1 and 2, or one needs to recompute
them. It is possible that the advantage of using the TSP scheme over the
classical forward-backward propagation, regarding its storage costs, becomes
relatively small in this case. It therefore depends on the specific implementation,
in the case of sensitivity propagation for implicit differential equations or
implicit integration methods, whether the FB or the TSP scheme should be
used. Nonetheless, the proposed symmetric sensitivity equations can still be
used within the forward-backward propagation for its computational advantages
as listed before.

3.4.3 Open-Source Implementation: ACADO Toolkit

An efficient implementation of the presented first and second order sensitivity
propagation techniques for general DAE systems as well as of the symmetric AD
method [268], can be found as part of the open-source ACADO code generation
software [176, 177]. Table 3.3 illustrates the presented options for a tailored
Hessian propagation, combining the FOA or symmetric sensitivity equations,
with a FB or a TSP scheme within a discrete- or a continuous-time framework.
Following the approach of Internal Numerical Differentiation (IND) [48], the
open-source implementation in the ACADO Toolkit is based on a discrete-time

114 SYMMETRIC HESSIAN PROPAGATION TECHNIQUE

Table 3.3: The proposed second order sensitivity propagation techniques.

Discrete-time Continuous-time

FB D-FB-FOA (3.15)
D-FB-SYM (3.16)

C-FB-FOA (3.23)
C-FB-SYM (3.24)

TSP D-TSP-SYM (3.16) C-TSP-SYM (3.24)

Table 3.4: Computation times for a numerical simulation of the chain mass [325]
using explicit RK4: TSP-SYM versus FB-FOA sensitivity propagation.

D-TSP-SYM D-FB-FOA
nm nx np = nx + nu np = nu np = nx + nu np = nu

3 12 133 µs 29 µs 326 µs 57 µs
4 18 376 µs 66 µs 979 µs 125 µs
5 24 826 µs 103 µs 1945 µs 188 µs
6 30 1523 µs 139 µs 3219 µs 245 µs
7 36 2495 µs 176 µs 4970 µs 300 µs
8 42 3710 µs 211 µs 6902 µs 386 µs
9 48 5293 µs 255 µs 9650 µs 461 µs

sensitivity propagation, i.e., corresponding to the schemes in the first column
of Table 3.3. Note that the presented implementation targets mostly small
to medium-scale systems of about 10-100 states [176, 271], even though this
does not limit the applicability of the proposed algorithmic techniques to such
problems. More information on this open-source software implementation and
the ACADO code generation tool can be found in Chapter 8.

As an example, let us briefly look at the ODE model equations for a chain of
nm masses as described in [325]. Table 3.4 presents the timing results for a
numerical simulation over 0.5 s using 10 steps of the explicit Runge-Kutta (RK)
method of order 4, based on the D-TSP-SYM or the D-FB-FOA scheme. The
table shows the computation times for a second order sensitivity analysis
with respect to both the states and control variables (np = nx + nu) or only
the controls (np = nu = 3), using different numbers of masses nm with the
corresponding state dimension nx = 6 (nm − 1). It can be observed from this
table that the overall computational speedup is about factor 2 based on the
symmetry of the proposed sensitivity equations in (3.16). The following section
finally confirms these results on an illustrative case study of the economic
optimal control of a nonlinear biochemical reactor.

NUMERICAL CASE STUDY 115

3.5 Numerical Case Study

The numerical results in this section have been obtained using the open-
source ACADO code generation tool on a standard computer, equipped
with Intel i7-3720QM processor, and using a 64-bit version of Ubuntu
14.04 and the g++ compiler version 4.8.4. The code to reconstruct the
presented numerical results can be found on the following public repository:
https://github.com/rienq/symmetricHessians.

3.5.1 Modeling the Dynamic System

We consider the following explicit ODE model of a continuous bioreactor for
culture fermentation [201, 244, 286]:

ẋ = freactor(x, u) =



−DXb + µ(x)Xb

D(Uf −Xs)− µ(x)Xb
Yb

−DXp + (αµ(x) + β)Xb
Xb/T
Uf/T
DXp/T

 . (3.31)

Here, the state vector x = (Xb, Xs, Xp, qb, qf , qp) consists of three physical
states: the biomass Xb, the substrate Xs and the product concentration Xp
as well as three auxiliary states qb, qf and qp. The latter auxiliary variables
are also known as quadrature states [166], e.g., q̇b(t) = Xb(t)/T such that
qb(T) = 1

T

∫ T
0 Xb(τ)dτ denotes the average biomass concentration. These

quadrature states will be used further to formulate the objective and constraint
functions in the OCP. The control input u = Uf of the system is the feed
substrate concentration which is bounded U ≤ Uf ≤ U . The specific growth
rate µ(x) is given by the expression

µ(x) = µm
(1−Xp

Pm Xs)

Km+Xs+Xs2
Ki

.

The remaining parameter values and operating bounds are summarized in
Table 3.5. The bioreactor can be modeled by an explicit ODE as in (3.31), but
we later also refer to the following semi-explicit DAE formulation:

ẋ = freactor(x, µ, u)

0 = µ− µm
(1− Xp

Pm
Xs)

Km +Xs + Xs2

Ki

,
(3.32)

116 SYMMETRIC HESSIAN PROPAGATION TECHNIQUE

Table 3.5: Parameter values and bounds for the bioreactor.

Name Symbol Value
dilution rate D 0.15 h−1

substrate inhibition constant Ki 22 g/L
substrate saturation constant Km 1.2 g/L
product saturation constant Pm 50 g/L
yield of the biomass Yb 0.4
first product yield constant α 2.2
second product yield constant β 0.2 h−1

specific growth rate scale µm 0.48 h−1

maximum feed substrate U 40.0 g/L
minimum feed substrate U 28.7 g/L
maximum average feed substrate U

A 32.9 g/L
maximum average biomass concentration X

A
b 5.8 g/L

where the specific growth rate has been introduced as an algebraic variable.
Even though there is no clear advantage of using the DAE formulation in this
case, it can be used to illustrate the proposed sensitivity propagation schemes
for implicit systems of equations.

3.5.2 Optimal Control Problem Formulation

Similar to the OCP formulation in [268], our aim here is to maximize the
average productivity which corresponds to the Mayer term qp(T) as described
by Eq. (3.31). The end time T of a single cycle is assumed to be fixed and equal

NUMERICAL CASE STUDY 117

to 48 hours. The resulting continuous-time OCP formulation reads as:

min
x(·),u(·)

− qp(T) (3.33a)

s.t. 0 = x(0)− x̂0, (3.33b)

ẋ(t) = freactor(x, u), ∀t ∈ [0, T], (3.33c)

U ≤ Uf ≤ U, (3.33d)

qf(T) ≤ U
A
, (3.33e)

qb(T) ≤ X
A
b , (3.33f)

Xb(T) = Xb(0), (3.33g)

Xs(T) = Xs(0), (3.33h)

Xp(T) = Xp(0), (3.33i)

which, in addition to the initial value condition (3.33b) and the dynamics (3.33c),
also includes the control bounds (3.33d) and an upper bound on the average
concentration for feed substrate (3.33e) and biomass (3.33f). Following the
problem formulation in [268, 286], periodicity constraints on the three physical
states Xb, Xs and Xp are included in Eqs. (3.33g)-(3.33i). Note that the initial
value x̂0 for the states is considered constant, unlike the parametric OCP
formulation from Eq. (3.6). Instead, the sensitivity information with respect to
the control inputs will be needed in a Newton-type optimization method for
this OCP (3.33) after performing a shooting discretization [48]. For the sake of
simplicity, we consider a piecewise constant control parameterization over the
horizon of N = 20 equidistant intervals. The solution trajectories for the states
and controls are shown in Figure 3.1.

3.5.3 Numerical Simulation Results

As discussed earlier in Section 3.4.3, the open-source ACADO Toolkit can be
used to efficiently solve the OCP in Eq. (3.33), based on direct multiple shooting
and an SQP type algorithm. The presented sensitivity propagation techniques
will be illustrated in discrete-time, using 5 integration steps of the form in
Eq. (3.10) within each of the N = 20 shooting intervals over the control horizon
of T = 48 hours. Let us use the explicit Runge-Kutta (RK) method of order 4
for the ODE model in Eq. (3.31). Respectively, we use an implicit RK method

118 SYMMETRIC HESSIAN PROPAGATION TECHNIQUE

0 10 20 30 40 50
5

5.5

6

6.5

X
b
 (

g
/L

)

time (h)

0 10 20 30 40 50
10

15

20

25

X
s
 (

g
/L

)

time (h)

0 10 20 30 40 50
18

19

20

21

22

23

X
p
 (

g
/L

)

time (h)

0 10 20 30 40

28

30

32

34

36

38

40

42

U
f (

g
/L

)

time (h)

Figure 3.1: Illustration of the optimal state and control trajectories,
corresponding to the periodic OCP for the nonlinear bioreactor in Eq. (3.33).

of order 4 to simulate the semi-explicit DAE formulation from Eq. (3.32). Note
that this DAE system is equivalent to the original ODE model and has been
introduced mainly to illustrate the sensitivity propagation techniques in the
presence of implicit algebraic equations.

Table 3.6 details the average computation times for the different components
during one iteration of the SQP algorithm, using the explicit RK4 method for
the ODE model. The table includes a comparison of the proposed symmetric
three-sweep Hessian propagation (TSP-SYM) versus the classical forward-over-
adjoint based FB scheme (FB-FOA). The symmetric propagation method indeed
yields a speedup factor of about 2 as discussed in Section 3.4.1, when comparing
the total simulation time. Moreover, recall from Table 3.2 that the TSP scheme
propagates all forward and second order sensitivities in a separate third sweep
and is therefore also more memory efficient than the classical FB approach.
Table 3.7 shows the average computation times using the implicit RK4 method
for the DAE system, based on either the symmetric or the FOA equations for
the forward-backward Hessian propagation. As mentioned earlier, the linear
algebra routines for computing the Jacobian factorization often dominate the

CONCLUSIONS AND OUTLOOK 119

Table 3.6: Detailed computation times for exact Hessian based SQP using the
explicit RK4 method: TSP-SYM versus FB-FOA sensitivity propagation.

D-TSP-SYM D-FB-FOA
Forward sweep 1 15 µs 6 % 95 µs 24 %
Backward sweep 2 18 µs 7 % 172 µs 44 %
Forward sweep 3 99 µs 39 % - -
Total simulation 135 µs 53 % 272 µs 69 %

Condensing 17 µs 7 % 19 µs 5 %
Regularization 47 µs 18 % 47 µs 12 %
QP solution 56 µs 22 % 56 µs 14 %

Total SQP step 256 µs 394 µs

Table 3.7: Average computation times for exact Hessian based SQP using the
implicit RK4 method: FB-SYM versus FB-FOA sensitivity propagation.

D-FB-SYM D-FB-FOA
Total simulation 414 µs 74 % 451 µs 76 %
Total SQP step 557 µs 594 µs

computational effort within an implicit scheme. This can also be observed
in this table, since the total simulation times are relatively similar for both
techniques here.

3.6 Conclusions and Outlook

In this chapter, we presented a novel sensitivity propagation technique to
compute Hessian contributions as needed for Newton-type optimization in direct
optimal control. By maintaining and exploiting the symmetry, we proposed
a scheme which allows a computational speedup of about factor 2 over the
classical forward-over-adjoint approach for both discrete- and continuous-time
sensitivity analysis. The techniques have been presented in a general framework,
including implicit integration methods and DAE systems of index up to 1. A
novel three-sweep propagation technique has been proposed using this set of
symmetric sensitivity equations, which results in a reduced memory footprint
by avoiding the trajectory of forward sensitivities to be stored. Based on an

120 SYMMETRIC HESSIAN PROPAGATION TECHNIQUE

open-source implementation in the ACADO Toolkit, the performance has been
illustrated for the economic optimal control of a nonlinear biochemical reactor.

The application of these symmetric Hessian propagation schemes for the solution
of large-scale optimal control problems is part of ongoing research.

Chapter 4

Structure Exploitation for
Linear Subsystems

An important algorithmic component in the implementation of Nonlinear
MPC deals with the numerical simulation and propagation of sensitivities
for the dynamic system. For this purpose, Chapter 2 presented an efficient
implementation of fixed step collocation methods with a direct sensitivity
analysis for embedded optimization. It is however known that the models used
in practice, either ODE or index-1 DAE systems, often have a specific structure
resulting in a sparse Jacobian matrix. A scalable way to handle this is by
using general-purpose sparse linear algebra routines, which typically create
little to no gain for small or even medium scale systems in real-time optimal
control applications [121, 123]. The aim here is therefore to have a closer look
at the structure specific to these dynamic systems and to propose an alternative
approach for structure exploitation, that will be shown to perform rather well.
The addressed model class contains as a subclass the Wiener-Hammerstein
variants which are since a long time used in system identification [124].

Note that this chapter is largely based on the article in [260].

Outline The chapter is organized as follows. In Section 4.1, the three stage
model formulation is proposed. Section 4.2 then discusses the tailored structure
exploitation within the collocation methods with direct sensitivity generation.
Some real-world applications are used in Section 4.3 to illustrate the structure
exploiting integrators and their numerical performance.

121

122 STRUCTURE EXPLOITATION FOR LINEAR SUBSYSTEMS

4.1 A Three-Stage Dynamic Structure

Of particular interest here is the nonlinear function f(·) in the continuous-time
optimal control formulation from Eq. (1.6), which defines the system dynamics.
This section proposes a particular structure, consisting of three subsequent
stages in the system of differential equations.

4.1.1 Structured Model Formulation

When modeling, for example, a mechatronic system, the result is typically a set
of nonlinear differential equations with possibly some algebraic variables. In
the case of an explicit ODE such as in (1.2), one might recognize the following
three subsystems in this specific order

ẋ[1] = A1x
[1] +B1u, (linear input system) (4.1a)

ẋ[2] = f2(x[1], x[2], u), (nonlinear system) (4.1b)

ẋ[3] = A3x
[3] + f3(x[1], x[2], u), (linear output system) (4.1c)

with the matrices A1, B1 and A3 and the nonlinear functions f2(·) and f3(·)
defining the subsystems. Figure 4.1 illustrates the proposed chain of subsystems.
In what follows, n[1]

x , n[2]
x and n[3]

x denote the number of differential states in each
of the three subsystems, i.e., x[1](t) ∈ Rn

[1]
x , x[2](t) ∈ Rn

[2]
x , x[3](t) ∈ Rn

[3]
x and

nx = n
[1]
x +n[2]

x +n[3]
x . This system structure is inspired by Wiener-Hammerstein

models [124], which consist of a linear dynamic system followed by a static
nonlinearity and another linear dynamic system. In our notation, they would
be of the form in (4.1) with n[2]

x = 0 in order to exclude nonlinear dynamics.
Let us generalize this three-stage model structure even further to an implicit
DAE system of index 1:

C1ẋ
[1] = A1x

[1] +B1u, (4.2a)

0 = f2(x[1], x[2], ẋ[1], ẋ[2], z, u), (4.2b)

C3ẋ
[3] = A3x

[3] + f3(x[1], x[2], ẋ[1], ẋ[2], z, u), (4.2c)

with invertible matrices C1, C3 and invertible Jacobian ∂f2
∂z,ẋ[2] (·).

A THREE-STAGE DYNAMIC STRUCTURE 123

Figure 4.1: Schematic of the three-stage dynamic system structure, illustrating
the workflow in the structure exploiting collocation based integrators.

4.1.2 Motivating Examples

The proposed structure is not something that comes up only in rare occasions.
These additional stages often arise naturally when modeling for control. For
example, a linear input system (4.2a) could result from

• partially linear dynamics which are independent of the nonlinear states.
A classical example would be the double integrator

ẋ1 = u

ẋ2 = x1

(4.3)

but any linear set of equations is possible.

• any linear high order differential equation, which would be transformed
into a set of first order equations

dnx
dtn = h(t, u, x, dx

dt , . . . ,
dn−1x

dtn−1)

⇓ x1 = x, x2 = dx
dt , . . . , xn = dn−1x

dtn−1
ẋ1 = x2

...
ẋn = h(t, u, x1, x2, . . . , xn)

(4.4)

where h(·) denotes a linear function in this case.

124 STRUCTURE EXPLOITATION FOR LINEAR SUBSYSTEMS

• implementing a filter on the controls or input states. In some optimal
control applications, it can be desirable to particularly penalize, e.g., the
high frequency content. For this purpose, a high-pass RC filter

duHP

dt (t) = du
dt (t)− ωcu

HP(t) (4.5)

can be used, where ωc = 1
RC = 2πfc in which fc is typically called the

cutoff frequency. Eq. (4.5) describes the additional state uHP(t), which
denotes the high-pass filtered result for the input u(t).

The linear output system (4.2c) is somewhat similar to the input system, but
with a possibly nonlinear relation with respect to the previous state variables
and control inputs. An output system can therefore result from some partially
linear dynamics that also depend on the previous states, such as, e.g., from
introducing additional filter dynamics. When A3 = 0 and C3 = 1 is an identity
matrix, Eq. (4.2c) reduces to

ẋ[3] = f3(x[1], x[2], ẋ[1], ẋ[2], z, u), (4.6)

which are also known as quadrature states [166]. They are typically used to
formulate objective and constraint functions in an OCP, similar to the more
general in- and output subsystem states which we propose here.

4.2 Tailored Structure Exploiting IRK methods

This section presents how to adapt the IRK method from Eq. (2.28) to our
proposed three-stage model structure in (4.2), including a detailed algorithm
description and our open-source software implementation.

4.2.1 Three-Stage Structure Exploitation

The methods from Section 2.2, could directly be applied to the system in (4.2)
without taking the specific structure into account. We aim however at an
implementation which is mathematically equivalent with the latter, while
exploiting the three-stage structure computationally. As illustrated in Figure 4.1,
the scheme can be represented by four separate blocks including the one that
handles the simulation results. Note that the latter could implement the
continuous output feature as described in Section 2.5. The idea is to compute
all collocation variables K = (k1, . . . , kq, Z1, . . . , Zq) and their derivatives dK

dw0
sequentially for the three model stages, where wn := (xn, u) denotes the input

TAILORED STRUCTURE EXPLOITING IRK METHODS 125

to the nth integration step of the IRK scheme. The outputs and sensitivities
can then be propagated in a similar way as before.

To be able to refer to the collocation variables within each stage separately, let
us introduce the notation K1 = (k[1]

1 , . . . , k
[1]
q), K2 = (k[2]

1 , . . . , k
[2]
q , Z1, . . . , Zq)

and K3 = (k[3]
1 , . . . , k

[3]
q) when applying the IRK method from (2.28) to the

three-stage model structure in (4.2). This allows us to write the nonlinear
system in a correspondingly structured way as follows

C1k
[1]
i = A1(x[1]

n + Tint

q∑
j=1

aijk
[1]
j) +B1u, (4.7a)

0 = f2

x[1]
n,i, x

[2]
n + Tint

q∑
j=1

aijk
[2]
j , k

[1]
i , k

[2]
i , Zi, u

 , (4.7b)

C3k
[3]
i = A3(x[3]

n + Tint

q∑
j=1

aijk
[3]
j) + f3(x[1]

n,i, x
[2]
n,i, k

[1]
i , k

[2]
i , Zi, u), (4.7c)

for i = 1, . . . , q and where the stage values x[s]
n,i = x

[s]
n + Tint

∑q
j=1 aijk

[s]
j

are defined for s = 1, 2, 3. Based on the compact notation 0 = G(wn,K) as
introduced in (2.41), the nonlinear system can alternatively be written as

0 = G1(wn,K1), (4.8a)

0 = G2(wn,K1,K2), (4.8b)

0 = G3(wn,K1,K2,K3), (4.8c)

where the next state value reads as xn+1 = F (wn,K).

Linear input system The collocation variables K1 are defined by the linear
equations in (4.7a), which could also be more compactly written as in (4.8a).
The corresponding Jacobian

M1 = ∂G1

∂K1
=

C1 − Tinta11A1 · · · −Tinta1qA1
...

−Tintaq1A1 · · · C1 − TintaqqA1

 (4.9)

is therefore a constant matrix. Instead of performing an iterative solution,
the collocation variables can be obtained directly by solving the linear system
of equations, i.e., K1 = −M−1

1 G1(wn, 0). The inverse matrix M−1
1 remains

126 STRUCTURE EXPLOITATION FOR LINEAR SUBSYSTEMS

constant for each fixed step integration and could be computed beforehand. In
addition to the evaluation of the linear function G1(·), the linear algebra then
reduces to a matrix-vector multiplication. Similarly, the first order derivatives
dK1
dwn are constant and can be precomputed. The forward sensitivity propagation
then corresponds to the expression dK1

dw0
= dK1

dwn
dwn
dw0

.

Nonlinear system For the implicit nonlinear system in (4.7b) or (4.8b), let
us use the iterative implementation with a direct sensitivity propagation as
discussed in Section 2.4 and detailed in the IFT-R scheme of Algorithm 2.
The main difference here is that the set of nonlinear equations depends on the
collocation variables K1 from the linear input subsystem. For this reason, the
derivatives dK1

dw0
are needed to propagate the first order sensitivities

dK2

dw0
= −∂G2

∂K2

−1(∂G2

∂wn

dwn
dw0

+ ∂G2

∂K1

dK1

dw0

)
.

Linear output system Similar to the input subsystem, the collocation variables
for the linear output system can be computed as K3 = −M−1

3 G3(wn,K1,K2, 0)
in which M3 = ∂G3

∂K3
denotes the Jacobian. The inverse matrix M−1

3 and the
derivatives dK3

dx[3]
n

are constant and could be precomputed in this case. The
remaining first order derivatives however still need to be computed and can be
propagated forward directly as follows

dK3

dw0
= −M−1

3

(
∂G3

∂wn

dwn
dw0

+ ∂G3

∂K1

dK1

dw0
+ ∂G3

∂K2

dK2

dw0

)
.

4.2.2 Implementation Details

A description of the proposed collocation integrator with exploitation of the
three-stage model structure can be found in Algorithm 3. It includes the
optional continuous output feature which can be used to evaluate any (possibly
nonlinear) function of the system variables on a certain evaluation grid. Note
that an efficient implementation of Algorithm 3 takes into account that the
Jacobian matrix dK

dw0
has a clear sparsity structure

dK
dw0

=

 dK1
dx[1] 0 0 dK1

du
dK2
dx[1]

dK2
dx[2] 0 dK2

du
dK3
dx[1]

dK3
dx[2]

dK3
dx[3]

dK3
du

 . (4.10)

In addition, it is interesting to note that the in- and output system actually have
an analytical solution which is relatively easy to obtain since these subsystems

TAILORED STRUCTURE EXPLOITING IRK METHODS 127

Algorithm 3 Collocation integration step: IFT-R with structure exploitation

Input: wn, dxn
dw0

, guess K [0]
2 , factorized M2 and M−1

1 , M−1
3 and dK1

dwn .
Linear input system (4.7a) and (4.8a)

1: K1 ← −M−1
1 G1(wn, 0). . M−1

1 is constant
2: dK1

dw0
← dK1

dwn
dwn
dw0

. . dK1
dwn is constant

Nonlinear system (4.7b) and (4.8b)
3: for i = 0→ L− 1 do
4: K

[i+1]
2 ← K

[i]
2 −M

−1
2 G2(wn,K1,K

[i]
2).

5: end for
6: M2 ← ∂G2

∂K2
(wn,K [L]

2). . factorization M2

7: dK2
dw0
← −M−1

2

(
∂G2
∂wn

dwn
dw0

+ ∂G2
∂K1

dK1
dw0

)
.

Linear output system (4.7c) and (4.8c)
8: K3 ← −M−1

3 G3(wn,K1,K2, 0). . M−1
3 is constant

9: dK3
dw0
← −M−1

3

(
∂G3
∂wn

dwn
dw0

+ ∂G3
∂K1

dK1
dw0

+ ∂G3
∂K2

dK2
dw0

)
. . dK3

dx[3]
n

is constant

Simulation results
10: xn+1 ← F (wn,K).
11: dxn+1

dw0
← ∂F

∂wn
dwn
dw0

+ ∂F
∂K

dK
dw0

.

Continuous output (optional)
12: yn ← Ψ(wn,K).
13: dyn

dw0
← ∂Ψ

∂wn
dwn
dw0

+ ∂Ψ
∂K

dK
dw0

.
Output: xn+1, dxn+1

dw0
, next guess K [0]

2 and factorized M2.

consist of a set of linear differential equations with constant coefficients. Using
this knowledge would generally however have little impact on the computational
complexity and the overall accuracy of the numerical integration method for
the complete nonlinear dynamic system.

An efficient implementation of the proposed integrators has been made part
of the open-source ACADO code generation tool [176, 177], as presented also
in [271] in the form of a tutorial. The code generation framework is developed
in C++, which itself exports efficient C-code tailored to the specific problem
formulation. A code example from MATLAB for the definition of linear subsystems
in the dynamic model, for the ACADO code generation tool, can, e.g., be found
in [260]. This way, the presented integrators can be automatically generated
as standalone components or they can be exported directly as part of an OCP
solver. The latter has been done in order to obtain the NMPC simulation results

128 STRUCTURE EXPLOITATION FOR LINEAR SUBSYSTEMS

of the next section. More information on these and other related open-source
software developments can be found in Chapter 8.

Remark 4.1 Even though we focus here on first order forward sensitivity
propagation, it is clear that the proposed three-stage model structure could
similarly result in computational advantages for an adjoint or second order
sensitivity analysis. One could, for example, envision an efficient implementation
of the symmetric Hessian propagation scheme from Chapter 3, which directly
exploits the sparsity resulting from the linear subsystems. We further restrict
to Gauss-Newton based optimal control, using first order forward sensitivity
analysis as a relatively simple framework to illustrate the numerical performance
of the proposed structure exploiting integrators.

4.3 Optimal Control Application Examples

Let us now illustrate the numerical performance of the proposed structure
exploiting integrators, based on two different case studies. For this purpose,
we carry out closed-loop simulations of Nonlinear MPC using the Real-Time
Iteration (RTI) scheme as introduced in Section 1.5. The numerical experiments
presented in this section, have been performed using the ACADO code generation
tool on an ordinary computer (Intel i7-3720QM 6MB cache, 2.60 GHz, 64-bit
Ubuntu 12.04 and Clang 3.0).

4.3.1 NMPC on an Overhead Crane

We use a dynamic model very similar to the one in [76, 316] for the overhead
crane system setup. Let us immediately write down the differential equations in
the presented three-stage model format of Eq. (4.1). The linear input subsystem
then consists of

ẋT = vT, v̇T= aT, u̇T = uTR,

ẋL = vL, v̇L = aL, u̇L = uLR, (4.11)

where (xT, vT) and (xL, vL) respectively denote the position and velocity of the
trolley and the cable length for the overhead crane. Second order dynamics can
be identified for the input-output relation of both the trolley (uT to xT) and
the winching mechanism (uL to xL) where

aT = − 1
τ1
vT + A1

τ1
uT, aL= − 1

τ2
vL + A2

τ2
uL. (4.12)

OPTIMAL CONTROL APPLICATION EXAMPLES 129

Unstructured With structure
exploitation

Integration method 220 µs 67 µs
Condensing 6 µs 6 µs
QP solution (qpOASES) 16 µs 16 µs
Remaining operations 3 µs 3 µs
Total RTI step 245 µs 92 µs

Table 4.1: Average computation times: RTI based NMPC of an overhead crane.

Note that it is quite common in practical MPC implementations to include
the change rates uTR, uLR of the system inputs in the dynamic model such
that additional constraints on these variables can be included, to respect the
limitations of the actuators [76]. The linear input system is then followed by
these nonlinear differential equations

θ̇ = ω,

ω̇ = − 1
xL

(g sin(θ) + aT cos(θ) + 2vLω),
(4.13)

which describe the angle deflection θ and its angular velocity ω. Note that
there is no linear output system in the original model formulation, for which
the specific parameters can be found in [76, 316].

We now implement an NMPC algorithm, using the OCP formulation (1.6) based
on the proposed model equations and a tracking type cost function such as
in Eq. (1.25) or as described in [260] to achieve a point-to-point motion with
the overhead crane system. Table 4.1 shows the computational speedup for
one iteration of the Gauss-Newton based RTI scheme, implemented using the
open-source ACADO code generation tool. With N = 10 control intervals over
a horizon of T = 1 s and Ns = 4 integration steps of the 4th order Gauss
collocation scheme within each interval, the table presents average computation
times for the different components with and without the three-stage structure
exploitation. For this relatively small and simple dynamic model, a speedup
of factor 3 can already be observed in the total computation time spent in the
numerical integration and sensitivity propagation.

We illustrated that a linear input subsystem appears naturally in the dynamic
model for the overhead crane system [316]. Consider now the situation where
one would like to additionally penalize the high frequency content in the states.

130 STRUCTURE EXPLOITATION FOR LINEAR SUBSYSTEMS

0 1 2 3 4 5 6
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t [s]

v
T

 [
m

/s
]

Velocity trolley

0 1 2 3 4 5 6
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

t [s]

v
L
 [
m

/s
]

Velocity cable

Figure 4.2: Closed-loop trajectories for the velocity of both trolley and cable,
before (dashed) and after extra penalization of high frequencies (solid).

One way to do this is by implementing a high-pass filter such as in Eq. (4.5) for
each of the differential states. This results in the following 6 equations being
added to the linear input system

ẋHP
T = ẋT − ωcx

HP
T , ẋHP

L = ẋL − ωcx
HP
L ,

v̇HP
T = v̇T − ωcv

HP
T , v̇HP

L = v̇L − ωcv
HP
L ,

u̇HP
T = u̇T − ωcu

HP
T , u̇HP

L = u̇L − ωcu
HP
L , (4.14)

but also in an extra linear output system consisting of

θ̇HP = θ̇ − ωcθ
HP, ω̇HP= ω̇ − ωc ω

HP. (4.15)

The new differential states in these equations describe the high frequency content
in the corresponding variables from the original system, leading to a complete
set of 16 differential states of which 12 are in the linear input system, 2 nonlinear
equations and 2 linear output states. Weighting these high frequency states in
the NMPC formulation causes a certain smoothing of the closed-loop trajectories,
as illustrated in Figure 4.2. Similarly, Table 4.2 now presents a speedup factor
of about 6 for the numerical integration time due to the three-stage structure
exploitation on this augmented dynamic model.

OPTIMAL CONTROL APPLICATION EXAMPLES 131

Unstructured With structure
exploitation

Integration method 1380 µs 238 µs
Condensing 25 µs 25 µs
QP solution (qpOASES) 12 µs 12 µs
Remaining operations 13 µs 13 µs
Total RTI step 1430 µs 288 µs

Table 4.2: Average computation times for RTI based NMPC of an overhead
crane, including the penalization of higher frequency state information.

4.3.2 NMPC on a Quadcopter System

In this second example, NMPC will be applied to a quadcopter (e.g., see [170]).
We use a rather simple system setup, where it is assumed that low-level speed
controllers ensure the tracking of the reference velocities of the propellers, which
are then provided by the NMPC scheme. The differential equations can be
briefly summarized as

ω̈ref
k = Uk, k = 1, . . . , 4, ω̇k = τ−1 (ωref

k − ωk
)
, (4.16a)

q̇ = 1
2E

TΩ, Ω̇ = J−1 (T + Ω× JΩ) , (4.16b)

v̇ = m−1RF − g1z, (4.16c)

F = 1
2

4∑
k=1

ρACLω
2
k1z, T =

4∑
k=1

(−1)k

2 ρACDω
2
k1z, (4.16d)

ṗ = v, İp = p− pref , (4.16e)

where Uk for k = 1, . . . , 4 are the control inputs, commanding the 2nd time
derivative of the propeller reference velocities ωref

k . In addition, ωk are the
actual propeller velocities, q ∈ R4 is the quaternion vector used to represent the
orientation, Ω is the main body angular velocity in the body frame, v is the
linear velocity in the inertial frame, p is the position and Ip ∈ R3 the integral of
the position error. Matrix R = EGT is the rotation matrix between the body

132 STRUCTURE EXPLOITATION FOR LINEAR SUBSYSTEMS

frame and the inertial frame, with

G =


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

 , E =


−q1 −q2 −q3
q0 q3 −q2
−q3 q0 q1
q2 −q1 q0

 .
Parameter τ is the time constant of the speed control loops, J ∈ R3×3 is the
inertia matrix of the quadcopter, and m its total mass. Coefficients CL and CD
are respectively the lift and drag coefficients, A is the individual area of the
propellers, ρ is the air density, and 1z =

[
0 0 1

]T .
It can be observed that the differential equations in (4.16a) form a 12 states
linear input system, Eqs. (4.16b)-(4.16c) form a 10 states nonlinear dynamic
system and Eq. (4.16e) corresponds to a 6 states linear output system. The
input dynamics ω̈ref

k = Uk are used to implement a penalty on the high-frequency
components in the controls, i.e., the Lagrange term

Πinput =
4∑
k=1

W1U
2
k +W2

(
ω̇ref
k

)2
is added to the objective, with positive weights W1 and W2. Moreover, the
integral of the position error İp = p − pref is introduced and penalized as
a possible way to eliminate steady-state errors in the quadcopter position,
resulting from constant disturbances or model errors.

The positive definite weighting matrices Q, R and P in the tracking type OCP
cost function from Eq. (1.25) are chosen to achieve quick point-to-point motions
of the quadcopter while taking into account its limitations. A possible closed-
loop trajectory for the position and orientation of the quadcopter is presented
in Figure 4.3, in the event of a motion from the point (1, 1, 1) to the origin. It
shows the position as well as the orientation of the quadcopter at multiple time
instants, which are 0.4 s apart from each other. Table 4.3 additionally shows a
computational speedup factor of about 12 for the numerical integration time.
For these experiments, a horizon of length T = 5 s with N = 25 control intervals
has been used and Ns = 2 integration steps per interval of the 6th order Gauss
collocation scheme. For this specific case study, it can be observed that the
structure exploitation seems to cause condensing to become the dominating
computational cost in each RTI step.

OPTIMAL CONTROL APPLICATION EXAMPLES 133

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

y
x

z

Figure 4.3: Illustration of a closed-loop trajectory of the position and orientation
of the quadcopter in a point-to-point motion based on NMPC.

Unstructured With structure
exploitation

Integration method 35.8 ms 3.1 ms
Condensing 2.6 ms 2.6 ms
QP solution (qpOASES) 0.1 ms 0.1 ms
Remaining operations 0.2 ms 0.2 ms
Total RTI step 38.7 ms 6.0 ms

Table 4.3: Average computation times for RTI based NMPC of a quadcopter.

134 STRUCTURE EXPLOITATION FOR LINEAR SUBSYSTEMS

Figure 4.4: Schematic of a multi-stage dynamic system structure, illustrating
the workflow in an extended structure exploiting collocation based integrator.

4.4 Conclusions and Outlook

This chapter proposed a new format for defining nonlinear dynamic models
within direct optimal control and showed how this three-stage structure can
be strongly exploited by IRK methods with a focus on collocation schemes.
Numerical experiments of NMPC for two different case studies have shown
that considerable speedups can be achieved with these structure exploiting
integrators, which have been made available in the ACADO Toolkit [3]. It is
interesting to note that these linear subsystems could be detected automatically
inside any modeling environment with differentiation capabilities. Future work
could include implementing such an automatic structure detection based on a
smart restructuring of the equations. As argued in this chapter, the presented
model formulation can however be more effective when taken into account
directly at the modeling stage to reduce the relative amount of nonlinearly
defined state variables. In addition, the proposed dynamic model could readily
be extended to multiple stages of coupled nonlinear and linear output subsystems
as illustrated also in Figure 4.4.

Chapter 5

Compression Algorithm for
Distributed Multiple Shooting

The focus of the presented online algorithms for NMPC has been on centralized
systems. However, many practical and fast dynamic systems can be described as
a set of interconnected subsystems. Some examples include cars (decomposable
into chassis and wheel dynamics), mobile robots with trailers (each trailer
can be considered as a subsystem), quadcopters (decomposable into a rigid
body and separate rotor dynamics), and many more. Distributed Multiple
Shooting (DMS) [290] is a highly parallelizable discretization scheme for
distributed systems. Exploiting the structure of the system, this approach
extends the classical, centralized multiple shooting (CMS) method of separating
the simulations in time by additionally distributing them in state space. This
idea has been shown suitable for large-scale control problems of interconnected
processes such as network systems or process plants [195, 289]. This chapter
proposes a novel compression technique, which performs a tailored structure
exploitation to efficiently treat each sparse QP subproblem in a centralized
optimization framework. This allows one to adopt DMS into an RTI type online
algorithm for the optimal control of fast dynamic systems, as illustrated also
numerically for a sequential software implementation.

Note that this chapter is largely based on the article in [272].

Outline The chapter is organized as follows. Section 5.1 first introduces
and motivates the Distributed Multiple Shooting (DMS) scheme. The novel
compression technique is then detailed in Section 5.2, which allows the efficient

135

136 COMPRESSION ALGORITHM FOR DISTRIBUTED MULTIPLE SHOOTING

implementation of DMS based embedded optimization. The performance of the
resulting algorithm is illustrated numerically in Section 5.3, using the nontrivial
example of a chain of spring connected masses.

5.1 Distributed Multiple Shooting

In what follows, we refer to the classical variant as Centralized Multiple
Shooting (CMS), as opposed to Distributed Multiple Shooting (DMS) presented
in [290]. Let us consider a process that can be divided intoM coupled subsystems.
The following continuous time OCP can then be considered as a generalization
of our standard parametric formulation in (1.6)

min
x(·),u(·),v(·),y(·)

M∑
j=1

(∫ T

0
`j(xj(t), uj(t)) dt+mj(xj(T))

)
(5.1a)

s.t. xj(0) = x̂j0, (5.1b)

0 = f j(ẋj(t), xj(t), uj(t), vj(t)), (5.1c)

yj(t) = gj(ẋj(t), xj(t), uj(t), vj(t)), (5.1d)

vj(t) =
M∑
m=1

Kjmy
m(t), (5.1e)

0 ≥ hj(xj(t), uj(t)), (5.1f)

0 ≥ rj(xj(T)), ∀t ∈ [0, T], j = 1, . . . ,M, (5.1g)

where yj(t) ∈ Rny,j denote the coupling outputs and vj(t) ∈ Rnv,j are the
coupling inputs for each subsystem j = 1, . . . ,M . Function f j(·) defines
the nonlinear dynamics with the differential states xj(t) ∈ Rnx,j and control
inputs uj(t) ∈ Rnu,j of subsystem j = 1, . . . ,M , while gj(·) defines its output
function. Each subsystem is described by an implicit ODE system in (5.1c)
although this could readily be extended to an implicit index-1 DAE based on
the techniques discussed in Chapter 2. Note that this parametric optimization
problem depends on the current state estimate x̂j0 ∈ Rnx,j via Eq. (5.1b) for
each subsystem. For the sake of notational convenience, we restrict to the case
where the objective (5.1a) and constraint functions in (5.1f)-(5.1g) are directly
decoupled while they can generally depend on the coupling variables. The linear
relation based on the coupling matrices Kjm in Eq. (5.1e) defines the specific

DISTRIBUTED MULTIPLE SHOOTING 137

interaction among the subsystems, by connecting the inputs vj(t) to the outputs
of all other subsystems ym(t) for m = 1, . . . ,M . Note that Kjj = 0 can be
assumed to hold for all j = 1, . . . ,M , i.e., there is no self-coupling.

5.1.1 DMS and Coupling Parameterization

In direct optimal control, one first discretizes the OCP in (5.1) using N shooting
intervals over the horizon [0, T], which results in a discrete time problem
formulation such as in Eq. (1.8). The resulting parametric NLP can be solved
up to a local minimum, e.g., using an SQP-type algorithm. We further adopt
the simplified formulation from Section 1.2.2, i.e., based on a piecewise constant
control parameterization on an equidistant grid of N intervals. Unlike the case
of the centralized multiple shooting method, here also the coupling variables
yj(t) need to be discretized locally using a set of basis functions.

In the original DMS formulation [290], the coupling variables are parameterized
using normalized and shifted Legendre polynomials. This strategy could be
modeled using additional quadrature states [166] which can alternatively be
represented by a linear output system as discussed in Chapter 4. Instead, we
propose a computationally more efficient formulation that relies on a polynomial
interpolation using the continuous output feature as introduced in Section 2.5.
It results in the following parameterization

yj(t) =
q∑
s=1

`s(t̃) yji,s, with `s(t̃) =
∏
r 6=s

t̃− cr
cs − cr

, (5.2)

where cs denotes the collocation points for s = 1, . . . , q and `s(t̃) are the
Lagrange polynomials with t̃ = t−ti

ti+1−ti over the shooting interval t ∈ [ti, ti+1].
Note that the values yji,s correspond to the numerical evaluation of the output
variables yj(t) at the time points ti + cs Tint for s = 1, . . . , q. By increasing
the order q of the collocation polynomial, an arbitrarily high accuracy can be
obtained for the coupling approximation. Based on this representation of the
output variables, the system inputs are defined directly by the linear coupling
relation in Eq. (5.1e). Therefore, the dynamics can be simulated independently
for each subsystem j = 1, . . . ,M and each shooting interval i = 0, . . . , N − 1,
and this, e.g., using a collocation scheme.

In what follows, let us collectively refer to the coupling variables for each
subsystem j = 1, . . . ,M over a certain shooting interval i = 0, . . . , N − 1 by
using the notation yji := [yj

>

i,1 , . . . , y
j>

i,q]> and vji := [vj
>

i,1 , . . . , v
j>

i,q]>. Unlike the
centralized NLP in (1.8), we can now propose the following DMS based discrete

138 COMPRESSION ALGORITHM FOR DISTRIBUTED MULTIPLE SHOOTING

time OCP formulation

min
X,U, V, Y

M∑
j=1

N−1∑
i=0

lj(xji , u
j
i) +

M∑
j=1

mj(xjN) (5.3a)

s.t. 0 = xj0 − x̂
j
0, (5.3b)

0 = xji+1 − φ
j(xji , u

j
i , v

j
i), (5.3c)

0 = yji − ψ
j(xji , u

j
i , v

j
i), (5.3d)

0 = vji −
M∑
m=1

Kjm ymi , (5.3e)

0 ≥ hj(xji , u
j
i), (5.3f)

0 ≥ rj(xjN), i = 0, . . . , N − 1, j = 1, . . . ,M, (5.3g)

using the differential state X = [x1>
0 , . . . , xM

>

0 , . . . , x1>
N , . . . , xM

>

N]> and
control trajectory U = [u1>

0 , . . . , uM
>

0 , . . . , u1>
N−1, . . . , u

M>

N−1]>, and similarly
the discretized trajectories for coupling inputs V and outputs Y . Note that the
discrete time dynamics for each subsystem in (5.3c) are based on a separate
numerical integration scheme, which needs to evaluate the continuous time
representation of the coupling variables in Eq. (5.2). Further in this chapter,
we propose an efficient algorithmic technique to solve the resulting large but
structured nonlinear optimization problem in (5.3).
Remark 5.1 Note that if one step of a collocation method is used to simulate
each subsystem in Eq. (5.3c) and the same collocation order q is used for the
parameterization of the coupling variables in (5.2), then the resulting distributed
simulation scheme coincides with its centralized counterpart.

5.1.2 Discussion and Motivation: DMS versus CMS

Just as CMS lifts the temporal continuity of the system equations in (1.8c),
such that the numerical simulation can be carried out independently on each
shooting interval, DMS additionally lifts the spatial continuity by keeping the
subsystems independent for simulation. The result is a DMS scheme based on
the NLP in Eq. (5.3) with the following desirable properties:

• It is highly parallelizable since the integration and sensitivity propagation
on each interval and for each subsystem can be performed independently.

THE COMPRESSION ALGORITHM 139

• Less sensitivity information needs to be computed in case of many
subsystems with only relatively few coupling variables.

• When using an implicit integrator, the computational complexity can
reduce substantially as shown further in Table 5.1.

• Different integration schemes can be used to, e.g., appropriately deal with
stiffness within specific subsystems where necessary.

• Any form of lifting provides more initialization flexibility and can offer
advantages in terms of local convergence and region of attraction [8].

• Tailored optimization algorithms can be used to exploit the specific sparsity
structure resulting from DMS, as discussed in the next section.

Remark 5.2 Since DMS is merely a different way of discretizing the same
OCP, it can provide the exact same properties for the resulting NMPC algorithm
as long as this discretization is carried out accurately enough. Note that the
same condition holds for the more widely used CMS approach.

Remark 5.3 The DMS and CMS based optimal control solutions coincide for a
sufficiently high simulation and coupling accuracy, even though the intermediate
iterations of the optimization algorithm are generally different.

5.2 The Compression Algorithm

When dealing with the DMS based OCP formulation from Eq. (5.3) in an SQP
type framework (see Section 1.3.3), one needs to solve large but structured
quadratic subproblems that include both the states and controls as well as all
the coupling variables. This section proposes a compression technique which
numerically eliminates the coupling variables in order to obtain a standard
optimal control structured QP as in Eq. (1.22). In combination with a tailored
convex solver such as qpOASES [109], FORCES [97], qpDUNES [117] or HPMPC [123],
this approach allows one to efficiently exploit the coupling structure. The idea
here is to pursue a minimal computational delay between obtaining the new
state estimate and applying the next control input to the system, because the
compression algorithm can be made part of the preparation phase of the RTI
scheme as discussed earlier in Section 1.5.5. A possible alternative would be
to develop tailored QP algorithms to directly deal with this specific coupling
structure, for example, as discussed in [196].

140 COMPRESSION ALGORITHM FOR DISTRIBUTED MULTIPLE SHOOTING

5.2.1 The Coupled Subproblem Structure

Let us look at a way of numerically eliminating the coupling variables from the
QP subproblem without changing the SQP iterations, which will be referred
to as condensing or compression. The linearization of the equality constraints
in (5.3c)–(5.3e) at the current values (x̄ji , ū

j
i , v̄

j
i , ȳ

j
i) for i = 0, . . . , N − 1 and

j = 1, . . . ,M , has the following form

∆xji+1 = cji + Cji

[
∆xji
∆uji

]
+ Eji∆v

j
i , (5.4a)

∆yji = dji +Dj
i

[
∆xji
∆uji

]
+ F ji ∆vji , (5.4b)

∆vji =
M∑
m=1

Kjm∆ymi , (5.4c)

where ∆xji = xji − x̄
j
i , ∆uji = uji − ū

j
i and similarly for ∆vji and ∆yji . For

notational convenience, the state and control variables can be collectively
referred to as wji := (xji , u

j
i) or ∆wji := (∆xji ,∆u

j
i). In addition, the values

cji = φj(x̄ji , ū
j
i , v̄

j
i) − x̄

j
i+1, d

j
i = ψj(x̄ji , ū

j
i , v̄

j
i) − ȳ

j
i and the Jacobian matrices

Cji = ∂φj

∂wj
i

(w̄ji , v̄
j
i), D

j
i = ∂ψj

∂wj
i

(w̄ji , v̄
j
i) and Eji = ∂φj

∂vj
i

(w̄ji , v̄
j
i), F

j
i = ∂ψj

∂vj
i

(w̄ji , v̄
j
i)

are defined. By eliminating the variables ∆vji based on the coupling relation
in (5.4c), we obtain the following linear system

Gi

 ∆y1
i

...
∆yMi

 =

 d1
i
...
dMi

+

D
1
i

. . .
DM
i


 ∆w1

i
...

∆wMi

 , (5.5)

where the coupling matrix Gi is defined as

Gi =


1 −F 1

i K12 . . . −F 1
i K1M

−F 2
i K21 1
...

−FMi KM1 . . . 1

 . (5.6)

This means that one can numerically eliminate all coupling variables at the cost
of factorizing the structured matrix Gi, such that one can rewrite the linearized
equation for ∆yji from (5.4b) as follows

∆yji = d̃ji +
M∑
m=1

D̃j,m
i ∆wmi , (5.7)

THE COMPRESSION ALGORITHM 141

where the vectors d̃ji and matrices D̃j,m
i are the result of a compression routine

as discussed in the next Subsection. One can substitute the coupling variables
in (5.4a), using these expressions and the coupling graph as defined in (5.4c).
The result is a compressed convex subproblem that is of the same form as the
standard optimal control structured QP from Eq. (1.22).

Remark 5.4 Regardless of how each DMS structured subproblem is solved,
the same SQP iterations are performed in the full variable space (xji , u

j
i , v

j
i , y

j
i)

where i and j are respectively the shooting and subsystem index. Given the step
(∆xji ,∆u

j
i) from the QP solution, the corresponding update for the coupling

variables (∆yji ,∆v
j
i) can be computed from Eqs. (5.7) and (5.4c). This additional

procedure is better known as the expansion step [8].

Remark 5.5 Note that the compression and expansion procedure can be carried
out independently and therefore in parallel for each shooting interval.

5.2.2 Structure Exploiting Compression

The sensitivity information is propagated for each subsystem separately resulting
in the block diagonal right-hand side of Eq. (5.5). More importantly, the coupling
matrix Gi itself is often rather sparse as each subsystem is typically coupled with
just a few other subsystems. This block sparsity structure can inspire the use
of, e.g., a block LU factorization as discussed in [78]. A tailored implementation
could naturally take specific block structures into account. Note that a block
LU factorization can be shown to be numerically stable when the matrix G is
block diagonally dominant by columns, i.e.,

‖G−1
jj ‖
−1 ≥

M∑
i=1,i6=j

‖Gij‖, ∀j = 1, . . . ,M, (5.8)

where Gij are defined as the blocks in (5.6). Note that the diagonal blocks
are identity matrices, while the off-diagonal blocks define the coupling with
other subsystems. That motivates the idea that this assumption (5.8) typically
holds for the presented DMS case. Otherwise, the coupling matrix is often
well-conditioned which bounds the level of instability as discussed in [78].

Let us briefly focus on block tridiagonal matrices, as the block LU factorization
is often used for such matrices. They arise frequently in the discretization of
partial differential equations (PDE) [307] and this particular structure will also
be observed in our case study from Section 5.3. The block tridiagonal coupling

142 COMPRESSION ALGORITHM FOR DISTRIBUTED MULTIPLE SHOOTING

Algorithm 4 Block Tridiagonal Compression

Input: coupling matrix Gi from (5.9) and values dji , D
j
i from (5.5).

Output: compression results d̃ji , D̃
j,1:M
i .

Forward procedure
1: d̃1

i ← d1
i , D̃

1,1
i ← D1

i and ˜̄F 1
i ← F̄ 1

i .
2: for j = 2→M do
3: compute factorization of Hj = (1−

¯
F ji

˜̄F j−1
i).

4: d̃ji ← H−1
j dji and D̃j,j

i ← H−1
j Dj

i .
5: ˜

¯
F
j

i ← H−1
j ¯
F ji and ˜̄F ji ← H−1

j F̄ ji .
6: d̃ji ← d̃ji + ˜

¯
F
j

i d̃
j−1
i and D̃j,1:j−1

i ← ˜
¯
F
j

i D̃
j−1,1:j−1
i .

7: end for
Back substitution

8: for j = M − 1→ 1 do
9: d̃ji ← d̃ji + ˜̄F ji d̃

j+1
i and D̃j,1:M

i ←
[
D̃j,1:j
i 0

]
+ ˜̄F ji D̃

j+1,1:M
i .

10: end for

matrix looks as follows

Gi =


1 −F̄ 1

i 0
−
¯
F 2
i 1 −F̄ 2

i

. . . −F̄M−1
i

0 −
¯
FMi 1

 , (5.9)

where F̄ ji = F ji Kj,j+1 and
¯
F ji = F ji Kj,j−1. This corresponds to a DMS type

OCP in which the different subsystems are coupled in the form of a linear graph.
Algorithm 4 presents the compression method based on a block tridiagonal LU
factorization as presented in [137]. Note that a compact notation is used where
D̃j,1:M
i denotes the block matrices D̃j,k

i for k = 1, . . . ,M . As an alternative to
using tailored block factorizations, also a general-purpose sparse linear solver
could be used to implement the compression technique.

5.2.3 Computational Complexity

For the sake of simplicity, we consider M subsystems with an equal amount of
nx states and ny coupling variables, which denotes both the number of coupling
in- and outputs. It is additionally assumed that Ns = 1 integration step of
the q-stage collocation scheme is performed and also the order of the coupling

NMPC APPLICATION: CHAIN OF MASSES 143

Table 5.1: Computational complexity analysis based on a q-stage collocation
scheme: CMS versus DMS with compression (nw = nx + nu).

CMS DMS
Simulation
and sensitivities

(q nxM)3 +
(q nxM)2Mnw

(q nx)3 ×M +
(q nx)2(nw + q ny)×M

Dense (5.6)
compression - (q nyM)3 + (q nyM)2Mnw

Tridiagonal (5.9)
compression - (q ny)3 ×M +

(q ny)2(Mnw + q ny)×M

parameterization is equal to q. Depending on the structure of the coupling
matrix, the tridiagonal method from Algorithm 4 can be used.

Table 5.1 then presents an asymptotic comparison in computational complexity
of applying the q-stage collocation method in both the CMS and DMS framework.
The latter allows one to simulate and propagate sensitivities for the different
subsystems separately but it requires the use of compression. The table focuses
on matrix factorizations and the corresponding back substitutions, since they
are typically the dominating cost factor. The computational complexity analysis
is based on the exact Newton implementation in Table 2.1, in combination
with a direct sensitivity propagation which does not depend on the number
of iterations. We further also omit constant factors and instead look at the
asymptotic complexity behaviour. It can be seen from this table that the
computational cost could become substantially less in the distributed case
depending on the polynomial order q, the number of subsystems M and on
the ratio of coupling variables ny < nx. It becomes however difficult to draw
more general conclusions, since the comparison depends highly on the specific
coupling structure between the different subsystems.

5.3 NMPC Application: Chain of Masses

The complexity analysis presented in Table 5.1 states that the advantage of
using DMS instead of CMS is greater for larger systems composed of many
small and weakly coupled subsystems. This section illustrates the performance
of a DMS based real-time NMPC implementation on returning a chain of spring
connected masses to its steady state, e.g., similar to the case study from [325].
Figure 5.1 illustrates the considered setup, which consists of 8 masses forming a

144 COMPRESSION ALGORITHM FOR DISTRIBUTED MULTIPLE SHOOTING

Figure 5.1: Benchmark case study example for optimal control: illustration of a
chain of nm = 8 masses connected by springs.

chain with a fixed and a directly controlled end. The goal is to move the chain
from a given initial configuration to its equilibrium state without touching a
closely positioned wall (depicted in gray). The system exhibits fast nonlinear
dynamics due to the spring forces and therefore a horizon length of T = 4 s and
a sampling time of Ts = 0.2 s is chosen.

All numerical simulations are performed using the ACADO code generation tool
on a standard computer equipped with Intel i7-3720QM processor. Although
for simplicity, only the simulation results of a sequential implementation will
be shown, let us underline that the presented DMS based algorithm can be
straightforwardly parallelized.

5.3.1 System Dynamics and Coupling Structure

We consider a chain of nm = 8 elements with mass m, connected by springs
with rest length L and spring constant D. One end of the chain is fixed at
point x0 = [0, 0, 0]>, as illustrated in Figure 5.1. Let us denote the positions
xi(t) ∈ R3 and the velocities vi(t) ∈ R3 for the free masses i = 1, . . . , 7. The
equations for the controlled end of the chain read

ẋ7(t) = v7(t), v̇7(t) = u(t),

where u(t) ∈ R3 denotes the control inputs of the system. For each of the
remaining masses i = 1, . . . , 6, the following dynamics hold

ẋi(t) = vi(t), v̇i(t) = 1
m

(Fi,i+1 − Fi−1,i) + g,

NMPC APPLICATION: CHAIN OF MASSES 145

1

2

1

3

1

4

2

5

u

6

3

2

Figure 5.2: Chain mass optimal control example: illustration of the different
partitioning options to identify the coupled subsystems.

where g ∈ R3 is the gravitational acceleration and Fi,i+1 ∈ R3 denotes the
force acting on mass i due to the spring between mass i and mass i+ 1. For
more details on the nonlinear expressions for this dynamic model and the
corresponding parameter values, we refer to [325].

A natural way of partitioning this system into subsystems consists in defining
each mass as a separate subsystem. The linear dynamics of the controlled end
of the chain can be efficiently handled within a collocation based integration
scheme as described in Chapter 4. Therefore, these linear dynamics are further
considered as a part of the adjacent subsystem, resulting in 6 subsystems in
total in that case. There are however different partitioning choices possible
as illustrated also in Figure 5.2. Instead of defining 6 subsystems of which
each describe one free mass, one can alternatively define 2 or 3 subsystems
describing respectively 3 or 2 masses. The positions of the neighbouring masses
can be identified as the coupling variables which are needed to compute the
corresponding spring forces in the dynamics. The resulting coupling structure in
the form of a linear graph allows for the use of the block tridiagonal compression
method from Algorithm 4.

5.3.2 Numerical Simulation Results

The optimal control objective minimizes the deviation of the mass positions
and velocities from the equilibrium state and this in the form of a least squares
type cost function. We therefore use the Gauss-Newton based RTI scheme as
introduced in Section 1.5 for Nonlinear MPC, and this based on the open-source
implementation in the ACADO code generation tool. Figure 5.3 shows the results
of a closed-loop NMPC simulation for the chain of masses, starting from a

146 COMPRESSION ALGORITHM FOR DISTRIBUTED MULTIPLE SHOOTING

0 1 2 3 4 5 6 7 8
−1

0

1

x
E

n
d

time (s)

0 1 2 3 4 5 6 7 8

0

1

2

y
E

n
d

time (s)

CMS

DMS (q = 1)

DMS (q = 2)

0 1 2 3 4 5 6 7 8

0

1

2

z
E

n
d

time (s)

Figure 5.3: Comparison of the NMPC closed-loop trajectories for a CMS and a
DMS based direct optimal control implementation.

given initial state. It shows the closed-loop trajectories for the position of the
controlled end, using an ACADO generated RTI scheme both in the case of a CMS
and a DMS based discretization. The OCP formulation includes a constraint
for each of the masses not to hit the wall as illustrated in Figure 5.1 and control
bounds ui ∈ [−10, 10], i = 1, 2, 3. Note that, for a collocation coupling order
q ≥ 2, there is little noticeable difference between the CMS and the DMS
trajectories. This is confirmed by the closed-loop cost values given in Table 5.2,
which show little to no performance loss.

Table 5.2 shows the average computation time for the different components
in a serial implementation of the RTI scheme using a CMS or a DMS based
discretization. A fourth order Gauss collocation method with continuous output
has been used here to perform the numerical simulation and implement the
coupling of the M = 6 subsystems. The corresponding coupling variables in the
large-scale QP subproblem can be eliminated using the proposed compression
technique from Algorithm 4. The resulting standard optimal control structured
QP is then solved using condensing in combination with qpOASES. Note that
the feedback delay of the RTI scheme then corresponds to only the time spent
in qpOASES to solve the small condensed QP, while the numerical simulation
and sensitivity propagation, the compression and condensing procedure are all
part of the preparation phase. In the case of DMS based optimal control with a

NMPC APPLICATION: CHAIN OF MASSES 147

Table 5.2: Average computation times for CMS and DMS based RTI schemes
on the optimal control example of the chain of masses.

CMS DMS
q = 1 q = 2 q = 3

integration 35.66 ms 1.82 ms 2.57 ms 3.61 ms
compression - 0.22 ms 0.56 ms 1.07 ms
condensing 3.16 ms 3.16 ms 3.16 ms 3.16 ms
qpOASES 0.12 ms 0.12 ms 0.12 ms 0.12 ms

RTI step 38.94 ms 5.32 ms 6.41 ms 7.96 ms
closed-loop cost 717 [-] 724 [-] 717 [-] 717 [-]

Table 5.3: Average computation times for the compression procedure in the
DMS implementation: Algorithm 4 versus a dense linear solver.

q = 1 q = 2 q = 3
Algorithm 4 0.22 ms 0.56 ms 1.07 ms
dense solver 0.42 ms 1.83 ms 4.97 ms

coupling parameterization q = 2, integration together with compression takes
3.13 ms in total which is about 11 times faster than the case for the classical
CMS approach. Regarding the total time for one RTI step, a corresponding
speedup factor of about 6 can be observed.

Table 5.2 already illustrated the numerical performance of our proposed DMS
based RTI scheme and its scaling with the order of the coupling approximation.
Even when using an off-the-shelf dense solver instead of the block tridiagonal
compression method, Table 5.3 shows that DMS combined with compression
can provide considerable speedups in the total computation time. In the case of
DMS based RTI with q = 2, integration together with dense compression takes
4.4 ms in total which results in a speedup factor 8. An interesting comparison
in computation times between the division into M = 6 subsystems and the
alternative options from Figure 5.2 can be found in Table 5.4. It illustrates the
trade-off between the amount of small subsystems and the computational cost
of the compression technique, even though the DMS-RTI scheme using M = 6
performs the best for our case study here.

148 COMPRESSION ALGORITHM FOR DISTRIBUTED MULTIPLE SHOOTING

Table 5.4: Average timing results for DMS based RTI using different partitions
for the chain of masses in coupled subsystems (q = 2).

M = 1 M = 2 M = 3 M = 6
integration 35.66 ms 9.08 ms 4.55 ms 2.57 ms
compression - 0.22 ms 0.39 ms 0.56 ms
RTI step 38.94 ms 12.58 ms 8.22 ms 6.41 ms

5.4 Conclusions and Outlook

This chapter presented an efficient DMS based RTI algorithm to perform real-
time NMPC for decomposable systems, including an approach to model the
coupling between subsystems and a tailored compression technique to reduce
the computational burden for the embedded convex solver. Already in a serial
implementation, which serves as a proof of concept, the proposed approach is
shown to provide impressive speedups over the conventional scheme for certain
dynamic systems. This technique could be combined with the three- or even
multi-stage model structure from Chapter 4 within each subsystem, to result
in a rather flexible algorithmic framework with tailored structure exploitation.
This work can also be considered as an important step towards a real-time
fully distributed online NMPC algorithm. The promising combination of the
DMS scheme with the highly parallelizable “Augmented Lagrangian based
Alternating Direction Inexact Newton” (ALADIN) method [178] for direct
optimal control [194], is part of ongoing research.

Chapter 6

Lifted Newton-Type
Collocation Integrators

Popular approaches to tackle the continuous time OCP in Eq. (1.6) are multiple
shooting [51] and direct collocation [36], which both treat the simulation and
optimization problem simultaneously. A Newton-type algorithm is then able
to find a locally optimal solution for the resulting NLP by solving the KKT
optimality conditions [232]. When an implicit integration scheme is used for
either stiff or implicitly defined dynamics within direct multiple shooting, one
needs to implement an iterative Newton scheme for the integrator which is
used within the Newton-type optimization algorithm. This chapter proposes a
novel approach for embedding these implicit integrators within a Newton-type
optimization framework, based on an extension of the lifted Newton method [8]
for implicitly defined variables. An important advantage of the lifted collocation
approach over direct collocation is that one can instead solve subproblems
having the structure and dimensions of the multiple shooting method, for which
efficient embedded solvers exist, based on dense linear algebra routines such as
qpOASES [109], FORCES [96], qpDUNES [117] and HPMPC [123].

Note that this chapter is largely based on the article in [265], which itself is
built upon earlier publications as part of multiple conference proceedings. The
lifted collocation integrator was first presented in [263], followed by an extension
to exact Hessian based optimization by using a symmetric forward-backward
propagation technique as discussed in [267]. In addition, it was first proposed
in [262] that the lifted collocation approach can be combined with the use of
efficient inexact Newton-type methods.

149

150 LIFTED NEWTON-TYPE COLLOCATION INTEGRATORS

Outline The chapter is organized as follows. Section 6.1 briefly discusses
Newton-type optimization for both multiple shooting and direct collocation.
The exact lifted collocation integrator for direct multiple shooting is presented in
Section 6.2, including a detailed discussion of its advantages and disadvantages.
Section 6.3 proposes a Newton-type optimization approach based on inexact
lifted collocation and an adjoint derivative propagation. Advanced inexact
lifted collocation methods based on an inexact Newton scheme with iterated
sensitivities (INIS) are discussed in Section 6.4. Section 6.5 briefly describes the
open-source software implementation of the proposed algorithms in the ACADO
code generation tool, followed by a numerical case study in Section 6.6.

6.1 Simultaneous Direct Optimal Control

The discussions further can be easily extended to a general OCP formulation
such as in Eq. (1.6), including an index 1 DAE and a terminal cost or terminal
constraint. However, for the sake of simplicity, we omit these cases in the
following, and even dismiss the path constraints (1.6d) without loss of generality
for the presentation of the lifted collocation integrators which deal mostly with
the system dynamics. For the problem discretization, we consider here an
equidistant grid over the control horizon consisting of the collection of time
points ti+1 − ti = T

N =: Ts for i = 0, . . . , N − 1. Additionally, we consider a
piecewise constant control parameterization u(τ) = ui for τ ∈ [ti, ti+1).

6.1.1 Collocation based Numerical Simulation

This chapter considers the use of a collocation scheme as introduced in
Section 2.2.2, in order to compute a numerical approximation of the terminal
state x(ti+1) of the following initial value problem

0 = f(ẋ(τ), x(τ), ui), τ ∈ [ti, ti+1], x(ti) = xi, (6.1)

where the dynamic system described by f(·) could be stiff. Based on the
general IRK formulation in Eq. (2.28), let us introduce the system of collocation
equations for a fixed number Ns of integration steps such that Tint := Ts

Ns
.

We use the notation as illustrated in Figure 6.1 for one shooting interval
i = 0, . . . , N − 1. To obtain the variables describing the collocation polynomials
over the consecutive integration steps, one needs to solve the following system

SIMULTANEOUS DIRECT OPTIMAL CONTROL 151

Figure 6.1: Illustration of Ns fixed integration steps of a collocation scheme
over one shooting interval [ti, ti+1], including the corresponding equations.

of collocation equations

G(wi,Ki) =

 gi,1(wi,Ki,1)
...

gi,Ns(wi,Ki,1, . . . ,Ki,Ns)

 = 0, (6.2)

where gi,j(·) =

f(k1
i,j , xi,j−1 + Tint

∑q
s=1 a1,sk

s
i,j , ui)

...
f(kqi,j , xi,j−1 + Tint

∑q
s=1 aq,sk

s
i,j , ui)

 ,
where wi := (xi, ui), q denotes the number of collocation nodes and the matrix
[A]ij := ai,j contains the coefficients of the method [158]. The collocation
variables ksi,j ∈ Rnx are collectively denoted by Ki := (Ki,1, . . . ,Ki,Ns) ∈ RnK

with Ki,j := (k1
i,j , . . . , k

q
i,j) for i = 0, . . . , N − 1 and j = 1, . . . , Ns. The

intermediate state values xi,j are defined by the collocation variables and by
the weights bs of the q-stage method

xi,j = xi,j−1 + Tint

q∑
s=1

bsk
s
i,j , j = 1, . . . , Ns, (6.3)

where xi,0 = xi. The simulation result can then be obtained as xi,Ns = xi+BKi

in which B is a constant matrix that depends on the fixed step size Tint and
the variables Ki satisfy the collocation equations G(wi,Ki) = 0.

152 LIFTED NEWTON-TYPE COLLOCATION INTEGRATORS

6.1.2 Simultaneous Direct Optimal Control

As a special case of Eq. (1.8), the direct multiple shooting discretization [51] of
an equality constrained OCP results in the NLP

min
X,U

N−1∑
i=0

l(xi, ui) +m(xN) (6.4a)

s.t. 0 = x0 − x̂0, (6.4b)

0 = φ(xi, ui)− xi+1, i = 0, . . . , N − 1, (6.4c)

with state X = [x>0 , . . . , x>N]> and control trajectory U = [u>0 , . . . , u>N−1]>.
In what follows, all the optimization variables for this NLP (6.4) can also be
referred to as the concatenated vector W = [x>0 , u>0 , . . . , x>N]> ∈ RnW where
nW = nx + N(nx + nu). In the case of a fixed step collocation method, the
function φ(·) can be defined as

φ(xi, ui) = xi +BKi(xi, ui), (6.5)

where the collocation variables are obtained implicitly by solving the system
of equations in (6.2) which depends on the state value xi and control input ui.
The Lagrangian of the NLP in (6.4) is given by

L(W,Λ) =
N−1∑
i=0
Li(wi, λi) +m(xN)

=
N−1∑
i=0

l(wi) +m(xN) + λ>−1 (x0 − x̂0) +
N−1∑
i=0

λ>i (φ(wi)− xi+1) ,

(6.6)
where λi for i = 0, . . . , N − 1 denote the multipliers corresponding to the
continuity constraints in (6.4c) and λ−1 denotes the multiplier of the initial
value condition (6.4b).

A popular alternative to multiple shooting is direct collocation [36], which is an
example of a direct transcription method as introduced in Section 1.2.3. We

SIMULTANEOUS DIRECT OPTIMAL CONTROL 153

consider a simplified form of the NLP formulation in (1.9):

min
X,U,K

N−1∑
i=0

l(xi, ui) +m(xN) (6.7a)

s.t. 0 = x0 − x̂0, (6.7b)

0 = G(wi,Ki), i = 0, . . . , N − 1, (6.7c)

0 = xi +BKi − xi+1, i = 0, . . . , N − 1, (6.7d)

where wi := (xi, ui) and zi := (wi,Ki) and all optimization variables can be
concatenated into one vector

Z> := (x0, u0,K0, . . . , xi, ui︸ ︷︷ ︸
wi

,Ki

︸ ︷︷ ︸
zi

, xi+1, ui+1,Ki+1, . . . , xN) ∈ RnZ , (6.8)

for which nZ = nW +NnK = nx +N(nx + nu + nK). The Lagrangian for the
direct collocation NLP (6.7) is given by

Lc(W,K,Λ, µ) =
N−1∑
i=0
Lc
i (wi,Ki, λi, µi) +m(xN)

= λ>−1 (x0 − x̂0) +
N−1∑
i=0

λ>i (xi +BKi − xi+1)

+
N−1∑
i=0

µ>i G(wi,Ki) +
N−1∑
i=0

l(wi) +m(xN),

(6.9)

where λi is defined as before in Eq. (6.6) and µi for i = 0, . . . , N − 1 denote the
multipliers corresponding to the collocation equations (6.7c). For simplicity of
notation, we assume in this chapter that the stage cost does not depend on the
collocation variables even though there exist optimal control formulations where
this function instead reads l̃(wi,Ki), e.g., based on continuous output formulas
as described in Section 2.5. The local minimizers of the NLPs in (6.4) and (6.7)
are assumed to be regular KKT points, corresponding to Definition 1.20.
Remark 6.1 Based on our expression (6.5) for the continuity map φ(xi, ui) in
Eq. (6.4c) defining a fixed step collocation method, both multiple shooting and
direct collocation solve the same nonlinear optimization problem. Therefore, a
regular KKT point (W ?,K?,Λ?, µ?) to the direct collocation based NLP (6.7)
forms by definition also a regular KKT point (W ?,Λ?) to the multiple shooting
problem in Eq. (6.4) and vice versa.

154 LIFTED NEWTON-TYPE COLLOCATION INTEGRATORS

6.1.3 Newton-Type Optimization

Based on the discussion in Section 1.3.2, we introduce a Newton-type
optimization method for the equality constrained problems in (6.4) and (6.7). In
case of direct multiple shooting, a Newton-type scheme iterates by sequentially
solving the following linearized system[

A C>

C 0

] [
∆W
∆Λ

]
= −

[
a
c

]
, (6.10)

using the compact notation ∆W := (∆w0, . . . ,∆wN), wi := (xi, ui), ∆wi :=
wi − w̄i for i = 0, . . . , N − 1 and ∆wN := ∆xN . The values w̄i := (x̄i, ūi)
denote the current linearization point instead of the optimization variables
wi and they are updated in each iteration by solving the subproblem (6.10),
i.e., W̄+ = W̄ + ∆W in the case of a full Newton step [232]. The matrices
A ∈ RnW×nW , C ∈ R(N+1)nx×nW are defined as

A =


A0

. . .
AN−1

AN

 , C =


1nx ,0
∂φ(w̄0)
∂w0

−1nx ,0
. . .

∂φ(w̄N−1)
∂wN−1

−1nx

 ,
in which Ci :=

[
∂φ(w̄i)
∂wi

, −1nx

]
and Ai := ∇2

wiLi(w̄i, λ̄i), AN := ∇2
xNm(x̄N)

when using an exact Hessian based Newton method [232]. The Lagrangian
term on each shooting interval is thereby defined as Li(w̄i, λ̄i) = l(w̄i) +
λ̄>i (φ(w̄i)− x̄i+1). Note that the initial value condition is included with a
term λ̄>−1 (x̄0 − x̂0) for the first shooting interval i = 0, as in Eq. (6.6). In case
of a least squares objective l(wi) = 1

2‖F (wi)‖22, one could alternatively use a
Gauss-Newton Hessian approximation such that Ai := ∂F (w̄i)

∂wi

> ∂F (w̄i)
∂wi

[48]. The
right-hand side in the KKT system (6.10) consists of a ∈ RnW and c ∈ R(N+1)nx

defined by

a =


a0
...

aN−1
aN

 , c =


x̄0 − x̂0
c0
...

cN−1

 ,
in which ci := φ(w̄i)− x̄i+1 and ai := ∇wiL(W̄ , Λ̄), aN := ∇xNL(W̄ , Λ̄).

In a similar fashion, the linearized KKT system can be determined for the direct
collocation based NLP (6.7) asAc E> D>

E 0 0
D 0 0

∆Z
∆Λ
∆µ

 = −

ac
e
d

 , (6.11)

EXACT LIFTED COLLOCATION INTEGRATOR 155

where the matrices Ac ∈ RnZ×nZ , D ∈ RNnK×nZ are block diagonal and
defined by Ac,i := ∇2

ziL
c
i (z̄i, λ̄i, µ̄i) and Di := ∂G(z̄i)

∂zi
. In case of a Gauss-

Newton Hessian approximation when l(wi) = 1
2‖F (wi)‖22, one has Ac,i :=[

∂F (w̄i)
∂wi

> ∂F (w̄i)
∂wi

0
0 0

]
≈ ∇2

ziL
c
i (z̄i, λ̄i, µ̄i) instead. The constant matrix E ∈

R(N+1)nx×nZ corresponds to the Jacobian for the continuity constraints (6.7d)
and is given by

E =


1nx

1nx 0 B −1nx

1nx 0 B −1nx

. . .

 . (6.12)

The Lagrangian term on each shooting interval now reads as Lc
i (z̄i, λ̄i, µ̄i) =

l(w̄i) + λ̄>i
(
x̄i +B K̄i − x̄i+1

)
+ µ̄>i G(w̄i, K̄i) in Eq. (6.9). The right-hand side

components ac ∈ RnZ , e ∈ R(N+1)nx and d ∈ RNnK in the linear system (6.11)
can be defined similarly to those of (6.10) where ac,i := ∇ziLc(Z̄, Λ̄, µ̄), ac,N :=
∇xNLc(Z̄, Λ̄, µ̄), di := G(w̄i, K̄i) and ei := x̄i +B K̄i − x̄i+1.

6.2 Exact Lifted Collocation Integrator

Let us derive the lifted collocation scheme directly from the subproblem in
Eq. (6.11), based on a tailored and parallelizable variant of the null space
method [232] in order to numerically eliminate the collocation variables. This
allows one to further bridge the gap between the Newton-type iterations on
the direct collocation and the multiple shooting based problem formulation.
Figure 6.2 illustrates this connection and provides an overview of the equations
for direct collocation and multiple shooting, both using the standard integrator
and with the proposed lifted collocation method.

6.2.1 Structure Exploitation for Direct Collocation

We propose a condensing technique deployed on the Newton step for the direct
collocation problem. This allows for the transformation of Eq. (6.11) into the
form of (6.10) and thereby application of the tools developed for the multiple
shooting approach. We present this result as the following proposition.

Proposition 6.2 Algorithm 5 solves the linearized direct collocation KKT
system in Eq. (6.11) by performing a condensing technique, followed by solving

156 LIFTED NEWTON-TYPE COLLOCATION INTEGRATORS

Figure 6.2: An overview of the idea of using lifted collocation integrators, with
combined properties from multiple shooting and direct collocation.

a multiple shooting type KKT system of the form (6.10) and a corresponding
expansion procedure to obtain the full solution (∆Z,∆Λ,∆µ).

Proof. Let us start with the following expressions resulting from the continuity
and collocation equations on the second and third line of the direct collocation
based KKT system (6.11), i.e.,

∂G(z̄i)
∂wi

∆wi + ∂G(z̄i)
∂Ki

∆Ki = −di and

∆xi +B∆Ki −∆xi+1 = −ei,

for each i = 0, . . . , N − 1, where the previous definition of the matrices Di

and E has been used and, additionally, di = G(z̄i) and ei = x̄i +B K̄i − x̄i+1.
Since the Jacobian ∂G(z̄i)

∂Ki
is nonsingular [158], one can eliminate the collocation

variables ∆Ki = ∆K̃i +Kw
i ∆wi from the subsystem which reads as

∆xi +BKw
i ∆wi −∆xi+1 = −ẽi,

where ẽi := ei +B∆K̃i and the auxiliary variables

∆K̃i = −∂G(z̄i)
∂Ki

−1
G(z̄i) and

Kw
i = −∂G(z̄i)

∂Ki

−1
∂G(z̄i)
∂wi

(6.13)

EXACT LIFTED COLLOCATION INTEGRATOR 157

have been defined. Subsequently, we look at the first line of the direct collocation
based KKT system (6.11),

∇2
ziL

c
i︸ ︷︷ ︸

=Ac,i

∆zi + E>i ∆λi −

1nx

0
0

∆λi−1 + ∂G(z̄i)
∂zi

>

︸ ︷︷ ︸
=D>

i

∆µi = −∇ziLc︸ ︷︷ ︸
=ac,i

, (6.14)

where the matrix Ei =
[
1nx 0 B

]
has been defined. Since ∆Ki = ∆K̃i +

Kw
i ∆wi, we may write ∆zi =

[
∆wi
∆Ki

]
=
[
1nw

Kw
i

]
∆wi +

[
0

1nK

]
∆K̃i which, when

applied to (6.14), yields

(
∇2
zi,wiL

c
i +∇2

zi,KiL
c
i K

w
i

)
∆wi + E>i ∆λi −

1nx

0
0

∆λi−1 + ∂G(z̄i)
∂zi

>
∆µi

= −∇ziLc −∇2
zi,KiL

c
i ∆K̃i.

(6.15)
Additionally, we observe that

∂G(z̄i)
∂zi

dzi
dwi

= ∂G(z̄i)
∂wi

+ ∂G(z̄i)
∂Ki

Kw
i

= ∂G(z̄i)
∂wi

− ∂G(z̄i)
∂Ki

∂G(z̄i)
∂Ki

−1
∂G(z̄i)
∂wi

= 0,

where dzi
dwi
> =

[
1nw Kw>

i

]
. This can be used to simplify Eq. (6.15). Left

multiplying both sides of (6.15) with dzi
dwi
> results in

Ai∆wi +
[

1nx +Kx>

i B>

Ku>

i B>

]
∆λi −

[
1nx

0

]
∆λi−1 = −ai,

where the Hessian matrix can be written as

Ai =
(
∇2
wiL

c
i +Kw>

i ∇2
Ki,wiL

c
i +∇2

wi,KiL
c
i K

w
i +Kw>

i ∇2
KiL

c
i K

w
i

)
= dzi

dwi

>
∇2
zi l(w̄i)

dzi
dwi

+ dzi
dwi

>
〈µ̄i,∇2

ziGi〉
dzi
dwi

= ∇2
wi l(w̄i) +Hi,

(6.16)

in which Hi := dzi
dwi
>〈µ̄i,∇2

ziGi〉
dzi
dwi is the condensed Hessian contribution from

the collocation equations. Here, the notation 〈µ̄,∇2
zG〉 =

∑nK
r=1 µ̄r

∂2Gr
∂z2 is used.

158 LIFTED NEWTON-TYPE COLLOCATION INTEGRATORS

The right-hand side reads as

ai = dzi
dwi

>
∇ziLc + dzi

dwi

>
∇2
zi,KiL

c
i∆K̃i

= ∇wiLc +Kw>

i ∇KiLc + dzi
dwi

>
〈µ̄i,∇2

zi,KiGi〉∆K̃i

= ∇wi l(w̄i) +
[

1nx +Kx>

i B>

Ku>

i B>

]
λ̄i −

[
1nx

0

]
λ̄i−1 + hi,

(6.17)

where we used ∂G(z̄i)
∂zi

dzi
dwi = 0 and hi := dzi

dwi
>〈µ̄i,∇2

zi,Ki
Gi〉∆K̃i.

Based on the numerical elimination or condensing of the collocation variables
∆Ki, the KKT system from Eq. (6.11) can be rewritten in the multiple-shooting
form of Eq. (6.10) where the matrices C and A are defined by

Ci =
[
1nx +BKx

i BKu
i −1nx

]
, Ai = ∇2

wi l(w̄i) +Hi, (6.18)

respectively. The vectors c and a on the right-hand side of the system are
defined by

ci = ẽi, ai = ∇wi l(w̄i) +
[

1nx +Kx>

i B>

Ku>

i B>

]
λ̄i −

[
1nx

0

]
λ̄i−1 + hi, (6.19)

for each i = 0, . . . , N−1. After solving the resulting multiple shooting type KKT
system (6.10), one can obtain the full direct collocation solution by performing
the following expansion step for the lifted variables K and µ:

∆Ki = ∆K̃i +Kw
i ∆wi

µ+
i = −∂Gi

∂Ki

−> (
B>λ+

i + 〈µ̄i,∇2
Ki,ziGi〉∆zi

)
,

(6.20)

using the Newton step (∆W,∆Λ) where λ+
i = λ̄i + ∆λi. The expansion

step (6.20) for the Lagrange multipliers µi can be found by looking at the lower
part of the KKT conditions in Eq. (6.14),

∇2
Ki,ziL

c
i∆zi +B>∆λi + ∂Gi

∂Ki

>
∆µi = −∇KiLc,

which can be rewritten as
∂Gi
∂Ki

>
∆µi = −∂Gi

∂Ki

>
µ̄i −B>λ̄i −B>∆λi − 〈µ̄i,∇2

Ki,ziGi〉∆zi. (6.21)

EXACT LIFTED COLLOCATION INTEGRATOR 159

Algorithm 5 Newton-type optimization step, based on the exact lifted
collocation integrator within direct multiple shooting (LC-EN).

Input: Current values z̄i = (x̄i, ūi, K̄i) and (λ̄i, µ̄i) for i = 0, . . . , N − 1.
Output: Updated values z̄+

i and (λ̄+
i , µ̄

+
i) for i = 0, . . . , N − 1.

Condensing procedure
1: for i = 0, . . . , N − 1 do in parallel (forward sweep)
2: Compute the values ∆K̃i and Kw

i using Eq. (6.13):
∆K̃i ← − ∂Gi

∂Ki

−1
G(z̄i) and Kw

i ← − ∂Gi
∂Ki

−1 ∂Gi
∂wi

.
3: Hessian and gradient terms using (6.16)-(6.17):

Hi ← dzi
dwi
>〈µ̄i,∇2

ziGi〉
dzi
dwi and hi ← dzi

dwi
>〈µ̄i,∇2

zi,Ki
Gi〉∆K̃i.

4: end for
Computation of step direction

5: Solve the linear system (6.10) based on the data Ci, Ai and ci, ai in (6.18)
and (6.19) for i = 0, . . . , N − 1, in order to obtain the step (∆W,∆Λ).
w̄+
i ← w̄i + ∆wi and λ̄+

i ← λ̄i + ∆λi.
Expansion procedure

6: for i = 0, . . . , N − 1 do in parallel (backward sweep)
7: The full solution can be obtained using Eq. (6.20):

K̄+
i ← K̄i + ∆K̃i +Kw

i ∆wi.
µ̄+
i ← −

∂Gi
∂Ki

−> (
B>λ̄+

i + 〈µ̄i,∇2
Ki,zi

Gi〉∆zi
)
.

8: end for

Remark 6.3 Algorithm 5 can be readily extended to nonlinear inequality
constrained optimization, since the lifted collocation integrator is not directly
affected by such inequality constraints. More specifically, the presence of
inequality constraints only influences the computation of the step direction
based on the KKT conditions [232]. Therefore, the lifted collocation scheme
can, for example, be implemented within an SQP method [52] by linearizing the
inequality constraints and solving the resulting QP subproblem to compute the
step direction in Algorithm 5. Note that such an SQP type implementation is
performed in the ACADO Toolkit as discussed later in Section 6.5. Similarly,
an IP method [39] could be implemented based on the lifted collocation integrator
so that the step direction computation in Algorithm 5 involves the solution of
the (primal-dual) interior point system.

Remark 6.4 Proposition 6.2 presents a specific condensing and expansion
technique which can also be interpreted as a parallelizable linear algebra routine
to exploit the specific direct collocation structure in the Newton method, instead
of relying on general-purpose sparse linear algebra packages. A similar idea of

160 LIFTED NEWTON-TYPE COLLOCATION INTEGRATORS

Figure 6.3: Illustration of the parallelizable condensing and expansion to
efficiently eliminate and recover the collocation variables from the linearized
KKT system.

using specialized linear algebra to solve the KKT system for direct collocation
has been proposed in [186, 326, 334], based on interior point methods and Schur
complement techniques. Note that the numerical elimination of the collocation
variables by computing the corresponding quantities in Eqs. (6.18) and (6.19) can
be performed independently and therefore in parallel for each shooting interval
i = 0, . . . , N − 1 as illustrated by Figure 6.3. The same holds true for the
expansion step in Eq. (6.20) to recover the full solution.

6.2.2 The Lifted Collocation Algorithm

Algorithm 5 presents the exact lifted collocation scheme (LC-EN), which can be
used within direct multiple shooting based on the results of Proposition 6.2. The
resulting Newton-type optimization algorithm takes steps (∆W,∆K,∆Λ,∆µ)
that are equivalent to those for Newton-type optimization applied to the direct
collocation based NLP. Given a regular KKT point, (W ?,K?,Λ?, µ?), as in
Definition 1.20 for this NLP (6.7), the lifted collocation algorithm therefore
converges with a linear rate to this minimizer in the case of a Gauss-Newton
Hessian approximation or with a locally quadratic convergence rate in the case
of an exact Hessian method [232]. Note that more recent results on inexact
Newton-type optimization algorithms exist, e.g., allowing locally superlinear [94]
or even quadratic convergence rates [175] under certain conditions.

Connection to the standard lifted Newton method

The lifted Newton method [8] identifies intermediate values in the constraints
and objective functions and introduces them as additional degrees of freedom
in the NLP. Instead of solving the resulting equivalent (but higher dimensional)

EXACT LIFTED COLLOCATION INTEGRATOR 161

optimization problem directly, a condensing and expansion step are proposed to
give a computational burden similar to the non-lifted Newton type optimization
algorithm. The present chapter proposes an extension of that concept to
intermediate variables that are instead defined implicitly, such as the collocation
variables on each shooting interval. Similar to the discussion for the lifted
Newton method in [8], the lifted collocation integrator offers multiple advantages
over the non-lifted method such as an improved local convergence. Most
important, unlike the standard lifted Newton method, the lifting of implicitly
defined variables avoids the need for an iterative scheme within each iteration
of the Newton-type optimization algorithm, and therefore typically reduces the
computational effort. These properties will be detailed next.

Comparison with direct collocation and multiple shooting

This section compares multiple shooting (MS), lifted collocation (LC) and direct
collocation (DC), all aimed at solving the same nonlinear optimization problem
in Eq. (6.7) (see Remark 6.1). Proposition 6.2 shows that lifted and direct
collocation result in the exact same Newton-type iterations and therefore share
the same convergence properties. The arguments proposed in [8] for the lifted
Newton method suggest that this local convergence can be better than for direct
multiple shooting based on a collocation method. However, the main motivation
for using lifting in this chapter is that, internally, multiple shooting requires
Newton-type iterations to solve the collocation equations (6.2) within each NLP
iteration to evaluate the continuity map while lifted collocation avoids such
internal iterations. In addition, let us mention some of the advantages of lifted
collocation over the use of direct collocation:

• The elimination of the collocation variables, i.e., the condensing, can be
performed in a tailored, structure-exploiting manner. Similarly to direct
multiple shooting, the proposed condensing technique can be highly and
straightforwardly parallelized since the elimination of the variables ∆Ki

on each shooting interval can be done independently.

• The resulting condensed subproblem is smaller but still sparse, since it
is of the multiple-shooting form (6.10). It therefore offers the additional
practical advantage that one can deploy any of the embedded solvers
tailored for the multi-stage quadratic subproblem with a specific optimal
control structure, such as FORCES [96], qpDUNES [117] or HPMPC [123].

• An important advantage of multiple shooting over direct collocation is
the possibility of using any ODE or DAE solver, including step size and
order control to guarantee a specific integration accuracy [51, 158]. Such

162 LIFTED NEWTON-TYPE COLLOCATION INTEGRATORS

Table 6.1: Comparison of the three collocation based approaches to solve the
nonlinear optimal control problem in Eq. (6.7).

Multiple Shooting Lifted Collocation Direct Collocation
(MS) (LC) (DC)

Step size control + 0 0
Embedded solvers + + -
Parallelizability + + 0
Local convergence 0 + +
Internal iterations - + +
Sparsity dynamics - - +

an adaptive approach becomes more difficult, but can be combined with
direct collocation where the problem dimensions change in terms of the
step size and order of the polynomial [36, 215, 246]. Even though it is
out of the scope of this work, the presented lifting technique allows one
to implement similar approaches while keeping the collocation variables
hidden from the NLP solver based on condensing and expansion.

• The main advantage of direct collocation over multiple shooting is the
better preservation of sparsity in the derivative matrices. Additionally, the
evaluation of derivatives for the collocation equations is typically cheaper
than the propagation of sensitivities for an integration scheme.

The above observations are summarized in Table 6.1, which lists advantages
and disadvantages for all three approaches. It is important to note that direct
collocation is also highly parallelizable, although one needs to rely on an
advanced linear algebra package for detecting the sparsity structure of Eq. (6.11),
exploiting it and performing the parallelization. In contrast, the lifted collocation
approach is parallelizable in a natural way and independently of the chosen
linear algebra. The relative performance of using a general-purpose sparse linear
algebra routine for direct collocation versus the proposed approach depends very
much on the specific problem dimensions and structure, and on the solver used.
It has been shown in specific contexts that structure exploiting implementations
of optimal control methods based on dense linear algebra routines typically
outperform general-purpose solvers [121]. This topic will be discussed further
for direct collocation in the numerical case study of Section 6.6.

EXACT LIFTED COLLOCATION INTEGRATOR 163

6.2.3 Forward-Backward Propagation

The efficient computation of second-order derivatives using Algorithmic
Differentiation (AD) is typically based on a forward sweep, followed by a
backward propagation of the derivatives as detailed in [141]. Inspired by this
approach, Algorithm 5 proposes to perform the condensing and expansion step
using such a forward-backward propagation in the case of exact Hessian based
optimization. To reveal these forward and backward propagation sweeps in
Algorithm 5 explicitly, we recall the structure of the collocation equations from
the formulation in (6.2), where we omit the shooting index, i = 0, . . . , N − 1,
to obtain the compact notation

G(w,K) =

 g1(w,K1)
...

gNs(w,K1, . . . ,KNs)

 =

 g1(w0,K1)
...

gNs(wNs−1,KNs)

 = 0. (6.22)

Here, w0 = (x, u), wn = (xn, u) and xn = xn−1+BnKn denotes the intermediate
state values in Eq. (6.3) such that the numerical simulation result φ(w) = xNs

is defined. Let us briefly present the forward-backward propagation scheme
for respectively the condensing and expansion step of Algorithm 5 within one
shooting interval.

Condensing the lifted variables: forward sweep

The condensing procedure in Algorithm 5 aims to compute the data C =[
dxNs
dw0

, −1nx

]
and A = ∇2

wl(w) +H, where the matrix H = dz
dw
>〈µ,∇2

zG〉 dz
dw

is defined similar to Eq. (6.16). In addition, the vectors c = ei + B∆K̃ and

a = ∇wl(w) + dxNs
dw0

>
λi −

[
1nx

0

]
λi−1 + h, in which h = dz

dw
>〈µ,∇2

z,KG〉∆K̃,

are needed to form the linearized multiple shooting type KKT system (6.10).
Note that this forms a simplified formulation of the condensed expressions in
Eqs. (6.18) and (6.19) within one shooting interval.

Given the particular structure of the collocation equations in (6.22) for Ns
integration steps, the variables Kn can be eliminated sequentially for n =
1, . . . , Ns. The lifted Newton step ∆K̃ = − ∂G

∂K

−1
G(z̄) can therefore be written

as the following forward sequence

∆K̃n = − ∂gn
∂Kn

−1(
gn + ∂gn

∂xn−1
∆x̃n−1

)
, (6.23)

for n = 1, . . . , Ns and where gn := gn(w̄n−1, K̄n) and ∆x̃0 = 0 so that ∆x̃n =
∆x̃n−1 + Bn ∆K̃n. The same holds for the corresponding first order forward

164 LIFTED NEWTON-TYPE COLLOCATION INTEGRATORS

sensitivities Kw = − ∂G
∂K

−1 ∂G
∂w , which read as

Kw
n := dKn

dw0
= − ∂gn

∂Kn

−1 (∂gn
∂wn−1

dwn−1

dw0

)
, (6.24)

where the first order derivatives dwn−1
dw0

=
[
Sn−1
0 1nu

]
and Sn = dxn

dw0
are defined.

These sensitivities are used to propagate the state derivatives

Sn = Sn−1 +BnK
w
n (6.25)

for n = 1, . . . , Ns. This forward sequence, starting at S0 =
[
1nx 0

]
, results in

the complete Jacobian SNs = dxNs
dw0

.

After introducing the compact notation µ>n gn(w̄n−1, K̄n) =
∑q
r=1 µ

>
n,rfn,r

where fn,r := f(k̄n,r, w̄n,r) denote the dynamic function evaluations in (6.2),
the expressions for the second-order sensitivities are

Kw,w
n =

q∑
r=1

dzn,r
dw0

>
〈µn,r,∇2

zn,rfn,r〉
dzn,r
dw0

, (6.26)

where zn,r := (kn,r, wn,r), wn,r := (xn,r, u) and the stage values are defined
by xn,r = xn−1 + Tint

∑q
s=1 ar,skn,s. The derivatives dzn,r

dw0
are based on the

first-order forward sensitivity information in Eqs. (6.24) and (6.25). In a similar
way to that described in Chapter 3, one can additionally perform a forward
symmetric Hessian propagation sweep,

Hn = Hn−1 +Kw,w
n , (6.27)

for n = 1, . . . , Ns and H0 = 0 such that HNs =
∑Ns
n=1K

w,w
n . Regarding the

gradient contribution, one can propagate the following sequence

hn = hn−1 +
q∑
r=1

dzn,r
dw0

>
〈µn,r,∇2

zn,rfn,r〉∆z̃n,r, (6.28)

for n = 1, . . . , Ns, where the values ∆x̃n,r = ∆x̃n−1 + Tint
∑q
s=1 ar,s∆k̃n,s are

defined. Given the initial values H0 = 0 and h0 = 0, the forward sweeps (6.27)-
(6.28) result in HNs = dz

dw
>〈µ̄,∇2

zG〉 dz
dw and hNs = dz

dw
>〈µ̄,∇2

z,KG〉∆K̃.

Remark 6.5 The above computations to evaluate the condensed Hessian
contribution shows a resemblance with the classical condensing method to
eliminate the state variables in direct optimal control [51]. The main difference
is that the above condensing procedure is carried out independently for the state
and control variable within each shooting interval, such that the number of
optimization variables does not increase in this case.

EXACT LIFTED COLLOCATION INTEGRATOR 165

Expansion step for the lifted variables: backward sweep

Note that the first and second order sensitivities can be propagated together in
the forward condensing scheme, which avoids unnecessary additional storage
requirements. We show next that the expansion phase of Algorithm 5 can be
seen as the subsequent backward propagation sweep. For this purpose, certain
variables from the forward scheme still need to be stored.

The expansion step K̄+ = K̄ + ∆K̃ +Kw∆w for the lifted collocation variables
can be performed as follows

K̄+
n = K̄n + ∆K̃n +Kw

n ∆w0 for n = 1, . . . , Ns, (6.29)

where the values ∆K̃n and Kw
n are obtained from the condensing procedure and

∆w0 denotes the primal update from the subproblem solution in Algorithm 5.
The expansion step µ̄+ = − ∂G

∂K

−> (
B>λ̄+ + 〈µ̄,∇2

K,zG〉∆z
)
for the lifted dual

variables can be performed as a backward propagation

µ̄+
n = − ∂gn

∂Kn

−>
(
B>n λ̄

+
n +

Ns∑
m=n
〈µ̄m,∇2

Kn,zmgm〉∆zm

)
,

where λ̄+
n−1 = λ̄+

n + ∂gn
∂xn−1

>
µ̄+
n ,

(6.30)

for n = Ns, . . . , 1, based on the initial value λ̄+
Ns

= λ̄+ from the subproblem
solution, and where ∆xn = ∆xn−1 + Bn ∆Kn and ∆zn = (∆wn,∆Kn).
Note that the factorization of the Jacobian ∂gn

∂Kn
is needed from the forward

propagation to efficiently perform this backward sweep.

6.2.4 Lifted Collocation Integrator with Gauss-Newton

The previous subsection detailed how the expressions in Algorithm 5 can be
computed by a forward-backward propagation which exploits the symmetry of
the exact Hessian contribution. In the case when a Gauss-Newton or Quasi-
Newton type optimization method is used, the Hessian contribution from the
dynamic constraints is Hi = 0 and the gradient hi = 0 for i = 0, . . . , N − 1,
since no second-order derivative propagation is needed. The multipliers µ
corresponding to the collocation equations are then not needed either, so that
only the collocation variables K are lifted. In this context, Algorithm 5 boils
down to a forward sweep for both the condensing and the expansion steps of the
scheme without the need for additional storage of intermediate values, unlike
the case of the forward-backward propagation.

166 LIFTED NEWTON-TYPE COLLOCATION INTEGRATORS

6.3 Adjoint-based Inexact Lifted Collocation

Any implementation of a collocation method needs to compute the collocation
variables Ki from the nonlinear equations G(wi,Ki) = 0, given the current
values for wi. The earlier definition of the auxiliary variable ∆K̃i in Eq. (6.13)
corresponds to an exact Newton step ∆K̃i = −∂G(w̄i,K̄i)

∂Ki

−1
G(w̄i, K̄i). It is,

however, common in practical implementations of collocation methods or IRK
schemes in general to use inexact derivative information to approximate the
Jacobian matrix, Mi ≈ ∂G(w̄i,K̄i)

∂Ki
, resulting in the inexact Newton step

∆K̃i = −M−1
i G(w̄i, K̄i). (6.31)

This Jacobian approximation can allow for a computationally cheaper LU
factorization, which can be reused throughout the iterations [158]. Monitoring
strategies on when to reuse such a Jacobian approximation is a research
topic of its own, e.g., see [7, 27]. Additionally, there exist iterative ways
of updating the Jacobian approximation, e.g., based on Broyden’s method [57].
Efficient implementations of IRK methods based on such a tailored Jacobian
approximation Mi, are, for example, known as the Simplified [35, 62] and the
Single Newton iteration [71, 138] as presented earlier in Section 2.4.

6.3.1 Adjoint-based Inexact Lifting Algorithm

Even though it can be computationally attractive to use the inexact Newton
scheme from Eq. (6.31) instead of the exact method, its impact on the
convergence of the resulting Newton-type optimization algorithm is an important
topic which is addressed in more detail by [44, 82, 94, 252]. A Newton-type
scheme with inexact derivatives does not converge to a solution of the original
direct collocation NLP (6.7), unless adjoint derivatives are evaluated in order
to compute the correct gradient of the Lagrangian ac,i = ∇ziLc(Z̄, Λ̄, µ̄) on the
right-hand side of the KKT system (6.11) [49, 94].

Let us introduce the Jacobian approximation D̃i = [∂G(z̄i)
∂wi

,Mi] ≈ ∂G(z̄i)
∂zi

∈
RnK×nz , where Mi ≈ ∂G(z̄i)

∂Ki
is invertible for each i = 0, . . . , N − 1, and which is

possibly fixed. One then obtains the inexact KKT systemAc E> D̃>

E 0 0
D̃ 0 0

∆Z
∆Λ
∆µ

 = −

ac
e
d

 , (6.32)

where all matrices and vectors are defined as for the direct collocation based
KKT system in Eq. (6.11), with the exception of D̃, where the Jacobian

ADJOINT-BASED INEXACT LIFTED COLLOCATION 167

approximations Mi are used instead of ∂G(z̄i)
∂Ki

. The resulting iterative scheme is
known as an adjoint-based inexact Newton method [49, 94] applied to the direct
collocation NLP in Eq. (6.7) because the right-hand side is evaluated exactly,
including the gradient of the Lagrangian, ac,i = ∇ziLc(Z̄, Λ̄, µ̄). We detail this
approach in Algorithm 6 and motivate it by the following proposition.

Proposition 6.6 Algorithm 6 presents a condensing technique for the inexact
KKT system (6.32), which allows one to instead solve a system of the multiple-
shooting form in Eq. (6.10). The solution (∆Z,∆Λ,∆µ) to the original
system (6.32) can be obtained by use of the corresponding expansion technique.

Proof. The proof here follows similar arguments as that used for Proposition 6.2,
with the main difference that the update of the collocation variables is instead
given by ∆Ki = ∆K̃i + K̃w

i ∆wi, where

∆K̃i = −M−1
i G(z̄i), K̃w

i = −M−1
i

∂G(z̄i)
∂wi

, (6.33)

and where K̃w
i denotes the inexact forward sensitivities. To obtain the multiple

shooting type form of the KKT system in Eq. (6.10), the resulting condensing
and expansion step can be found in Algorithm 6. An important difference with
the exact lifted collocation integrator from Algorithm 5 is that the gradient
term hi is now defined as

hi = zwi
>〈µ̄i,∇2

zi,KiGi〉∆K̃i +
(
∂Gi
∂wi

+ ∂Gi
∂Ki

K̃w
i

)>
µ̄i, (6.34)

where zwi > :=
[
1nw K̃w>

i

]
and including a correction term resulting from

the inexact sensitivities K̃w
i . In addition, the expansion step for the Lagrange

multipliers corresponding to the collocation equations is now

∆µi = −M−>i

(
∂G(z̄i)
∂Ki

>
µ̄i +B>λ̄+

i + 〈µ̄i,∇2
Ki,ziGi〉∆zi

)
, (6.35)

which corresponds to an inexact Newton-type iteration on the exact Newton
based expression from Eq. (6.21).

Table 6.2 shows an overview of the presented variants of lifted collocation
including the exact method (LC-EN) in Algorithm 5, which can be compared
to the adjoint based inexact lifting scheme (LC-IN) in Algorithm 6.

168 LIFTED NEWTON-TYPE COLLOCATION INTEGRATORS

Exact
Lifted

C
ollocation

(LC
-EN

)
A
djoint-based

Inexact
Lifting

(LC
-IN

)
Inexact

Lifting
w
ith

Iterated
Sensitivities

(LC
-IN

IS)
A
lgorithm

5
A
lgorithm

6
A
lgorithm

7-8

C
ondensing

procedure
for

i=
0,...,N

−
1
(forward

sweep)

∆
K̃
i ←
−
∂
G
i

∂
K
i −

1G
(z̄
i)

∆
K̃
i ←
−
M
−

1
i
G

(z̄
i)

∆
K̃
i ←
−
M
−

1
i
G

(z̄
i)

K
wi
←
−
∂
G
i

∂
K
i −

1
∂
G
i

∂
w
i

K̃
wi
←
−
M
−

1
i

∂
G
i

∂
w
i

∆
K
wi
←
−
M
−

1
i (

∂
G
i

∂
w
i +

∂
G
i

∂
K
i K̄

wi)
(E

xact
H
essian):

(E
xact

H
essian):

(E
xact

H
essian):

H
i ←

d
z
i

d
w
i >〈µ̄

i ,∇
2z
i G

i 〉
d
z
i

d
w
i

H
i ←

z
wi
>〈µ̄

i ,∇
2z
i G

i 〉
z
wi

H
i ←

z
wi
>〈µ̄

i ,∇
2z
i G

i 〉
z
wi

h
i
←

d
z
i

d
w
i >〈µ̄

i ,∇
2z
i ,K

i G
i 〉∆

K̃
i

h
i
←
z
wi
>〈µ̄

i ,∇
2z
i ,K

i G
i 〉∆

K̃
i + (

∂
G
i

∂
w
i +

∂
G
i

∂
K
i K̃

wi)
>
µ̄
i

h
i
←
z
wi
>〈µ̄

i ,∇
2z
i ,K

i G
i 〉∆

K̃
i + (

∂
G
i

∂
w
i +

∂
G
i

∂
K
i K̄

wi)
>
µ̄
i

w
here

d
z
i

d
w
i >

= [1
n

w
K
w
>

i]
w
here

z
wi
>

= [1
n

w
K̃
w
>

i]
w
here

z
wi
>

= [1
n

w
K̄
w
>

i]
(G

auss-N
ew

ton):
(G

auss-N
ew

ton):
(G

auss-N
ew

ton):
-

H
i ←

0
and

h
i
← (

∂
G
i

∂
w
i +

∂
G
i

∂
K
i K̃

wi)
>
µ̄
i

-

C
om

putation
of

step
direction

C
i = [1

n
x +

B
K
xi

B
K
ui

−
1
n

x],
c
i =

e
i +

B
∆
K̃
i ,

(E
xact

H
essian):

A
i =
∇

2w
i l(w̄

i)+
H
i

and
a
i =
∇
w
i l(w̄

i)+ [
1
n

x +
K
x
>

i
B
>

K
u
>

i
B
>

]
λ̄
i − [1

n
x

0]
λ̄
i−

1 +
h
i

(G
auss-N

ew
ton):

A
i =

∂
F

(w̄
i)

∂
w
i

>
∂
F

(w̄
i)

∂
w
i

and
∇
w
i l(w̄

i)=
∂
F

(w̄
i)

∂
w
i

>
F

(w̄
i)

Solve
the

linear
K
K
T

system
(6.10)

such
that

w̄
+i
←
w̄
i +

∆
w
i
and

λ̄
+i
←
λ̄
i +

∆
λ
i

E
xpansion

procedure
for

i=
0,...,N

−
1
(backward

sweep)

K̄
+i
←
K̄
i +

∆
K̃
i +

K
wi ∆

w
i

K̄
+i
←
K̄
i +

∆
K̃
i +

K̃
wi ∆

w
i

K̄
+i
←
K̄
i +

∆
K̃
i +

K̄
wi ∆

w
i

-
-

K̄
w

+

i
←
K̄
wi

+
∆
K
wi

(E
xact

H
essian):

(E
xact

H
essian):

(E
xact

H
essian):

µ̄
+i
←
−
∂
G
i

∂
K
i −
> (B

>
λ̄

+i
+
〈µ̄
i ,∇

2K
i ,z

i G
i 〉∆

z
i)

µ̄
+i
←
µ̄
i −

M
−
>

i (
∂
G
i

∂
K
i >
µ̄
i +

B
>
λ̄

+i
+
〈µ̄
i ,∇

2K
i ,z

i G
i 〉∆

z
i)

µ̄
+i
←
µ̄
i −

M
−
>

i (
∂
G
i

∂
K
i >
µ̄
i +

B
>
λ̄

+i
+
〈µ̄
i ,∇

2K
i ,z

i G
i 〉∆

z
i)

(G
auss-N

ew
ton):

(G
auss-N

ew
ton):

(G
auss-N

ew
ton):

-
µ̄

+i
←
µ̄
i −

M
−
>

i (
∂
G
i

∂
K
i >
µ̄
i +

B
>
λ̄

+i)
-

Table
6.2:

O
verview

ofthe
presented

algorithm
s
for

(inexact)
N
ew

ton
based

lifted
collocation

integrators.

ADJOINT-BASED INEXACT LIFTED COLLOCATION 169

Algorithm 6 Newton-type optimization step, using the adjoint-based inexact
lifted collocation integrator within direct multiple shooting (LC-IN).

Input: Current values z̄i = (x̄i, ūi, K̄i), (λ̄i, µ̄i) and Mi for i = 0, . . . , N − 1.
Output: Updated values z̄+

i and (λ̄+
i , µ̄

+
i) for i = 0, . . . , N − 1.

Condensing procedure
1: for i = 0, . . . , N − 1 do in parallel (forward sweep)
2: Compute the values ∆K̃i and K̃w

i using Eq. (6.33):
∆K̃i ← −M−1

i G(z̄i) and K̃w
i ← −M

−1
i

∂Gi
∂wi

.
3: In case of second-order sensitivities, using Eq. (6.34):

Hi ← zwi
>〈µ̄i,∇2

ziGi〉 z
w
i .

hi ← zwi
>〈µ̄i,∇2

zi,Ki
Gi〉∆K̃i +

(
∂Gi
∂wi

+ ∂Gi
∂Ki

K̃w
i

)>
µ̄i.

4: end for
Computation of step direction

5: Solve the linear system (6.10) based on the data Ci, Ai and ci, ai in (6.18)
and (6.19) for i = 0, . . . , N − 1, in order to obtain the step (∆W,∆Λ).
w̄+
i ← w̄i + ∆wi and λ̄+

i ← λ̄i + ∆λi.
Expansion procedure

6: for i = 0, . . . , N − 1 do in parallel (backward sweep)
7: The full solution can be obtained using Eq. (6.35):

K̄+
i ← K̄i + ∆K̃i + K̃w

i ∆wi.
µ̄+
i ← µ̄i −M−>i

(
∂Gi
∂Ki

>
µ̄i +B>λ̄+

i + 〈µ̄i,∇2
Ki,zi

Gi〉∆zi
)
.

8: end for

6.3.2 Local Convergence for Newton-type Methods

Let us briefly recall the local contraction result for Newton-type methods, which
we will use throughout this chapter to study local convergence for inexact lifted
collocation. To discuss the local convergence of the adjoint-based inexact lifting
scheme, we will first write it in a more compact notation starting with the KKT
equations

F(Y) :=

∇ZLc(Z,Λ, µ)
E Z
G(Z)

 = 0, (6.36)

where Y := (Z,Λ, µ) denotes the concatenated variables. Then, each Newton-
type iteration from Eq. (6.32) can be written as

∆Y = −J̃(Ȳ)−1F(Ȳ). (6.37)

170 LIFTED NEWTON-TYPE COLLOCATION INTEGRATORS

Given a guess, Ȳ , the Jacobian approximation from Eq. (6.32) is

J̃(Ȳ) :=

Ac(Ȳ) E> D̃(Z̄)>
E 0 0

D̃(Z̄) 0 0

 ≈ J(Ȳ) := ∂F(Ȳ)
∂Y

. (6.38)

Because the system of equations in (6.36) denotes the KKT conditions [232] for
the direct collocation NLP in Eq. (6.7), a solution F(Y ?) = 0 by definition also
needs to be a KKT point (Z?,Λ?, µ?) for the original NLP.

The Newton-type optimization method in Algorithm 6 can now be rewritten
as the compact iteration (6.37). The convergence of this scheme then follows
the classical and well-known local contraction theorem from [44, 82, 94, 252],
which has already been stated earlier in Theorem 1.26. It provides a simple
means of assessing the stability of a solution point Y ? if and only if κ? =
ρ
(
J̃(Y ?)−1J(Y ?)− 1

)
< 1, and therefore provides a guarantee of the existence

of a neighborhood where the Newton-type iteration converges linearly to Y ?
with the asymptotic contraction rate κ?.

Remark 6.7 The adjoint-based inexact lifting scheme converges locally to a
solution of the direct collocation NLP if the assumptions of Theorem 1.26 and
condition (1.18) are satisfied. As mentioned earlier, it is therefore possible to
use a fixed Jacobian approximation D̃i := [Gwi ,Mi] over the different Newton-
type iterations in Eq. (6.32) where, additionally, Gwi ≈

∂G(z̄i)
∂wi

. Theorem 1.26
still holds for this case. It results in the computational advantage that the
factorization of D̃i needs to be computed only once. Additionally, the inexact
forward sensitivities K̃w

i = −M−1
i Gwi remain fixed and can be computed

offline. The use of fixed sensitivity approximations can also reduce the memory
requirement for the lifted collocation integrator considerably [263].

6.4 Inexact Newton with Iterated Sensitivities

This section proposes an alternative inexact lifted collocation integrator, based
on an iterative scheme to compute the corresponding sensitivities. We formulate
this technique as an inexact Newton method for an augmented KKT system and
we briefly discuss its local convergence properties. Using the same principles
of condensing and expansion, this inexact lifting scheme can be implemented
similar to a direct multiple shooting based Newton-type optimization algorithm.
Finally, we present the adjoint-free iterative inexact lifted collocation integrator
as a special case of this approach.

INEXACT NEWTON WITH ITERATED SENSITIVITIES 171

6.4.1 Iterative Inexact Lifted Collocation Scheme

An inexact Newton scheme uses the factorization of one of the aforementioned
approximations of the Jacobian Mi ≈ ∂G(w̄i,K̄i)

∂Ki
for each linear system solution.

To recover the correct sensitivities in the Newton-type optimization algorithm,
our proposed Inexact Newton scheme with Iterated Sensitivities (INIS)
additionally includes lifting the forward sensitivities Kw

i . More specifically,
the sensitivities Kw

i are introduced as extra variables into the NLP, which
can be iteratively obtained by applying a Newton-type iteration to the linear
equation ∂Gi

∂wi
+ ∂Gi

∂Ki
Kw
i = 0. Note that this idea is similar to the iterative

differentiation technique in Section 2.3.6. The lifting of the sensitivities results
in additional degrees of freedom such that the update for the collocation variables
becomes ∆Ki = ∆K̃i + K̄w

i ∆wi, where K̄w
i denotes the current values for the

lifted sensitivities. The resulting condensing procedure reads as
∆K̃i = −M−1

i G(z̄i),

∆Kw
i = −M−1

i

(
∂G(z̄i)
∂wi

+ ∂G(z̄i)
∂Ki

K̄w
i

)
,

(6.39)

instead of the standard inexact Newton step in Eq. (6.33).

In the case of a Newton-type optimization algorithm that requires the
propagation of second-order sensitivities, one can apply a similar inexact update
to the Lagrange multipliers µi corresponding to the collocation equations.
The Newton-type scheme can equivalently be applied to the expression from
Eq. (6.20), to result in the following iterative update

∆µi = −M−>i

(
∂G(z̄i)
∂Ki

>
µ̄i +B>λ̄+

i + 〈µ̄i,∇2
Ki,ziGi〉∆zi

)
, (6.40)

where µ̄i denotes the current values of the Lagrange multipliers corresponding
to the collocation equations. The inexact Newton iteration (6.40) only requires
the factorization of the Jacobian approximation Mi and corresponds to the
expansion step in Eq. (6.35) for the adjoint-based inexact lifted collocation.
The Newton-type optimization algorithm based on the inexact lifting scheme
with iterated sensitivities (LC-INIS) within multiple shooting is detailed in
Algorithm 7. A more general discussion on the INIS algorithm and its local
convergence properties can be found in Chapter 7.

Iterative inexact lifting as an augmented Newton scheme

By introducing the (possibly fixed) Jacobian approximation Mi ≈ ∂G(w̄i,K̄i)
∂Ki

and the lifted variables for the forward sensitivities Kw
i for i = 0, . . . , N − 1, let

172 LIFTED NEWTON-TYPE COLLOCATION INTEGRATORS

us define the following augmented and inexact version of the linearized KKT
system (6.11) for direct collocation

Ac E> D̃> 0
E 0 0 0
D̃ 0 0 0
0 0 0 1nW ⊗M




∆Z
∆Λ
∆µ

vec(∆Kw)

 = −


ac
e
d
df

 , (6.41)

where the matrix Ac ∈ RnZ×nZ is block diagonal and defined earlier in
Eq. (6.11), and where Ac,i := ∇2

ziL
c
i (z̄i, λ̄i, µ̄i) and Lc

i (z̄i, λ̄i, µ̄i) = l(w̄i) +
λ̄>i
(
x̄i +B K̄i − x̄i+1

)
+ µ̄>i G(w̄i, K̄i). Also, the constant matrix E ∈

R(N+1)nx×nZ is defined as before in Eq. (6.12). In addition, the block diagonal
matrix D̃ is defined by D̃i =

[
−MiK̄

w
i , Mi

]
∈ RnK×nz for each i = 0, . . . , N −1,

because of the following

D̃i =
[
−MiK̄

w
i , Mi

]
≈ Di =

[
−∂G(w̄i, K̄i)

∂Ki
Kw
i ,

∂G(w̄i, K̄i)
∂Ki

]
= ∂G(z̄i)

∂zi
,

(6.42)

where the Jacobian approximation Mi ≈ ∂G(w̄i,K̄i)
∂Ki

is used. The following
terms on the right-hand side are defined as before in Eq. (6.11) where
ac,i := ∇ziLc(Z̄, Λ̄, µ̄), ei := x̄i + B K̄i − x̄i+1 and di := G(z̄i). In addition,
the remaining terms read as df,i := vec(∂G(z̄i)

∂wi
+ ∂G(z̄i)

∂Ki
K̄w
i). The following

proposition states the connection between this augmented KKT system (6.41)
and Algorithm 7 for an iterative inexact lifted collocation integrator.

Proposition 6.8 Algorithm 7 presents a condensing technique for the
augmented and inexact KKT system (6.41), which allows one to instead solve the
multiple shooting type system (6.10). The original solution (∆Z,∆Λ,∆µ,∆Kw)
can be obtained by use of the corresponding expansion step.

Proof. Similar to the proof for Proposition 6.2, let us look closely at the first
line of the KKT system in Eq. (6.41),

∇2
ziL

c
i∆zi + E>i ∆λi −

1nx

0
0

∆λi−1 + D̃>i ∆µi = −ac,i. (6.43)

For the inexact Newton case, we observe that the following holds

D̃iz
w
i = −MiK̄

w
i +MiK̄

w
i = 0,

INEXACT NEWTON WITH ITERATED SENSITIVITIES 173

using the approximate Jacobian matrices zwi > =
[
1nw K̄w>

i

]
and D̃i =[

−MiK̄
w
i , Mi

]
. We can multiply Eq. (6.43) on the left by zwi

> and use

∆zi =
[
1nw

K̄w
i

]
∆wi +

[
0

1nK

]
∆K̃i to obtain the expression

Ãi∆wi +
[

1nx + K̄x>

i B>

K̄u>

i B>

]
∆λi −

[
1nx

0

]
∆λi−1 = −ãi, (6.44)

where the Hessian matrix Ãi = ∇2
wi l(w̄i) + Hi with Hi = zwi

>〈µ̄i,∇2
ziGi〉 z

w
i .

Furthermore, the right-hand side reads

ãi = zwi
>∇ziLc + zwi

>∇2
zi,KiL

c
i∆K̃i

= ∇wi l(w̄i) +
[

1nx + K̄x>

i B>

K̄u>

i B>

]
λ̄i −

[
1nx

0

]
λ̄i−1 + h̃i,

where h̃i = zwi
>〈µ̄i,∇2

zi,Ki
Gi〉∆K̃i +

(
∂Gi
∂wi

+ ∂Gi
∂Ki

K̄w
i

)>
µ̄i. The augmented

KKT system (6.41) can therefore indeed be reduced to the multiple shooting
type form in Eq. (6.10), using the condensing step as described in Algorithm 7.

The expansion step for the lifted K variables follows from D̃i∆zi = −di and
becomes ∆Ki = ∆K̃i + K̄w

i ∆wi. To update the Lagrange multipliers µi, let us
look at the lower part of Eq. (6.43):

∇2
Ki,ziL

c
i∆zi +B>∆λi +M>i ∆µi = −∇KiLc,

which can be rewritten as ∆µi = −M−>i
(
∂G(z̄i)
∂Ki

>
µ̄i +B>λ̄+

i + 〈µ̄i,∇2
Ki,zi

Gi〉∆zi
)

in Equation (6.40). Finally, the update of the lifted sensitivities Kw
i follows

from the last equation of the KKT system in (6.41)

∆Kw
i = −M−1

i

(
∂Gi
∂wi

+ ∂Gi
∂Ki

K̄w
i

)
.

Remark 6.9 To be precise, Algorithm 7 is an adjoint-based iterative inexact
lifting scheme since it corrects the gradient in the condensed problem (6.44)
using the expression

(
∂Gi
∂wi

+ ∂Gi
∂Ki

K̄w
i

)>
µ̄i similar to Eq. (6.34) for the adjoint-

based inexact scheme. This correction term is equal to zero whenever the lifted
sensitivities are exact, i.e., Kw?

i = − ∂Gi
∂Ki

−1 ∂Gi
∂wi

. The overview in Table 6.2
allows one to compare this novel approach for inexact Newton based lifted
collocation with the previously presented lifting schemes.

174 LIFTED NEWTON-TYPE COLLOCATION INTEGRATORS

Algorithm 7 Newton-type optimization step, based on the iterative inexact
lifted collocation integrator within direct multiple shooting (LC-INIS).

Input: Current values z̄i = (x̄i, ūi, K̄i), K̄w
i , (λ̄i, µ̄i) and Mi, i = 0, . . . , N − 1.

Output: Updated values z̄+
i , K̄w+

i and (λ̄+
i , µ̄

+
i) for i = 0, . . . , N − 1.

Condensing procedure
1: for i = 0, . . . , N − 1 do in parallel (forward sweep)
2: Compute the values ∆K̃i and ∆Kw

i using Eq. (6.39):
∆K̃i ← −M−1

i G(z̄i) and ∆Kw
i ← −M

−1
i

(
∂Gi
∂wi

+ ∂Gi
∂Ki

K̄w
i

)
.

3: In case of second-order sensitivities, using Eq. (6.44):
Hi ← zwi

>〈µ̄i,∇2
ziGi〉 z

w
i .

hi ← zwi
>〈µ̄i,∇2

zi,Ki
Gi〉∆K̃i +

(
∂Gi
∂wi

+ ∂Gi
∂Ki

K̄w
i

)>
µ̄i.

4: end for
Computation of step direction

5: Solve the linear system (6.10) based on the data Ci, Ai and ci, ai in (6.18)
and (6.19) for i = 0, . . . , N − 1, in order to obtain the step (∆W,∆Λ).
w̄+
i ← w̄i + ∆wi and λ̄+

i ← λ̄i + ∆λi.
Expansion procedure

6: for i = 0, . . . , N − 1 do in parallel (backward sweep)
7: The full solution can be obtained using Eq. (6.40):

K̄+
i ← K̄i + ∆K̃i + K̄w

i ∆wi and K̄w+

i ← K̄w
i + ∆Kw

i .
µ̄+
i ← µ̄i −M−>i

(
∂Gi
∂Ki

>
µ̄i +B>λ̄+

i + 〈µ̄i,∇2
Ki,zi

Gi〉∆zi
)
.

8: end for

Remark 6.10 The updates of the lifted forward sensitivities,

∆Kw
i = −M−1

i

(
∂Gi
∂wi

+ ∂Gi
∂Ki

K̄w
i

)
, (6.45)

are independent of the updates for any of the other primal or dual variables,
so that (6.45) can be implemented separately. More specifically, one can carry
out multiple Newton-type iterations for the lifted variables K̄w

i followed by an
update of the remaining variables or the other way around. To simplify our
discussion on the local convergence for this INIS type optimization algorithm,
we will however not consider such variations further.

INEXACT NEWTON WITH ITERATED SENSITIVITIES 175

6.4.2 Local Convergence for Iterative Inexact Lifting

Similar to Section 6.3.2, we introduce a more compact notation for the Newton-
type iteration from Algorithm 7. For this purpose, we define the following
augmented system of KKT equations:

FINIS(Ya) :=


∇ZLc(Z,Λ, µ)

E Z
G(Z)

vec(∂G(Z)
∂W + ∂G(Z)

∂K Kw)

 = 0, (6.46)

where the concatenated variables Ya := (Z,Λ, µ,Kw) are defined. The INIS
type iteration then reads as J̃INIS(Ȳa)∆Ya = −FINIS(Ȳa) and uses the following
Jacobian approximation

J̃INIS(Ȳa) :=


Ac(Ȳ) E> D̃(Z̄, K̄w)> 0
E 0 0 0

D̃(Z̄, K̄w) 0 0 0
0 0 0 1nW ⊗M(Z̄)


≈ JINIS(Ȳa) := ∂FINIS(Ȳa)

∂Ya
,

(6.47)

where Y := (Z,Λ, µ) and using the Jacobian approximations Mi(z̄i) ≈ ∂G(z̄i)
∂Ki

.
We show next that a solution to the augmented system FINIS(Ya) = 0 also
forms a solution to the direct collocation NLP in Eq. (6.7).

Proposition 6.11 A solution Y ?a = (Z?,Λ?, µ?,Kw?) which satisfies the LICQ
and SOSC conditions [232] for the nonlinear system FINIS(Ya) = 0, forms a
regular KKT point (Z?,Λ?, µ?) for the direct collocation NLP in Eq. (6.7).

Proof. The proof follows directly from observing that the first three equations
of the augmented system (6.46) correspond to the KKT conditions for the direct
collocation NLP in Eq. (6.7). A solution Y ?a of the system FINIS(Ya) = 0 then
provides a regular KKT point (Z?,Λ?, µ?) for this NLP (6.7).

The Newton-type optimization method from Algorithm 7 has been rewritten
as the compact iteration J̃INIS(Ȳa)∆Ya = −FINIS(Ȳa). The local convergence
properties of this scheme are described by the classical Newton-type contraction
theory [44]. Under the conditions from Theorem 1.26, the iterates converge
linearly to the solution Y ?a with the asymptotic contraction rate

κ?INIS = ρ
(
J̃INIS(Y ?a)−1JINIS(Y ?a)− 1

)
< 1. (6.48)

176 LIFTED NEWTON-TYPE COLLOCATION INTEGRATORS

A more detailed discussion on this local contraction rate for an INIS type
optimization algorithm and a comparison to standard adjoint-based inexact
Newton schemes can be found in Chapter 7.

6.4.3 Adjoint-free Iterative Inexact Lifted Collocation

The inexact Newton scheme with iterated sensitivities from Algorithm 7 is based
on an adjoint propagation to compute the correct gradient of the Lagrangian on
the right-hand side of the KKT system from Eq. (6.41). Because of the lifting
of the forward sensitivities Kw

i for i = 0, . . . , N − 1, one can however avoid the
computation of such an adjoint and still obtain a Newton-type algorithm that
converges to a solution of the direct collocation NLP (6.7).

For this purpose, let us introduce the following adjoint-free approximation of
the augmented KKT system in Eq. (6.41),

Ac E> D̃> 0
E 0 0 0
D̃ 0 0 0
0 0 0 1nW ⊗M




∆Z
∆Λ
∆µ

vec(∆Kw)

 = −


ãc
e
d
df ,

 , (6.49)

where all quantities are defined as in Eq. (6.41) but an approximate Lagrangian
gradient term is used, i.e.,

ãc,i := ∇zi l(w̄i) +

λ̄i − λ̄i−1
0

B>λ̄i

+ D̂>i µ̄i ≈ ∇ziLc(Z̄, Λ̄, µ̄), (6.50)

where D̂i =
[
−∂G(z̄i)

∂Ki
K̄w
i ,

∂G(z̄i)
∂Ki

]
≈ ∂G(z̄i)

∂zi
. Proposition 6.8 then still holds

for this variant of lifted collocation, where the multiple shooting type gradient
is instead defined without the adjoint-based correction term. The resulting
algorithm is therefore referred to as an adjoint-free scheme (LC-AF-INIS)
and it is detailed further in Algorithm 8 based on a Gauss-Newton Hessian
approximation. It is important for the study of its local convergence that
D̂i 6= D̃i =

[
−MiK̄

w
i , Mi

]
, where D̃i is used in the Jacobian approximation

and D̂i is merely used to define the augmented KKT system in Eq. (6.49).

Local convergence for adjoint-free INIS scheme (AF-INIS)

To study the local convergence properties for the adjoint-free variant of the
INIS based lifted collocation scheme, we need to investigate the approximate

INEXACT NEWTON WITH ITERATED SENSITIVITIES 177

Algorithm 8 Adjoint-free and multiplier-free Newton-type optimization step,
based on Gauss-Newton and the iterative inexact lifted collocation integrator
within direct multiple shooting (LC-AF-INIS).

Input: Current values z̄i = (x̄i, ūi, K̄i), K̄w
i and Mi for i = 0, . . . , N − 1.

Output: Updated values z̄+
i and K̄w+

i for i = 0, . . . , N − 1.
Condensing procedure

1: for i = 0, . . . , N − 1 do in parallel
2: Compute the values ∆K̃i and ∆Kw

i using Eq. (6.39):
∆K̃i ← −M−1

i G(z̄i) and ∆Kw
i ← −M

−1
i

(
∂Gi
∂wi

+ ∂Gi
∂Ki

K̄w
i

)
.

3: Hi ← 0 and hi ← 0.
4: end for

Computation of step direction
5: Solve the linear system (6.10) based on the data Ci, Ai and ci, ai in (6.18)

and (6.19), in order to obtain the step ∆W and perform the primal update
w̄+
i ← w̄i + ∆wi for i = 0, . . . , N − 1.
Ai ← ∂F (w̄i)

∂wi

> ∂F (w̄i)
∂wi

and ∇wi l(w̄i)←
∂F (w̄i)
∂wi

>
F (w̄i). (Gauss-Newton)

Expansion procedure
6: for i = 0, . . . , N − 1 do in parallel
7: The full solution can be obtained:

K̄+
i ← K̄i + ∆K̃i + K̄w

i ∆wi and K̄w+

i ← K̄w
i + ∆Kw

i .
8: end for

augmented KKT system from Eq. (6.49). It is written as J̃INIS(Ȳa)∆Ya =
−FAF(Ȳa) in its compact form, where FAF(Ya) = 0 represents the following
approximate augmented system of KKT equations,

FAF(Ya) :=


∇ZL̃c(Z,Λ) + D̂(Z,Kw)>µ

E Z
G(Z)

vec(∂G(Z)
∂W + ∂G(Z)

∂K Kw)

 = 0, (6.51)

where the incomplete Lagrangian L̃c
i (z̄i, λ̄i) = l(w̄i)+λ̄>i

(
x̄i +B K̄i − x̄i+1

)
and

the approximate Jacobian D̂i =
[
−∂G(z̄i)

∂Ki
K̄w
i ,

∂G(z̄i)
∂Ki

]
are defined. Note that the

Jacobian approximation J̃INIS(Ȳa) in the Newton-type iteration is still defined
by Eq. (6.47), equivalent to the adjoint-based INIS scheme. The following
proposition then shows that a solution to the approximate augmented system
FAF(Ya) = 0 is also a local minimizer for the direct collocation NLP (6.7).

178 LIFTED NEWTON-TYPE COLLOCATION INTEGRATORS

Proposition 6.12 A solution Y ?a = (Z?,Λ?, µ?,Kw?) which satisfies the LICQ
and SOSC conditions [232] for the system of nonlinear equations FAF(Ya) = 0,
also forms a solution to the nonlinear system FINIS(Ya) = 0 and therefore forms
a regular KKT point (Z?,Λ?, µ?) for the direct collocation NLP in Eq. (6.7).

Proof. We observe that the lower part of the KKT system in Eq. (6.51) for the
solution point Y ?a reads as

∂G(z?i)
∂wi

+ ∂G(z?i)
∂Ki

Kw?

i = 0, for i = 0, . . . , N − 1, (6.52)

so that Kw?

i = −∂G(z?i)
∂Ki

−1 ∂G(z?i)
∂wi

holds at any solution of FAF(Ya) = 0. The
same holds at a solution of FINIS(Ya) = 0 in (6.46). Subsequently, we observe
that D̂i(z?i ,Kw?

i) =
[
−∂G(z?i)

∂Ki
Kw?

i ,
∂G(z?i)
∂Ki

]
= ∂G(z?i)

∂zi
such that the following

equality holds at the solution

∇ZL̃c(Z?,Λ?) + D̂(Z?,Kw?)>µ? = ∇ZLc(Z?,Λ?, µ?).

It follows that Y ?a forms a solution to the original augmented KKT system from
Eq. (6.46). The result then follows directly from Proposition 6.11.

Under the conditions of Theorem 1.26, the iterates defined by the Newton-type
iteration J̃INIS(Ȳa)∆Ya = −FAF(Ȳa) converge linearly to the solution Y ?a with
the asymptotic contraction rate

κ?AF = ρ
(
J̃INIS(Y ?a)−1JAF(Y ?a)− 1

)
< 1, (6.53)

based on the approximation J̃INIS(Ya) ≈ JAF(Ya) := ∂FAF(Ya)
∂Ya

from (6.47).

Adjoint-free and multiplier-free INIS based on Gauss-Newton

The motivation for the alternative INIS-type lifting scheme proposed in the
previous subsection is to avoid the computation of any adjoint derivatives,
while maintaining a Newton-type optimization algorithm that converges to
a local minimizer of the direct collocation NLP. This equivalence result has
been established in Proposition 6.12. However, the propagation of second-
order sensitivities would still require the iterative update of the Lagrange
multipliers, ∆µi = −M−>i

(
∂G(z̄i)
∂Ki

>
µ̄i +B>λ̄+

i +∇2
Ki,zi
Lc
i ∆zi

)
, based on

adjoint differentiation. This alternative implementation would therefore not
result in a considerable advantage over the standard INIS method.

LIFTED COLLOCATION IN ACADO CODE GENERATION 179

Instead, the benefits for this adjoint-free scheme are more clear in case of a least
squares objective l(wi) = 1

2‖F (wi)‖22 where one can use a Gauss-Newton (GN)

approximation Ac,i :=
[
∂F (w̄i)
∂wi

> ∂F (w̄i)
∂wi

0
0 0

]
≈ ∇2

ziL
c
i (z̄i, λ̄i, µ̄i) for the Hessian

of the Lagrangian [48]. In that case, the Jacobian approximation for the
augmented KKT system (6.47) is independent of the Lagrange multipliers as
discussed earlier in Section 6.2.4. After applying Proposition 6.8 to condense
this approximate augmented KKT system of the form of Eq. (6.49) to the
multiple shooting type system in (6.10), the resulting scheme therefore does not
depend on any of the Lagrange multipliers. This adjoint-free and multiplier-free
implementation of Gauss-Newton based INIS type lifted collocation within
multiple shooting is detailed in Algorithm 8.

6.5 Lifted Collocation in ACADO Code Generation

Let us provide a brief overview of the different proposed schemes for lifted
collocation, including a discussion on their relative advantages and disadvantages.
Table 6.3 presents a classification of all the variants of lifted collocation
integrators which have been presented in this chapter. Note that these variants
of collocation based optimal control algorithms from Table 6.3 are additionally
implemented in the open-source ACADO Toolkit [176] software. The collocation
methods are based on either Gauss-Legendre or Radau IIA points [158] and
the proposed Jacobian approximations are based on either Simplified or Single
Newton-type iterations as discussed in Section 2.4. The software is free of charge
and can be downloaded from www.acadotoolkit.org, but more information
can also be found in Chapter 8.

The most distinguishing characteristic in the overview of Table 6.3 is whether
the algorithm is based on exact (LC-EN) or inexact lifting, discussed respectively
in Section 6.2 and in Sections 6.3-6.4. Unlike the inexact lifting techniques,
exact lifted collocation relies on computing a factorization of the Jacobian of
the collocation equations. However, one can still choose either an exact Hessian
or a Gauss-Newton type approximation within the optimization algorithm as
shown in Table 6.3. Among the inexact lifting schemes, we make a distinction
between the standard adjoint-based technique (LC-IN) from Section 6.3 and
the inexact Newton scheme with iterated sensitivities (INIS) from Section 6.4.
The latter INIS-type algorithm allows for an adjoint-based (LC-INIS) as well as
an adjoint-free and multiplier-free (LC-AF-INIS) implementation using Gauss-
Newton. Table 6.3 additionally includes multiple shooting (MS) without lifting
the collocation variables and direct collocation (DC). For the standard (MS)

180 LIFTED NEWTON-TYPE COLLOCATION INTEGRATORS

implementation, a method to solve the nonlinear system of collocation equations
needs to be embedded within the Newton-type optimization algorithm [263, 271].
Similar to (DC), all lifted collocation type schemes avoid such internal iterations
as mentioned earlier in Table 6.1.

The main advantage of the inexact schemes (LC-IN) and (LC-INIS) over the
exact lifted collocation (LC-EN) is the reduced computational effort. Even
though their local convergence is generally slower (see Theorem 1.26), the
cost per iteration can be reduced considerably based on the use of a Jacobian
approximation for the system of collocation equations. Since a relatively low
accuracy of the solution is often sufficient, e.g., for real-time optimal control
on embedded applications [90, 315], the overall computational cost can be
much better for inexact Newton-based lifting. Between the two families of
inexact schemes, the INIS algorithm results typically in better local contraction
properties as illustrated by the numerical case study in the next section. In
addition, it allows for an adjoint-free implementation in Scheme (LC-AF-INIS)
for optimal control problems involving a least squares type objective as described
by Algorithm 8. A detailed discussion on the local convergence for the INIS
based optimization algorithms can be found in Chapter 7.

Regarding memory requirements for the various lifting schemes in Table 6.3,
it is important to note that any algorithm based on an adjoint sweep requires
the storage of variables during the preceding forward sweep as discussed in
Section 6.2.3. This is a benefit for the GN based exact lifting (LC-EN) and
adjoint-free INIS scheme (LC-AF-INIS), because both rely only on forward
propagation of sensitivities. Another noticeable effect is the storage of the
first-order forward sensitivities Kw in both exact and INIS-type lifting. The
adjoint-based inexact lifting (LC-IN) has the advantage that one could use
Jacobian approximations, which are precomputed and fixed in order to further
reduce the memory requirements of the corresponding implementation at the
cost of possibly slowing down the local convergence. In the case of an INIS type
algorithm, these forward sensitivities are additionally lifted and therefore need
to be stored from one iteration to the next.

6.6 Case Study: Chain of Masses

This section illustrates the performance of the proposed variants of lifted implicit
integrators on the benchmark optimal control example, which consists of a chain
of spring connected masses. For this purpose, a multiple shooting based SQP
method is implemented using the ACADO code generation tool. In the numerical
results of this chapter, the QP solutions are obtained using the active-set

CASE STUDY: CHAIN OF MASSES 181

Table 6.3: Overview on the different variants of collocation based optimal
control algorithms (EH = Exact Hessian, GN = Gauss-Newton).

Scheme Algorithm Newton type Hessian type
(LC-EN) Alg. 5 exact lifting GN or EH
(LC-IN) Alg. 6 adjoint-based GN or EH
(LC-INIS) Alg. 7 adjoint-based INIS GN or EH
(LC-AF-INIS) Alg. 8 adjoint-free INIS GN
(MS) Eq. (6.10) without lifting GN or EH
(DC) Eq. (6.11) fully sparse GN or EH

solver qpOASES [109] in combination with a condensing technique to numerically
eliminate the state variables [51]. Mainly as a reference, the direct collocation
problem is additionally solved using the general-purpose sparse NLP solver
Ipopt [318] based on the interface in the CasADi software [20]. Note however
that these two implementations cannot be compared directly, since Ipopt is
a general-purpose solver and therefore includes many additional features. On
the other hand, the ACADO generated SQP method can be warm started and
respects all linearized constraints at each iteration, which are both important
features for real-time applications of optimal control [90]. We will therefore
additionally report the computation times for solving the direct collocation QP
subproblem, using a general-purpose sparse solver in the OOQP software [132].
Note that both the numerical results with OOQP and with Ipopt are based on
the MA27 linear algebra code from the HSL library [4], in order to solve the
sparse linear system at each interior point iteration.

All numerical simulations are carried out on a standard computer, equipped
with Intel i7-3720QM processor, using a 64-bit version of Ubuntu 14.04 and the
g++ compiler version 4.8.4. The presented results can be verified by running the
MATLAB simulation scripts that can be found on the following public repository:
https://github.com/rienq/liftedCollocation.

6.6.1 Optimal Control Problem Formulation

We consider the chain mass control problem, which was used to illustrate the
compression algorithm for distributed multiple shooting in Chapter 5. The task
of the controller is to return a chain of nm masses connected with springs to
its steady state, starting from a perturbed initial configuration. The mass at
one end is fixed, while the control input u ∈ R3 to the system is the direct
force applied to the mass at the other end of the chain. The OCP formulation

182 LIFTED NEWTON-TYPE COLLOCATION INTEGRATORS

includes simple bounds on the control inputs and the state constraint that the
chain should not hit a wall placed close to the equilibrium state as illustrated by
Figure 5.1, i.e., pjy ≥ −0.01 for j = 1, . . . , nm − 1 where pjy denotes the position
of the free mass in direction of the y-axis. In addition, both the initial and
terminal state are constrained resulting in

min
x(·), u(·)

∫ T

0
`(x(t), u(t)) dt (6.54a)

s.t. 0 = x(0)− x̂0, (6.54b)

ẋ(t) = fchain(x(t), u(t)), ∀t ∈ [0, T], (6.54c)

0 = x(T)− x̂T , (6.54d)

− 10 ≤ u(t) ≤ 10, ∀t ∈ [0, T], (6.54e)

− 0.01 ≤ pjy(t), j = 1, . . . , nm − 1, ∀t ∈ [0, T], (6.54f)

where x̂0 and x̂T denote respectively the initial perturbed and the terminal
equilibrium state values. The stage cost in the objective represents minimizing
the control effort, such that `ME(·) := ‖u(t)‖22 is defined. Note that such a
least squares type objective will allow us to validate the Gauss-Newton based
algorithms for this minimum-effort (ME) type OCP. Alternatively, we include a
time optimal reformulation where we introduce the additional state variable
Topt such that the scaled dynamics read as

ẋ(t) = Topt fchain(x(t), u(t))

Ṫopt(t) = 0,
(6.55)

which then replaces the original ODE model in Eq. (6.54c). The time scaling
variable itself is not constrained, but instead forms the optimization objective
`TO(·) := Topt in the time optimal (TO) formulation.

The horizon length is chosen to be T = 5s and a multiple shooting method is
applied to the OCP (6.54), using N = 20 equidistant intervals. This results in
a shooting interval of size Ts = 0.25s for the minimum-effort problem. For the
time optimal formulation, the horizon length is instead taken T = 1s such that
the scaling variable Topt directly represents the time in which the point-to-point
motion is carried out. Note that the definition of this additional state variable
Topt, allows us to preserve the block banded structure in the discrete time
OCP (6.4). In both cases, three integration steps Ns = 3 of a Gauss-Legendre
collocation method using q = 4 stages, i.e., of order 8, are used within each
shooting interval. The resulting nonlinear OCP will be solved for different

CASE STUDY: CHAIN OF MASSES 183

0 1 2 3 4 5
0

0.5

1

time (s)

p
x
 E

n
d

0 1 2 3 4 5
0

1

2

time (s)

p
y
 E

n
d

0 1 2 3 4 5
−0.5

0

0.5

time (s)

p
z
 E

n
d

control effort

time optimal

0 1 2 3 4 5
−10

0

10

time (s)

u
x

0 1 2 3 4 5
−10

0

10

time (s)

u
y

0 1 2 3 4 5
−10

0

10

time (s)

u
z

control effort

time optimal

Figure 6.4: Minimizing the control effort versus time optimal OCP formulation
for the chain mass example: optimal state and control trajectories (nm = 8).

numbers of masses nm to illustrate the numerical performance of the lifted
collocation integrators from Table 6.3. Figure 6.4 additionally shows the solution
trajectories of the minimum-effort versus time optimal OCP formulation for
nm = 8 masses, including the position pnm−1 of the free mass at the controlled
end of the chain.

6.6.2 Numerical Simulation Results

Table 6.4 shows the average computation times for the Gauss-Newton type
SQP method on the minimum-effort OCP problem formulation. The table
shows the average computation time per SQP iteration and this for different
numbers of masses nm = 3, . . . , 7. It includes the standard multiple shooting
method (MS) without lifting, as well as exact lifted collocation (LC-EN) and the
inexact lifting schemes (LC-IN) and (LC-AF-INIS). The table illustrates that
for systems with more states, the computational benefit of using inexact Newton
based lifting schemes can be considerably higher. Note that the Jacobian
approximation in the (LC-IN) and the (LC-AF-INIS) schemes is based on the
Single Newton-type iteration in these experiments. For a specific instance of

184 LIFTED NEWTON-TYPE COLLOCATION INTEGRATORS

Table 6.4: Average Gauss-Newton based SQP timing results for the minimum
effort chain mass OCP using 4-stage Gauss collocation (Ns = 3, q = 4), including
different numbers of masses nm and resulting numbers of states nx.

Without lifting Exact lifting IN lifting INIS lifting
nm nx (MS) (LC-EN) (LC-IN) (LC-AF-INIS)

3 12 17.63 ms 6.12 ms 1.93 ms 2.35 ms
4 18 40.46 ms 17.55 ms 4.48 ms 5.63 ms
5 24 73.37 ms 33.98 ms 8.29 ms 7.66 ms
6 30 145.58 ms 64.68 ms 13.61 ms 16.50 ms
7 36 242.41 ms 133.14 ms 22.92 ms 20.41 ms

the chain mass problem where nm = 5, more detailed timing results are shown
in Table 6.5. It includes the average computation time spent in each component
of the algorithm per SQP iteration, including the simulation with sensitivity
propagation, condensing of the structured QP subproblem and the solution
of the resulting condensed problem using qpOASES. It is the simulation time
that can be reduced considerably by using lifted collocation integrators, which
appears to account for the highest portion of the total computational effort for
this numerical case study. More specifically, a speedup factor of about 2 can be
observed when using lifted collocation instead of the standard method without
lifting. When using the INIS-type lifting scheme, this computational speedup
increases to a factor of about 10. Note that one iteration of the general-purpose
sparse NLP solver Ipopt takes about 500 ms in this case, while the solution of
one direct collocation based QP takes about 2.4 s using the sparse OOQP solver.

Table 6.6 shows the average computation times for an exact Hessian based
SQP iteration on the time optimal OCP using different numbers of masses nm
while Table 6.7 presents the detailed timing results using nm = 5 masses. In a
similar way as for the Gauss-Newton based implementation, it can be observed
from the latter table that both the exact and inexact lifting schemes reduce
the computational effort over the standard multiple shooting method. More
specifically, a speedup factor of almost 2 can be observed when using the (LC-
EN) scheme instead of the standard collocation integrator without lifting. The
table additionally shows that the inexact lifted collocation integrators (LC-IN)
and (LC-INIS) reduce the computation time less in the context of second-order
sensitivity propagation, compared to the Gauss-Newton based implementation
in Table 6.4 and 6.5. However, a computational speedup factor of about 5 can
still be observed in Table 6.7 when using, for example, the INIS-type lifting

CASE STUDY: CHAIN OF MASSES 185

Table 6.5: Detailed timing results for Gauss-Newton based SQP on the minimum
effort OCP using nm = 5 masses or nx = 24 states (Ns = 3, q = 4). Note that
one iteration of direct collocation (6.7) based on Ipopt takes about 500 ms, and
one sparse QP solution using OOQP takes 2.4 s on average.

Without lifting Exact lifting IN lifting INIS lifting
(MS) (LC-EN) (LC-IN) (LC-AF-INIS)

simulation 71.86 ms 32.48 ms 6.73 ms 6.09 ms
condensing 0.85 ms 0.84 ms 0.92 ms 0.90 ms
QP solution 0.60 ms 0.62 ms 0.61 ms 0.64 ms

total SQP step 73.37 ms 33.98 ms 8.29 ms 7.66 ms

scheme over the standard (MS) method. Note that these timing results include
a block based regularization of the Hessian to guarantee a convex structured
QP subproblem in the exact Hessian based SQP implementation [268]. A more
detailed discussion on how the algorithm is affected by different techniques
to perform a sparsity preserving Hessian regularization is outside the scope
here, but more information on this topic can be found in [310]. Note that one
iteration of the general-purpose sparse NLP solver Ipopt on the time optimal
OCP with nm = 5 takes about 300 ms in this case, while the solution of one
direct collocation based QP takes about 5 s using the sparse OOQP solver.

The convergence of the SQP method using the different variants of lifted
collocation is illustrated in Figure 6.5 for both the minimum effort and the time
optimal OCP formulation. The figure shows the distance ‖W −W ?‖∞ of the
current iterate W from the local minimum W ? of the direct collocation NLP for
the continuous time OCP in Eq. (6.54). Since the exact lifting scheme (LC-EN)
is equivalent to direct collocation as shown in Proposition 6.2, it is expected that
its convergence is close to that of the standard multiple shooting method (MS)
which is also confirmed by the results in Figure 6.5. In addition, the reduction
in convergence speed by using a Jacobian approximation in the INIS based lifted
collocation integrators appears to be relatively small for this numerical case study.
Instead, the adjoint-based IN scheme from Algorithm 6 shows a considerably
slower local convergence rate based on the same Jacobian approximation. The
latter observation will be clarified as part of Chapter 7.

186 LIFTED NEWTON-TYPE COLLOCATION INTEGRATORS

Table 6.6: Average exact Hessian based SQP timing results for the time optimal
chain mass problem using a 4-stage Gauss collocation method (Ns = 3, q = 4),
including different numbers of masses nm and resulting numbers of states nx.

Without lifting Exact lifting IN lifting INIS lifting
nm nx (MS) (LC-EN) (LC-IN) (LC-INIS)

3 13 18.98 ms 16.4 ms 10.96 ms 8.87 ms
4 19 44.86 ms 30.22 ms 16.26 ms 15.01 ms
5 25 96.77 ms 61.55 ms 25.09 ms 24.92 ms
6 31 169.53 ms 101.56 ms 40.72 ms 39.83 ms
7 37 285.06 ms 157.39 ms 62.40 ms 59.27 ms

Table 6.7: Detailed timing results for exact Hessian based SQP on the time
optimal OCP using nm = 5 masses or nx = 24 + 1 states (Ns = 3, q = 4). Note
that one iteration of direct collocation (6.7) based on Ipopt takes about 300 ms,
and one sparse QP solution using OOQP takes 5 s on average.

Without lifting Exact lifting IN lifting INIS lifting
(MS) (LC-EN) (LC-IN) (LC-INIS)

simulation 87.23 ms 51.33 ms 15.50 ms 15.48 ms
condensing 2.07 ms 2.08 ms 2.05 ms 2.06 ms
regularization 1.72 ms 1.82 ms 1.86 ms 1.86 ms
QP solution 5.69 ms 6.13 ms 5.67 ms 5.50 ms

total SQP step 96.77 ms 61.55 ms 25.09 ms 24.92 ms

6.7 Conclusions and Outlook

This chapter presents a novel family of lifted Newton-type optimization
algorithms for direct optimal control, based on collocation within direct multiple
shooting. The schemes result in multiple shooting type subproblems, while they
all converge locally to the solution of the direct collocation NLP. In case of the
exact lifting scheme in Algorithm 5, the iterates are shown to be equivalent
to those of a Newton-type optimization method for direct collocation. As we
summarized in Table 6.1, the main motivation for lifted collocation is the use
of tailored solvers for the multiple shooting type optimal control structure,
as well as the possibility to include efficient Newton-type implementations.

CONCLUSIONS AND OUTLOOK 187

5 10 15 20 25 30 35 40 45 50
10

−10

10
−5

10
0

iteration number

||
W

−
W

* ||
∞

Minimum effort: Gauss−Newton based SQP

Without lifting (MS)

Exact lifting (LC−EN)

IN lifting (LC−IN)

INIS lifting (LC−AF−INIS)

2 4 6 8 10 12 14 16 18 20

10
−5

10
0

iteration number

||
W

−
W

* ||
∞

Time optimal: Exact Hessian based SQP

Without lifting (MS)

Exact lifting (LC−EN)

IN lifting (LC−IN)

INIS lifting (LC−INIS)

Figure 6.5: SQP convergence using different lifting techniques for the minimum
effort (Gauss-Newton) and time optimal OCP (exact Hessian) with nm = 5.

This chapter proposed two types of inexact lifting schemes, using either an
adjoint-based implementation in Algorithm 6 or the inexact Newton method
with iterated sensitivities in Algorithm 7 and 8. In addition to discussing their
implementation as summarized by Table 6.2 and their corresponding properties,
a connection has been made to Newton-type convergence theory.

This work includes an open-source software implementation of the proposed
algorithms within the ACADO code generation tool for real-time optimal control.
The performance of the lifted collocation integrators within this package has
been illustrated based on the benchmark case study of the optimal control
for a chain of masses. Based on these numerical results, a computational
speedup of factor 2 is typically observed when using the exact lifting scheme
instead of the standard collocation integrator within direct multiple shooting.
In addition, a further speedup factor in the range of 5-10 per iteration has been
observed when using the inexact Newton based lifted collocation schemes. More
elaborate benchmarking of the numerical performance of these lifted collocation
integrators for direct optimal control, including pseudospectral methods [126]
based on high order collocation polynomials, is part of ongoing research.

Chapter 7

Local Convergence of Inexact
Newton with Iterated
Sensitivities

Newton-type schemes based on inexact derivatives do not converge to a solution
of the original nonlinear optimization problem, unless adjoint derivatives are
evaluated in order to compute the correct gradient of the Lagrangian [49, 94].
It has been pointed out by [252] that the locally linear convergence rate of such
a standard Inexact Newton (IN) based optimization scheme is not strongly
connected to the contraction of the iterations for the inner forward simulation
problem. For example, it is possible that the constraint Jacobian approximation
results in a fast contraction of the forward problem alone, while the optimization
algorithm based on the same Jacobian approximation diverges. In this chapter,
we show that the Inexact Newton method with Iterated Sensitivities (INIS)
allows one to recover a strong connection between the local contraction rate
of the forward problem and the local convergence properties of the resulting
optimization algorithm. More specifically, local convergence for the Newton-
type method on the forward problem is shown to be necessary, and under mild
conditions even sufficient for the asymptotic contraction of the corresponding
INIS-type optimization algorithm.

This chapter is largely based on the article in [264], although the results on lifted
collocation integrators in the previous chapter form an important motivation
for our study on the local convergence of the INIS algorithm.

189

190 LOCAL CONVERGENCE OF INEXACT NEWTON WITH ITERATED SENSITIVITIES

Outline The chapter is organized as follows. Section 7.1 first briefly presents
standard Newton-type optimization for the considered problem formulation.
Section 7.2 then proposes and analyzes the Inexact Newton method based
on Iterated Sensitivities (INIS) as an alternative implementation of inexact
Newton-type optimization. An adjoint-free variant of the INIS-type optimization
algorithm is presented in Section 7.3. An important application of the proposed
schemes for simultaneous approaches of direct optimal control is discussed in
Section 7.4, including numerical results based on the open-source implementation
in the ACADO code generation tool.

7.1 Problem Formulation

The present chapter considers Newton-type optimization algorithms for a class
of nonlinear programming problems

min
K,w

ψ(K,w) (7.1a)

s.t. 0 = c(K,w), (7.1b)

where K ∈ RnK and w ∈ Rnw are the optimization variables. The objective and
constraint functions are defined as ψ : RnK ×Rnw → R and c : RnK ×Rnw → Rnc

respectively, and are assumed to be twice continuously differentiable in all
arguments (see Assumption 1.10). For the sake of simplicity, we omit possibly
nonlinear inequality constraints in the NLP (7.1). Note however that our
discussion on the local convergence of Newton-type methods can be readily
extended to the general case of inequality-constrained optimization.

7.1.1 The Forward Problem

The subset of the variables K ∈ RnK is selected such that nc = nK and the
constraint Jacobian matrix ∂c

∂K (·) ∈ RnK×nK is invertible. It follows that these
variables are implicitly defined via the nonlinear equality constraints c(K,w) = 0.
This set of constraints will further be referred to as the forward problem, which
delivers K?(w̄) by solving the corresponding system

c(K, w̄) = 0, for a given value w̄. (7.2)

We are interested in solving the forward problem in Eq. (7.2) using Newton-type
schemes that do not rely on an exact factorization of cK := ∂c

∂K , but use instead
a full-rank approximation M ≈ cK . This Jacobian approximation can be used

PROBLEM FORMULATION 191

directly in a Newton-type method to solve the forward problem by steps

∆K = −M−1c(K̄, w̄), (7.3)

where K̄ denotes the current guess and the full-step update in each Newton-
type iteration can be written as K̄+ = K̄ + ∆K. Some interesting examples
of such problem formulations result from a simultaneous approach to dynamic
optimization [34, 51], where the forward problem imposes the system dynamics
and therefore corresponds to a numerical simulation of differential equations. A
popular approach is direct collocation [39], where the forward problem consists
of the collocation equations as discussed in the previous chapter.

7.1.2 Newton-Type Optimization

The Lagrange function for the NLP (7.1) reads as L(y, λ) = ψ(y) + λ>c(y),
where y :=

[
K> w>

]> ∈ Rny denotes all primal variables and λ ∈ RnK

denotes the multipliers for the nonlinear equality constraints in Eq. (7.1b). The
corresponding first-order necessary conditions for optimality are defined by
Theorem 1.16, which can also be written in the compact notation

F(y, λ) =
[
∇yL(y, λ)
c(y)

]
= 0. (7.4)

Each local minimizer (y?, λ?) of the NLP (7.1) is assumed to be a regular KKT
point F(y?, λ?) = 0 as described in Definition 1.20.

Newton-type optimization then proceeds with applying a variant of Newton’s
method [79, 82] to find a solution to the KKT system in Eq. (7.4). Note that an
exact Newton iteration reads as in Eq. (1.15) where cy(ȳ) := ∂c

∂y (ȳ) denotes the
Jacobian matrix and the values ȳ and λ̄ denote the primal and dual variables at
the current guess. In the following, we will refer to the exact Newton iteration
using the more compact notation

J(ȳ, λ̄)
[

∆y
∆λ

]
= −F(ȳ, λ̄), (7.5)

where the exact Jacobian matrix is defined as J(ȳ, λ̄) := ∂F
∂(y,λ) (ȳ, λ̄). In this

work, a full-step update of the primal and dual variables is considered for
simplicity in each iteration, i.e., ȳ+ = ȳ + ∆y and λ̄+ = λ̄+ ∆λ even though
globalization strategies are typically used to guarantee convergence [39, 232].
Newton-type optimization methods have been proposed, which result in desirable
local convergence properties at a considerably reduced computational cost by
either forming an approximation of the KKT matrix J(·) [37, 181, 322] or by

192 LOCAL CONVERGENCE OF INEXACT NEWTON WITH ITERATED SENSITIVITIES

solving the linear system approximately [73, 74, 162]. For example, the family
of Quasi-Newton methods [80, 94, 143, 232] is based on the approximation of
the Hessian of the Lagrangian using only first order derivative information.
Other Newton-type optimization algorithms even use an inexact Jacobian for
the nonlinear constraints [49, 175, 321] as discussed next.

7.1.3 Adjoint-Based Inexact Newton (IN)

Let us consider the Jacobian approximation M ≈ cK in the Newton-type
method of Eq. (7.3) to solve the forward problem (7.2). The resulting inexact
Newton method aimed at solving the KKT conditions for the NLP in Eq. (7.4),
iteratively solves the following linear system H̃

(
M>

c>w

)
(
M cw

)
0


︸ ︷︷ ︸

=: J̃IN(ȳ,λ̄)

∆K
∆w
∆λ

 = −
[
∇yL(ȳ, λ̄)
c(ȳ)

]
, (7.6)

where an additional approximation of the Hessian H̃ ≈ ∇2
yL(ȳ, λ̄) has been

introduced for the sake of completeness. Note that the gradient of the Lagrangian
∇yL(·) can be evaluated efficiently using adjoint differentiation techniques, such
that the scheme is often referred to as an adjoint-based Inexact Newton (IN)
method [49, 94]. Each iteration solves the linear system in Eq. (7.6), which can
be written in the following compact form

J̃IN(ȳ, λ̄)
[

∆y
∆λ

]
= −F(ȳ, λ̄). (7.7)

The convergence of this scheme then follows the classical and well-known local
contraction result from Theorem 1.26. The simple but restrictive condition
in (1.18) on local Newton-type convergence will be sufficient for our discussion,
even though more advanced results exist [77, 82, 206]. Algorithm 9 describes a
possible implementation to solve the adjoint-based IN system from Eq. (7.6). It
relies on a numerical elimination of the variables ∆K = −M−1(c(ȳ) + cw∆w)
and ∆λ such that a smaller system is solved in the variables ∆w, which can
be expanded back into the full variable space. Note that one recovers the
Newton-type iteration on the forward problem ∆K = −M−1c(ȳ) for a fixed
value w̄, i.e., when ∆w = 0.

Remark 7.1 The matrix Z̃> :=
[
−c>wM−>, 1nw

]
in step 1 of Algorithm 9

is an approximation for Z> :=
[
−c>wc−>K , 1nw

]
, which is defined such that

Z>∇yL(ȳ, λ̄) = Z>∇yψ(ȳ). When using instead the approximate matrix Z̃,

PROBLEM FORMULATION 193

this results in the following correction of the gradient term

Z̃>∇yL(ȳ, λ̄) = Z̃>∇yψ(ȳ)−
(
cKM

−1cw − cw
)>
λ̄. (7.8)

Algorithm 9 One iteration of an adjoint-based Inexact Newton (IN) method.

Input: Current values ȳ = (K̄, w̄), λ̄ and approximations M , H̃(ȳ, λ̄).
1: After eliminating the variables ∆K, ∆λ in (7.6), solve the resulting system:

Z̃>H̃Z̃ ∆w = −Z̃>
(
∇yL(ȳ, λ̄) + H̃

[
−M−1c(ȳ)

0

])
,

where Z̃> :=
[
−c>wM−>, 1nw

]
.

2: Based on ∆w, the corresponding values for ∆K and ∆λ are found:
∆K = −M−1(c(ȳ) + cw∆w) and ∆λ = −

[
M−> 0

] (
∇yL(ȳ, λ̄) + H̃∆y

)
.

Output: New values ȳ+ = ȳ + ∆y and λ̄+ = λ̄+ ∆λ.

7.1.4 A Motivating QP Example

In this chapter, we are interested in the existence of a connection between the
Newton-type iteration on the forward problem (7.3) being locally contractive, i.e.,
κ?F := ρ

(
M−1cK − 1nK

)
< 1, and the local convergence for the corresponding

Newton-type optimization algorithm as defined by Theorem 1.26. From the
detailed discussion in [45, 252, 253], we know that contraction for the forward
problem is neither sufficient nor necessary for convergence of the adjoint-based
IN method in Algorithm 9, even when using an exact Hessian H = ∇2

yL(ȳ, λ̄).
To illustrate this statement, let us consider the following QP example from [252]
based on a linear constraint c(y) =

[
A1 A2

]
y and a quadratic objective

ψ(y) = 1
2y
>Hy in Eq. (7.1). The matrix A1 is assumed invertible and close to

identity, such that we can select the Jacobian approximation M = 1nK ≈ A1.
The problem data from [252] read as

H =


0.83 0.083 0.34 −0.21
0.083 0.4 −0.34 −0.4
0.34 −0.34 0.65 0.48
−0.21 −0.4 0.48 0.75

 ,

A1 =
[
1.1 1.7
0 0.52

]
, A2 =

[
−0.55 −1.4
−0.99 −1.8

]
.

(7.9)

194 LOCAL CONVERGENCE OF INEXACT NEWTON WITH ITERATED SENSITIVITIES

For this specific QP instance due to Potschka [252], we compute the linear
contraction rate for the Newton-type method on the forward problem (7.3):

κ?F = ρ(M−1cK − 1nK) = ρ(A1 − 1nK) = 0.48 < 1.

In addition, let us consider the IN algorithm based on the solution of the linear
system (7.6) for the same QP example using the exact Hessian H̃ = H. We can
compute the corresponding contraction rate

κ?IN = ρ(J̃−1
IN J − 1) ≈ 1.625 > 1,

where J = J(y, λ) denotes the exact Jacobian of the KKT system in Eq. (7.4).
For this QP example (7.9), the Newton-type method on the forward problem
locally converges with κ?F = 0.48 < 1, while the corresponding IN algorithm
is unstable κ?IN ≈ 1.625 > 1. This means that one indeed does not necessarily
obtain a converging IN scheme, only by proposing a sufficiently accurate Jacobian
approximation for the forward problem. In what follows, we present and
study a novel inexact Newton-type optimization algorithm based on iterated
sensitivities, which circumvents this problem at a negligible computational cost.
These observations are illustrated in Figure 7.1, which presents the Newton-
type iterations for the different algorithms starting from the same initial point.
The figure includes the linear convergence for the Newton-type method on the
forward problem as defined in Eq. (7.3).

7.2 Inexact Newton with Iterated Sensitivities (INIS)

Let us introduce an alternative inexact Newton-type optimization algorithm,
labelled INIS in the following, based on the solution of an augmented KKT
system defined as

FINIS(y, λ,D) =

 ∇yL(y, λ)
c(y)

vec(cKD − cw)

 = 0, (7.10)

where the additional variable D ∈ RnK×nw denotes the sensitivity matrix
implicitly defined by the equation cKD − cw = 0 such that nD = nKnw

1. Note
that Proposition 6.11 stated the connection between the augmented system
FINIS(y, λ,D) = 0 and the original KKT conditions in (7.4).

1The operator vec(·) denotes a vectorization of a matrix, i.e., this is a linear transformation
that converts the matrix into a column vector.

INEXACT NEWTON WITH ITERATED SENSITIVITIES (INIS) 195

0 5 10 15 20 25 30
10

−10

10
−5

10
0

10
5

Iteration

||
 y

 −
 y

* |
| ∞

IN scheme

INIS scheme

AF−INIS scheme

Forward problem

Figure 7.1: Illustration of the divergence of the IN and the convergence of
the INIS scheme for the QP in Eq. (7.9). In addition, the asymptotic rate of
convergence for INIS can be observed to be the same as for the forward problem.

7.2.1 Implementation INIS

We introduce the Inexact Newton method with Iterated Sensitivities (INIS), to
iteratively solve the augmented KKT system (7.10) based on H̃

(
M>

D̄>M>

)
0(

M M D̄
)

0 0
0 0 1nw ⊗M


︸ ︷︷ ︸

=: J̃INIS(ȳ,λ̄,D̄)


∆K
∆w
∆λ

vec(∆D)

 = −

 ∇yL(ȳ, λ̄)
c(ȳ)

vec(cKD̄ − cw)


︸ ︷︷ ︸

=FINIS(ȳ,λ̄,D̄)

,

(7.11)
where ⊗ denotes the Kronecker product of matrices and using the Jacobian
approximation M ≈ cK from the Newton-type method on the forward problem
in (7.3). The resulting matrix J̃INIS(ȳ, λ̄, D̄) forms an approximation for the
exact Jacobian JINIS(ȳ, λ̄, D̄) := ∂FINIS

∂(y,λ,D) (ȳ, λ̄, D̄) of the augmented system. As
discussed in the previous chapter, this scheme shows a connection to the lifted
Newton method based on a lifting of the matrix D defined by the sensitivity
equation cKD − cw = 0. Similar to the case of the standard lifted Newton
method [8], Algorithm 10 shows that the INIS scheme in Eq. (7.11) can be
implemented efficiently using a condensing and expansion procedure. The

196 LOCAL CONVERGENCE OF INEXACT NEWTON WITH ITERATED SENSITIVITIES

computational cost of the algorithm can be made close to that of the standard
inexact Newton method in Algorithm 9. More specifically, the INIS scheme
requires the linear system solution −M−1(cKD̄ − cw) which can be performed
efficiently using AD techniques [141] to evaluate the right-hand side. Similar to
Remark 7.1, let us write the gradient correction in step 1 of Algorithm 10:

Z̃>∇yL(ȳ, λ̄) = Z̃>∇yψ(ȳ)− (cKD̄ − cw)>λ̄, (7.12)

where Z̃> :=
[
−D̄>, 1nw

]
. Note that the evaluation of cKD̄− cw can be reused

in step 1 and 3 of Algorithm 10, which allows INIS to be computationally
competitive with the standard IN scheme. This will also be illustrated by the
numerical results for direct optimal control in Section 7.4.

Algorithm 10 One iteration of an adjoint-based Inexact Newton with Iterated
Sensitivities (INIS) optimization method.

Input: Current values ȳ = (K̄, w̄), λ̄, D̄ and approximations M , H̃(ȳ, λ̄).
1: After eliminating the variables ∆K, ∆λ in (7.11), solve the resulting system:

Z̃>H̃Z̃ ∆w = −Z̃>
(
∇yL(ȳ, λ̄) + H̃

[
−M−1c(ȳ)

0

])
,

where Z̃> :=
[
−D̄>, 1nw

]
.

2: Based on ∆w, the corresponding values for ∆K and ∆λ are found:
∆K = −M−1c(ȳ)− D̄∆w and ∆λ = −

[
M−> 0

] (
∇yL(ȳ, λ̄) + H̃∆y

)
.

3: Independently, the sensitivity matrix is updated in each iteration:
∆D = −M−1(cKD̄ − cw).

Output: New values ȳ+ = ȳ + ∆y, λ̄+ = λ̄+ ∆λ and D̄+ = D̄ + ∆D.

7.2.2 Main Result: Local Contraction Theorem

In what follows, we show that INIS-type optimization allows one to recover
the connection between the contraction properties of the forward problem and
the Newton-type optimization algorithm. This observation makes the INIS
scheme depart fundamentally from the classical adjoint-based IN method. The
local contraction of the forward problem will be shown to be necessary for the
convergence of the corresponding INIS algorithm, and can be sufficient under
reasonable assumptions on the Hessian approximation H̃.

INEXACT NEWTON WITH ITERATED SENSITIVITIES (INIS) 197

Let us formalize the local contraction rate κ?INIS = ρ(J̃−1
INISJINIS − 1) for the

INIS scheme, where the Jacobian of the augmented KKT system reads

JINIS =

∇2
yL c>y 0
cy 0 0
sy 0 1nw ⊗ cK

 where sy := ∂

∂y
vec(cKD − cw). (7.13)

The following theorem specifies the eigenspectrum of the iteration matrix
J̃−1

INISJINIS − 1 at the solution point (y?, λ?, D?), using the notation σ(P) to
denote the set of eigenvalues for a matrix P .

Theorem 7.2 (Eigenspectrum INIS iteration matrix) For the augmented linear
system (7.11) on the NLP in Eq. (7.1), the eigenspectrum of the INIS-type
iteration matrix at the solution (y?, λ?, D?) reads as

σ
(
J̃−1

INISJINIS − 1
)

= σ
(
M−1cK − 1nK

)
∪ σ

(
H̃−1
z Hz − 1nw

)
, (7.14)

where Z> :=
[
−c>wc−>K , 1nw

]
denotes a basis for the null space of the constraint

Jacobian cyZ = 0, such that the reduced Hessians Hz := Z>HZ and H̃z :=
Z>H̃Z ∈ Rnw×nw are defined. Note that H := ∇2

yL(y?, λ?) is the exact Hessian
and H̃ ≈ H is an approximation. More specifically, the iteration matrix has
the nw eigenvalues of the matrix H̃−1

z Hz − 1nw and the nK eigenvalues of
M−1cK − 1nK with an algebraic multiplicity of 2 + nw.

Proof. At the solution of the augmented KKT system in Eq. (7.10), the
sensitivity matrix corresponds to D? = c−1

K cw. We then introduce the following
Jacobian matrix and its approximation:

cy =
[
cK cw

]
, c̃y =

[
1nK D?

]
= c−1

K cy,

such that the exact and inexact augmented Jacobian matrices read

JINIS =

H c>y 0
cy 0 0
sy 0 1nw ⊗ cK

 , J̃INIS =

 H̃ c̃>yM
> 0

M c̃y 0 0
0 0 1nw ⊗M

 ,
(7.15)

at the solution point (y?, λ?, D?). We observe that the eigenvalues γ of the
iteration matrix J̃−1

INISJINIS − 1 are given by

det
(
J̃−1

INISJINIS − 1− γ1
)

= det
(
J̃−1

INISJINIS − (γ + 1)1
)

= 0.

Since J̃INIS is invertible, this equality holds if and only if

det
(
J̃INIS

(
J̃−1

INISJINIS − (γ + 1)1
))

= det
(
JINIS − (γ + 1)J̃INIS

)
= 0.

198 LOCAL CONVERGENCE OF INEXACT NEWTON WITH ITERATED SENSITIVITIES

Using the notation in Eq. (7.15), we can rewrite the matrix JINIS− (γ+ 1)J̃INIS
as the following product of block matrices:

JINIS − (γ + 1) J̃INIS = 1ny 0 0
0 M̃ 0
0 0 1nD

 H − (γ + 1) H̃ c̃>y 0
c̃y 0 0
sy 0 1nw ⊗ M̃

 1ny 0 0
0 M̃ 0
0 0 1nD

>
(7.16)

where the matrix M̃ = cK − (γ + 1)M is defined such that M̃ c̃y = cy −
(γ + 1)M c̃y. The determinant of the product of matrices in Eq. (7.16) can be
rewritten as

det
(
JINIS − (γ + 1)J̃INIS

)
= det

 1ny 0 0
0 M̃ 0
0 0 1nD

2

det

 H − (γ + 1) H̃ c̃>y 0
c̃y 0 0
sy 0 1nw ⊗ M̃


= det

(
M̃
)2+nw det

([
H − (γ + 1) H̃ c̃>y

c̃y 0

])
.

(7.17)
Note that the Jacobian approximationM is invertible such that the determinant
det(M̃) is zero if and only if det

(
M−1cK − (γ + 1) 1nK

)
= 0. It follows that

det
(
JINIS − (γ + 1)J̃INIS

)
= 0 holds for only the values of γ that fulfill the

conditions

det
(
M−1cK − (γ + 1) 1nK

)
= 0, or (7.18a)

det
([

H − (γ + 1) H̃ c̃>y
c̃y 0

])
= 0. (7.18b)

Note that (7.18a) is satisfied for only the eigenvalues γ ∈ σ
(
M−1cK − 1nK

)
with an algebraic multiplicity nw + 2 as can be observed directly in Eq. (7.17).
It can be verified that the values for γ satisfying (7.18b) are given by:

det
(
Z>

(
H − (γ + 1) H̃

)
Z
)

= det
(
Hz − (γ + 1) H̃z

)
= 0, (7.19)

where Z =
[
−c−1

K cw
1nw

]
denotes a basis for the null space of the constraint

Jacobian such that cyZ = 0 or c̃yZ = 0. The last equality in (7.19) is satisfied
for only the eigenvalues γ ∈ σ

(
H̃−1
z Hz − 1nw

)
. Note that this corresponds to

an eigenvalue γ = 0 in the case of an exact Hessian matrix H̃ = H.

INEXACT NEWTON WITH ITERATED SENSITIVITIES (INIS) 199

Based on these results regarding the eigenspectrum of the iteration matrix, we
now formally state the local contraction theorem for the INIS method.

Corollary 7.3 (Local INIS-type contraction) The local rate of convergence for
the INIS-type optimization algorithm is defined by

κ?INIS = ρ
(
J̃−1

INISJINIS − 1
)

= max
(
κ?F, ρ(H̃−1

z Hz − 1nw)
)
,

where κ?F = ρ(M−1cK − 1nK) is defined for the Newton-type method on the
forward problem in (7.3). It follows that local contraction for the forward
problem, i.e., κ?F < 1, is necessary for local convergence of the INIS-type
algorithm. Under the condition ρ(H̃−1

z Hz − 1nw) ≤ κ?F on the quality of the
Hessian approximation, e.g., ρ(H̃−1

z Hz − 1nw) = 0 in case of an exact Hessian,
local contraction for the forward problem is additionally sufficient since the
asymptotic rate of convergence satisfies κ?INIS = κ?F.

7.2.3 Numerical Examples

We first revisit the motivating QP example from Section 7.1.4, where the
asymptotic contraction rate for the Newton-type method on the forward
problem reads κ?F = 0.48 < 1. In contrast, the solution was found to be
asymptotically unstable since κ?IN ≈ 1.625 > 1 for the IN method based on the
same Jacobian approximation. Let us now consider the proposed INIS scheme
from Algorithm 10 for the same QP example using the exact Hessian H̃ = H.
We compute the corresponding contraction rate at the solution

κ?INIS = ρ(J̃−1
INISJINIS − 1) = 0.48 < 1,

where JINIS denotes the exact Jacobian of the augmented KKT system in (7.13).
Therefore, the INIS scheme indeed exhibits a linear local convergence with the
same asymptotic rate as the forward problem, i.e., κ?INIS = 0.48 = κ?F. This
result is consistent with Theorem 7.2 and is illustrated in Figure 7.1.

In addition, we introduce a simple example of an NLP (7.1) based on the
QP formulation above. For this purpose, let us take a quadratic objective
ψ(y) = 1

2y
>Hy + h>y where H is defined in Eq. (7.9), the gradient vector

h =
[
0.1 0 0 0

]> and the nonlinear constraint function reads

c(y) =
[
A1 A2

]
y + 0.1

[
y3

1
y2y4

]
, (7.20)

where also the matrices A1 and A2 are adopted from Eq. (7.9). Figure 7.2 then
illustrates the convergence results for the IN and INIS schemes from Algorithm 9

200 LOCAL CONVERGENCE OF INEXACT NEWTON WITH ITERATED SENSITIVITIES

0 5 10 15 20 25 30 35 40
10

−10

10
−5

10
0

10
5

Iteration

||
 y

 −
 y

* |
| ∞

IN scheme

INIS scheme

AF−INIS scheme

Forward problem

Figure 7.2: Illustration of the divergence of the IN and the convergence of the
INIS scheme for the NLP in Eq. (7.20). In addition, the asymptotic rate of
convergence for INIS can be observed to be the same as for the forward problem
unlike the adjoint-free AF-INIS implementation for this NLP example.

and 10 on this NLP example. It can be observed that the local contraction rate
for INIS corresponds to that for the forward problem, while the standard IN
implementation locally diverges for this particular example. More specifically,
the asymptotic contraction rates at the solution can be computed to be

κ?F = κ?INIS ≈ 0.541 < 1 < 1.441 ≈ κ?IN.

7.2.4 Additional Constraints

As mentioned already in Chapter 1, an inequality constrained problem could
be solved with any of the proposed Newton-type optimization algorithms,
in combination with techniques from either SQP or interior point methods
to treat the inequality constraints. Let us consider a local minimizer which
is assumed to be regular, i.e., it satisfies the linear independence constraint
qualification (LICQ), the strict complementarity condition and the second-order
sufficient conditions (SOSC) as in Definition 1.20. In this case, the primal-dual
central path associated with this minimizer is locally unique when using an
interior point method [232]. In case of an SQP method, under mild conditions

INEXACT NEWTON WITH ITERATED SENSITIVITIES (INIS) 201

on the Hessian and Jacobian approximations, Theorem 1.28 states that the
corresponding active set is locally stable in a neighborhood of the minimizer,
i.e., the solution of each QP subproblem has the same active set as the original
NLP [49, 52, 284]. Based on these observations, we can readily extend the local
contraction theorem for the INIS method to a more general setting, using the
following equality constrained NLP formulation

min
K,w

ψ(K,w) (7.21a)

s.t. 0 = c(K,w), (7.21b)

0 = h(K,w). (7.21c)

This problem is similar to the NLP in Eq. (7.1) with the additional constraint
function h : RnK × Rnw → Rnh , which is also assumed to be twice continuously
differentiable in all arguments. We further let ν ∈ Rnh denote the multipliers for
the nonlinear constraints in Eq. (7.21c). For the purpose of a local convergence
analysis, note that these equality constraints could additionally comprise the
active inequality constraints at the local minimizer (y?, λ?, ν?).

Let us write the INIS iteration from Eq. (7.11) for this NLP as follows
H̃

(
M> h>K

D̄>M> h>w

)
0(

M M D̄
hK hw

)
0 0

0 0 1nw ⊗M


︸ ︷︷ ︸

=: J̃INIS(ȳ,λ̄,ν̄,D̄)


∆K
∆w
∆λ
∆ν

vec(∆D)

 = −


∇yL(ȳ, λ̄, ν̄)

c(ȳ)
h(ȳ)

vec(cKD̄ − cw)


︸ ︷︷ ︸

=FINIS(ȳ,λ̄,ν̄,D̄)

,

(7.22)
where the Lagrange function L(y, λ, ν) = ψ(y) + λ>c(y) + ν>h(y) is defined
and based on a Hessian approximation H̃ ≈ ∇2

yL(ȳ, λ̄, ν̄) and the Jacobian
approximation M ≈ cK from the Newton-type forward scheme in (7.3). Let us
present an extension of the local contraction theorem for the proposed INIS
optimization algorithm.

Theorem 7.4 For the augmented linear system (7.22) on the NLP in Eq. (7.21),
the eigenspectrum of the INIS iteration matrix at the solution (y?, λ?, ν?, D?)
reads as

σ
(
J̃−1

INISJINIS − 1
)

= {0} ∪ σ
(
M−1cK − 1nK

)
∪ σ

(
H̃−1
z Hz − 1nz

)
, (7.23)

where nz = nw − nh and Z denotes a basis for the null space of the constraint
Jacobian

[
c>y h>y

]>, such that the reduced Hessians Hz := Z>HZ ∈ Rnz×nz

202 LOCAL CONVERGENCE OF INEXACT NEWTON WITH ITERATED SENSITIVITIES

and H̃z := Z>H̃Z ∈ Rnz×nz are defined. The local rate of convergence for the
INIS optimization algorithm then reads as

κ?INIS = ρ
(
J̃−1

INISJINIS − 1
)

= max
(
κ?F, ρ(H̃−1

z Hz − 1nz)
)
,

where κ?F = ρ(M−1cK − 1nK) is defined for the Newton-type scheme in (7.3).

Proof. At the solution of the augmented KKT system for the NLP in Eq. (7.21),
the sensitivity matrix corresponds to D? = c−1

K cw. We then introduce the exact
and inexact augmented Jacobian matrices as

JINIS =


H c>y h>y 0
cy 0 0 0
hy 0 0 0
sy 0 0 1nw ⊗ cK

 , J̃INIS =


H̃ c̃>yM

> h>y 0
M c̃y 0 0 0
hy 0 0 0
0 0 0 1nw ⊗M

 ,
(7.24)

where c̃y = c−1
K cy is defined at the solution point (y?, λ?, ν?, D?). Similar to

the proof of Theorem 7.2, we can rewrite JINIS − (γ + 1)J̃INIS as the following
product of block matrices:

JINIS − (γ + 1) J̃INIS =


1ny 0 0 0
0 M̃ 0 0
0 0 −γ 1nh 0
0 0 0 1nD



H − (γ + 1) H̃ c̃>y h>y 0

c̃y 0 0 0
hy 0 0 0
sy 0 0 1nw ⊗ M̃




1ny 0 0 0
0 M̃ 0 0
0 0 −γ 1nh 0
0 0 0 1nD


>

,

(7.25)
where the matrix M̃ = cK − (γ + 1)M is defined, such that M̃ c̃y = cy −
(γ + 1)M c̃y. The determinant of this product of matrices can be rewritten as

det
(
JINIS − (γ + 1)J̃INIS

)
= (−γ)2nh det

(
M̃
)2+nw det

 H − (γ + 1) H̃ c̃>y h>y
c̃y 0 0
hy 0 0

 .
(7.26)

It follows that det
(
JINIS − (γ + 1)J̃INIS

)
= 0 holds for only the value γ = 0,

the eigenvalues γ ∈ σ
(
M−1cK − 1nK

)
and the values for γ that satisfy

det
(
Z>

(
H − (γ + 1) H̃

)
Z
)

= det
(
Hz − (γ + 1) H̃z

)
= 0, (7.27)

ADJOINT-FREE INIS OPTIMIZATION 203

where Z denotes a basis for the null space of the Jacobian matrix for all the
equality constraints, i.e.,

[
cy
hy

]
Z = 0.

In what follows, for simplicity of notation, we restrict to the original NLP
formulation of Eq. (7.1). However, we have shown here that these local
contraction results can be readily extended further to optimization problems
with additional constraints.

7.3 Adjoint-Free INIS Optimization

Algorithm 10 presented the INIS scheme to solve the augmented KKT system in
Eq. (7.10), based on adjoint sensitivity propagation to evaluate the gradient of
the Lagrangian ∇yL(y, λ) = ∇yψ(y) +∇yc(y)λ. When the constraint function
c(y) consists of a long chain of function evaluations, e.g., as is often the case for
dynamic optimization, the computation of adjoint derivatives typically results in
relatively high storage requirements of the forward variables as discussed in [141].
Unlike the standard IN method in Algorithm 9 for which adjoint sensitivity
propagation is necessary for convergence as discussed in [49, 94], the proposed
INIS algorithm allows for deploying an adjoint-free implementation as will be
presented in this section. For this purpose, note that also a multiplier-free
Hessian approximation H̃(y) ≈ H(y, λ) := ∇2

yL(y, λ) is required, e.g., based on
the Gauss-Newton method [48, 232].

Algorithm 11 One iteration of an Adjoint-Free INIS (AF-INIS) method.

Input: Current values ȳ = (K̄, w̄), D̄ and approximations M , H̃(ȳ).
1: After eliminating the variables ∆K, ∆λ in (7.29), solve the resulting system:

Z̃>H̃Z̃ ∆w = −Z̃>
(
∇yψ(ȳ) + H̃

[
−M−1c(ȳ)

0

])
,

where Z̃> :=
[
−D̄>, 1nw

]
.

2: Based on ∆w, the corresponding value for ∆K is found:
∆K = −M−1c(ȳ)− D̄∆w.

3: Independently, the sensitivity matrix is updated in each iteration:
∆D = −M−1(cKD̄ − cw).

Output: New values ȳ+ = ȳ + ∆y and D̄+ = D̄ + ∆D.

204 LOCAL CONVERGENCE OF INEXACT NEWTON WITH ITERATED SENSITIVITIES

7.3.1 Implementation AF-INIS

Algorithm 11 presents the adjoint-free variant of the INIS optimization method
from Algorithm 10. It corresponds to solving the following approximate variant
of the augmented KKT system in Eq. (7.10):

FAF(y, λ,D) =

∇yψ(y) +
(

c>K
D>c>K

)
λ

c(y)
vec(cKD − cw)

 = 0. (7.28)

Note that Proposition 6.12 formalizes the connection between this augmented
system of equations and the original NLP in Eq. (7.1). The adjoint-free
inexact Newton method with iterated sensitivities (AF-INIS) then uses the
same approximate Jacobian matrix J̃INIS(ȳ, λ̄, D̄) from Eq. (7.11) to solve the
augmented set of equations in (7.28). At each iteration, the corresponding
linear system reads as H̃

(
M>

D̄>M>

)
0(

M M D̄
)

0 0
0 0 1nw ⊗M


︸ ︷︷ ︸

= J̃INIS(ȳ,λ̄,D̄)


∆K
∆w
∆λ

vec(∆D)

 = −

∇yψ(ȳ) +
(

c>K
D̄>c>K

)
λ̄

c(ȳ)
vec(cKD̄ − cw)


︸ ︷︷ ︸

=FAF(ȳ,λ̄,D̄)

.

(7.29)
Using this augmented linear system, the steps ∆K, ∆w and ∆D can be
computed without evaluating any adjoint derivatives as detailed in Algorithm 11.
The evaluation of the adjoint derivatives can be avoided because the following
term vanishes when multiplying the first equation in the right-hand side of the
linear system by Z̃> :=

[
−D̄> 1nw

]
:

[
−D̄> 1nw

](c>K
D̄>c>K

)
= −D̄>c>K + D̄>c>K = 0,

resulting in an adjoint-free and multiplier-free computation in Algorithm 11.
Because we assumed the Hessian approximation H̃(ȳ) in this case to be
independent of the current multiplier values, we can additionally omit the
computation of the update ∆λ.

7.3.2 Local Convergence Results

Proposition 6.12 states that, if it converges, the adjoint-free implementation of
the INIS method in Algorithm 11 converges to a local minimizer for the NLP

ADJOINT-FREE INIS OPTIMIZATION 205

in Eq. (7.1), and this unlike standard adjoint-free inexact Newton methods as
discussed in [49, 94]. Even though we will show that the result in Theorem 7.2
does not necessarily hold for the AF-INIS scheme applied to general NLPs,
the following theorem extends this local contraction result specifically for QP
problems. For this purpose, we introduce the exact Jacobian of the adjoint-free
augmented KKT system in Eq. (7.28):

JAF(y, λ,D) =

ψyy + c̃yy

(
c>K

D>c>K

) (
0

1nw ⊗ λ>cK

)
(
cK cw

)
0 0

sy 0 1nw ⊗ cK

 , (7.30)

where the additional contributions ψyy := ∇2
yψ(y) and c̃yy := ∂

∂y

(
c>Kλ

D>c>Kλ

)
are defined and sy := ∂

∂y vec(cKD − cw) similar to Eq. (7.13).

Theorem 7.5 (Local AF-INIS contraction) Let us consider a QP of the form in
Eq. (7.1), where the linear constraint c(y) =

[
A1 A2

]
y and quadratic objective

ψ(y) = 1
2y
>Hy are defined. For the adjoint-free augmented linear system (7.29)

corresponding to this QP, the eigenspectrum of the AF-INIS iteration matrix
reads

σ
(
J̃−1

INISJAF − 1
)

= σ
(
M−1A1 − 1nK

)
∪ σ

(
H̃−1
z Hz − 1nw

)
, (7.31)

at the solution (y?, λ?, D?). The exact Jacobian JAF(y, λ,D) is defined by
Eq. (7.30) for which sy = 0, c̃yy = 0 and ψyy = H in the case of a QP. Similar
to Theorem 7.2, the matrix Z> :=

[
−A>2 A−>1 , 1nw

]
such that Hz := Z>HZ ∈

Rnw×nw and H̃z := Z>H̃Z ∈ Rnw×nw . The local rate of convergence for the
adjoint-free INIS scheme on the QP is then defined by

κ?AF = ρ
(
J̃−1

INISJAF − 1
)

= max
(
κ?F, ρ(H̃−1

z Hz − 1nw)
)
.

Proof. At the solution of the adjoint-free augmented KKT system in Eq. (7.28)
for the QP formulation, we know that D? = A−1

1 A2 and we use the notation
A =

[
A1 A2

]
and Ã = A−1

1 A. The eigenvalues γ of the iteration matrix
J̃−1

INISJAF − 1 are given by the expression det
(
JAF − (γ + 1)J̃INIS

)
= 0 based

on the exact and inexact adjoint-free augmented Jacobian matrices

JAF =

H A>
(

0
1nw ⊗ λ?

>
A1

)
A 0 0
0 0 1nw ⊗A1

 , J̃INIS =

 H̃ Ã>M> 0
MÃ 0 0

0 0 1nw ⊗M

 ,
(7.32)

206 LOCAL CONVERGENCE OF INEXACT NEWTON WITH ITERATED SENSITIVITIES

at the solution point (y?, λ?, D?). We can rewrite JAF − (γ + 1)J̃INIS as the
following product of block matrices:

JAF − (γ + 1) J̃INIS =

 1ny 0 0
0 M̃ 0
0 0 1nD


 H − (γ + 1) H̃ Ã>

(
0

1nw ⊗ λ?
>
A1

)
Ã 0 0
0 0 1nw ⊗ M̃


 1ny 0 0

0 M̃ 0
0 0 1nD

> ,
(7.33)

where M̃ = A1 − (γ + 1)M . The proof continues in the same way as for
Theorem 7.2, since the determinant of the iteration matrix can be written as

det
(
JAF − (γ + 1)J̃INIS

)
= det

(
M̃
)2+nw det

([
H − (γ + 1) H̃ Ã>

Ã 0

])
.

(7.34)

Remark 7.6 When applying the adjoint-free INIS scheme from Algorithm 11 to
the NLP formulation in Eq. (7.1), the augmented system introduces off-diagonal
blocks for the Jacobian matrix as defined in Eq. (7.30). Therefore, the local
contraction result in Theorem 7.5 cannot be directly extended to the general NLP
case, even though the practical convergence of AF-INIS can typically be expected
to be similar for relatively mild nonlinearities in the problem formulation. Note
that Figure 7.1 already illustrated the local convergence of the AF-INIS scheme
on the QP in (7.9), where κ?F = κ?INIS = κ?AF = 0.48 < 1 < 1.625 ≈ κ?IN holds
in that case. For the NLP example in Section 7.2.3, it can be observed from
Figure 7.2 that the local convergence rate of AF-INIS is different from that of
the INIS scheme, i.e., κ?F = κ?INIS ≈ 0.541 < κ?AF ≈ 0.753 < 1 < 1.441 ≈ κ?IN,
even though it still outperforms the standard IN method.

7.4 Numerical Optimal Control Results

The previous chapter already motivated the practical applicability of the
INIS-type optimization method, either with or without adjoint computation
respectively in Algorithm 7 or 10 and Algorithm 8 or 11. Let us briefly present
some numerical results based on the chain mass optimal control case study from
Section 6.6, in order to illustrate the new findings on the local convergence
properties of the INIS optimization scheme.

NUMERICAL OPTIMAL CONTROL RESULTS 207

Table 7.1: Average timing results per Gauss-Newton based SQP iteration on
the chain mass optimal control problem using direct collocation (Ns = 3, q = 4),
including different numbers of masses nm and states nx.

nm nx Gauss-Newton IN INIS AF-INIS

3 12 5.33 ms 2.40 ms 2.19 ms 1.95 ms
4 18 14.79 ms 5.43 ms 4.76 ms 4.29 ms
5 24 34.04 ms 10.71 ms 9.39 ms 7.96 ms
6 30 62.08 ms 18.73 ms 14.88 ms 12.71 ms
7 36 106.57 ms 36.09 ms 21.93 ms 20.06 ms

Table 7.1 presents average timing results per Gauss-Newton based SQP iteration
using the ACADO code generation tool, and this for different numbers of masses
nm in the minimum effort OCP formulation 2. Note that the IN, INIS and AF-
INIS schemes correspond to the presented implementations in Algorithm 9, 10
and 11. On the other hand, the exact Gauss-Newton method in this case is based
on a direct solution of the QP subproblem, corresponding to the linearized KKT
conditions including a Gauss-Newton Hessian approximation. The table shows
that the use of inexact Jacobian approximations tailored for collocation methods
can considerably reduce the computational effort over an exact implementation.
A speedup factor of about 5 can be observed here for the INIS scheme, for
example, using a Single Newton iteration (see Section 2.4).

Figure 7.3 shows the convergence results for the SQP method, based on these
different Newton-type optimization techniques. The figure shows a simulation
result for which the inexact Newton (IN) scheme still results in local convergence,
even though the contraction rate can be observed to be considerably slower than
that for both variants of the proposed INIS algorithm. Note that the Gauss-
Newton based Hessian approximation does not depend on the multipliers for
the equality constraints, but the convergence of the adjoint-based INIS scheme
in Algorithm 10 does depend on the initialization of these Lagrange multipliers
unlike the adjoint-free (AF-INIS) variant. This difference in convergence
behaviour can also be observed in Figure 7.3. Even though the convergence for
both INIS-type variants is close to that for the Newton-type method on the
forward problem of this example, the contraction result in Theorem 7.2 cannot
generally be extended to the AF-INIS algorithm for nonlinear optimization as
discussed earlier in Section 7.3.2. Note that the results for the exact Gauss-
Newton method have been included mainly as a reference. It induces a relatively

2All numerical simulations are carried out on a standard computer, equipped with an Intel
i7-3720QM processor, using a 64-bit version of Ubuntu 14.04 and the g++ 4.8.4 compiler.

208 LOCAL CONVERGENCE OF INEXACT NEWTON WITH ITERATED SENSITIVITIES

10 20 30 40 50 60 70 80

10
−8

10
−6

10
−4

10
−2

10
0

Iteration

||
 y

 −
 y

* |
| ∞

IN scheme

INIS scheme

AF−INIS scheme

Forward problem

Exact Gauss−Newton

Figure 7.3: Convergence results of the Gauss-Newton based SQP method with
different inexact Newton-type techniques for the chain mass optimal control
problem using nm = 4 masses.

high computational cost as illustrated by Table 7.1, especially if only rather low
accuracy results are sufficient.

7.5 Conclusions and Outlook

This chapter presented a novel family of algorithms for a general class of nonlinear
optimization problems, based on an inexact Newton-type scheme with iterated
sensitivities (INIS). Unlike standard inexact Newton methods, this technique
is shown to preserve the local contraction properties of the forward scheme
based on a specific Jacobian approximation for the corresponding equality
constraints. More specifically, local convergence for the Newton-type method
on the forward problem is shown to be necessary, and under mild conditions
even sufficient for the asymptotic contraction of the corresponding INIS-type
optimization algorithm. Together with the previous chapter on lifted collocation
integrators, we presented how the INIS algorithm can be implemented efficiently,
resulting in a computational cost close to that of the standard inexact Newton
implementation. In addition, an adjoint-free (AF-INIS) variant is proposed

CONCLUSIONS AND OUTLOOK 209

and its local convergence properties are studied. This alternative approach can
be preferable whenever the algorithm can be carried out independent of the
current values for the multipliers corresponding to the equality constraints.

The application and numerical benchmarking of the INIS optimization algorithm
for different classes of dynamic optimization problems, e.g. those including
partial differential equations (PDE), is part of ongoing research.

Chapter 8

Open-Source ACADO Code
Generation Software

Following the active development of tailored optimization algorithms, many
software packages are currently available for direct optimal control. For example,
MUSCOD-II [92] is a multistage dynamic optimization software based on direct
multiple shooting and SQP [209]. The software dsoa [104] is an optimal
control tool based on single shooting. In addition to these shooting-based
software packages, there are other approaches based on direct collocation
which typically combine an AD tool [141] with a general-purpose sparse NLP
solver such as Ipopt [318]. A few examples of such software packages are
CasADi [20], GPOPS-II [247] and PROPT [303]. An important contribution of
this thesis is the open-source implementation of the presented algorithmic
techniques in the ACADO Toolkit [176] for nonlinear optimal control, as a part
of its code generation tool, which has been presented in [177, 271]. In the
context of real-time optimal control on embedded hardware, the technique of
automatic code generation experienced an increasing popularity over the past
decade [222, 237]. Alternative software packages for real-time NMPC are, for
example, OptCon [298], NEWCON [285] and VIATOC [185].

Outline The chapter is organized as follows. Section 8.1 introduces the
ACADO code generation software as part of the ACADO Toolkit. Section 8.2
briefly discusses interesting real-world control and estimation applications, and
Section 8.3 presents the ACADO generated integrators with tailored sensitivity
propagation. Section 8.4 finally concludes this chapter and provides a brief
outlook on the future of optimal control software.

211

212 OPEN-SOURCE ACADO CODE GENERATION SOFTWARE

8.1 ACADO Code Generation Tool

ACADO Toolkit is a software environment and algorithm collection for automatic
control and dynamic optimization. It is an open-source project for which the
development originally started at KU Leuven, written in C++, and released
under the GNU Lesser General Public License (LGPL). It provides a general
framework for using a great variety of algorithms for direct optimal control,
including MPC as well as state and parameter estimation. It also provides
efficiently implemented RK and BDF integrators for the simulation of ODE
and DAE systems, with a corresponding sensitivity analysis feature. The ACADO
Toolkit has been designed with the following four key properties in mind:
open-source, user-friendliness, extensible and self-contained code [176]. The
following problem classes are mainly supported:

• Offline dynamic optimization problems

• Multi-objective optimization and OCPs

• Parameter and state estimation problems

• Online algorithms for nonlinear MPC and MHE

The rather intuitive syntax of the ACADO Toolkit allows the user to formulate
control problems in a way that is very close to the usual mathematical syntax.
The software can be used either directly from C++ or from its MATLAB interface.
It can be downloaded freely from [3] and user support is typically provided
through the active discussion forum [5].

8.1.1 Automatic Code Generation

In addition to using tailored algorithms, highly efficient code implementations
are necessary to meet the tight timing constraints on embedded control hardware
for which one additionally might need to use a specific, typically less powerful,
programming language. In this context, the technique of automatic code
generation has experienced an increasing popularity for real-time optimal
control [222, 237]. One can perform offline optimizations of the code to be
generated, e.g., by removing unnecessary computations, by optimizing memory
access and cache usage and by exploiting the problem’s specific structure.
The software CVXGEN [221] and FORCES [97] are, for example, both generating
customized IP solvers for convex optimization. Figure 8.1 illustrates the general
code generation principle. The idea is to obtain a custom solver based on a

ACADO CODE GENERATION TOOL 213

high-level problem description. This solver can then be used to efficiently solve
specific instances of this problem formulation.

Figure 8.1: Illustration of (a) a general-purpose solver versus (b) the principle
of code generation to obtain a custom solver for solving instances of a certain
problem formulation (inspired by [222]).

More than 20 years ago, a code generation environment was already presented
in [238] to export tailored implementations of Karmarkar’s algorithm for solving
Linear Programs (LP). About one decade ago, the software AutoGenU was
developed to provide code generation for nonlinear MPC solutions [235, 237].
More recently, code generation has attracted great attention due to the
software package CVXGEN [221], which can be tested by academic users via
the web interface. The Multi-Parametric Toolbox (MPT) also provides automatic
code generation for explicit MPC solutions [202]. Other examples of code
generation packages based on online optimization tools are µAO-MPC [335] and
FiOrdOs [306] for linear MPC or the new version of AutoGenU from Maple [236]
and VIATOC [185] for nonlinear MPC.

The main motivation to use code generation is because it can speed-up the
computations by removing unnecessary operations as well as by optimization
of the generated source code. The latter consists of an optimized memory
management because problem dimensions and sparsity patterns can be detected
and hard-coded, a more efficient cache usage by reorganizing the computations
and other techniques like loop unrolling. The second reason is the increased
adaptivity of the numerical algorithm that will be exported. When implementing
code generation, it becomes easier to offer options to, e.g., choose between single

214 OPEN-SOURCE ACADO CODE GENERATION SOFTWARE

and double precision arithmetic, avoid the use of certain libraries that are
unavailable on the target hardware or to even choose the programming language
in which the optimization code is exported [108].

These motivations to use code generation are clearly more relevant to real-time
optimization of fast systems such as they appear in robotics and mechatronics,
because of the rather high sampling rates. In addition, real-time optimization
algorithms are often run on embedded hardware imposing extra restrictions
which can be taken into account when exporting the code.

8.1.2 Open-Source ACADO Code Generation Tool

The ACADO code generation tool is a specific part of the ACADO Toolkit, which
can be used to obtain real-time feasible codes for dynamic optimization on
embedded control hardware. In particular, it directly pursues the export of
highly efficient, self-contained C-code based on the RTI scheme for Nonlinear
MPC (NMPC) [177]. ACADO code generation has already been used for real-time
optimal control, showcasing milli- or even microsecond execution times both in
simulation [10, 116, 148, 311] and in real-world experiments [9, 76, 129, 198, 309,
315]. As illustrated in Figure 8.2, a user friendly MATLAB interface is available
which allows one to export, compile and use auto generated code in an intuitive
way and without direct interaction with C/C++ programming [271]. Our open-
source software implementation is mostly self-contained except for relying on
tailored QP solvers for solving the optimal control structured subproblems [192].
In addition to AD techniques [176] and efficient integration schemes with
sensitivity propagation [271], the use of a tailored convex solver is important to
obtain a high performance for the overall SQP method.

More specifically, the open-source convex solvers qpOASES [109], qpDUNES [117],
FORCES [97] and HPMPC [123] have been interfaced for direct optimal control.
It is important to stress that these code generation techniques are not merely
restricted to problems with a short control horizon and a small dynamic system.
As discussed in [192, 314], a smart choice of the approach to solve the QP
subproblem allows one to efficiently treat short to long horizon control problems.
A statement on the system dimensions that can possibly be handled by the ACADO
code generation framework would however strongly depend on the targeted
application. Extensive benchmarking results of nonlinear MPC algorithms
based on the ACADO code generation tool in combination with different convex
solvers, can be found in [313]. In addition, multiple real-world applications are
described further as well as in Chapter 9.

ACADO CODE GENERATION TOOL 215

Figure 8.2: Illustration of the layers in the typical workflow when using the
MATLAB interface of the ACADO code generation tool.

8.1.3 Nonlinear MPC using ACADO Code Generation

To obtain a real-time feasible implementation of NMPC, one can export a tailored
RTI scheme using the open-source ACADO code generation tool. Figure 8.3 shows,
for example, the MATLAB code structure as presented also in [271] for the optimal
swing-up of an inverted pendulum mounted on top of a cart. Note that the
nonlinear OCP formulation in Eq. (1.6) is supported even though a least squares
stage cost is typically defined as in (1.24) or (1.25) for tracking MPC, such
that users can explicitly specify weighting matrices and a reference trajectory.
But also alternative objective functions are possible, as discussed in [268] for
economic MPC based on ACADO code generation. The following five crucial steps
can be identified in order to generate an NMPC solver:

1. Define the model equations: this part of the code in Figure 8.3 depends
mostly on the specific optimal control application. The nonlinear system
dynamics can be described directly in ACADO symbolics such that one
can rely on the implemented AD routines or it can be provided based
on external C functions, in which case also its first and possibly higher
order derivatives are needed. The model can be defined in different ways,
ranging from an explicit ODE to a fully implicit index-1 DAE formulation.

2. SIM export: as discussed further in Section 8.3, a stand-alone integrator
can be exported using ACADO code generation. This feature can be used,
e.g., to numerically simulate the system dynamics in a closed-loop NMPC

216 OPEN-SOURCE ACADO CODE GENERATION SOFTWARE

simulation. Alternatively, an application specific simulation environment
or even an experimental setup could be used for this purpose.

3. Formulate the optimal control problem: the specific OCP needs to be
formulated in ACADO syntax, including the system dynamics, the objective
function and constraints. For this purpose, nonlinear functions can again
be described either in ACADO symbolics or as external C-routines.

4. NMPC export: based on the given problem formulation, a corresponding
online solver is exported using OCPexport. Various options are available
to further customize the code generated algorithm. One can design the
parameterization of the continuous time OCP and choose between different
algorithmic components, such as integrators and convex solvers.

5. Closed-loop simulation: the exported solver can be used to run NMPC
simulations for various closed-loop scenarios, including the efficiency of
the optimized C-code in order to accurately assess real-time feasibility
based on the corresponding computational effort.

Figure 8.3 illustrates the above steps for the NMPC example of the pendulum
swing-up. Specific keywords are used to define the various optimization variables
such as differential states and control inputs. They can be used to build all
symbolic expressions in the ACADO Toolkit. After defining the model, the code
exports the 4-stage ERK method of order 4 as a stand-alone integrator to
simulate the system. It is specified to perform 5 integration steps to simulate
the model over 0.05 s, resulting in a relatively high accuracy. The SIMexport
module generates the optimized C-code into the folder called ‘SIM_export’.
Notice that there are options to customize the integrator such as to include an
efficient propagation of certain sensitivities. This turns it into a powerful tool
to prototype new algorithms as discussed in Section 8.3. The third and fourth
step involve the use of the OCP and OCPexport module, which generates the RTI
based optimal control algorithm for NMPC. It allows the user to specify the
embedded components such as the integrator and the convex solver. In the code
from Figure 8.3, the same ERK method is used and combined together with
a condensing technique and qpOASES as the underlying solver. As mentioned
earlier, it is possible to alternatively employ a tailored structure exploiting
solver such as qpDUNES or HPMPC. The self-contained C-code is exported into
the specified ‘MPC_export’ folder in this case.

The ACADO code generation tool provides the user with easy access to the
exported code to perform various NMPC simulations from MATLAB. The
presented code in Figure 8.3 automatically generates MEX functions which
can be used to call the exported integrator and RTI based solver directly from
MATLAB, in order to, e.g., perform a closed-loop simulation. Alternatively, ACADO

ACADO CODE GENERATION TOOL 217

1 %% −− 1) Define the model equations −−
2 DifferentialState p theta dp dtheta % define states
3 Control u % define controls
4 l = 0.5; g = 9.81; m = 0.1; M = 1;
5 expr1 = −m*cos(theta)^2 + M + m;
6 expr2 = m*l*sin(theta)*dtheta^2 + u;
7 expr3 = m*g*sin(theta);
8 ode = [dot(p); dot(theta); dot(dp); dot(dtheta)] == ...
9 [dp; dtheta; (expr2 + expr3*cos(theta))/expr1; ...

10 −(cos(theta)*expr2 + expr3 + M*g*sin(theta))/(l*expr1)];
11

12 %% −− 2) Export integrator −−
13 sim = acado.SIMexport(0.05); % sampling time Ts = 0.05s
14 sim.setModel(ode);
15 sim.set('INTEGRATOR_TYPE', 'INT_RK4'); % integration method
16 sim.set('NUM_INTEGRATOR_STEPS', 5); % number of steps
17 sim.exportCode('SIM_export'); % export code and compile
18 make_acado_integrator('../acado_system')
19

20 %% −− 3) Formulate OCP −−
21 ocp = acado.OCP(0.0,1.0,20); % 20 control intervals over 1s
22 W = diag([10 10 0.1 0.1 0.01]); % least squares stage cost
23 ocp.minimizeLSQ(W, [p; theta; dp; dtheta; u]);
24 ocp.minimizeLSQEndTerm(W(1:4,1:4), [p; theta; dp; dtheta]);
25 ocp.subjectTo(−2.0 ≤ p ≤ 2.0); % state bounds
26 ocp.subjectTo(−20.0 ≤ u ≤ 20.0); % control bounds
27 ocp.setModel(ode); % constraints from dynamic model
28

29 %% −− 4) Export NMPC solver −−
30 mpc = acado.OCPexport(ocp);
31 mpc.set('QP_SOLVER', 'QP_QPOASES');
32 mpc.set('INTEGRATOR_TYPE', 'INT_RK4');
33 mpc.set('NUM_INTEGRATOR_STEPS', 20); % steps over horizon
34 mpc.exportCode('MPC_export'); % export code and compile
35 make_acado_solver('../acado_RTIstep')
36

37 %% −− 5) Closed−loop simulation −−
38 time = 0; Ts = 0.05; Tf = 5;
39 input.y = repmat([0 pi 0 0 0], 20, 1); % reference trajectory
40 input.yN = [0 pi 0 0];
41 input.x = zeros(21, 4); % initial state and control values
42 input.u = zeros(20, 1);
43 state_sim = zeros(4,1);
44 while time < Tf
45 input.x0 = state_sim.'; % current state values
46 output = acado_RTIstep(input); % one RTI step
47 input.x = output.x; input.u = output.u;
48

49 input_sim.x = state_sim; input_sim.u = output.u(1,:).';
50 output_sim = acado_system(input_sim); % simulate system
51 time = time + Ts; state_sim = output_sim.value;
52 end

Figure 8.3: MATLAB code example to implement NMPC using ACADO code
generation for the optimal swing-up of an inverted pendulum on top of a cart.

218 OPEN-SOURCE ACADO CODE GENERATION SOFTWARE

can also automatically generate a MATLAB S-function for the solver in order
to perform the closed-loop simulation from Simulink. Note that the same
optimized C-code could later be employed in real-time on embedded control
hardware, which is often achieved by using the Simulink Coder. The open-
source software can be downloaded from www.acadotoolkit.org to reproduce
any of the numerical results presented within this thesis.

8.2 Real-Time Control Applications

Let us briefly discuss some of the many realized applications of the ACADO code
generation tool for real-time optimal control and refer to the corresponding
publications. Chapter 9 later presents the specific case of Nonlinear MPC for a
two-stage turbocharged gasoline engine in more detail.

8.2.1 Overhead Crane Setup

A schematic description of the considered overhead crane is given in Figure 8.4.
The pendulum consists of a cylindrical load hanging on two parallel cables. A
cart can position the load in the x-direction while a winching mechanism can
position the load in the y-direction. Reliable sensors are available on the cart
position xC, cable length xL and cable angle θ. The system inputs are the
voltages uC and uL, representing setpoints for the respective internal velocity
controller. Note that the overhead crane optimal control setup was already
used in Section 4.3.1 to illustrate the performance of the structure exploiting
integrators within nonlinear MPC. The dynamic model as described in [76, 316],
consists of only a few nonlinearly defined states while the remaining differential
equations are linear. A detailed description of the system can be found in [313].
The control software is implemented using the OROCOS Toolchain [58] and
runs on a PC with an Intel Xeon 2.53 GHz quad core processor, 12GB RAM
memory, and a preemptive Linux kernel as operating system. The sampling
frequency of the estimation and control is fixed to 100 Hz. Experimental results
have been presented respectively in [316] for nonlinear MPC and in [76] for the
combined MHE-NMPC approach. The computationally most efficient practical
implementation for this optimal control application was based on the embedded
collocation integrators from Chapter 2, to deal with the stiff dynamics, and
using the structure exploitation as described in Chapter 4.

REAL-TIME CONTROL APPLICATIONS 219

Figure 8.4: Schematic of the overhead crane experimental setup [316].

8.2.2 Airborne Wind Energy

The idea of Airborne Wind Energy (AWE) aims at harvesting energy by using
a kite in crosswind flight, i.e., in the direction perpendicular to the air flow. As
introduced originally in [217], this AWE concept forms an alternative approach
to classical wind turbines which allows one to fly at much higher altitudes with
higher wind speeds while considerably reducing the corresponding structural
costs. The system can produce energy by either using on-board generators or by
pulling the tether while flying a periodic power generating orbit [85]. The latter
ground-based form of power generation is often referred to as pumping, versus
an on-board generation or drag mode. In addition to being a very nonlinear
and unstable system to control, this specific application also provides many
algorithmic challenges. The multi-body AWE models [329] need to account
for the winch, the tether and the aerodynamics of the airfoil, which typically
results in complex index-3 DAE models based on Lagrange mechanics. For this
purpose, a carousel setup has been built at KU Leuven within the framework
of the ERC Highwind project in order to test the hardware, software and
online algorithms within a controlled environment. This particular system was
designed [127] in order to investigate a rotational startup and landing procedure
as discussed in more detail in [329]. Experimental results for the deployment
of MHE and NMPC based on ACADO code generation, including the embedded
simulation methods for index-1 DAEs as discussed in Chapter 2, can be found
in [129, 313, 315] for this setup. The work in [331] on the real-time control
of dual-airfoil systems, for example, presents total computation times below
125 ms for a control horizon of 20 intervals and using a nonlinear DAE model
of 56 differential, 3 algebraic states and 14 control inputs.

220 OPEN-SOURCE ACADO CODE GENERATION SOFTWARE

Figure 8.5: Illustration of the kite carousel setup in motion at KU Leuven [313].

8.2.3 Diesel Engine Airpath Control

Predictive control based on online optimization techniques forms a promising
approach for diesel engine control, considering the incrementally more stringent
emission legislation in combination with the increasing level of system complexity
and the corresponding limitations. We consider a passenger car 2l 4 cylinder
turbocharged diesel engine, equipped with a variable geometry turbocharger
and an external exhaust gas recirculation system. Figure 8.6 presents a sketch
of the resulting diesel engine airpath system with its main components. This
work builds on the results presented in [110] of qpOASES based linear MPC for
real-world diesel engine control on embedded hardware, with sampling times in
the order of milliseconds. A data-driven polynomial Nonlinear AutoRegressive
model with eXogenous (NARX) input has been identified, in order to obtain a
multiple-input multiple-output (MIMO) description of the airpath system. For
this purpose, tailored support for NARX based NMPC has been implemented in
the ACADO code generation tool as can be seen further in Figure 8.9. Real-time
control experiments have been performed with an ACADO generated NMPC solver
on the testbench at the Johannes Kepler University (JKU) in Linz, and this
using a dSpace Autobox 1006 with an AMD processor from MATLAB Simulink.
A detailed publication on NMPC based diesel engine control is currently under
preparation, including these experimental results.

REAL-TIME CONTROL APPLICATIONS 221

Figure 8.6: Sketch of a diesel engine airpath with its main components [41].

8.2.4 Time-Optimal Race Car Driving

Fully autonomous driving typically requires more advanced control paradigms,
such as the MPC techniques in [105, 125]. An ACADO generated real-time
NMPC implementation was presented in [116], based on a detailed vehicle
model consisting of 14 states and including a Pacejka tire model. Time-optimal
driving provides additional challenges, since the controller needs to act fast
while coping with the nonlinear vehicle dynamics and satisfying the track
boundaries. In order to validate the proposed methods, an experimental setup
has been built with small-scale race cars at the university of Freiburg. Note
however that a similar setup was built earlier at LMS, Siemens in Leuven [309],
following the experimental setup at ETH in Zurich [213]. Measurements on
the vehicle’s current position, orientation, velocity and yaw rate are obtained
through a custom-made camera system with a sampling speed of 100 Hz. The
actuation signal is sent from the real-time Linux station to the car via a wireless
connection. The considered race track features a chicane, a U-turn and a longer
straight section. Further technical details on the experimental setup can be
found in [308], as illustrated also in Figure 8.7. A near time-optimal NMPC
implementation was presented in [309], including experimental results. More
recently, the use of an exact Hessian based RTI scheme for time optimal racing
based on an economic MPC formulation has been presented in [311], using the
symmetric Hessian propagation as proposed in Chapter 3.

222 OPEN-SOURCE ACADO CODE GENERATION SOFTWARE

Figure 8.7: The miniature race car setup at the University of Freiburg.

8.3 ACADO Integrator Code Generation

Figure 8.8 illustrates the two main modules in the ACADO code generation tool
in the form of a simplified class inheritance diagram. The OCPexport module
has been discussed mainly in the previous sections in order to automatically
generate real-time feasible optimal control solvers, e.g., to implement online
MHE or NMPC. In addition, the SIMexport functionality provides the option
to generate a stand-alone, embeddable integrator code with tailored sensitivity
propagation. Both modules inherit from the class ExportModule in Figure 8.8,
which represents the export of any set of auto generated, tailored algorithms.
The SIMexport module was originally developed for the purpose of testing the
integrator codes with sensitivity analysis [259], while it became a powerful tool
for rapid prototyping of interesting nonlinear optimal control algorithms [271].
Examples of the latter can be found as part of the DMS based RTI scheme
of Chapter 5, the block based ALADIN algorithm in [194], the Sequential
Semidefinite Programming (SSDP) method for optimal experiment design
in [300] or the continuous output based MHE in [193, 261].

Both modules can rely on the code generation classes in Figure 8.9 to export
specific algorithmic components, such as integrators, linear solvers, Hessian
approximation and condensing schemes. They use other more internal code
generation classes for the export of data variables, arithmetic statements,
functions and interfaces for which we omit the corresponding C++ class
hierarchies but we refer the interested reader to the documentation of the open-
source ACADO Toolkit software. The condensing options, for example, include
the classical O(N3) condensing [51], the alternative O(N2) algorithm [19],

ACADO INTEGRATOR CODE GENERATION 223

Figure 8.8: Illustration of the two modules in the ACADO code generation tool.

block condensing [192] and the scheme providing a factorized condensed
Hessian [122]. More information on when to use which method can be found
in [121]. The exported RTI algorithm can be either based on a Gauss-Newton
method or it uses an exact Hessian scheme as discussed in [268]. Note
that the ACADO code generation tool supports the export of self-contained
and problem specific C-code for linear algebra routines, such as the matrix
factorization which is for example crucial for the efficient implementation
of implicit integration schemes. The algorithms include a QR factorization
using Householder triangularization, an LU factorization based on Gaussian
elimination and a Cholesky decomposition [137]. In addition, tailored features
have been implemented such as multiple backsolves, to perform transposed
system solutions and complex arithmetics for the simplified Newton iterations
as described in Chapter 2.

Figure 8.9 also illustrates the extensive inheritance diagram starting from the
IntegratorExport class. The work throughout this thesis has focused on the
use of RK integration schemes, represented by the ExplicitRungeKuttaExport
and ImplicitRungeKuttaExport code generation classes. Following the object-
oriented programming paradigm, it is relatively easy to include new formulas
based on their Butcher tableau [157, 158]. Currently, the ERK methods available
in the code generation tool are the following:

• ExplicitEulerExport: the explicit Euler method of order 1

• ExplicitRungeKutta2Export: the ERK method of order 2 (midpoint)

• ExplicitRungeKutta3Export: the ERK method of order 3 (Heun)

• ExplicitRungeKutta4Export: the ERK method of order 4 (RK4)

224 OPEN-SOURCE ACADO CODE GENERATION SOFTWARE

Figure
8.9:

O
verview

ofthe
m
ain

ACADO
code

generation
classes

to
export

tailored
algorithm

s.

ACADO INTEGRATOR CODE GENERATION 225

The fully implicit RK methods in the code generation tool are:

• RadauIIA1Export: Radau IIA method of order 1

• GaussLegendre2Export: Gauss method of order 2

• RadauIIA3Export: Radau IIA method of order 3

• GaussLegendre4Export: Gauss method of order 4

• RadauIIA5Export: Radau IIA method of order 5

• GaussLegendre6Export: Gauss method of order 6

• GaussLegendre8Export: Gauss method of order 8

The above collocation methods include the continuous output feature as
described earlier in Chapter 2. In addition, the tool supports the export
of the Diagonal IRK (DIRK) methods of order 3, 4 and 5 in [158].

The majority of the above integration schemes have been extended with both
forward and backward sensitivity propagation techniques. Also, the classical
forward-over-adjoint and the novel symmetric Hessian propagation schemes from
Chapter 3 have been implemented for both the explicit and implicit methods.
Note that sensitivity analysis of arbitrary order is possible, for example, in
DAESOL-II [6] or as part of CasADi [19] based on advanced AD techniques.
Finally, the IRK integrators can be used with the IFT-R scheme, an exact
Newton method or any of the exact and inexact adjoint-based or INIS lifting
variants as presented in Chapter 6. Extensive benchmarking results of the stand-
alone RK integrators with tailored sensitivity propagation using the ACADO code
generation tool can be found in [259, 265, 269, 271]. Even though [269] showed
that the ACADO auto generated methods can be approximately 100 times faster
than the solvers from SUNDIALS and a speedup factor of about 500 was observed
in [261] with respect to ode15s, it should be noted that these implementations
have rather different purposes. The integrators in the SUNDIALS package [166],
for example, are based on a general-purpose implementation of variable-stepsize
variable-order methods for the numerical simulation and sensitivity analysis of
large-scale systems. On the other hand, the ACADO integrator suite is targeted
at very fast, real-time and embedded applications for small to medium-scale
ODE or index-1 DAE systems.

226 OPEN-SOURCE ACADO CODE GENERATION SOFTWARE

8.4 Conclusions and Outlook

One contribution of this thesis is that the proposed algorithms have been
implemented as part of the open-source ACADO code generation tool, resulting
in an increased visibility and applicability of the presented work. It is however
difficult to avoid that parts of big open-source projects can become unmaintained
or outdated relatively quickly. This is especially the case when the software
development is performed within academic research, where the number of active
developers can strongly vary over periods of multiple years. This said, the
same open-source software can continue to be useful for many researchers. The
package can, for example, aid to initiate new software development projects
or can be used to develop and prototype new algorithmic techniques. For this
reason, to increase the chance of code reuse and to facilitate rapid prototyping
of algorithms, there has been a strong need for modularity in optimal control
software as mentioned earlier in this chapter. One would ideally have access to
the different algorithmic components such as AD, numerical integration with
sensitivity propagation, convex and non-convex solvers etc., from a common
high-level modeling environment. In the case of real-time optimal control, one
additionally needs the option to transform the resulting algorithm into an
embeddable solver in a relatively easy manner.

Following these conclusions, a new optimal control software project has been
under development, based on the ACADO code generation tool, which should
become much easier to maintain and of which the code can be reused in a
more straightforward way. It consists of separate modules for each identifiable
component, with each their own clearly defined interface such that they can
be combined in different ways to create tailored optimization algorithms. The
core components are written directly in an embeddable fashion based on a
standard C-code implementation, such that the need for an intermediate code
generation layer can be reduced mainly to a customization functionality. One
can rely on hardware specific code optimizations in the main linear algebra
routines to obtain the desired numerical performance, as discussed in more
detail in [121, 123]. Based on the success of the ACADO integrator suite and
the proposed algorithmic techniques, an extended and more self-contained
implementation can be envisioned in a similar fashion and this for both small,
medium or even large-scale dynamic systems.

Chapter 9

Two-Stage Turbocharged
Gasoline Engine

Based on the proposed algorithmic techniques and the open-source software
developments within the ACADO code generation tool, let us focus in this chapter
on a particular real-world case study. The investigated application is the control
of a complex airpath structure, which consists of a two-stage turbocharging
concept for gasoline engines. The goal is to realize fast reference tracking for
the boost pressure without overshoot or offset, while respecting constraints on
the turbocharger speeds to prevent damages. For this purpose, NMPC will be
shown to be a rather promising approach that achieves a high control quality
while respecting the limitations of the system. The chapter includes a detailed
description of the system set-up and the corresponding optimal control problem
formulation. Closed-loop numerical simulations on the dSpace MicroAutoBox
are used to motivate the real-time feasibility and control performance of the
NMPC scheme, followed by the real-world experimental results based on the
implementation within a demonstrator vehicle.

Note that this presentation is largely based on the article in [12], which itself
is built upon earlier publications as part of multiple conference proceedings.
The reduced-order state space model has been proposed and validated based
on closed-loop numerical simulations in [10], while the real-time feasibility and
tuning of the resulting NMPC scheme has been studied in [9]. The presented
work has been carried out as part of a research collaboration between the
University of Freiburg and the RWTH Aachen University. Especially Thivaharan
Albin and Dennis Ritter, the main authors of the aforementioned publications,
have greatly contributed to this work, including the experimental results.

227

228 TWO-STAGE TURBOCHARGED GASOLINE ENGINE

Outline The chapter is organized as follows. Section 9.1 provides a general
but compact introduction to airpath control, followed by an overview on the
particular two-stage turbocharging concept for gasoline engines in Section 9.2.
The reduced-order modeling of the system is described in Section 9.3 and the
implementation of the corresponding NMPC scheme is discussed in Section 9.4.
Section 9.5 presents the closed-loop simulation results for the control algorithm.
The validation of the controller using experiments on a vehicle dynamometer is
described in Section 9.6, which additionally presents the vehicle experiments on
the road while driving dynamically.

9.1 Introduction to Airpath Control

To reduce fuel consumption and emissions for internal combustion engines,
downsizing by the use of turbochargers is investigated. For increasing the specific
power, conventional single-stage turbocharging concepts lead to conflicting goals
concerning the dimensioning of the charging components. A high specific power
on the one hand and a fast transient raise of the boost pressure on the other
hand cannot be realized at the same time. For mitigation of this trade-off, more
variability in the charging devices is used.

A future promising technology, in particular for gasoline engines, is the two-stage
turbocharging concept. The architecture consists of a small high-pressure (HP)
stage and a large low-pressure (LP) stage. The small high-pressure stage is
capable of realizing fast transients, even though it is restricted concerning the
specific power. In contrast to that, the large low-pressure stage can realize
a high specific power with slower transient dynamics. One of the arising
challenges consists in the design of the closed-loop controller which fulfills the
high requirements on the control quality.

9.1.1 Real-Time Control Requirements

The control algorithm needs to handle both turbocharger stages in a coordinated
fashion, such that reference tracking for the boost pressure is made possible
and disturbances are rejected quickly. Note that for gasoline engines, the
boost pressure correlates directly to the driving torque. The reason lies in the
quantitative control used as working principle for gasoline engines, which results
in the need for a fixed air-to-fuel ratio and thus the torque is determined by the
airpath system. The boost pressure reference should therefore be reached as
quickly as possible, as this determines the transient acceleration capability of
the vehicle. In the case of a step reference input, the output should additionally

INTRODUCTION TO AIRPATH CONTROL 229

be achieved without strong overshoots as this influences the driving behaviour
negatively. In diesel engines, oscillations can be tolerated up to a certain amount
since the driving torque is determined by the fuel path. This is due to the
qualitative control used as working principle for diesel engines, which allows
for variations in the air-to-fuel ratio which therefore decouples the torque and
boost pressure to a certain extent.

In addition to these requirements on the reference tracking performance, the
control algorithm should respect the constraints for the high- and low-pressure
turbocharger speeds, since exceeding these limits might damage the turbocharger.
This becomes especially challenging, as the turbocharger speed is typically not
even measured in a series-production configuration. In summary, the following
three major requirements have to be fulfilled at the same time for gasoline
airpath control:

• fast boost pressure reference tracking,

• without strong oscillations,

• while respecting limits on turbocharger speeds.

These control requirements are quite demanding, e.g., compared to diesel engine
airpath control. Note that turbocharged systems are strongly nonlinear and
their dynamic behaviour is very dependent on disturbance variables such as the
engine speed. For this reason, the design of an NMPC scheme is investigated in
this chapter, which is a suitable choice as it can handle the nonlinear system
dynamics with high control quality and is able to respect constraints on system
states. The overall goal is that the NMPC scheme makes use of the specific
turbocharging architecture to overcome the trade-off between fast transient
raise and high power.

9.1.2 Literature Review on Airpath Control

An overview on fundamental modeling and control of airpath systems can be
found in [103] and [153]. For the purpose of airpath control, a variety of concepts
have been applied where especially model-based control shows advantages due
to the arising strong nonlinearities. Examples of the latter are internal model
control [258] and flatness-based control [191]. Compared to other model-based
control concepts, the use of MPC shows advantages as it is able to inherently
consider constraints on the actuated signals as well as on the system states [11].
In the case of airpath control, it is an important feature to not only consider
the limitations of the actuators but, for example, also the constraints on the
turbocharger speeds.

230 TWO-STAGE TURBOCHARGED GASOLINE ENGINE

Among the applied MPC concepts, online optimization has been investigated
as well as offline optimization based implementations. Explicit MPC is used,
e.g., in [100] based on a piecewise-affine (PWA) approximation of the system
behaviour. On the other hand, also different MPC concepts based on online
optimization have been developed where different measures were used to take the
nonlinearity into account. The majority of the current publications use linear
time varying (LTV) MPC, which means that the optimal control problem is
based on a linearized model gained at the recent operating point, see [11] or [84].
More advanced nonlinear MPC control techniques were recently investigated
in [164], [179] and [229], where it is applied to single-stage diesel engines with a
data-based dynamic model.

However, for the control of the more complex two-stage gasoline turbocharging
architecture, only a relatively small amount of publications is available. The
work in [136] presents a vehicle set-up for which the authors utilize a single-input
single-output (SISO) proportional–integral–derivative (PID) controller. For
rather low engine speeds, the high-pressure stage is controlled (low-pressure
wastegate fully open) and for higher engine speeds, the low-pressure stage is
controlled (high-pressure wastegate fully open). In the medium speed range,
one of the two actuated values is applied in a feedforward-manner with look-up
tables, the other input is based on feedback control. In [301], the modeling
and control of the pneumatic actuation system for a 2-stage gasoline airpath
architecture is discussed. An MPC approach based on a PWA approximation
of the turbocharging concept has been presented in [11]. The PWA based
MPC scheme works well for small load steps, e.g., steps starting at throttled
operation to a boost pressure of 1.4 bar. For steps to boost pressures larger than
1.5 bar, where the nonlinearity is stronger, the control results show considerable
overshoots which are not tolerable for real-world driving.

9.2 Two-Stage Turbocharged Gasoline Engine

For notational convenience, we further use the variables and indices as they
have been introduced in the corresponding publications in [9, 10, 12].

9.2.1 Airpath System Architecture

Figure 9.1 shows the schematic set-up of the investigated airpath architecture.
For experimental analysis, the depicted system has been built up and
implemented in a demonstrator vehicle (Ford Focus) with a 1.8 l 4-cylinder
gasoline engine as illustrated in Figure 9.2. The vehicle allows for real-world

TWO-STAGE TURBOCHARGED GASOLINE ENGINE 231

High Pressure
Stage

Throttle
Valve

Boost
Pressure

Inter-
cooler

p
Low Pressure

Stage

High Pressure
Wastegate

Low Pressure
Wastegate

uwg,hp

uwg,lp

boost

Figure 9.1: System overview of the investigated two-stage turbocharging concept

Figure 9.2: Illustration of the demonstrator vehicle and the testing track.

experiments to validate the control performance. The algorithm has been
implemented on a rapid prototyping hardware, i.e., the dSpace MicroAutoBox.
The closed-loop system has been tested using experiments on a vehicle
dynamometer as well as by performing driving experiments on the road. A
more detailed overview on the turbocharging system is given in [60].

9.2.2 Available Sensors

The controlled variable of the system is the boost pressure pboost, which is
measured with a pressure sensor positioned behind the intercooler and in front
of the throttle valve. Due to the high exhaust gas temperatures in gasoline
engines, the application of sensors in the exhaust gas path is problematic for a
series configuration due to durability and price issues. Thus, in the presented
approach, no sensor signal from the exhaust gas path is used for control purposes.

232 TWO-STAGE TURBOCHARGED GASOLINE ENGINE

Additionally measured variables are the engine speed neng and the ambient
pressure pamb. All these sensors that are used for control, are available in a
series-production configuration. For the purpose of modeling and validation of
the algorithm, additional sensors are implemented in the car. For example, both
turbocharger speeds and the pressure between the compressors (resulting in
the pressure ratio over the two compressors) are measured in the demonstrator
vehicle but only for the modeling and validation process.

9.2.3 Actuation System

As actuators for the control of the turbochargers, wastegates on the high-
pressure (uwg,hp) and on the low-pressure stage (uwg,lp) are used. Electronic
wastegates are commonly used for turbocharging, which have the advantage
that they have a position feedback-sensor and thus allow for accurate setting of
the valve opening area. In this work, the use of simpler and cheaper pneumatic
actuators is investigated. They do not use any additional sensor, e.g., for
position feedback, which makes the control more demanding. The wastegate
actuation signals correspond to a pulse-width modulated (PWM) signal, which
has an allowable operating range 0 ≤ uwg,? ≤ 100 for ? = lp,hp. It manipulates
the pilot pressure, which has influence on the cross-section diameter of the
opening. Thus, the amount of exhaust gas that passes the turbine or the
wastegate can be adjusted. Low values such as uwg,? = 0 open the wastegate
and higher values such as uwg,? = 100 close the wastegate. In the case of a fully
open wastegate, the majority of the exhaust gas bypasses the turbine. Whereas
in the case of a fully closed wastegate, all the exhaust gas flows through the
turbine. In addition, a throttle valve is present in the considered architecture
which is controlled via a separate function, not part of the turbocharger control.
Note that at very high mass flows, the high-pressure stage does not deliver
boost pressure anymore. However, with the given sizing of the components, the
high-pressure stage does not go into a safety critical mode here. This is why
no additional high-pressure bypass for the compressor is used in the control
concept, accepting some efficiency losses at high mass flows.

9.2.4 Engine Control Algorithm

In summary, the controlled variable is the boost pressure pboost and the actuated
values are the high-pressure and low-pressure wastegate PWM signals uwg,hp
and uwg,lp. Additionally, the engine speed neng and ambient pressure pamb are
used as measured disturbances. The sampling time for the airpath control has
been chosen to be tsamp = 25 ms. As is nowadays usual in series applications,

MODELING OF THE AIRPATH SYSTEM 233

the throttle valve is only used in the non-boosted region. Within the boosted
region, the throttle valve is set completely open for reasons of fuel efficiency. As
a consequence, the boost pressure is equal to the intake manifold pressure and
directly correlated to the torque of the engine. Therefore, the throttle valve is
not investigated further. The setpoint for boost pressure is determined by the
requested torque in a conventional manner, as given in torque oriented engine
control structures. All other parameters of the engine control structure, such as
ignition, injection and camshaft position are based on the standard calibration.
The airpath NMPC control algorithm is implemented on dSpace MicroAutoBox.
All other engine functions, such as setpoint calculation, ignition timing, etc.,
are implemented on the same control hardware.

9.3 Modeling of the Airpath System

In the following, the nonlinear state space model is introduced which is used
within the NMPC problem formulation. For the controller internal model, the
focus is set on capturing the system dynamics while trying to keep the function
outputs as well as their derivatives smooth and the state dimensions small.
This is generally important as one of the hurdles for NMPC is typically the
computational cost during operation. A nonlinear state space model will be
presented, which is mainly driven by physical equations. This dynamic model is
shown to reproduce the measurement data quantitatively well in a big operating
range concerning engine speed and load.

9.3.1 Fundamental Turbocharging Equations

Well-investigated physical equations are used as basis for the model, whereas
a detailed overview on turbocharger modeling can be found in [153]. The
power on the turbine Ψtur,? and compressor Ψcom,? are used to define the power
balance on the high- and low-pressure stage as described in Eq. (9.1a). The
expressions in (9.1b)-(9.1c) relate the power on the two stages of the compressor
and respectively the turbine to the mass flow through the corresponding device
and the total change of enthalpy. In these equations, the pressure ratio is given
by Πtur = putur

pdtur
and Πcom = pdcom

pucom
. The expressions with ? = lp,hp hold for

234 TWO-STAGE TURBOCHARGED GASOLINE ENGINE

both the high- and low-pressure stage;

Ψtur,? −Ψcom,? = d
dt

(
1
2Θturbo,? n

2
turbo,?

)
(9.1a)

Ψcom,? = ṁcom,? cp,air Tucom,?
1

ηis,com,?

(
Π
κair−1
κair

com,? − 1
)

(9.1b)

Ψtur,? = ṁtur,? cp,exh Tutur,? ηis,tur,?

(
1−Π

1−κexh
κexh

tur,?

)
. (9.1c)

The different arising mass flows, such as the aspirated and the fuel mass flows,
are calculated based on the models from [227]. To obtain the mass flow through
the high- and low-pressure wastegate and through the turbine, the throttle
equation can be used as described in [10, 12].

9.3.2 Reduced-Order Modeling

Various simplifications have been carried out in order to gain a dynamic model
which is suitable for real-time NMPC, as described in the following.

Rotational kinetic energy and pressure ratio

A common approach to simplify the model, is to correlate the rotational kinetic
energy to the pressure ratio over its corresponding compressor. In the case
of diesel engines, for example, this can be done by linear maps [227]. For
gasoline two-stage turbocharging, a distinction has to be made between the
high- and low-pressure stage. For the low-pressure stage, an affine map with
the parameters alp and blp can be fitted based on measurement data:

n2
turbo,lp = alpΠcom,lp + blp. (9.2)

On the high-pressure stage, a large spread of exhaust enthalpy and compressor
operating points is present such that the dependency on the engine speed should
additionally be taken into account. The following bilinear relation has shown
to work well in practice [10, 12]:

n2
turbo,hp = (ahpneng + chp) Πcom,hp + (bhpneng + dhp) . (9.3)

MODELING OF THE AIRPATH SYSTEM 235

Singular perturbation theory

For the gasoline two-stage turbocharging, the model simplification by singular
perturbation theory is applicable as described in [187]. This results in the
following equations:

ṁcom,lp = ṁcom,hp = ṁasp (9.4)

and
ṁasp + ṁfuel = ṁtur,hp + ṁwg,hp

= ṁtur,lp + ṁwg,lp.
(9.5)

System input delay

Based on the available vehicle implementation of the airpath architecture, a
considerable dead time is observed in the system. This effect can be described,
e.g., based on additional models of the pipings and the pneumatic actuation
system, but this would lead to quite complex overall dynamics. Instead, the
dead time is assumed to be a constant input delay arising from the actuation
signal. Based on measurement data, this dead time has been estimated to be
tD = 0.45 s, which makes the control task more challenging.

Modeling of the wastegate opening area

In the given set-up, pneumatic systems are used for actuating the wastegate
opening area. The high-pressure wastegate is actuated via underpressure and
the low-pressure stage via excesspressure, which makes the behaviour of each
stage relatively different. The actuation signal uwg,hp adjusts the ratio of
underpressure delivered by a vacuum pump, which is mixed with ambient
pressure. On the other hand, the low-pressure stage uwg,lp uses the boost
pressure to control the wastegate. In both cases, the opening area can be
calculated based on the corresponding force equilibrium. Compared to the
airpath system, the dynamics of the actuator are quite fast such that it can be
treated as a static relationship. For gaining cheap computations, the opening
area characteristic has been approximated by a smooth function. The high-
pressure stage opening area Awg,hp correlates linearly with the actuated signal.
For the low-pressure stage, the dependency of the opening area Awg,lp on the
current boost pressure cannot be neglected [10, 12].

236 TWO-STAGE TURBOCHARGED GASOLINE ENGINE

9.3.3 Resulting State Space Model

The resulting DAE system will be used as the state space model within the
NMPC scheme. The dynamic system is governed by introducing the differential
states x1 = Πcom,lp, x2 = Πcom,hp, and the algebraic variables z1 = Πtur,lp,
z2 = Πtur,hp. The model constants can be summarized as c1, . . . , c8, which are
defined as part of the detailed discussion in [12]. Based on these parameters
and setting κair = 1.4 as well as κexh = 1.33, the resulting DAE system reads
as:

ẋ1(t) = c1 pamb
(
z1.5

1 − z1.25
1
)√

z−1.5
1 − z−1.75

1

− c2 pamb neng x2
(
x1.29

1 − x1
)

(9.6a)

ẋ2(t) = c5 pamb z1
(
z1.5

2 − z1.25
2
)√

z−1.5
2 − z−1.75

2

− c6 pamb neng x1
(
x1.29

2 − x2
)

(9.6b)

0 = x1 x2 − c3
1

neng

√
z0.5

1 − z0.25
1 (√z1 + c4Awg,lp(x1x2, uwg,lp)) (9.6c)

0 = x1 x2 − c7
1

neng
z1

√
z0.5

2 − z0.25
2 (√z2 + c8Awg,hp(uwg,hp)) , (9.6d)

with the corresponding output functions:

y1 = pamb x1 x2

y2 =
√

(alpx1 + blp)

y3 =
√

(ahpneng + chp)x2 + (bhpneng + dhp).

(9.7)

The DAE model is of index 1 (see Definition 1.3) and consists of 2 differential
and 2 algebraic states, the output y1 corresponds to the boost pressure pboost
which is reference tracked. The extra outputs y2 and y3 correspond to the low-
nturbo,lp and the high-pressure nturbo,hp turbocharger speeds, where the goal is
to constrain them within the optimal control problem.

9.3.4 Reduced-Order Model Validation

In order to validate the proposed model, measurement data was gained using
the demonstrator vehicle for constant as well as for varying engine speeds.

MODELING OF THE AIRPATH SYSTEM 237

Figure 9.3: Validation of the stationary transfer behaviour of the DAE model,
based on corresponding measurement data at neng = 2500 min−1.

238 TWO-STAGE TURBOCHARGED GASOLINE ENGINE

System
measurements

dSpace MicroAutoBox

EKFDTC

NMPC

Figure 9.4: Illustration of the closed-loop system on the dSpace MicroAutoBox:
NMPC based on ACADO code generation with dead time compensator (DTC)
and extended Kalman filter (EKF).

For measurements at a constant speed, a dynamometer test bench has been
used where the engine speed was set at different values between neng = 1500
min−1 and neng = 3500 min−1. Figure 9.3 shows the result of such a validation
experiment. The upper plot shows the steady state measurement data for the
boost pressure pboost, recorded on a grid of different values for uwg,lp and uwg,hp
at a constant engine speed of neng = 2500 min−1. The lower plot shows the
steady state data for the boost pressure pboost, obtained by simulating the
dynamic model in (9.6). From this comparison, one can see that the model
qualitatively and quantitatively reproduces the measurement data very well.
The same holds for the dynamic data, e.g., using a step response, as well as for
the comparison at different engine speeds.

9.4 Nonlinear MPC and State Estimation

This section gives an overview on the entire closed-loop system, as illustrated
in Figure 9.4. The key element is the NMPC scheme based on the embedded
optimization and simulation methods within the ACADO code generation tool as
presented earlier. An extended Kalman filter (EKF) is used to observe the state
of the system and additionally a dead time compensator (DTC) is implemented
to account for the considerable dead time.

9.4.1 Disturbance Model and State Observer

One of the goals for the closed-loop controller is to achieve offset-free tracking
even in the presence of disturbances and model mismatch. More precisely, the

NONLINEAR MPC AND STATE ESTIMATION 239

goal is that the boost pressure yboost is reference tracked without offset for
the case that the reference and the disturbances are asymptotically constant.
For this purpose, the expression of the boost pressure is adapted such that
yboost = pamb x1 x2 +d with the disturbance dynamics ḋ(t) = 0. By augmenting
the state vector x̃(t)> =

[
x(t)> d(t)

]
, the overall system equations including

the disturbance model can be summarized as:
0 = f(˙̃x(t), x̃(t), z(t), u(t− tD))

y = ψ(x̃(t)).
(9.8)

An EKF is used for the estimation of the system state and disturbances. It
updates the estimates with a sampling time tsamp = 0.025 s. For the relation
between continuous and discrete time, it follows that tk = t0 + k tsamp and the
dead time kD = tD/tsamp. Denoting x̃−es,k as the a priori state estimate at time
index k, the a priori error covariance as P−k as well as Jx,k = ∂φ

∂xk
(x̃es,k, uk−kD)

and Jy,k = ∂ψ
∂xk

(x̃−es,k), the prediction step reads as

x̃−es,k = φ(x̃es,k−1, uk−1−kD)

P−k = Jx,k−1 Pk−1 J
T
x,k−1 +QKF.

(9.9)

The function φ(xi, ui) denotes the numerical simulation of the nonlinear
dynamics throughout one sampling step, starting from the given state xi and
using the control inputs ui. Since the model consists of an index-1 DAE system
in Eq. (9.6), an implicit integration method with corresponding sensitivity
analysis is used as discussed in Chapter 2.

In the subsequent correction step, the a priori estimates are updated based on
the recent measurements. The resulting values of this calculation are the a
posteriori estimates for the system state x̃es,k and the error covariance Pk. The
following equations result for this correction step:

Lk =
P−k JTy,k

Jy,k P
−
k JTy,k +RKF

x̃es,k = x̃−es,k + Lk (ymeas,k − ψ(x̃−es,k))

Pk = (1− Lk Jy,k)P−k .

(9.10)

9.4.2 Dead Time Compensation

The EKF provides the current state estimate x̃es,k, which can be used along
with the model (9.8) in the NMPC algorithm to compute the next control

240 TWO-STAGE TURBOCHARGED GASOLINE ENGINE

input. However, the dead time can be treated with an alternative approach
which simplifies the optimization task. For this purpose, a delay-free model is
considered based on the same system dynamics:

0 = f(˙̂x(t), x̂(t), z(t), u(t))

y = ψ(x̂(t)).
(9.11)

The new state variable x̂k corresponds to the state x̃k+kD which is shifted by
the dead time, and the NMPC scheme uses this delay-free model instead. The
predicted state x̂es,k needs to be obtained, using the inputs that have already
been applied to the plant. Note that for this purpose, the last kD inputs need
to be stored. Using Φ(x̃i, ui−kD , . . . , ui−1) to denote the numerical integration
from time point i to i+ kD, starting from the initial state x̃i with the actuated
signals ui−kD , . . . , ui−1, it follows that:

x̂es,k = Φ(x̃es,k, uk−kD , . . . , uk−1). (9.12)

9.4.3 Optimal Control Problem Formulation

The NMPC scheme needs to solve one nonlinear OCP at each sampling instant.
For simplicity of notation, we further use x(t) directly to refer to the state
variable of the delay-free model in Eq. (9.11). Let us introduce the following
continuous time OCP formulation:

min
x(·), u(·)

∫ T

0
` (x(t), u(t)) dt+m (x(T)) (9.13a)

s.t. 0 = x(0)− x̂es, (9.13b)

0 = f(ẋ(t), x(t), z(t), u(t)), ∀t ∈ [0, T], (9.13c)

¯
y2 − s(t) ≤ y2(t) ≤ ȳ2 + s(t), ∀t ∈ [0, T], (9.13d)

¯
y3 − s(t) ≤ y3(t) ≤ ȳ3 + s(t), ∀t ∈ [0, T], (9.13e)

¯
uwg,lp ≤ uwg,lp(t) ≤ ūwg,lp, ∀t ∈ [0, T], (9.13f)

¯
uwg,hp ≤ uwg,hp(t) ≤ ūwg,hp, ∀t ∈ [0, T], (9.13g)

¯
u̇wg,lp ≤ u̇wg,lp(t) ≤ ¯̇uwg,lp, ∀t ∈ [0, T], (9.13h)

¯
u̇wg,hp ≤ u̇wg,hp(t) ≤ ¯̇uwg,hp, ∀t ∈ [0, T], (9.13i)

0 ≤ s(t), ∀t ∈ [0, T], (9.13j)

NONLINEAR MPC AND STATE ESTIMATION 241

where the stage and terminal cost functions are defined as

` (x(t), u(t)) = ‖y1(t)− yboost,ref(t)‖2Q + ‖u(t)‖2R, (9.14a)

m (x(T)) = ‖y1(T)− yboost,ref(T)‖2QN . (9.14b)

This nonlinear OCP depends on the parameter x̂es ∈ Rnx , which denotes
the current state estimate, through the initial value condition of Eq. (9.13b).
The slack variable s(t) is used to define the soft constraints in (9.13d)-
(9.13e), which allows for preferably small violations of the original output
bounds. The change rates of the control inputs and the slack variable are
optimized directly u(t) := [u̇wg,lp(t), u̇wg,hp(t), s(t)]> ∈ R3, such that the
wastegate actuation signals are formulated as part of the system state vector
x(t) := [Πcom,lp(t),Πcom,hp(t), uwg,lp(t), uwg,hp(t)]> ∈ R4 and the algebraic
variables z(t) := [Πtur,lp(t),Πtur,hp(t)]> ∈ R2 are defined. The implicit dynamics
in (9.13c) are given by the DAE system in Eq. (9.6), in addition to the input
dynamics, which is of index 1 such that the Jacobian matrix ∂f(·)

∂(z,ẋ) is invertible
as in Definition 1.3. The objective consists of a least squares type tracking cost
as defined by Eqs. (9.14a)-(9.14b). Note that the reference signal yboost,ref(t) is
a constant value over the prediction horizon in this case. The path constraints
consist of simple bounds defined by Eqs. (9.13d) to (9.13j).

9.4.4 Real-Time Optimal Control

This continuous time OCP formulation can be recognized to be of the rather
standard form in Eq. (1.6). Direct optimal control methods and tailored
algorithms can therefore be used to treat the embedded optimization problem,
for which effective approaches have been proposed throughout this thesis. More
specifically, direct multiple shooting for the OCP in (9.13) results in an NLP
of the form in Eq. (1.8). The latter NLP does not include algebraic states in
the decision variables, since they only enter the DAE system (9.13c) for this
specific problem formulation. Note that the penalization of the control change
rate is implemented by including an extra differential state which denotes the
original control value, while its time derivative is defined as the new control
input. Because of the least squares cost (9.13a), a Gauss-Newton based SQP
algorithm can be used. To allow for a real-time feasible implementation, the
RTI scheme will be used as introduced as part of Section 1.5 and this based
on our implementation in the ACADO code generation tool (see Chapter 8). In
order to solve the structured QP subproblem in each iteration, condensing will
be used in combination with qpOASES.

242 TWO-STAGE TURBOCHARGED GASOLINE ENGINE

9.5 Simulative Assessment of NMPC

Before testing the NMPC scheme in the vehicle, extensive closed-loop simulations
have been conducted. The goal here is to decide on the parameterization of
the online algorithm and the validation of the resulting scheme, concerning the
aforementioned control requirements. In addition, the performance is compared
to that of less advanced algorithms based on a linearized system model. The
simulations were conducted on the control prototyping hardware, i.e., the dSpace
MicroAutoBox, which is also used in the vehicle such that relevant computation
times can be evaluated.

9.5.1 Parameterization of NMPC

In the case of NMPC, quite a few parameters have to be tuned to realize a
closed-loop system that satisfies real-time feasibility while achieving a high
control quality. An overview on some of the most important design parameters
is given in Figure 9.5. The control horizon is set to T = 1.5 s, which allows
one to sufficiently cover the dynamics until steady state of the system. If the
horizon is chosen too short, the control performance decreases and in the worst
case the turbocharger speed limits cannot be respected anymore. In order to
maintain real-time feasibility, the NMPC scheme does not use tsamp = 25 ms as a
discretization step size. Instead, N = 20 equidistant shooting intervals are used
which results in the discretization time Ts = 75 ms. Extensive simulations have
shown the algorithm to be more effective when using a larger discretization time
along with a longer control horizon instead of using a more fine discretization of a
shorter horizon [9]. An IRK scheme based on Gauss collocation of order 2 is used
with a fixed integration step size of Tint = 75 ms. To solve each QP subproblem
within the RTI scheme, condensing with qpOASES is used with a maximum
number of iterations NQP = 50 in order to constrain the runtime [9, 109]. Note
that also other competitive approaches can be used as discussed earlier in
Section 1.4. In addition, sufficiently large terminal weights are used for stability
reasons [151] while mainly designing the objective to result in a fast reference
tracking. For the EKF, the covariance matrices were chosen such that quick
disturbance estimation is achieved as the present noise is rather weak.

9.5.2 Validation of NMPC

The functionality of the NMPC algorithm has been compared to that of
less advanced MPC schemes in Figure 9.6. For this purpose, a linear time
invariant (LTI) and a linear time varying (LTV) MPC were implemented. The

SIMULATIVE ASSESSMENT OF NMPC 243

Figure 9.5: Overview on design parameters of the different components that
are crucial for the real-time feasible NMPC scheme.

Table 9.1: Comparison of rise time t95 between nonlinear MPC (NMPC), linear
time varying (LTV) MPC and linear MPC.

Nonlinear MPC LTV MPC Linear MPC
Step to 2.2 bar 0.9 s 1.4 s 3.4 s
Step to 2.6 bar 1.1 s 1.5 s 3.5 s

LTI scheme uses one linear model over the entire operating region, whereas the
LTV MPC calculates in every time step the linearized model around the recent
operating point. In these two cases, the weighting matrices were chosen such
that no exceeding of the turbocharger speed limits nturbo,hp and nturbo,lp arises
and in order to obtain fast reference tracking without considerable overshoots
over the entire operating range. The LTI, LTV and the NMPC scheme all
result in stabilizing controllers, which are able to consider the constraints on the
turbocharger speed limits and allow for offset-free reference tracking. However,
a difference arises with respect to the value t95 which is the time needed for
reaching 95% of the reference. Table 9.1 gives an overview on the rise time t95
for different load steps at nominal conditions for neng = 1500 min−1.

244 TWO-STAGE TURBOCHARGED GASOLINE ENGINE

Figure 9.6: Closed-loop hardware-in-the-loop simulations: comparison of LTI,
LTV and NMPC for a step in the boost pressure reference signal.

SIMULATIVE ASSESSMENT OF NMPC 245

u / %wg, hp

u / % wg, lp

p

 /

 m
b

a
r

b
o

o
s
t

n = 2500 1/min
eng

Δp = 680 mbarboost
u = 60 %wg, hp
u = 80% → 90 %wg, lp

Δp = 84 mbarboost
u = 50 %wg, hp
u = 60% → 70 %wg, lp

Δp = 23 mbarboost
u = 40 %wg, hp
u = 40% → 50 %wg, lp

Figure 9.7: Steady state measurement data for neng = 2500 min−1, with an
illustration of the change in boost pressure for 10% wastegate actuation.

The linear MPC scheme shows a rather slow response behaviour. The difference
between LTV and NMPC in the time t95 is around 0.5 s, which has a considerable
and perceptible effect on performance. To explain this further, Figure 9.7
illustrates the steady state behaviour of the system with experimental data
for a constant engine speed. Depending on the operating point, the gradients
change significantly which has to be considered especially for a big step in
boost pressure. In contrast to the other concepts, the NMPC is aware of these
nonlinearities in advance such that the reference can be tracked much faster. If
the control algorithm is not aware of the future nonlinear dynamics, the speed
of reference tracking has to be slowed down in order to avoid overshoots which
are not allowed in gasoline airpath control.

246 TWO-STAGE TURBOCHARGED GASOLINE ENGINE

9.6 In-Vehicle Experimental Results

9.6.1 Validation on a Vehicle Dynamometer

The first step of experimental testing was done on a vehicle dynamometer. This
offers the possibility to test the airpath control for the case of constant engine
speed, which is a major disturbance variable. In Figure 9.8, one exemplary
closed-loop control result can be seen. In the given case, a step is applied from
the non-boosted region to yboost,ref = 2.2 bar at a constant engine speed of
neng = 2500 min−1. The closed-loop control system is able to meet all specified
criteria. It is possible to track the reference without overshoot and without offset,
by rejecting all disturbances. At the same time, the controller is able to respect
the high-pressure and low-pressure turbocharger speed limits. It can be observed
that the control scheme is able to exploit the turbocharging architecture. First,
the high-pressure stage is used to quickly increase boost pressure. However, it is
only used as much such that the speed limit is not violated. Simultaneously, the
speed of the low-pressure stage is increased. Both stages are balanced such that
no overshoot is present, which is especially challenging as yboost = yboost,ref is
reached before the system goes to steady state. After reaching the setpoint, the
actuation as well as the turbocharger speeds are still changing, which shows
the advantage of the nonlinear predictive control.

In addition, Figure 9.9 shows the closed-loop results where the same boost
pressure reference step is applied for different engine speeds. The control
requirements are observed to be met for all engine speeds. Additionally, the
pressure ratios are illustrated for each case in the same figure. They show that
at all three engine speeds, the high-pressure stage is used for quick increase
in boost pressure. At mid engine speeds in stationary operation, the control
relies in a relatively similar fashion on the high- and on the low-pressure stage.
At high engine speeds, the boost pressure is realized almost completely by the
low-pressure stage. The control concept is able to account for the changeover
between the two stages such that the design goals of the two-stage turbocharging
are realized, i.e., based on fast dynamics with the high-pressure stage and high
power with the low-pressure stage.

9.6.2 In-Vehicle Testing on the Road

The experiments on the vehicle dynamometer give important insights to the
control system. As the process is however highly nonlinear, random reference
values and disturbance signals can have a drastic impact on the control
performance. For this reason, experimental testings on the road are inevitable

IN-VEHICLE EXPERIMENTAL RESULTS 247

1

1.5

2

2.5

p
bo

os
t /

ba
r

n
eng

 = 2500 min -1

Setpoint

Measurement

0

25

50

75

100

u
w

g
 /

%

HP

LP

0 1 2 3 4 5 6

t / s

0

50

100

150

200

n
T

C
 /

10
00

 m
in

-1

HP
LP

HP Limit
LP Limit

Figure 9.8: Vehicle dynamometer experiments: closed-loop control for a step in
the boost pressure reference signal at engine speed neng = 2500 min−1.

to demonstrate functionality. For the road testing, random profiles have been
driven on an automotive track. These real-world experiments have shown that
the developed control algorithm is able to have a high closed-loop performance,
in the entire operating range and for all drive profiles.

In Figure 9.10, an exemplary control result is shown where a vehicle acceleration
was tested starting from 80 km/h to 120 km/h. One can see that the reference
can be accurately tracked, despite the signal variations. A certain lag is present
between the reference and the system output, which cannot be overcome as it
results from the dead time of the system and the inertia of the turbochargers.
For better evaluation, the boost pressure output profile is plotted once more
but then shifted by the dead time of tD = 0.45 s. Just as in the case of
the vehicle dynamometer testings, one can see that the control uses the high-
pressure stage to quickly increase the boost pressure. It should be stressed that

248 TWO-STAGE TURBOCHARGED GASOLINE ENGINE

1

1.5

2

2.5

p
bo

os
t /

ba
r

n
eng

 = 2000 min -1

Sp
p

c
1

1.5

2

Π
c /

-

HP
LP

1

1.5

2

2.5

p
bo

os
t /

ba
r

n
eng

 = 2500 min -1

Sp
p

c 1

1.5

2

Π
c /

-

HP
LP

0 1 2 3 4

t / s

1

1.5

2

2.5

p
bo

os
t /

ba
r

n
eng

 = 3000 min -1

Sp
p

c

0 1 2 3 4

t / s

1

1.5

2
Π

c /
-

HP
LP

Figure 9.9: Vehicle dynamometer experiments: closed-loop control for a step in
the boost pressure reference signal for different engine speeds.

the high-pressure stage is only used as much, so that the limit values on the
turbocharger speed are taken into account, which intuitively corresponds to an
optimal control strategy. Additionally, note that this performance is realized
without using turbocharger speed sensors and only relying on the model (the
plotted profile corresponds to measurement values, which were only used for
validation purposes). The engaging and disengaging of the different stages
works even for the case of speed transient operation.

9.7 Conclusions and Outlook

Novel airpath concepts have been investigated for gasoline engines, in order
to reduce the fuel consumption. One promising approach is based on the
serial two-stage turbocharging architecture. However, this airpath concept

CONCLUSIONS AND OUTLOOK 249

1

1.5

2

2.5

p
bo

os
t /

ba
r

Setpoint
Measurement
Measurement shifted by deadtime

0

25

50

75

100

u
w

g
 /

%

HP
LP

0

50

100

150

200

n
T

C
 /

10
00

 m
in

-1

HP

LP

HP Limit

LP Limit

1

1.25

1.5

1.75

2

Π
c /

-

HP
LP

0 2 4 6 8

t / s

2500

2750

3000

3250

3500

n
en

g
 /

m
in

-1

Figure 9.10: Closed-loop experimental results with the vehicle on the road.

250 TWO-STAGE TURBOCHARGED GASOLINE ENGINE

exhibits strong nonlinear behaviour, while having high demands on the control
quality and including strict system requirements. For this purpose, a real-time
feasible NMPC scheme has been proposed, based on the RTI implementation in
the open-source ACADO code generation tool. The basis of the NMPC scheme
is a physically driven reduced-order state space model formulated as a set
of differential-algebraic equations. Simulative testings have been performed,
which show the advantage of NMPC over alternative approaches. Additionally,
the algorithm has been evaluated in a vehicle where the airpath concept is
implemented. These real-world experiments have been conducted on a vehicle
dynamometer and also on the road. The corresponding results show that the
control algorithm is able to fully exploit the multi-input characteristic of the
two-stage turbocharging. The high-pressure stage is used for quick pressure
increases, whereas the low-pressure stage is used for high mass flows.

Chapter 10

Conclusions and Outlook

In this thesis, we have proposed a variety of tailored algorithms for embedded
optimization, numerical simulation methods and corresponding sensitivity
propagation techniques in order to allow for real-time feasible solutions of
optimal control problems on embedded hardware.

Embedded optimization and simulation methods For this purpose, we
first introduced the general algorithmic techniques that are crucial for the
implementation of fast nonlinear model predictive control and estimation
schemes in Chapter 1. An important component in any direct optimal control
method consists of the integrator, which performs the numerical simulation
and corresponding sensitivity analysis for the system of differential equations
which describes the process of interest. An overview on explicit and implicit
integration schemes and sensitivity propagation techniques has been provided
in Chapter 2. This chapter discussed the efficient implementation of implicit
Runge-Kutta methods in more detail, e.g., when the Newton-type scheme reuses
the Jacobian factorization from the sensitivity computation. The use of a
collocation scheme with the continuous output feature has also been motivated
based on various optimal control applications. Numerical results based on
the ACADO code generated integrators show considerable speedups over general-
purpose implementations for the targeted real-time applications of optimal
control for small to medium-scale systems.

Symmetric Hessian propagation This work focused on Newton-type optimiza-
tion, more specifically based on sequential quadratic programming algorithms in

251

252 CONCLUSIONS AND OUTLOOK

the case of inequality constrained problems. For this purpose, first and higher
order derivatives are typically needed which can form a major computational
effort especially in the case of the numerical simulation of nonlinear system
dynamics. Chapter 3 therefore presented a novel symmetric Hessian propagation
technique, which allows one to maintain and exploit the symmetry of the Hessian
contributions within the propagation scheme. The algorithm has been presented
for the context of both a discrete and continuous-time sensitivity analysis. These
symmetric equations are additionally shown to allow for a memory efficient
three-sweep Hessian propagation, unlike the classical forward-backward scheme.
In addition to the reduced memory requirements, numerical experiments showed
a computational speedup factor of about 2.

Outlook: The applicability of the proposed symmetric Hessian propagation
scheme for the solution of large-scale optimal control problems, and its
corresponding advantages for such applications, could be further investigated.

Structure exploitation for dynamic systems When considering embedded
applications of optimal control for fast dynamic systems, the use of structure
exploiting algorithms can become crucial in order to satisfy the real-time
requirements. As motivated in Chapter 4, systems of differential equations and
the corresponding integration schemes often allow for the exploitation of linear
subsystems. Based on the proposed three-stage model structure, computational
speedup factors of about 10 were shown possible for real-world applications.
Instead of such a sequential definition of differential equations, one could also
have a more general set of interconnected subsystems. Distributed multiple
shooting, for example, allows one to treat such decomposable dynamic systems
in direct optimal control, based on a suitable parameterization of the coupling
variables. Chapter 5 presented a compression algorithm to efficiently exploit the
resulting coupling structure in the convex subproblem. Based on this technique,
the DMS approach has been illustrated to result in impressive speedups even
for a serial implementation.

Outlook: Tailored simulation methods can be developed for a general class of
decomposable dynamic systems, represented by a directed graph of (partially)
linear and nonlinear subsystems. Based on a modeling environment with
differentiation capabilities, one could implement an automatic detection of
exploitable structures as a powerful tool for the problem formulation. In doing
so, it is however important to preserve a certain level of transparency to the
user, on how particular modeling choices affect the computational cost.

Lifted collocation integrators The implementation of an implicit integration
method relies on an iterative scheme to solve the nonlinear equations as part of

CONCLUSIONS AND OUTLOOK 253

each integration step. When embedding such an integrator within a Newton-type
optimization algorithm, one ends up with an outer and inner level of iterations
which is typically not the most efficient situation from a computational point of
view. Chapter 6 therefore motivated the use of an implicit variant of the lifted
Newton method, which avoids such inner iterations and is applicable to any
implicit scheme. More specifically, the chapter presented a novel family of lifted
collocation integrators and showed their connection to direct collocation. An
extension to inexact Newton implementations has been proposed using either
an adjoint differentiation technique or an iterative sensitivity propagation. The
latter approach results in a novel optimization algorithm, which we referred
to as the inexact Newton scheme based on iterated sensitivities (INIS). The
open-source implementation of the lifted integrators within the ACADO code
generation tool showed a typical speedup factor of about 2 over the standard
method without lifting. When using one of the proposed inexact lifted collocation
schemes, a further speedup of up to factor 10 has been observed.

Outlook: These computational benefits would be greater for optimal control
methods, based on a relatively high order for the collocation polynomials. For
example, one could implement a lifted variant of the popular pseudospectral
method in which a high order polynomial is defined over the complete horizon.

Inexact Newton with iterated sensitivities (INIS) When using an inexact
Newton based optimization algorithm, it is well known how the corresponding
approximation of first or higher order derivative information affects the
asymptotic convergence rate. Chapter 7 however showed that the INIS scheme
offers an important advantage over standard inexact Newton methods, regarding
its local convergence properties based on the same Jacobian approximation.
Local convergence for the inner scheme is neither sufficient nor necessary
for asymptotic contraction of the standard adjoint based inexact Newton
implementation. In contrast, the INIS optimization method is shown to have
the exact same local asymptotic contraction rate as that of the Newton-type
scheme for the forward problem. More specifically, local convergence for the
Newton-type method on the forward problem is shown to be necessary, and
under mild conditions even sufficient for the asymptotic contraction of the
corresponding INIS-type optimization algorithm. In addition, an adjoint-free
variant of the INIS scheme has been proposed and it is shown to work very well
in practice even though the above connection was only proved for quadratic
programming problems in that case.

Outlook: We believe that the INIS scheme allows interesting applications in
the general domain of dynamic optimization, e.g., including problems with
partial differential equations. The main motivation throughout this thesis has

254 CONCLUSIONS AND OUTLOOK

been the use of inexact Jacobian factorizations for direct collocation. The INIS
optimization algorithm could however be used to efficiently implement any
direct transcription method.

Open-source ACADO software One practical contribution of this project is
that all presented algorithmic developments have been implemented either as
part of the open-source ACADO code generation package or as a proof of concept
using these tools. This was highlighted as part of Chapter 8, which presented
the automatic code generation features within the ACADO Toolkit.

Outlook: Based on gathered experience, the code generation methodology is
however not always necessary to obtain the desired numerical performance in
practice. It can be sufficient to perform code generation for those components
that form the computational bottleneck, which often correspond to internal
linear algebra routines. Alternatively, one could rely on platform specific
optimizations for the linear algebra kernels [121, 123] which can be used to build
up tailored and efficient algorithms for embedded simulation and optimization
methods. Following this approach, a new software project is currently under
development which would provide a rapid prototyping environment for embedded
optimal control applications based on small, medium or even large-scale dynamic
systems. Using clearly defined interfaces for the various algorithmic modules,
the maintainability, reusability and extensibility of the code implementations
can be secured.

Real-world NMPC applications We additionally discussed some of the real-
world control applications, which were made possible by using the open-source
ACADO code generation tool. Chapter 9 presented a particular optimal control
application in more detail, namely that of a two-stage turbocharged gasoline
engine. The contribution of this chapter was the development of a real-time
feasible nonlinear model predictive control scheme that allows one to meet the
tough demands of the two-stage turbocharging structure for gasoline engines.
The concept was implemented using an ACADO generated solver on the dSpace
MicroAutoBox hardware and the resulting system has been validated based on
in-vehicle experiments.

Outlook: As the two-stage gasoline turbocharging poses higher demands than
diesel or single-stage airpath systems, it can be expected that the presented
method would also be applicable for those systems. Regarding the use of
these algorithmic techniques on tailored embedded control hardware, there
is a potential for heterogeneous computing architectures, which can include
different technologies such as a field-programmable gate array (FPGA). The

CONCLUSIONS AND OUTLOOK 255

use of specialized processing units, for the different tasks in online algorithms
for dynamic optimization, forms a promising research direction to explore.

Outlook on “Numerical Simulation Methods for Embedded Optimization”
By using a continuation technique for parametric optimization in combination
with a shifting strategy to obtain an initial guess for the new optimal control
problem from the solution of the previous one, the resulting online algorithm can
typically stay within its region of local convergence. This thesis therefore omitted
a discussion on globalization strategies, even though the presented algorithmic
techniques can be extended to a more general optimization framework including
such global convergence guarantees. In addition, direct multiple shooting
typically profits from using solvers for differential equations with an efficient
step size and order selection. Within a real-time framework for embedded
applications, one however often implements multiple shooting using fixed step
integrators to result in a deterministic runtime and to satisfy the strict timing
requirements. Eventually, it becomes crucial to bridge this current gap between
online algorithms, which can be conceptually rather simple but computationally
efficient based on tailored techniques, and the state of the art in the field of
dynamic optimization and simulation methods. A possible route is the extension
of the lifted collocation integrators with variable step size and order selection
as well as with globalization strategies.

Bibliography

[1] ADIC. http://www.mcs.anl.gov/research/projects/adic/.

[2] CppAD. http://www.coin-or.org/CppAD.

[3] ACADO Toolkit. http://www.acadotoolkit.org, 2009–2016.

[4] HSL. A collection of Fortran codes for large scale scientific computation.
http://www.hsl.rl.ac.uk, 2011.

[5] ACADO Toolkit discussion. www.sourceforge.net/p/acado/discussion,
2012–2016.

[6] Albersmeyer, J. Adjoint-based algorithms and numerical methods for
sensitivity generation and optimization of large scale dynamic systems.
PhD thesis, University of Heidelberg, 2010.

[7] Albersmeyer, J., and Bock, H. Sensitivity Generation in an
Adaptive BDF-Method. In Modeling, Simulation and Optimization of
Complex Processes: Proceedings of the International Conference on High
Performance Scientific Computing, March 6-10, 2006, Hanoi, Vietnam
(2008), Springer, pp. 15–24.

[8] Albersmeyer, J., and Diehl, M. The lifted Newton method and its
application in optimization. SIAM Journal on Optimization 20, 3 (2010),
1655–1684.

[9] Albin, T., Frank, F., Ritter, D., Abel, D., Quirynen, R., and
Diehl, M. Nonlinear MPC for combustion engine control: A parameter
study for realizing real-time feasibility. In Proceedings of the IEEE Multi-
conference on Systems and Control (MSC) (2016), pp. 311–316.

[10] Albin, T., Ritter, D., Abel, D., Liberda, N., Quirynen, R., and
Diehl, M. Nonlinear MPC for a two-stage turbocharged gasoline engine

257

http://www.mcs.anl.gov/research/projects/adic/
http://www.coin-or.org/CppAD
http://www.hsl.rl.ac.uk

258 BIBLIOGRAPHY

airpath. In Proceedings of the IEEE Conference on Decision and Control
(CDC) (2015), pp. 849–856.

[11] Albin, T., Ritter, D., Liberda, N., Pischinger, S., and Abel,
D. Two-stage turbocharged gasoline engines: Experimental validation
of model-based control. 4th IFAC Workshop on Engine and Powertrain
Control, Simulation and Modeling (E-COSM) 48, 15 (2015), 124–131.

[12] Albin, T., Ritter, D., Quirynen, R., and Diehl, M. In-vehicle
realization of nonlinear MPC for gasoline two-stage turbocharging airpath
control. IEEE Transactions on Control Systems Technology (2016).
(submitted).

[13] Alessandri, A., Baglietto, M., Battistelli, G., and V.Zavala.
Advances in moving horizon estimation for nonlinear systems. 5681–5688.

[14] Alexander, R. Diagonally implicit Runge-Kutta methods for stiff
O.D.E.’s. SIAM Journal on Numerical Analysis 14, 6 (1977), 1006–1021.

[15] Alexe, M., and Sandu, A. Forward and adjoint sensitivity analysis
with continuous explicit Runge-Kutta schemes. Applied Mathematics and
Computation 208, 2 (2009), 328–346.

[16] Allgower, E. L., and Georg, K. Introduction to Numerical
Continuation Methods. Colorado State University Press, 1990.

[17] Allgöwer, F., Badgwell, T., Qin, J., Rawlings, J., and Wright,
S. Nonlinear Predictive Control and Moving Horizon Estimation – An
Introductory Overview. In Advances in Control, Highlights of ECC’99.
Springer, 1999, pp. 391–449.

[18] Amrit, R., Rawlings, J., and Angeli, D. Economic optimization
using model predictive control with a terminal cost. Annual Reviews in
Control 35, 2 (2011), 178–186.

[19] Andersson, J. A General-Purpose Software Framework for Dynamic
Optimization. PhD thesis, K.U. Leuven, October 2013.

[20] Andersson, J., Akesson, J., and Diehl, M. CasADi – a symbolic
package for automatic differentiation and optimal control. In Recent
Advances in Algorithmic Differentiation (2012), vol. 87 of Lecture Notes
in Computational Science and Engineering, Springer, pp. 297–307.

[21] Arnold, M., Burgermeister, B., and Eichberger, A. Linearly
implicit time integration methods in real-time applications: DAEs and
stiff ODEs. Multibody System Dynamics 17, 2 (2007), 99–117.

BIBLIOGRAPHY 259

[22] Ascher, U., and Petzold, L. Computer Methods for Ordinary
Differential Equations and Differential–Algebraic Equations. SIAM,
Philadelphia, 1998.

[23] Asprion, J. Optimal Control of Diesel Engines. PhD thesis, ETH Zurich,
2013.

[24] Axehill, D. Controlling the level of sparsity in MPC. Systems & Control
Letters 76 (2015), 1–7.

[25] Axehill, D., and Morari, M. An alternative use of the Riccati
recursion for efficient optimization. Systems & Control Letters 61, 1
(2012), 37–40.

[26] Bartels, S. Numerical Approximation of Partial Differential Equations.
Springer International Publishing, 2016.

[27] Bauer, I., Bock, H., and Schlöder, J. DAESOL – a BDF-code for
the numerical solution of differential algebraic equations. Internal report,
IWR, SFB 359, University of Heidelberg, 1999.

[28] Baumgarte, J. Stabilization of Constraints and Integrals of Motion
in Dynamical Systems. Computer Methods in Applied Mechanics and
Engineering 1, 1 (1972), 1–16.

[29] Bellman, R. Dynamic programming. Princeton University Press, 1957.

[30] Bemporad, A., Borrelli, F., and Morari, M. Model Predictive
Control Based on Linear Programming - The Explicit Solution. IEEE
Transactions on Automatic Control 47, 12 (2002), 1974–1985.

[31] Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. Robust
optimization. Princeton University Press, 2009.

[32] Bertsekas, D. Dynamic Programming and Optimal Control, 3rd ed.,
vol. 2. Athena Scientific, 2007.

[33] Bertsekas, D., and Shreve, S. Stochastic Optimal Control: The
Discrete Time Case. Athena Scientific, Belmont, MA, 1996.

[34] Betts, J. Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming, 2nd ed. SIAM, 2010.

[35] Bickart, T. A. An efficient solution process for implicit Runge-Kutta
methods. SIAM Journal on Numerical Analysis 14, 6 (1977), 1022–1027.

260 BIBLIOGRAPHY

[36] Biegler, L. Solution of dynamic optimization problems by successive
quadratic programming and orthogonal collocation. Computers and
Chemical Engineering 8, 3–4 (1984), 243–248.

[37] Biegler, L., Ghattas, O., Heinkenschloss, M., Keyes, D., and
van Bloemen Waanders (eds.), B. Real-Time PDE-Constrained
Optimization. Computational Science and Engineering. SIAM, 2007.

[38] Biegler, L., and Rawlings, J. Optimization approaches to nonlinear
model predictive control. In Proc. 4th International Conference on
Chemical Process Control - CPC IV. AIChE, 1991, pp. 543–571.

[39] Biegler, L. T. Nonlinear Programming. MOS-SIAM Series on
Optimization. SIAM, 2010.

[40] Bischof, C. H., and Bücker, H. M. Computing derivatives of computer
programs. In Modern Methods and Algorithms of Quantum Chemistry:
Proceedings, Second Edition, vol. 3 of NIC Series. NIC-Directors, Jülich,
2000, pp. 315–327.

[41] Blumenschein, J., Schwarzgruber, T., Schmied, R., Passenbrun-
ner, T. E., Waschl, H., and del Re, L. Approximate optimal control
of discrete I/O systems with C/GMRES. In Proceedings of the European
Control Conference (ECC) (July 2015), pp. 104–110.

[42] Bock, H. Numerical Solution of Nonlinear Multipoint Boundary
Value Problems with Applications to Optimal Control. Zeitschrift für
Angewandte Mathematik und Mechanik 58, 7 (1978), 407–454.

[43] Bock, H. Numerical treatment of inverse problems in chemical reaction
kinetics. In Modelling of Chemical Reaction Systems, K. Ebert, P. Deufl-
hard, and W. Jäger, Eds., vol. 18 of Springer Series in Chemical Physics.
Springer, Heidelberg, 1981, pp. 102–125.

[44] Bock, H. Randwertproblemmethoden zur Parameteridentifizierung in
Systemen nichtlinearer Differentialgleichungen, vol. 183 of Bonner Mathe-
matische Schriften. Universität Bonn, Bonn, 1987.

[45] Bock, H., Egartner, W., Kappis, W., and Schulz, V. Practical
Shape Optimization for Turbine and Compressor Blades by the Use of
PRSQP Methods. Optimization and Engineering 3, 4 (2002), 395–414.

[46] Bock, H., Eich, E., and Schlöder, J. Numerical Solution of
Constrained Least Squares Boundary Value Problems in Differential-
Algebraic Equations. In Numerical Treatment of Differential Equations,
K. Strehmel, Ed. Teubner, Leipzig, 1988.

BIBLIOGRAPHY 261

[47] Bock, H., and Schlöder, J. Numerical solution of retarded differential
equations with state-dependent time lags. Zeitschrift für Angewandte
Mathematik und Mechanik 61 (1981), 269–271.

[48] Bock, H. G. Recent advances in parameter identification techniques for
ODE. In Numerical Treatment of Inverse Problems in Differential and
Integral Equations. Birkhäuser, 1983, pp. 95–121.

[49] Bock, H. G., Diehl, M., Kostina, E. A., and Schlöder,
J. P. Constrained optimal feedback control of systems governed by
large differential algebraic equations. In Real-Time and Online PDE-
Constrained Optimization. SIAM, 2007, pp. 3–22.

[50] Bock, H. G., DIehl, M., Leineweber, D. B., and Schlöder, J. P.
A direct multiple shooting method for real-time optimization of nonlinear
DAE processes. In Nonlinear Predictive Control (Basel Boston Berlin,
2000), F. Allgöwer and A. Zheng, Eds., vol. 26 of Progress in Systems
Theory, Birkhäuser, pp. 246–267.

[51] Bock, H. G., and Plitt, K. J. A multiple shooting algorithm for
direct solution of optimal control problems. In Proceedings of the IFAC
World Congress (1984), Pergamon Press, pp. 242–247.

[52] Boggs, P. T., and Tolle, J. W. Sequential quadratic programming.
Acta Numerica (1995), 1–51.

[53] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
Distributed optimization and statistical learning via the alternating
direction method of multipliers. Foundations and Trends in Machine
Learning 3, 1 (2011), 1–122.

[54] Boyd, S., and Vandenberghe, L. Convex Optimization. University
Press, Cambridge, 2004.

[55] Brandt-Pollmann, U. Numerical solution of optimal control problems
with implicitly defined discontinuities with applications in engineering.
PhD thesis, IWR, University of Heidelberg, 2004.

[56] Brenan, K. E., Campbell, S. L., and Petzold, L. R. Numerical
Solution of Initial-Value Problems in Differential-Algebraic Equations.
Society for Industrial and Applied Mathematics, 1987.

[57] Broyden, C. G. Quasi-Newton methods and their application to function
minimization. Maths. Comp. 21 (1967), 368–381.

262 BIBLIOGRAPHY

[58] Bruyninckx, H. Open robot control software: the OROCOS project.
In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on (2001), vol. 3, IEEE, pp. 2523–2528.

[59] Bryson, A., and Ho, Y.-C. Applied Optimal Control. Wiley, New York,
1975.

[60] Buchner, F., Wedowski, S., Sehr, A., Glueck, S., and Schernus,
C. In-vehicle optimization of 2-stage turbocharging for gasoline engines.
International Journal of Automotive Engineering 2, 4 (2011), 143–148.

[61] Büskens, C., and Maurer, H. SQP-methods for solving optimal
control problems with control and state constraints: adjoint variables,
sensitivity analysis and real-time control. Journal of Computational and
Applied Mathematics 120, 1–2 (2000), 85–108.

[62] Butcher, J. On the implementation of implicit Runge-Kutta methods.
BIT Numerical Mathematics 16, 3 (1976), 237–240.

[63] Butcher, J. C. Numerical Methods for Ordinary Differential Equations.
John Wiley & Sons, Ltd, 2003.

[64] Cameron, I. T. Solution of differential-algebraic systems using diagonally
implicit Runge-Kutta methods. IMA Journal of Numerical Analysis 3
(1983), 273–289.

[65] Cao, Y., Li, S., and Petzold, L. Adjoint sensitivity analysis for
differential-algebraic equations: algorithms and software. Journal of
Computational and Applied Mathematics 149 (2002), 171–191.

[66] Cao, Y., Li, S., Petzold, L., and Serban, R. Adjoint Sensitivity
Analysis for Differential-Algebraic Equations: The Adjoint DAE System
and its Numerical Solution. SIAM Journal on Scientific Computing 24, 3
(2003), 1076–1089.

[67] Caracotsios, M., and Stewart, W. Sensitivity analysis of initial
value problems with mixed ODEs and algebraic equations. Computers
and Chemical Engineering. 9 (1985), 359–365.

[68] Chen, H., and Allgöwer, F. A quasi-infinite horizon nonlinear model
predictive control scheme with guaranteed stability. Automatica 34, 10
(1998), 1205–1218.

[69] Coddington, E., and Levinson, N. Theory of Ordinary Differential
Equations. McGraw-Hill, New York, 1955.

BIBLIOGRAPHY 263

[70] Cong, N. H., and Xuan, L. N. Parallel-Iterated RK-type PC Methods
with Continuous Output Formulas. International Journal of Computer
Mathematics 80, 8 (2003), 1025–1035.

[71] Cooper, G., and Vignesvaran, R. Some schemes for the
implementation of implicit Runge-Kutta methods. Journal of
Computational and Applied Mathematics 45, 1–2 (1993), 213–225.

[72] Crouch, P., and Grossman, R. Numerical Integration of Ordinary
Differential Equations on Manifolds. Journal of Nonlinear Science 3, 1
(1993), 1–33.

[73] Curtis, F. E., Johnson, T. C., Robinson, D. P., and Wächter,
A. An inexact sequential quadratic optimization algorithm for nonlinear
optimization. SIAM Journal on Optimization 24, 3 (2014), 1041–1074.

[74] Curtis, F. E., Nocedal, J., and Wächter, A. A matrix-free
algorithm for equality constrained optimization problems with rank-
deficient Jacobians. SIAM Journal on Optimization 20, 3 (Sept. 2009),
1224–1249.

[75] Dahlquist, G. Convergence and stability in numerical integration of
ordinary differential equations. Math. Scand. 4 (1956), 33–53.

[76] Debrouwere, F., Vukov, M., Quirynen, R., Diehl, M., and
Swevers, J. Experimental validation of combined nonlinear optimal
control and estimation of an overhead crane. In Proceedings of the IFAC
World Congress (2014), pp. 9617–9622.

[77] Dembo, R., Eisenstat, S., and Steihaug, T. Inexact Newton methods.
SIAM Journal of Numerical Analysis 19, 2 (April 1982), 400–408.

[78] Demmel, J., Higham, N., and Schreiber, R. Block LU Factorization.
IMA Preprint Series, 929 (1992).

[79] Dennis, J. E. On Newton-like methods. Numerische Mathematik 11, 4
(1968), 324–330.

[80] Dennis, J. E., and Moré, J. J. Quasi-Newton Methods, Motivation
and Theory. SIAM Review 19, 1 (January 1977), 46–89.

[81] Deuflhard, P. Order and stepsize control in extrapolation methods.
Numerische Mathematik 41 (1983), 399–422.

[82] Deuflhard, P. Newton methods for nonlinear problems: affine
invariance and adaptive algorithms, vol. 35. Springer, 2011.

264 BIBLIOGRAPHY

[83] Deuflhard, P., Hairer, E., and Zugck, J. One step and
extrapolation methods for differential-algebraic systems. Numerische
Mathematik 51 (1987), 501–516.

[84] Dickinson, P., Glover, K., Collings, N., Yamashita, Y., Yashiro,
Y., and Hoshi, T. Real-time control of a two-stage serial VGT diesel
engine using MPC. 4th IFAC Workshop on Engine and Powertrain Control,
Simulation and Modeling (E-COSM) 48, 15 (2015), 117–123.

[85] Diehl, M. Airborne wind energy: Basic concepts and physical
foundations. In Airborne Wind Energy. Springer Berlin Heidelberg, 2013,
pp. 3–22.

[86] Diehl, M. Lecture Notes on Numerical Optimization. 2016. (Available
online: http://cdn.syscop.de/publications/Diehl2016.pdf).

[87] Diehl, M., Amrit, R., and Rawlings, J. B. A Lyapunov function
for economic optimizing model predictive control. IEEE Transactions on
Automatic Control 56, 3 (March 2011), 703–707.

[88] Diehl, M., Bock, H. G., Schlöder, J., Findeisen, R., Nagy,
Z., and Allgöwer, F. Real-time optimization and nonlinear model
predictive control of processes governed by differential-algebraic equations.
Journal of Process Control 12, 4 (2002), 577–585.

[89] Diehl, M., Bock, H. G., and Schlöder, J. P. A real-time iteration
scheme for nonlinear optimization in optimal feedback control. SIAM
Journal on Control and Optimization 43, 5 (2005), 1714–1736.

[90] Diehl, M., Ferreau, H. J., and Haverbeke, N. Efficient numerical
methods for nonlinear MPC and moving horizon estimation. In Nonlinear
model predictive control, L. Magni, M. Raimondo, and F. Allgöwer, Eds.,
vol. 384 of Lecture Notes in Control and Information Sciences. Springer,
2009, pp. 391–417.

[91] Diehl, M., Findeisen, R., Allgöwer, F., Bock, H. G., and
Schlöder, J. P. Nominal stability of the real-time iteration scheme for
nonlinear model predictive control. IEE Proc.-Control Theory Appl. 152,
3 (2005), 296–308.

[92] Diehl, M., Leineweber, D., and Schäfer, A. MUSCOD-II Users’
Manual. IWR-Preprint 2001-25, University of Heidelberg, 2001.

[93] Diehl, M., Magni, L., and Nicolao, G. D. Efficient NMPC of
unstable periodic systems using approximate infinite horizon closed loop
costing. Annual Reviews in Control 28, 1 (2004), 37–45.

BIBLIOGRAPHY 265

[94] Diehl, M., Walther, A., Bock, H. G., and Kostina, E. An adjoint-
based SQP algorithm with quasi-Newton Jacobian updates for inequality
constrained optimization. Optimization Methods and Software 25, 4 (2010),
531–552.

[95] Domahidi, A., Chu, E., and Boyd, S. ECOS: An SOCP solver for
embedded systems. In Proceedings of the European Control Conference
(ECC) (2013), IEEE, pp. 3071–3076.

[96] Domahidi, A., and Perez, J. FORCES professional. embotech GmbH
(http://embotech.com/FORCES-Pro), July 2014.

[97] Domahidi, A., Zgraggen, A., Zeilinger, M., Morari, M., and
Jones, C. Efficient Interior Point Methods for Multistage Problems
Arising in Receding Horizon Control. In Proceedings of the IEEE
Conference on Decision and Control (CDC) (Maui, HI, USA, Dec. 2012),
pp. 668–674.

[98] Driver, R. D. Ordinary and Delay Differential Equations, vol. 20.
Springer New York, 1977.

[99] Eich, E. Numerische Behandlung semi-expliziter differentiell-
algebraischer Gleichungssysteme vom Index I mit BDF Verfahren. Master’s
thesis, Universität Bonn, Bonn, 1987.

[100] Emekli, M. E., and Güvenç, B. A. Explicit MIMO model predictive
boost pressure control of a two-stage turbocharged diesel engine. IEEE
Transactions on Control Systems Technology (2016).

[101] Enright, W. H., Higham, D. J., Owren, B., and Sharp, P. W. A
survey of the explicit Runge-Kutta method. Tech. rep., 1995.

[102] Enright, W. H., Jackson, K. R., Nørsett, S. P., and Thomsen,
P. G. Interpolants for Runge-Kutta formulas. ACM Trans. Math. Softw.
12 (1986), 193–218.

[103] Eriksson, L., and Nielsen, L. Modeling and control of engines and
drivelines. Wiley (2014).

[104] Fabien, B. dsoa: The implementation of a dynamic system optimization
algorithm. Optimal Control Applications and Methods 31 (2010), 231–247.

[105] Falcone, P., Borrelli, F., Tseng, H. E., Asgari, J., and Hrovat,
D. Integrated braking and steering model predictive control approach in
autonomous vehicles. In Advances in Automotive Control (2007), vol. 5,
pp. 273–278.

http://embotech.com/FORCES-Pro

266 BIBLIOGRAPHY

[106] Feehery, W. F., Tolsma, J. E., and Barton, P. I. Efficient
sensitivity analysis of large-scale differential-algebraic systems. Applied
Numerical Mathematics 25 (1997), 41–54.

[107] Ferreau, H., Kraus, T., Vukov, M., Saeys, W., and Diehl, M.
High-speed moving horizon estimation based on automatic code generation.
In Proceedings of the IEEE Conference on Decision and Control (CDC)
(2012), pp. 687–692.

[108] Ferreau, H. J. Model Predictive Control Algorithms for Applications
with Millisecond Timescales. PhD thesis, K.U. Leuven, 2011.

[109] Ferreau, H. J., Kirches, C., Potschka, A., Bock, H. G., and
Diehl, M. qpOASES: a parametric active-set algorithm for quadratic
programming. Mathematical Programming Computation 6, 4 (2014),
327–363.

[110] Ferreau, H. J., Ortner, P., Langthaler, P., del Re, L., and
Diehl, M. Predictive control of a real-world diesel engine using an
extended online active set strategy. Annual Reviews in Control 31, 2
(2007), 293–301.

[111] Findeisen, R., and Allgöwer, F. Computational Delay in Nonlinear
Model Predictive Control. Proc. Int. Symp. Adv. Control of Chemical
Processes, ADCHEM, 2003.

[112] Fletcher, R. Practical Methods of Optimization, 2nd ed. Wiley,
Chichester, 1987.

[113] Floudas, C., Akrotirianakis, I., Caratzoulas, S., Meyer, C.,
and Kallrath, J. Global optimization in the 21st century: Advances and
challenges. Computers and Chemical Engineering 29, 6 (2005), 1185–1202.

[114] Franklin, G., Powell, J., and Emami-Naeini, A. Feedback control
of dynamic systems, 6 ed. Prentice Hall, 2009.

[115] Frasch, J. Parallel Algorithms for Optimization of Dynamic Systems in
Real-Time. PhD thesis, KU Leuven and U Magdeburg, 2014.

[116] Frasch, J. V., Gray, A. J., Zanon, M., Ferreau, H. J., Sager,
S., Borrelli, F., and Diehl, M. An auto-generated nonlinear
MPC algorithm for real-time obstacle avoidance of ground vehicles. In
Proceedings of the European Control Conference (ECC) (2013), pp. 4136–
4141.

BIBLIOGRAPHY 267

[117] Frasch, J. V., Sager, S., and Diehl, M. A parallel quadratic
programming method for dynamic optimization problems. Mathematical
Programming Computations 7, 3 (2015), 289–329.

[118] Frasch, J. V., Wirsching, L., Sager, S., and Bock, H. G. Mixed-
Level Iteration Schemes for Nonlinear Model Predictive Control. In
Proceedings of the IFAC Conference on Nonlinear Model Predictive Control
(2012), vol. 45, pp. 138–144.

[119] Frehse, J. Existence of optimal controls I. Operations Research Verfahren
31 (1979), 213–225.

[120] Freund, R., and Jarre, F. A sensitivity analysis and a convergence
result for a sequential semidefinite programming method. Tech. rep., Bell
Laboratories, Murray Hill, 2003.

[121] Frison, G. Algorithms and Methods for High-Performance Model
Predictive Control. PhD thesis, Technical University of Denmark (DTU),
2015.

[122] Frison, G., and Jørgensen, J. B. A fast condensing method for
solution of linear-quadratic control problems. In Proceedings of the IEEE
Conference on Decision and Control (CDC) (2013), pp. 7715–7720.

[123] Frison, G., Sorensen, H. B., Dammann, B., and Jørgensen, J. B.
High-performance small-scale solvers for linear model predictive control.
In Proceedings of the European Control Conference (ECC) (June 2014),
pp. 128–133.

[124] Fruzzetti, K., Palazoglu, A., and McDonald, K. Nonlinear model
predictive control using Hammerstein models. Journal of Process Control
7, 1 (1997), 31–41.

[125] Gao, Y., Gray, A., Frasch, J. V., Lin, T., Tseng, H. E.,
Hedrick, J., and Borrelli, F. Spatial predictive control for agile
semi-autonomous ground vehicles. In Proceedings of the 11th International
Symposium on Advanced Vehicle Control (2012).

[126] Garg, D., Patterson, M. A., Hager, W. W., Rao, A. V., Benson,
D. A., and Huntington, G. T. A unified framework for the numerical
solution of optimal control problems using pseudospectral methods.
Automatica 46, 11 (2010), 1843–1851.

[127] Geebelen, K. Design and Operation of Airborne Wind Energy Systems.
PhD thesis, K.U. Leuven, 2015.

268 BIBLIOGRAPHY

[128] Geebelen, K., Ahmad, H., Vukov, M., Gros, S., Swevers, J.,
and Diehl, M. An experimental test set-up for launch/recovery of an
airborne wind energy (AWE) system. In Proceedings of the American
Control Conference (ACC) (2012), pp. 4405–4410.

[129] Geebelen, K., Vukov, M., Wagner, A., Ahmad, H., Zanon,
M., Gros, S., Vandepitte, D., Swevers, J., and Diehl, M. An
experimental test setup for advanced estimation and control of an airborne
wind energy systems. In Airborne Wind Energy, U. Ahrens, M. Diehl,
and R. Schmehl, Eds. Springer, 2013, pp. 459–471.

[130] Geebelen, K., Wagner, A., Gros, S., Swevers, J., and Diehl, M.
Moving horizon estimation with a Huber penalty function for robust pose
estimation of tethered airplanes. In Proceedings of the American Control
Conference (ACC) (2013), pp. 6169–6174.

[131] Gerdts, M. Optimal Control of ODEs and DAEs. Berlin, Boston: De
Gruyter, 2011.

[132] Gertz, E. M., and Wright, S. J. Object-oriented software for
quadratic programming. ACM Transactions on Mathematical Software
29, 1 (2003), 58–81.

[133] Gill, P., Murray, W., and Saunders, M. SNOPT: An SQP
Algorithm for Large-Scale Constrained Optimization. SIAM Review 47, 1
(2005), 99–131.

[134] Gill, P. E., and Robinson, D. P. A primal-dual augmented Lagrangian.
Computational Optimization and Applications 51, 1 (2012), 1–25.

[135] Giselsson, P. Improved fast dual gradient methods for embedded model
predictive control. In Proceedings of the 2014 IFAC World Congress
(2014), vol. 47, pp. 2303–2309.

[136] Glueck, S. Charging concepts for a two-stage turbocharging gasoline
engine. PhD Thesis RWTH Aachen University (2013).

[137] Golub, G., and Loan, C. Matrix Computations, 3rd ed. Johns Hopkins
University Press, Baltimore, 1996.

[138] González-Pinto, S., Montijano, J. I., and Rández, L. Iterative
schemes for three-stage implicit Runge-Kutta methods. Appl. Numer.
Math. 17, 4 (Aug. 1995), 363–382.

[139] González-Pinto, S., Pérez-Rodríguez, S., and Montijano, J. I.
Implementation of high-order implicit Runge-Kutta methods. Computers
& Mathematics with Applications 41, 7-8 (2001), 1009–1024.

BIBLIOGRAPHY 269

[140] Gower, R. M., and Mello, M. P. A new framework for the
computation of hessians. Optimization Methods and Software 27, 2 (2012),
251–273.

[141] Griewank, A. Evaluating Derivatives, Principles and Techniques of
Algorithmic Differentiation. No. 19 in Frontiers in Appl. Math. SIAM,
Philadelphia, 2000.

[142] Griewank, A., Juedes, D., and Utke, J. Algorithm 755: ADOL-C: A
package for the automatic differentiation of algorithms written in C/C++.
ACM Trans. Math. Softw. 22, 2 (June 1996), 131–167.

[143] Griewank, A., and Walther, A. On Constrained Optimization by
Adjoint based quasi-Newton Methods. Optimization Methods and Software
17 (2002), 869–889.

[144] Gros, S., and Diehl, M. NMPC based on Huber penalty functions
to handle large deviations of quadrature states. In Proceedings of the
American Control Conference (ACC) (2013), pp. 3159–3164.

[145] Gros, S., Zanon, M., and Diehl, M. Control of airborne wind energy
systems based on nonlinear model predictive control & moving horizon
estimation. In Proceedings of the European Control Conference (ECC)
(2013), pp. 1017–1022.

[146] Gros, S., Zanon, M., and Diehl, M. Baumgarte stabilisation over the
SO(3) rotation group for control. In Proceedings of the IEEE Conference
on Decision and Control (CDC) (2015), pp. 620–625.

[147] Gros, S., Zanon, M., Quirynen, R., Bemporad, A., and Diehl,
M. From linear to nonlinear MPC: bridging the gap via the real-time
iteration. International Journal of Control (2016).

[148] Gros, S., Zanon, M., Vukov, M., and Diehl, M. Nonlinear MPC
and MHE for Mechanical Multi-Body Systems with Application to Fast
Tethered Airplanes. In Proceedings of the 4th IFAC Nonlinear Model
Predictive Control Conference, Noordwijkerhout, The Netherlands (2012),
pp. 86–93.

[149] Grüne, L. NMPC Without Terminal Constraints. In Proceedings of the
IFAC Conference on Nonlinear Model Predictive Control 2012 (2012).

[150] Grüne, L. Economic receding horizon control without terminal
constraints. Automatica 49 (2013), 725–734.

[151] Grüne, L., and Pannek, J. Nonlinear Model Predictive Control.
Springer, London, 2011.

270 BIBLIOGRAPHY

[152] Guddat, J., Vasquez, F. G., and Jongen, H. Parametric
Optimization: Singularities, Pathfollowing and Jumps. Teubner, Stuttgart,
1990.

[153] Guzzella, L., and Onder, C. Introduction to modelling and control
of internal combustion engine systems. Springer (2004).

[154] Hager, W. W. Rates of convergence for discrete approximations to
unconstrained control problems. SIAM Journal on Numerical Analysis
13, 4 (1976), 449–472.

[155] Hager, W. W. Runge-Kutta methods in optimal control and the
transformed adjoint system. Numerische Mathematik 87, 2 (2000), 247–
282.

[156] Hairer, E., Lubich, C., and Wanner, G. Geometric Numerical
Integration: Structure-Preserving Algorithms for Ordinary Differential
Equations. Springer, 2006.

[157] Hairer, E., Nørsett, S., and Wanner, G. Solving Ordinary
Differential Equations I, 2nd ed. Springer Series in Computational
Mathematics. Springer, Berlin, 1993.

[158] Hairer, E., and Wanner, G. Solving Ordinary Differential Equations
II – Stiff and Differential-Algebraic Problems, 2nd ed. Springer, Berlin
Heidelberg, 1991.

[159] Hannemann-Tamás, R., and Imsland, L. S. Full algorithmic
differentiation of a rosenbrock-type method for direct single shooting.
In European Control Conference, ECC 2014, Strasbourg, France, June
24-27, 2014 (2014), pp. 1242–1248.

[160] Hargraves, C., and Paris, S. Direct trajectory optimization using
nonlinear programming and collocation. AIAA J. Guidance 10, 4 (1987),
338–342.

[161] Haseltine, E., and Rawlings, J. Critical Evaluation of Extended
Kalman Filtering and Moving-Horizon Estimation. Industrial and
Engineering Chemistry Research 44 (2005), 2451–2460.

[162] Heinkenschloss, M., and Vicente, L. Analysis of Inexact Trust-
Region SQP Algorithms. SIAM Journal on Optimization 12, 2 (2001),
283–302.

[163] Herceg, M., Kvasnica, M., Jones, C., and Morari, M. Multi-
Parametric Toolbox 3.0. In Proc. of the European Control Conference

BIBLIOGRAPHY 271

(Zürich, Switzerland, July 17–19 2013), pp. 502–510. http://control.
ee.ethz.ch/~mpt.

[164] Herceg, M., Raff, T., Findeisen, R., and Allgower, F. Nonlinear
model predictive control of a turbocharged diesel engine. In 2006
IEEE Conference on Computer Aided Control System Design, 2006
IEEE International Conference on Control Applications, 2006 IEEE
International Symposium on Intelligent Control (2006), IEEE, pp. 2766–
2771.

[165] Hettich, R., and Jongen, H. Semi-infinite programming: Conditions
of optimality and applications, vol. 7. Springer Berlin Heidelberg, 1978.

[166] Hindmarsh, A., Brown, P., Grant, K., Lee, S., Serban, R.,
Shumaker, D., and Woodward, C. SUNDIALS: Suite of Nonlinear
and Differential/Algebraic Equation Solvers. ACM Transactions on
Mathematical Software 31, 3 (2005), 363–396.

[167] Hinze, M., Pinnau, R., Ulbrich, M., and Ulbrich, S. Optimization
with PDE constraints. Springer, 2009.

[168] Hochbruck, M., and Ostermann, A. Exponential integrators. Acta
Numerica 19 (2010), 209–286.

[169] Hochbruck, M., Ostermann, A., and Schweitzer, J. Exponential
rosenbrock-type methods. SIAM Journal of Numerical Analysis 47, 1
(2009), 786–803.

[170] Hoffmann, G., Waslander, H. H. S., and Tomlin, C. Quadrotor
Helicopter Flight Dynamics and Control: Theory and Experiment. In
AIAA Guidance, Navigation and Control Conference and Exhibit (2007).

[171] Horn, M. K. Fourth- and fifth-order, scaled Runge-Kutta algorithms
for treating dense output. SIAM Journal on Numerical Analysis 20, 3
(1983), 558–568.

[172] Hours, J.-H., and Jones, C. N. A parametric nonconvex decomposition
algorithm for real-time and distributed NMPC. IEEE Transactions on
Automatic Control 61, 2 (2014), 287–302.

[173] Houska, B. Robust Optimization of Dynamic Systems. PhD thesis,
Katholieke Universiteit Leuven, 2011. (ISBN: 978-94-6018-394-2).

[174] Houska, B., and Chachuat, B. Branch-and-lift algorithm for
deterministic global optimization in nonlinear optimal control. Journal of
Optimization Theory and Applications 162, 1 (2014), 208–248.

http://control.ee.ethz.ch/~mpt
http://control.ee.ethz.ch/~mpt

272 BIBLIOGRAPHY

[175] Houska, B., and Diehl, M. A quadratically convergent inexact SQP
method for optimal control of differential algebraic equations. Optimal
Control Applications and Methods 34, 4 (2013), 396–414.

[176] Houska, B., Ferreau, H. J., and Diehl, M. ACADO toolkit – an
open source framework for automatic control and dynamic optimization.
Optimal Control Applications and Methods 32, 3 (2011), 298–312.

[177] Houska, B., Ferreau, H. J., and Diehl, M. An auto-generated
real-time iteration algorithm for nonlinear MPC in the microsecond range.
Automatica 47, 10 (2011), 2279–2285.

[178] Houska, B., Frasch, J. V., and Diehl, M. An augmented Lagrangian
based algorithm for distributed non-convex optimization. SIAM Journal
on Optimization 26, 2 (2016), 1101–1127.

[179] Huang, M., Nakada, H., Butts, K., and Kolmanovsky,
I. Nonlinear model predictive control of a diesel engine air path:
A comparison of constraint handling and computational strategies.
Proceedings of the IFAC Conference on Nonlinear Model Predictive Control
(NMPC) 48, 23 (2015), 372–379.

[180] Huber, P. J. Robust Statistics. Wiley, 1981.

[181] Jaeger, H., and Sachs, E. Global convergence of inexact reduced SQP
methods. Optimization Methods and Software 7, 2 (1997), 83–110.

[182] Jerez, J. L., Goulart, P. J., Richter, S., Constantinides, G. A.,
Kerrigan, E. C., and Morari, M. Embedded online optimization
for model predictive control at megahertz rates. IEEE Transactions on
Automatic Control 59, 12 (Dec 2014), 3238–3251.

[183] Jones, C., and Morari, M. Polytopic approximation of explicit model
predictive controllers. IEEE Transactions on Automatic Control 55, 11
(2010), 2542–2553.

[184] Joshi, A. Elements of Group Theory for Physicists. New Age
International Publishers, 1997.

[185] Kalmari, J., Backman, J., and Visala, A. A toolkit for nonlinear
model predictive control using gradient projection and code generation.
Control Engineering Practice 39 (2015), 56–66.

[186] Kang, J., Cao, Y., Word, D. P., and Laird, C. D. An interior-point
method for efficient solution of block-structured NLP problems using
an implicit Schur-complement decomposition. Computers & Chemical
Engineering 71 (2014), 563–573.

BIBLIOGRAPHY 273

[187] Khalil, H. Nonlinear Systems, second ed. Prentice Hall, Upper Saddle
River, NJ, 1996.

[188] Kirches, C. A Numerical Method for Nonlinear Robust Optimal Control
with Implicit Discontinuities and an Application to Powertrain Oscillations.
Diploma thesis, University of Heidelberg, October 2006.

[189] Kirches, C., Bock, H., Schlöder, J., and Sager, S. Block
structured quadratic programming for the direct multiple shooting method
for optimal control. Optimization Methods and Software 26 (April 2010),
239–257.

[190] Kirches, C., Wirsching, L., Sager, S., and Bock, H. Efficient
numerics for nonlinear model predictive control. In Recent Advances in
Optimization and its Applications in Engineering. Springer, 2010, pp. 339–
357.

[191] Kotman, P., Bitzer, M., and Kugi, A. Flatness-based feedforward
control of a two-stage turbocharged diesel air system with EGR. In
2010 IEEE international conference on control applications (2010), IEEE,
pp. 979–984.

[192] Kouzoupis, D., Quirynen, R., Frasch, J. V., and Diehl, M. Block
condensing for fast nonlinear MPC with the dual Newton strategy. In
Proceedings of the IFAC Conference on Nonlinear Model Predictive Control
(NMPC) (2015), vol. 48, pp. 26–31.

[193] Kouzoupis, D., Quirynen, R., Girrbach, F., and Diehl, M.
An efficient SQP algorithm for moving horizon estimation with Huber
penalties and multi-rate measurements. In Proceedings of the IEEE
Multi-conference on Systems and Control (MSC) (2016), pp. 1482–1487.

[194] Kouzoupis, D., Quirynen, R., Houska, B., and Diehl, M. A block
based ALADIN scheme for highly parallelizable direct optimal control. In
Proceedings of the American Control Conference (ACC) (2016), pp. 1124–
1129.

[195] Kozma, A., Andersson, J., Savorgnan, C., and Diehl, M.
Distributed multiple shooting for optimal control of large interconnected
systems. In Proceedings of the International Symposium on Advanced
Control of Chemical Processes (2012), vol. 45, pp. 143–147.

[196] Kozma, A., Conte, C., and Diehl, M. Benchmarking large-scale
distributed convex quadratic programming algorithms. Optimization
Methods & Software 30, 1 (2015), 191–214.

274 BIBLIOGRAPHY

[197] Kraus, T. Real-Time State And Parameter Estimation for NMPC-
Based Feedback Control With Application To The Tennessee Eastman
Benchmark Process. Master’s thesis, University of Heidelberg, 2007.

[198] Kraus, T., Ferreau, H. J., Kayacan, E., Ramon, H.,
Baerdemaeker, J. D., Diehl, M., and Saeys, W. Moving horizon
estimation and nonlinear model predictive control for autonomous
agricultural vehicles. Computers and Electronics in Agriculture 98
(October 2013), 25–33.

[199] Kristensen, M., Jørgensen, J., Thomsen, P., and Jørgensen, S.
An ESDIRK method with sensitivity analysis capabilities. Computers
and Chemical Engineering 28 (2004), 2695–2707.

[200] Kühl, P., Diehl, M., Kraus, T., Schlöder, J. P., and Bock, H. G.
A real-time algorithm for moving horizon state and parameter estimation.
Computers and Chemical Engineering 35, 1 (2011), 71–83.

[201] Kumar, G. P., Sastry, I. V. K. S., and Cidambaram, M. Periodic
operation of a bioreactor with input multiplicities. The Canadian Journal
of Chemical Engineering 71 (1993), 766–770.

[202] Kvasnica, M., Rauova, I., and Miroslav, F. Automatic code
generation for real-time implementation of model predictive control. In
Proceedings of the IEEE International Symposium on Computer-Aided
Control System Design, Yokohama, Japan (2010), pp. 993–998.

[203] Lambert, J. D. Numerical Methods for Ordinary Differential Systems:
The Initial Value Problem. John Wiley & Sons, Inc., New York, NY, USA,
1991.

[204] Lebiedz, D., Skanda, D., and Fein, M. Automatic Complexity
Analysis and Model Reduction of Nonlinear Biochemical Systems. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 123–140.

[205] Lee, T., McClamroch, N. H., and Leok, M. A Lie group variational
integrator for the attitude dynamics of a rigid body with application
to the 3D pendulum. In Proceedings of the 2005 IEEE Conference on
Control Applications (2005), pp. 962–967.

[206] Leibfritz, F., and Sachs, E. W. Inexact SQP interior point methods
and large scale optimal control problems. SIAM Journal on Control and
Optimization 38, 1 (2006), 272–293.

[207] Leimkuhler, B., and Reich, S. Simulating Hamiltonian Dynamics.
Cambridge University Press, 2005.

BIBLIOGRAPHY 275

[208] Leineweber, D. Efficient reduced SQP methods for the optimization
of chemical processes described by large sparse DAE models, vol. 613
of Fortschritt-Berichte VDI Reihe 3, Verfahrenstechnik. VDI Verlag,
Düsseldorf, 1999.

[209] Leineweber, D., Bauer, I., Schäfer, A., Bock, H., and Schlöder,
J. An Efficient Multiple Shooting Based Reduced SQP Strategy for Large-
Scale Dynamic Process Optimization (Parts I and II). Computers and
Chemical Engineering 27 (2003), 157–174.

[210] Li, S., Petzold, L., and Zhu, W. Sensitivity analysis of differential-
algebraic equations: A comparison of methods on a special problem.
Applied Numerical Mathematics 32, 2 (2000), 161–174.

[211] Li, W., and Biegler, L. Multistep, Newton-Type Control Strategies
for Constrained Nonlinear Processes. Chem. Eng. Res. Des. 67 (1989),
562–577.

[212] Li, W., and Biegler, L. Newton-Type Controllers for Constrained
Nonlinear Processes with Uncertainty. Industrial and Engineering
Chemistry Research 29 (1990), 1647–1657.

[213] Liniger, A., Domahidi, A., and Morari, M. Optimization-based
autonomous racing of 1:43 scale RC cars. Optimal Control Applications
and Methods 36, 5 (2015), 628–647.

[214] Lions, P. Generalized Solutions of Hamilton-Jacobi Equations. Pittman,
1982.

[215] Liu, F., Hager, W. W., and Rao, A. V. Adaptive mesh refinement
method for optimal control using nonsmoothness detection and mesh size
reduction. Journal of the Franklin Institute 352, 10 (2015), 4081–4106.

[216] Ljung, L. System identification: Theory for the User. Prentice Hall,
Upper Saddle River, N.J., 1999.

[217] Loyd, M. Crosswind Kite Power. Journal of Energy 4, 3 (July 1980),
106–111.

[218] Luenberger, D. Introduction to Dynamic Systems. Wiley, 1979.

[219] Magni, L., De Nicolao, G., Magnani, L., and Scattolini,
R. A stabilizing model-based predictive control for nonlinear systems.
Automatica 37, 9 (2001), 1351–1362.

[220] Maly, T., and Petzold, L. R. Numerical methods and software for
sensitivity analysis of differential-algebraic systems. Applied Numerical
Mathematics 20, 1–2 (February 1996), 57–79.

276 BIBLIOGRAPHY

[221] Mattingley, J., and Boyd, S. Convex Optimization in Signal
Processing and Communications. Cambridge University Press, 2009,
ch. Automatic Code Generation for Real-Time Convex Optimization,
pp. 1–41.

[222] Mattingley, J., Wang, Y., and Boyd, S. Code generation for receding
horizon control. In Proceedings of the IEEE International Symposium
on Computer-Aided Control System Design (Yokohama, Japan, 2010),
pp. 985–992.

[223] Michelsen, M. L. Semi-implicit Runge-Kutta methods for stiff systems:
program description and application examples. Inst. f. Kemiteknik,
Danmarks tekniske Højskole, Lynby (1976).

[224] Michiels, W., and Niculescu, S.-I. Stability and stabilization of
time-delay systems. An eigenvalue based approach, vol. 12 of Advances in
Design and Control. SIAM, 2007.

[225] Moraal, P., and Grizzle, J. Observer design for nonlinear systems
with discrete-time measurements. Automatic Control, IEEE Transactions
on 40, 3 (1995), 395–404.

[226] Morrison, D. D., Riley, J. D., and Zancanaro, J. F. Multiple
shooting method for two-point boundary value problems. Communications
of the ACM 5, 12 (1962), 613–614.

[227] Moulin, P., and Chauvin, J. Modelling and control of the air system of
a turbocharged gasoline engine. Journal of Control Engineering Practice
Control (2011), 287–297.

[228] Müller, M. A., Angeli, D., and Allgöwer, F. On necessity and
robustness of dissipativity in economic model predictive control. IEEE
Transactions on Automatic Control 60, 6 (2015), 1671–1676.

[229] Murilo, A., Alamir, M., and Alberer, D. A general NMPC
framework for a diesel engine air path. International Journal of Control
87, 10 (2014), 2194–2207.

[230] Nesterov, Y. Introductory lectures on convex optimization: a basic
course, vol. 87 of Applied Optimization. Kluwer Academic Publishers,
2004.

[231] Nicolao, G., Magni, L., and Scattolini, R. Stabilizing Receding-
Horizon control of nonlinear time varying systems. IEEE Transactions
on Automatic Control AC-43, 7 (1998), 1030–1036.

BIBLIOGRAPHY 277

[232] Nocedal, J., and Wright, S. J. Numerical Optimization, 2 ed. Springer
Series in Operations Research and Financial Engineering. Springer, 2006.

[233] Norsett, S. P. Semi-explicit Runge-Kutta methods. Tech. Rep. 6,
Department of Mathematics, University of Trondheim, 1974.

[234] O’Donoghue, B., Stathopoulos, G., and Boyd, S. A Splitting
Method for Optimal Control. IEEE Transactions on Control Systems
Technology 21, 6 (2013), 2432–2442.

[235] Ohtsuka, T. A continuation/GMRES method for fast computation of
nonlinear receding horizon control. Automatica 40, 4 (2004), 563–574.

[236] Ohtsuka, T. A tutorial on C/GMRES and automatic code generation
for nonlinear model predictive control. In Control Conference (ECC),
2015 European (July 2015), pp. 73–86.

[237] Ohtsuka, T., and Kodama, A. Automatic code generation system
for nonlinear receding horizon control. Transactions of the Society of
Instrument and Control Engineers 38, 7 (2002), 617–623.

[238] Oohori, T., and Ohuchi, A. An efficient implementation of
Karmarkar’s algorithm for large sparse linear programs. In Proceedings
of the IEEE International Conference on Systems, Man, and Cybernetics,
(1988), vol. 2, pp. 1389–1392.

[239] Osborne, M. On shooting methods for boundary value problems. Journal
of Mathematical Analysis and Applications 27 (1969), 417–433.

[240] Özyurt, D. B., and Barton, P. I. Cheap Second Order Directional
Derivatives of Stiff ODE Embedded Functionals. SIAM Journal on
Scientific Computing 26 (2005), 1725–1743.

[241] Pantelides, C., Sargent, R., and Vassiliadis, V. Optimal control of
multistage systems described by high-index differential-algebraic equations.
In Computational Optimal Control, R. Bulirsch and D. Kraft, Eds. Birk-
häuser, Basel, 1994, pp. 177–191.

[242] Papastavridis, J. Analytical Mechanics. Oxford University Press, Inc.,
2002.

[243] Parikh, N., and Boyd, S. Block splitting for distributed optimization.
Mathematical Programming Computation 6 (2012), 77—-102.

[244] Parulekar, S. J. Analysis of forced periodic operations of continuous
bioprocesses - single input variations. Chemical Engineering Science
53(14) (1998), 2481–2502.

278 BIBLIOGRAPHY

[245] Patrinos, P., and Bemporad, A. An accelerated dual gradient-
projection algorithm for embedded linear model predictive control.
Automatic Control, IEEE Transactions on 59, 1 (Jan 2014), 18–33.

[246] Patterson, M. A., Hager, W. W., and Rao, A. V. A ph mesh
refinement method for optimal control. Optimal Control Applications and
Methods 36, 4 (2015), 398–421.

[247] Patterson, M. A., and Rao, A. V. GPOPS-II: A MATLAB
software for solving multiple-phase optimal control problems using hp-
adaptive gaussian quadrature collocation methods and sparse nonlinear
programming. ACM Trans. Math. Softw. 41, 1 (Oct. 2014), 1–37.

[248] Pesce, C. P. The Application of Lagrange Equations to Mechanical
Systems With Mass Explicitly dependent on Position. Journal of Applied
Mechanics 70 (September 2003), 751–756.

[249] Plitt, K. Ein superlinear konvergentes Mehrzielverfahren zur direkten
Berechnung beschränkter optimaler Steuerungen. Master’s thesis,
Universität Bonn, 1981.

[250] Polak, E. Computational methods in optimization: a unified approach.
Academic Press, New York„ 1971.

[251] Pontryagin, L., Boltyanski, V., Gamkrelidze, R., and Miscenko,
E. The Mathematical Theory of Optimal Processes. Wiley, Chichester,
1962.

[252] Potschka, A. A direct method for the numerical solution of optimization
problems with time-periodic PDE constraints. PhD thesis, University of
Heidelberg, 2011.

[253] Potschka, A., Bock, H., Engell, S., Küpper, A., and Schlöder,
J. A Newton-Picard inexact SQP method for optimization of SMB
processes. Tech. rep., 2008.

[254] Potschka, A., Bock, H. G., and Schlöder, J. P. A minima tracking
variant of semi-infinite programming for the treatment of path constraints
within direct solution of optimal control problems. Optimization Methods
and Software 24, 2 (2009), 237–252.

[255] Powell, M. J. D. A fast algorithm for nonlinearly constrained
optimization calculations. In Numerical Analysis, Dundee 1977 (Berlin,
1978), G. A. Watson, Ed., vol. 630 of Lecture Notes in Mathematics,
Springer, pp. 144–157.

BIBLIOGRAPHY 279

[256] Prothero, A., and Robinson, A. On the stability and accuracy of one-
step methods for solving stiff systems of ordinary differential equations.
Mathematics of Computation 28, 125 (1974), 145–162.

[257] Qin, S., and Badgwell, T. An overview of nonlinear model predictive
control applications. In Nonlinear Predictive Control (Basel Boston Berlin,
2000), F. Allgöwer and A. Zheng, Eds., vol. 26 of Progress in Systems
Theory, Birkhäuser, pp. 370–392.

[258] Qiu, Z., Santillo, M., Jankovic, M., and Sun, J. Composite
adaptive internal model control and its application to boost pressure
control of a turbocharged gasoline engine. IEEE Transactions on Control
Systems Technology 23, 6 (2015), 2306–2315.

[259] Quirynen, R. Automatic code generation of Implicit Runge-Kutta
integrators with continuous output for fast embedded optimization.
Master’s thesis, KU Leuven, 2012.

[260] Quirynen, R., Gros, S., and Diehl, M. Efficient NMPC for nonlinear
models with linear subsystems. In Proceedings of the IEEE Conference
on Decision and Control (CDC) (2013), pp. 5101–5106.

[261] Quirynen, R., Gros, S., and Diehl, M. Fast auto generated ACADO
integrators and application to MHE with multi-rate measurements. In
Proceedings of the European Control Conference (ECC) (2013), pp. 3077–
3082.

[262] Quirynen, R., Gros, S., and Diehl, M. Inexact Newton based
lifted implicit integrators for fast nonlinear MPC. In Proceedings of the
IFAC Conference on Nonlinear Model Predictive Control (NMPC) (2015),
pp. 32–38.

[263] Quirynen, R., Gros, S., and Diehl, M. Lifted implicit integrators
for direct optimal control. In Proceedings of the IEEE Conference on
Decision and Control (CDC) (2015), pp. 3212–3217.

[264] Quirynen, R., Gros, S., and Diehl, M. Inexact Newton-type
optimization with iterated sensitivities. SIAM Journal on Optimization
(accepted, preprint available at Optimization Online, 2016-06-5502) (2016).

[265] Quirynen, R., Gros, S., Houska, B., and Diehl, M. Lifted
collocation integrators for direct optimal control in ACADO toolkit.
Mathematical Programming Computation (accepted, preprint available
at Optimization Online, 2016-05-5468) (2016).

280 BIBLIOGRAPHY

[266] Quirynen, R., Houska, B., and Diehl, M. Efficient symmetric
hessian propagation for direct optimal control. Journal of Process Control
(accepted, preprint available at Optimization Online, 2016-05-5467) (2016).

[267] Quirynen, R., Houska, B., and Diehl, M. Symmetric hessian
propagation for lifted collocation integrators in direct optimal control. In
Proceedings of the American Control Conference (ACC) (2016), pp. 1117–
1123.

[268] Quirynen, R., Houska, B., Vallerio, M., Telen, D., Logist, F.,
Impe, J. V., and Diehl, M. Symmetric algorithmic differentiation
based exact Hessian SQP method and software for economic MPC. In
Proceedings of the IEEE Conference on Decision and Control (CDC)
(2014), pp. 2752–2757.

[269] Quirynen, R., Vukov, M., and Diehl, M. Auto generation of
implicit integrators for embedded NMPC with microsecond sampling
times. In Proceedings of the 4th IFAC Nonlinear Model Predictive Control
Conference (2012), M. Lazar and F. Allgöwer, Eds., pp. 175–180.

[270] Quirynen, R., Vukov, M., and Diehl, M. Multiple shooting in
a microsecond. In Multiple Shooting and Time Domain Decomposition
Methods. Springer, 2015, pp. 183–201.

[271] Quirynen, R., Vukov, M., Zanon, M., and Diehl, M.
Autogenerating microsecond solvers for nonlinear MPC: a tutorial using
ACADO integrators. Optimal Control Applications and Methods 36 (2014),
685–704.

[272] Quirynen, R., Zanon, M., Kozma, A., and Diehl, M. A compression
algorithm for real-time distributed nonlinear MPC. In Proceedings of the
European Control Conference (ECC) (2015), pp. 3422–3427.

[273] Rao, C. Moving Horizon Estimation of Constrained and Nonlinear
Systems. PhD thesis, University of Wisconsin–Madison, 2000.

[274] Rao, C., Wright, S., and Rawlings, J. Application of Interior-Point
Methods to Model Predictive Control. Journal of Optimization Theory
and Applications 99 (1998), 723–757.

[275] Rao, C. V., Rawlings, J. B., and Mayne, D. Q. Constrained state
estimation for nonlinear discrete-time systems: Stability and moving
horizon approximations. IEEE Transactions on Automatic Control 48, 2
(2003), 246–258.

BIBLIOGRAPHY 281

[276] Rawlings, J., and Ji, L. Optimization-based State Estimation: Current
Status and Some New Results. Journal of Process Control 22, 8 (2012),
1439–1444.

[277] Rawlings, J., and Mayne, D. Model Predictive Control: Theory and
Design. Nob Hill, 2009.

[278] Rawlings, J. B., and Amrit, R. Optimizing process economic
performance using model predictive control. In Nonlinear Model
Predictive Control: Towards New Challenging Applications. Springer
Berlin Heidelberg, 2009, pp. 119–138.

[279] Reich, S. On an existence and uniqueness theory for nonlinear differential-
algebraic equations. Circuits Syst. Signal Process. 10, 3 (May 1991),
343–359.

[280] Rheinboldt, W. Differential-algebraic systems as differential equations
on manifolds. Math. of Comput. 43 (1984), 473–482.

[281] Riaza, R. Differential-Algebraic Systems: Analytical Aspects and Circuit
Applications. World Scientific, 2008.

[282] Richter, S. Computational complexity certification of gradient methods
for real-time model predictive control. PhD thesis, ETH Zürich, 2012.

[283] Richter, S., Jones, C. N., and Morari, M. Computational
complexity certification for real-time MPC with input constraints based
on the fast gradient method. IEEE Transactions on Automatic Control
57, 6 (June 2012), 1391–1403.

[284] Robinson, S. Perturbed Kuhn-Tucker points and rates of convergence for
a class of nonlinear programming algorithms. Mathematical Programming
7 (1974), 1–16.

[285] Romanenko, A., Pedrosa, N., Leal, J., and Santos, L. Seminario
de Aplicaciones Industriales de Control Avanzado. 2007, ch. A Linux
Based Nonlinear Model Predictive Control Framework, pp. 229–236.

[286] Ruan, L., and Chen, X. Comparison of Several Periodic Operations of
a Continous Fermentation Process. Biotechnol. Prog. 12 (1996), 286–288.

[287] Sandu, A. Computational Science – ICCS 2006: 6th International
Conference, Reading, UK, May 28-31, 2006, Proceedings, Part IV.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, ch. On the Properties
of Runge-Kutta Discrete Adjoints, pp. 550–557.

282 BIBLIOGRAPHY

[288] Sargent, R., and Sullivan, G. The development of an efficient
optimal control package. In Proceedings of the 8th IFIP Conference on
Optimization Techniques (1977), Part 2 (Heidelberg, 1978), J. Stoer, Ed.,
Springer, pp. 158–168.

[289] Savorgnan, C., Kozma, A., Andersson, J., and Diehl, M. Adjoint-
based distributed multiple shooting for large-scale systems. In 18th IFAC
World Congress (2011), vol. 18, pp. 410–415.

[290] Savorgnan, C., Romani, C., Kozma, A., and Diehl, M. Multiple
shooting for distributed systems with applications in hydro electricity
production. Journal of Process Control 21 (2011), 738–745.

[291] Schlegel, M., Marquardt, W., Ehrig, R., and Nowak, U.
Sensitivity analysis of linearly-implicit differential-algebraic systems by
one-step extrapolation. Applied Numerical Mathematics 48, 1 (2004),
83–102.

[292] Schlöder, J. Numerische Methoden zur Behandlung hochdimensionaler
Aufgaben der Parameteridentifizierung, vol. 187 of Bonner Mathematische
Schriften. Universität Bonn, Bonn, 1988.

[293] Schoukens, J., and Pintelon, R. Identification of Linear Systems: A
Practical Guide to Accurate Modeling. Pergamon Press, 1991.

[294] Schulz, V., Bock, H., and Steinbach, M. Exploiting invariants in
the numerical solution of multipoint boundary value problems for DAEs.
SIAM Journal on Scientific Computing 19 (1998), 440–467.

[295] Schwerin, R., and Winckler, M. Some Aspects of Sensitivity Analysis
in Vehicle System Dynamics. Zeitschrift für Angewandte Mathematik und
Mechanik 76, S3 (1996), 155–158.

[296] Shahzad, A., Kerrigan, E., and Constantinides, G. A warm-start
interior-point method for predictive control. Tech. rep., Imperial College
London, 2010.

[297] Shuster, M. D. A Survey of Attitude Representations. The Journal of
the Astronautical Science 41, 4 (1993), 439–517.

[298] Simon, L., Nagy, Z., and Hungerbuehler, K. Nonlinear Model
Predictive Control, vol. 384 of Lecture Notes in Control and Information
Sciences. Springer, 2009, ch. Swelling Constrained Control of an Industrial
Batch Reactor Using a Dedicated NMPC Environment: OptCon, pp. 531–
539.

BIBLIOGRAPHY 283

[299] Stathopoulos, G., Szucs, A., Pu, Y., and Jones, C. Splitting
methods in control. In Proceedings of the European Control Conference
(ECC) (2014), pp. 2478–2483.

[300] Telen, D., Logist, F., Quirynen, R., Houska, B., Diehl, M.,
and Impe, J. V. Optimal experiment design for nonlinear dynamic
(bio)chemical systems using sequential semidefinite programming. AIChE
(American Institute of Chemical Engineers) Journal 60, 5 (2014), 1728–
1739.

[301] Thomasson, A., Leufven, O., Criscuolo, I., and Eriksson, L.
Modelling and validation of a boost pressure actuation system, for a series
sequentially turbocharged SI engine. Journal of Control Engineering
Practice 21 (2013), 1860–1870.

[302] Thomée, V. Galerkin Finite Element Methods for Parabolic Problems,
vol. 25. Springer Berlin Heidelberg, 2006.

[303] Tomlab Optimization. PROPT: Matlab Optimal Control Software
(ODE,DAE). http://tomdyn.com, 2009–2011.

[304] Tran-Dinh, Q. Sequential Convex Programming and Decomposition
Approaches for Nonlinear Optimization. Phd thesis, Arenberg Doctoral
School, KU Leuven, November 2012.

[305] Tran-Dinh, Q., and Diehl, M. Local convergence of sequential
convex programming for nonconvex optimization. In Recent advances
in optimization and its application in engineering, M.Diehl, F.Glineur,
E. Jarlebring, and W. Michiels, Eds. Springer-Verlag, 2010, pp. 93–103.

[306] Ullmann, F. FiOrdOs: A Matlab toolbox for C-code generation for first
order methods. Master’s thesis, ETH Zurich, December 2011.

[307] Varah, J. On the solution of block-tridiagonal systems arising from
certain finite-difference equations. Mathematics of Computation 26, 120
(1972), 859–868.

[308] Verschueren, R. Design and Implementation of a Time-Optimal
Controller for Model Race Cars. Master’s thesis, KU Leuven, 2014.

[309] Verschueren, R., Bruyne, S. D., Zanon, M., Frasch, J. V., and
Diehl, M. Towards time-optimal race car driving using nonlinear MPC
in real-time. In Proceedings of the IEEE Conference on Decision and
Control (CDC) (2014), pp. 2505–2510.

284 BIBLIOGRAPHY

[310] Verschueren, R., Zanon, M., Quirynen, R., and Diehl, M. A
sparsity preserving convexification procedure for indefinite quadratic
programs arising in direct optimal control. SIAM Journal on Optimization
(accepted, preprint available at Optimization Online, 2016-06-5512) (2016).

[311] Verschueren, R., Zanon, M., Quirynen, R., and Diehl, M. Time-
optimal race car driving using an online exact hessian based nonlinear
MPC algorithm. In Proceedings of the European Control Conference
(ECC) (2016).

[312] Villanueva, M. E., Quirynen, R., Diehl, M., Chachuat, B.,
and Houska, B. Robust MPC via min-max differential inequalities.
Automatica (2016).

[313] Vukov, M. Embedded Model Predictive Control and Moving Horizon
Estimation for Mechatronics Applications. PhD thesis, K.U. Leuven, 2015.

[314] Vukov, M., Domahidi, A., Ferreau, H. J., Morari, M., and Diehl,
M. Auto-generated algorithms for nonlinear model predictive control on
long and on short horizons. In Proceedings of the IEEE Conference on
Decision and Control (CDC) (2013), pp. 5113–5118.

[315] Vukov, M., Gros, S., Horn, G., Frison, G., Geebelen, K.,
Jørgensen, J. B., Swevers, J., and Diehl, M. Real-time nonlinear
MPC and MHE for a large-scale mechatronic application. Control
Engineering Practice 45 (2015), 64–78.

[316] Vukov, M., Loock, W. V., Houska, B., Ferreau, H. J., Swevers,
J., and Diehl, M. Experimental validation of nonlinear MPC on an
overhead crane using automatic code generation. In Proceedings of the
American Control Conference (ACC) (2012), pp. 6264–6269.

[317] Wächter, A., and Biegler, L. IPOPT - an Interior Point OPTimizer.
https://projects.coin-or.org/Ipopt, 2009.

[318] Wächter, A., and Biegler, L. T. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming.
Mathematical Programming 106, 1 (2006), 25–57.

[319] Walther, A. Program Reversal Schedules for Single- and Multi-processor
Machines. PhD thesis, TU Dresden, 2000.

[320] Walther, A. Automatic differentiation of explicit Runge-Kutta methods
for optimal control. Computational Optimization and Applications 36, 1
(2006), 83–108.

BIBLIOGRAPHY 285

[321] Walther, A., and Biegler, L. Numerical experiments with an
inexact Jacobian trust-region algorithm. Computational Optimization and
Applications 48, 2 (2011), 255–271.

[322] Walther, A., Vetukuri, S. R. R., and Biegler, L. T. A first-order
convergence analysis of trust-region methods with inexact Jacobians and
inequality constraints. Optimization Methods and Software 27, 2 (2012),
373–389.

[323] Wang, Y., and Boyd, S. Fast model predictive control using online
optimization. IEEE Transactions on Control Systems Technology 18, 2
(2010), 267–278.

[324] Wirsching, L. An SQP Algorithm with Inexact Derivatives for a Direct
Multiple Shooting Method for Optimal Control Problems. Master’s thesis,
University of Heidelberg, 2006.

[325] Wirsching, L., Bock, H. G., and Diehl, M. Fast NMPC of a chain
of masses connected by springs. In Proceedings of the IEEE International
Conference on Control Applications, Munich (2006), pp. 591–596.

[326] Word, D. P., Kang, J., Akesson, J., and Laird, C. D. Efficient
parallel solution of large-scale nonlinear dynamic optimization problems.
Computational Optimization and Applications 59, 3 (2014), 667–688.

[327] Wright, S. Primal-Dual Interior-Point Methods. SIAM Publications,
Philadelphia, 1997.

[328] Wynn, A., Vukov, M., and Diehl, M. Convergence guarantees for
moving horizon estimation based on the real-time iteration scheme. IEEE
Transactions on Automatic Control 59, 8 (2014), 2215–2221.

[329] Zanon, M. Efficient Nonlinear Model Predictive Control Formulations
for Economic Objectives and Applications in Aerospace and Autonomous
Driving. PhD thesis, KU Leuven, 2015.

[330] Zanon, M., Gros, S., and Diehl, M. Indefinite linear MPC and
approximated economic MPC for nonlinear systems. Journal of Process
Control 24 (2014), 1273–1281.

[331] Zanon, M., Horn, G., Gros, S., and Diehl, M. Control of dual-airfoil
airborne wind energy systems based on nonlinear MPC and MHE. In
Proceedings of the European Control Conference (ECC) (2014), pp. 1801–
1806.

[332] Zavala, V., and Anitescu, M. Real-Time Nonlinear Optimization as a
Generalized Equation. SIAM J. Control Optim. 48, 8 (2010), 5444–5467.

286 BIBLIOGRAPHY

[333] Zavala, V. M., and Biegler, L. The Advanced Step NMPC Controller:
Optimality, Stability and Robustness. Automatica 45 (2009), 86–93.

[334] Zavala, V. M., Laird, C. D., and Biegler, L. T. Interior-point
decomposition approaches for parallel solution of large-scale nonlinear
parameter estimation problems. Chemical Engineering Science 63, 19
(October 2008), 4834—-4845.

[335] Zometa, P., Kögel, M., and Findeisen, R. muAO-MPC: A free code
generation tool for embedded real-time linear model predictive control.
In 2013 American Control Conference (June 2013), pp. 5320–5325.

[336] Zuo, W., and Lin, Z. A generalized accelerated proximal gradient
approach for total-variation-based image restoration. IEEE Transactions
on Image Processing 20, 10 (October 2011), 2748–2759.

Curriculum Vitae

Rien Quirynen was born in 1989 in Westmalle, Belgium. He studied Computer
Science - Electrical Engineering during his Bachelor and completed his Master
in Mathematical Engineering, both at the KU Leuven University in Belgium.
During his Master studies, he gained experience in engineering research by doing
a 2-month internship at LMS, Siemens in 2011 and by taking a summer job
at IPCOS in 2012. For his Master project, he worked on the “Automatic code
generation of Implicit Runge-Kutta integrators with continuous output for fast
embedded optimization” under supervision of Prof. Diehl at KU Leuven. Since
October 2012, he is pursuing his PhD at KU Leuven supported by a 4-year
PhD scholarship from the Research Foundation - Flanders (FWO). As part of
the YouReCa - Junior Mobility Programme, he has been a guest researcher at
the University of Geneva (4 months) and at the Shanghai Jiao Tong University
(3 months) during the year 2013-2014. Since May 2014, he has been affiliated
with both KU Leuven and the University of Freiburg and therefore finished his
project with a joint PhD between both universities.

287

List of Publications

Journal Articles (submitted)

1. Albin, T., Ritter, D., Quirynen, R., Diehl, M. (2016). In-Vehicle
Realization of Nonlinear MPC for Gasoline Two-Stage Turbocharging
Airpath Control. IEEE Transactions on Control Systems Technology.

Journal Articles (accepted)

2. Verschueren, R., Zanon, M., Quirynen, R., Diehl, M. (2016). A Sparsity
Preserving Convexification Procedure for Indefinite Quadratic Programs
Arising in Direct Optimal Control. SIAM Journal on Optimization.

3. Quirynen, R., Gros, S., Diehl, M. (2016). Inexact Newton-Type
Optimization with Iterated Sensitivities. SIAM Journal on Optimization.

4. Quirynen, R., Gros, S., Houska, B., Diehl, M. (2016). Lifted Collocation
Integrators for Direct Optimal Control in ACADO Toolkit. Mathematical
Programming Computation.

Journal Articles (published)

5. Quirynen, R., Houska, B., Diehl, M. (2016). Efficient Symmetric Hessian
Propagation for Direct Optimal Control. Journal of Process Control.

6. Gros, S., Zanon, M., Quirynen, R., Bemporad, A., Diehl, M. (2016). From
Linear to Nonlinear MPC: bridging the gap via the Real-Time Iteration.
International Journal of Control.

7. Villanueva, M. E., Quirynen, R., Diehl, M., Chachuat, B., Houska, B.
(2016). Robust MPC via Min-Max Differential Inequalities. Automatica.

289

290 LIST OF PUBLICATIONS

8. Quirynen, R., Vukov, M., Zanon, M., Diehl, M. (2014). Autogenerating
Microsecond Solvers for Nonlinear MPC: a Tutorial Using ACADO
Integrators. Optimal Control Applications and Methods.

9. Telen, D., Logist, F., Quirynen, R., Houska, B., Diehl, M., Van Impe, J.
(2013). Optimal experiment design for nonlinear dynamic (bio)chemical
systems using sequential semidefinite programming. AIChE (American
Institute of Chemical Engineers) Journal.

LIST OF PUBLICATIONS 291

Conference Proceedings

1. Kouzoupis, D., Quirynen, R., Girrbach, F., Diehl, M. (2016). An Efficient
SQP Algorithm for Moving Horizon Estimation with Huber Penalties
and Multi-Rate Measurements. IEEE Multi-Conference on Systems and
Control. Buenos Aires, Argentina, September 2016.

2. Albin, T., Frank, F., Ritter, D., Abel, D., Quirynen, R., Diehl, M. (2016).
Nonlinear MPC for Combustion Engine Control: A Parameter Study for
Realizing Real-Time Feasibility. IEEE Multi-Conference on Systems and
Control. Buenos Aires, Argentina, September 2016.

3. Verschueren, R., Duijkeren, N. V., Quirynen, R., Diehl, M. (2016).
Exploiting Convexity in Direct Optimal Control: a Sequential Convex
Quadratic Programming Method. Proc. 2016 IEEE 55th Annual
Conference on Decision and Control. Las Vegas, USA, December 2016.

4. Kouzoupis, D., Quirynen, R., Garcia, J. L., Erhard, M., Diehl, M. (2016).
A Quadratically Convergent Primal Decomposition Algorithm with Soft
Coupling for Nonlinear Parameter Estimation. Proc. 2016 IEEE 55th
Annual Conference on Decision and Control. Las Vegas, USA, December
2016.

5. Zanelli, A., Quirynen, R., Diehl, M. (2016). An Efficient Inexact NMPC
Scheme with Stability and Feasibility Guarantees. Proc. of the 10th IFAC
Symposium on Nonlinear Control Systems. NOLCOS 2016. Monterey,
California, USA, August 2016.

6. Verschueren, R., Zanon, M., Quirynen, R., Diehl, M. (2016). Time-
optimal Race Car Driving using an Online Exact Hessian based Nonlinear
MPC Algorithm. Proc. of the European Control Conference. ECC 2016.
Aalborg, Denmark, June 2016.

7. Quirynen, R., Houska, B., Diehl, M. (2016). Symmetric Hessian
propagation for lifted collocation integrators in direct optimal control.
Proc. of the American Control Conference. ACC 2016. Boston, MA,
USA, July 2016.

8. Kouzoupis, D., Quirynen, R., Houska, B., Diehl, M. (2016). A Block
Based ALADIN Scheme for Highly Parallelizable Direct Optimal Control.
Proc. of the American Control Conference. ACC 2016. Boston, MA,
USA, July 2016.

9. Quirynen, R., Gros, S., Diehl, M. (2015). Lifted implicit integrators for
direct optimal control. Proc. 2015 IEEE 54th Annual Conference on
Decision and Control. IEEE CDC 2015. Osaka, Japan, Dec. 2015.

292 LIST OF PUBLICATIONS

10. Albin, T., Ritter, D., Abel, D., Quirynen, R., Diehl, M. (2015). Nonlinear
MPC for a Two-Stage Turbocharged Gasoline Engine Airpath. Proc. 2015
IEEE 54th Annual Conference on Decision and Control. IEEE CDC 2015.
Osaka, Japan, Dec. 2015.

11. Quirynen, R., Gros, S., Diehl, M. (2015). Inexact Newton based Lifted
Implicit Integrators for fast Nonlinear MPC. Proc. of the 5th IFAC
nonlinear model predictive control conference. NMPC 2015. Seville,
Spain, September 2015.

12. Schmied, R., Waschl, H., Quirynen, R., Diehl, M., Del Re, L. (2015).
Nonlinear MPC for Emission Efficient Cooperative Adaptive Cruise
Control. Proc. of the 5th IFAC nonlinear model predictive control
conference. NMPC 2015. Seville, Spain, September 2015.

13. Kouzoupis, D., Quirynen, R., Frasch, J., Diehl, M. (2015). Block
Condensing for Fast Nonlinear MPC with the Dual Newton Strategy.
Proc. of the 5th IFAC nonlinear model predictive control conference.
NMPC 2015. Seville, Spain, September 2015.

14. Quirynen, R., Zanon, M., Kozma, A., Diehl, M. (2015). A Compression
Algorithm for Real-Time Distributed Nonlinear MPC. Proc. of the
European Control Conference. ECC 2015. Linz, Austria, July 2015.

15. Quirynen, R., Houska, B., Vallerio, M., Telen, D., Logist, F., Van Impe,
J., Diehl, M. (2014). Symmetric Algorithmic Differentiation Based Exact
Hessian SQP Method and Software for Economic MPC. Proc. 2014 IEEE
53rd Annual Conference on Decision and Control. IEEE CDC 2014. Los
Angeles, USA, Dec. 2014.

16. Gros, S., Quirynen, R., Diehl, M. (2014). An Improved Real-time
Economic NMPC Scheme for Wind Turbine Control Using Spline-
Interpolated Aerodynamic Coefficients. Proc. 2014 IEEE 53rd Annual
Conference on Decision and Control. IEEE CDC 2014. Los Angeles, USA,
Dec. 2014.

17. Debrouwere, F., Vukov, M., Quirynen, R., Diehl, M., Swevers, J. (2014).
Experimental validation of combined Nonlinear Optimal control and
estimation of an overhead crane. Proc. of the 19th World Congress of the
International Federation of Automatic Control. IFAC 2014. Cape Town,
South Africa, Aug. 2014.

18. Quirynen, R., Gros, S., Diehl, M. (2013). Efficient NMPC for nonlinear
models with linear subsystems. Proc. 2013 IEEE 52nd Annual Conference
on Decision and Control. IEEE CDC 2013. Firenze, Italy, Dec. 2013.

LIST OF PUBLICATIONS 293

19. Mehrkanoon, S., Quirynen, R., Diehl, M., Suykens, J.A.K. (2013). LS-
SVM based initialization approach for parameter estimation of dynamical
systems. Proc. 2013 International Conference on Mathematical Modeling
in Physical Sciences. Prague, Czech Republic, Sept. 2013.

20. Quirynen, R., Gros, S., Diehl, M. (2013). Fast auto generated ACADO
integrators and application to MHE with multi-rate measurements. Proc.
of the European Control Conference. ECC 2013. Zürich, Switzerland, Jul.
2013.

21. Gros, S., Quirynen, R., Diehl, M. (2012). Aircraft control based on fast
nonlinear MPC and multiple-shooting. Proc. 2012 IEEE 51st Annual
Conference on Decision and Control. IEEE CDC 2012. Maui, Hawai, Dec.
2012.

22. Quirynen, R., Vukov, M., Diehl, M. (2012). Auto generation of implicit
integrators for embedded NMPC with microsecond sampling times. Proc.
of the 4th IFAC nonlinear model predictive control conference. NMPC
2012. Noordwijkhout, Nederland, Aug. 2012.

Book Chapters

1. Quirynen, R., Vukov, M., Diehl, M. (2014). Multiple Shooting in a
Microsecond. Contributions in Mathematical and Computational Sciences,
Springer.

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF ELECTRICAL ENGINEERING

Kasteelpark Arenberg 10 box 2446
B-3001 Leuven

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

Celestijnenlaan 200A box 2402
B-3001 Leuven

FACULTY OF MATHEMATICS AND PHYSICS
MATHEMATISCHES INSTITUT

Albert-Ludwigs-University Freiburg
D-79104 Freiburg im Breisgau

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Fast Nonlinear Model Predictive Control and Estimation
	Controlled Dynamic Systems
	Direct Optimal Control
	Nonlinear Programming Methods
	Tailored Convex Solvers for Optimal Control
	Real-Time Algorithms for MPC and MHE

	Numerical Simulation and Sensitivity Propagation
	Numerical Integration Methods
	Implicit Runge-Kutta Methods
	Efficient Sensitivity Propagation
	Collocation for Embedded Optimization
	Continuous Output for Optimal Control
	Conclusions and Outlook

	Symmetric Hessian Propagation Technique
	Problem Statement
	Discrete-Time Sensitivity Propagation
	Continuous-Time Sensitivity Propagation
	Three-Sweep Hessian Propagation Scheme
	Numerical Case Study
	Conclusions and Outlook

	Structure Exploitation for Linear Subsystems
	A Three-Stage Dynamic Structure
	Tailored Structure Exploiting IRK methods
	Optimal Control Application Examples
	Conclusions and Outlook

	Compression Algorithm for Distributed Multiple Shooting
	Distributed Multiple Shooting
	The Compression Algorithm
	NMPC Application: Chain of Masses
	Conclusions and Outlook

	Lifted Newton-Type Collocation Integrators
	Simultaneous Direct Optimal Control
	Exact Lifted Collocation Integrator
	Adjoint-based Inexact Lifted Collocation
	Inexact Newton with Iterated Sensitivities
	Lifted Collocation in ACADO Code Generation
	Case Study: Chain of Masses
	Conclusions and Outlook

	Local Convergence of Inexact Newton with Iterated Sensitivities
	Problem Formulation
	Inexact Newton with Iterated Sensitivities (INIS)
	Adjoint-Free INIS Optimization
	Numerical Optimal Control Results
	Conclusions and Outlook

	Open-Source ACADO Code Generation Software
	ACADO Code Generation Tool
	Real-Time Control Applications
	ACADO Integrator Code Generation
	Conclusions and Outlook

	Two-Stage Turbocharged Gasoline Engine
	Introduction to Airpath Control
	Two-Stage Turbocharged Gasoline Engine
	Modeling of the Airpath System
	Nonlinear MPC and State Estimation
	Simulative Assessment of NMPC
	In-Vehicle Experimental Results
	Conclusions and Outlook

	Conclusions and Outlook
	Bibliography
	Curriculum Vitae
	List of Publications

