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Abstract

Solving optimal control problems subject to partial differential equations (PDEs) is a

challenging but important task, for instance, optimal heating or cooling.

The problem arising from the discretization can easily have 106 decision variables and

therefore it is important to provide methods that can solve such problems efficiently.

Thus, the interaction between the optimization method and the numerical simulation

is crucial for such problems.

The Inexact Newton with Iterated Sensitivities (INIS) method solves a particular

class of nonlinear programming (NLP) problems, which arise from optimal control

formulations where a subset of the variables are implicitly defined by nonlinear equality

constraints. The system of nonlinear equality constraints is called the forward problem.

In contrast to other inexact Newton-type optimization methods, the INIS method

preserves the local convergence properties and the asymptotic contraction rate of

the inexact Newton-type method with the same Jacobian approximation applied to

the forward problem. The INIS method is especially suited for problems where the

number of states is significantly larger than the number of controls. This is the case

for PDE constrained optimal control problems with boundary controls, which we

regard in this thesis.

Moreover, we consider a forward problem that arises from the discretization of a PDE

defined on a 2-dimensional domain. An efficient method for solving linear systems

that result from the discretization of PDEs is the multi-grid (MG) method.

This thesis shows that the MG method can be combined with the INIS method

resulting in the INIS-MG algorithm. The algorithm is applied to a test problem

and compared to ipopt, a software package for large-scale nonlinear optimization.

Furthermore, the theoretical properties of the INIS method are verified for the PDE

constrained case.
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The numerical experiments show that even a MATLAB implementation of the INIS-

MG algorithm can outperform state of the art NLP solvers like ipopt.
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Zusammenfassung

Das Lösen von Optimalsteuerungsproblemen mit Nebenbedingungen aus partiellen

Differentialgleichungen (PDE) ist eine herausfordernde aber wichtige Aufgabe, etwa

für optimales Heizen oder Kühlen. Das Problem, das sich aus der Diskretisierung

ergibt, kann leicht 106 Variablen beinhalten, daher ist es wichtig, dass es Methoden

gibt, die solche Problem effizient lösen. Somit ist das Zusammenspiel der Opti-

mierungsmethode und der numerischen Simulation wichtig.

Die inexakte Newton Methode mit iterierten Sensitivitäten (INIS) löst eine bes-

timmte Klasse von nichtlinearen Optimierungsproblemen (NLP), die durch Opti-

malsteuerungsproblemen entstehen, in denen eine Teilmenge der Variablen implizit

durch nichtlineare Gleichheitsbedingungen definiert ist. Diese nichtlinearen Gleich-

heitsbedingungen werden als Vorwärtsproblem bezeichnet. Im Gegensatz zu anderen

inexakten Newton Methoden, erhält die INIS Methode lokale Konvergenzeigenschaften

und die asymptotische Kontraktionsrate der inexakten Newton Methode, die mit

derselben Approximation der Jakobischen auf das Vorwärtsproblem angewendet wird.

Das INIS Verfahren ist vorallem für Probleme geeignet bei denen die Anzahl der

Zustände deutlich größer ist als die der Kontrollen. Dies ist der Fall für Optimals-

teuerungsprobleme mit Nebenbedingungen aus PDEs und Randkontrollen, welche

wir in dieser Arbeit betrachten.

Darüber hinaus betrachten wir ein Vorwärtsproblem, das durch die Diskretisierung

einer zweidimensionalen PDE entsteht. Ein effizientes Verfahren zum Lösen von

Gleichungssystemen, die durch die Diskretisierung von PDEs entstehen, ist das

Mehrgitterverfahren. Diese Arbeit zeigt, dass das Mehrgitterverfahren mit der INIS

Methode kombiniert werden kann und vereint beide Verfahren in dem INIS-MG

Algorithmus. Dieser Algorithmus wird auf ein Testproblem angewendet und mit

ipopt, ein Softwarepaket für nichtlineare Optimierung, verglichen. Darüber hinaus
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werden theoretische Eigenschaften des INIS Verfahrens für Optimierungsprobleme

mit PDEs als Nebenbedingung nachgewiesen.

Die numerischen Experimente zeigen, dass sogar eine MATLAB Implementierung des

INIS-MG Algorithmus aktuelle NLP Löser wie ipopt schlagen kann.
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1 Introduction

1.1 Motivation

Optimal control problems with PDEs constraints often occur in the context of in-

dustrial and medical applications. In the production process of steel mills, selective

intermediate cooling of steel profiles aims on reducing the total heat content while

simultaneously equalizing the interior temperature distribution. Reducing the temper-

ature as uniformly as possible results in a higher quality steel. Furthermore, expensive

cooling beds can be replaced due to accelerated cooling of the steel [1, 2, 3].

Another application is the local heating of tumor tissues in the field of cancer therapy.

Here, the aim is to generate a temperature distribution in the human body such that

mainly the tumor is heated and not any other tissue. High temperatures can kill

tumor cells but also injure healthy cells that are not effected by the tumor. Hence,

the temperature distribution has to be carefully controlled [4].

Proper discretization of PDE constrained optimization problems can lead to large-

scale problems with optimization variables between 103 and 1010 [5]. Due to the

constantly improving computing power such problems can be attacked. However, it

is important to further improve efficient methods and algorithms for solving large

scale problems.

1.2 Outline and Contribution

• Chapter 2 gives some background to numerical optimization and repeats

Newton-type optimization for equality constrained optimization problems.
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• In Chapter 3 we introduce the forward problem and a condensed version of

an inexact Newton method. Furthermore we in present the INIS method in its

simplest form.

• The starting point of Chapter 4 is the discretization of the Poisson equation.We

then use this discretization to explain and apply the MG method. Completing

this chapter with a linearity result of the MG method.

• In Chapter 5 we introduce a special optimization problem where we can apply

the INIS method in combination with the MG method resulting in the INIS-MG

algorithm.

• Chapter 6 shows experimental results testing the MG method and the INIS-

MG algorithm on a test problem.

• Concluding with Chapter 7 where we summarize the results and give ideas

for future research.
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2 Numerical Optimization for Equality

Constrained Optimization

In this chapter we consider a nonlinear programming (NLP) problem of the form

min
y∈Rny

f(y), (2.1a)

subject to g(y) = 0. (2.1b)

The function f : Rny → R is called the objective function and g : Rny → Rng

are the equality constraints. Both functions are assumed to be twice continuously

differentiable. The goal is to minimize the objective function using the decision

variables y. Due to the constraints they can not be chosen completely freely. We

collect all points that fulfil these constraints in a set.

Definition 1 (Feasible set). The feasible set is defined as

Ω := {y ∈ Rny | g(y) = 0}. (2.2)

Definition 2 (Local minimizer). The point y∗ ∈ Rny is called local minimizer, if and

only if y∗ ∈ Ω and there exists a neighbourhood N of y∗ such that for all y ∈ Ω ∩N

holds f(y∗) ≤ f(y).

2.1 Optimality Conditions

Next, we state necessary and sufficient conditions for optimality to be able to rate a

feasible point either as a hot candidate for a local minimizer or no candidate at all
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[6, 7].

First, we characterize the set of feasible directions for a feasible point x∗ ∈ Ω. We

are interested in all directions p ∈ Rny such that moving in that direction contains

exclusively feasible points. We call these directions tangent vectors which are defined

as follows.

Definition 3 (Tangent Vector). For a feasible point y∗ ∈ Ω a vector p ∈ Rny is

called a tangent vector to Ω at y∗ if there exist a smooth curve

ȳ(t) : [0, ε)→ Rny (2.3)

with ȳ(0) = y∗, ȳ(t) ∈ Ω and dȳ
dt (0) = p.

Definition 4 (Tangent Cone). The tangent cone TΩ(y∗) of Ω at a feasible point

y∗ ∈ Ω is the set of all tangent vectors at y∗.

The tangent cone can often be obtained by an algebraic description, but this is

only possible under some condition which we call linear independence constraint

qualification.

Definition 5. (LICQ) The linear independence constraint qualification (LICQ) holds

at a point y∗ ∈ Ω if and only if the gradients ∇gi(y∗) for i ∈ {1, . . . , ng} are linearly

independent.

Definition 6 (Linearised Feasible Cone). For a point y∗ ∈ Ω the linearised feasible

cone is defined as

F(y∗) = {p ∈ Rny | ∇gi(y∗)>p = 0 for i = 1, . . . , ng}. (2.4)

The following theorem states under which assumptions the linearised feasible cone

contains infeasible directions and gives an algebraic description of the tangent cone.

4



Theorem 1. At any y∗ ∈ Ω the following statements hold:

1: TΩ(y∗) ⊂ F(y∗),

2: If LICQ holds at y∗ then TΩ(y∗) = F(y∗).

Proof. See [6].

With the Lagrangian function defined as

L(y, λ) = f(y) + λ>g(y), (2.5)

with so called Lagrange multipliers λ ∈ Rng we can formulate the Karush-Kuhn-

Tacker (KKT) conditions which are also known as the first order necessary conditions

(FONC) for optimality-

Theorem 2 (KKT Conditions). If y∗ is a local minimizer of the NLP (2.1) and the

LICQ holds at y∗, then there exists a multiplier λ∗ ∈ Rng such that

∇yL(y∗, λ∗) = 0, (2.6a)

g(y∗) = 0. (2.6b)

Proof. A proof can be found in [6] where different variants of FONC are formulated

which simplify the conditions step by step and lead to the KKT conditions.

A point (y∗, λ∗) ∈ Rny × Rng where LICQ and the KKT conditions hold is called

KKT point.

To formulate the KKT conditions we have only used first order information. Because

we assumed f and g to be twice continuous differentiable we can also state second

order necessary conditions (SONC) and second order sufficient conditions (SOSC).
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Theorem 3 (Second Order Optimality Conditions). If (y∗, λ∗) is a KKT point the

the following statements holds:

SONC: If y∗ is a local minimizer, then

p>∇2
yL(y∗, λ∗)p ≥ 0, (2.7)

for all p ∈ F(y∗).

SOSC: If

p>∇2
yL(y∗, λ∗)p > 0, (2.8)

for all p ∈ F(y∗) with p 6= 0, then y∗ is a local minimizer which is unique in

its neighbourhood.

Definition 7 (Regular KKT Point). A minimizer of an equality constrained NLP is

called a regular KKT point, if both LICQ and SOSC are satisfied at this KKT point.

2.2 Newton-Type Optimization

The basic idea of Newton-type optimization to solve NLPs of the form (2.1) locally is

to apply Newton-type methods to find a solution of the KKT conditions (2.6).

2.2.1 Quadratic Model Interpretation derived by the Framework of

Sequential Quadratic Programming (SQP) Methods

The SQP method approximates the NLP (2.1) by a quadratic model and iteratively

solves a sequence of optimization subproblems [8].
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For a current iterate (yk, λk) the SQP method solves the QP

min
δy∈Rny

1

2
δy>∇2

yL(yk, λk)δy +∇yL(yk, λk)δy (2.9a)

subject to ∇g(yk)δy + g(yk) = 0. (2.9b)

and updates the iterates by the scheme

yk+1 = yk + δy,

λk+1 = λk + δλ.
(2.10)

where δy and δλ are obtained as the solution of the KKT conditions

∇2
yL(yk, λk)δy +∇yL(yk, λk) +∇g(yk)δλ

∇g(yk)δy + g(yk)

 = 0. (2.11)

Rewritting these conditions as matrix vector product leads to

∇2
yL(yk, λk) ∇g(yk)

∇g(yk) 0

δy
δλ

 = −

∇yL(yk, λk)

g(yk)

 . (2.12)

2.2.2 Local contraction

We now want to formulate conditions for convergence of Newton-type optimization.

The linear system (2.12) can also be derived by applying Netwon’s method to the

KKT conditions

F (y, λ) :=

∇yL(y, λ)

g(y)

 = 0, (2.13)

of the NLP (2.1). For the exact Jacobian ∂F
∂(y,λ) we introduce the notation

J(y, λ) :=
∂F

∂(y, λ)
(y, λ). (2.14)

7



Consequently, the iterates (2.10) of the SQP method are exactly those generated by

the Newton iteration yk+1

λk+1

 =

yk
λk

− J(yk, λk)−1F (yk, λk). (2.15)

In order to reduce computational cost we could use an approximation J̃(y, λ) ≈ J(y, λ)

of the exact Jacobian. This leads to a so called Newton-type iteration

yk+1

λk+1

 =

yk
λk

− J̃(yk, λk)−1F (yk, λk). (2.16)

We define the spectral radius ρ(B) of a square matrix B as follows

ρ(B) = max{|µ| | µ is Eigenvalue ofB}. (2.17)

The following theorem states sufficient and necessary conditions for local convergence

of Newton-type iterations.

Theorem 4 (Local Newton-type contraction [6]). We consider the twice continuously

differentiable function F (y, λ) from (2.13) and a regular KKT point (y∗, λ∗) with

F (y∗, λ∗) = 0. We then apply the Newton-type iteration with J̃(yk, λk) ≈ J(yk, λk).

We assume J̃(·, ·) to be continuously differentiable and invertible in a neighbourhood

of the solution. If all eigenvalues of the iteration matrix have a modulus smaller than

1, i.e., if the spectral radius satisfies

κ∗ := ρ(J̃(y∗, λ∗)−1J(y∗, λ∗)− 1nF ) < 1 (2.18)

then this fixed point (y∗, λ∗) is asymptotically stable, where nF = ny + ng. Addi-

tionally, the iterates (yk, λk) converge linearly to the KKT point (y∗, λ∗) with the

asymptotic contraction rate κ∗ when initialized sufficiently close. On the other hand,

if κ∗ > 1, then the fixed point (y∗, λ∗) is unstable.
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3 Inexact Newton with Iterated

Sensitivities (INIS)

In this chapter we introduce the INIS method and results from [9]. We apply the

INIS method to a particular class of NLP problems

min
z∈Rnz , w∈Rnw

f(z, w) (3.1a)

subject to g(z, w) = 0 (3.1b)

where f : Rnz × Rnw → R and g : Rnz × Rnw → Rng are again assumed to be twice

continuously differentiable. Furthermore we assume ng = nz and that the Jacobian

gz := ∂g(z,w)
∂z is invertible. We introduce the vector of the decision variables y ∈ Rny

which consist of the states z and the controls w, i.e. y = [z>, w>]> and ny = nz +nw.

The INIS method can be generalized for NLPs that contains inequality constraints and

additional equality constraints [9, 10] but the main focus of this thesis are problems

of the form (3.1).

Due to the invertibility of gz it follows that the variables z are implicitly defined via

the equality constraints g(z, w) = 0, i.e. for a given w∗ we can solve

g(z, w∗) = 0 (3.2)

to obtain the solution z∗(w∗). This subproblem is called the forward problem.

We solve it by applying Newton’s root finding method to obtain

δzk = −gz(zk, w∗)−1g(zk, w∗). (3.3)

9



Instead of using the exact Jacobian gz we can use a full-rank approximation, M ∈

Rnz×nz

M ≈ gz, (3.4)

and apply an inexact Newton method with updates of the form

δzk = −M−1g(zk, w∗). (3.5)

3.1 Condensed Inexact Newton (IN) for Equality

Constrained Optimization

In order to solve (3.1) we can apply the SQP method. With the Lagrangian L(y, λ) =

f(y) + λ>g(y) the QP that has to be solved in each iteration reads as

min
δy∈Rny

1

2
δy>∇2

yL(yk, λk)δy +∇yL(yk, λk)δy, (3.6a)

subject to gz(y
k)δz + gw(yk)δw + g(yk) = 0, (3.6b)

with the decision variables yk =
[
(zk)>, (wk)>

]>.
Instead of solving the KKT conditions of this QP directly we apply a null space

approach. For a given δw̄ we can pre-solve the forward problem (3.6b)

δz̄ = −gz(yk)−1(g(yk) + gw(yk)δw̄) (3.7)

and obtain a feasible direction δȳ =
[
δz̄>, δw̄>

]>.
With a basis

Z> =
[
−gw(yk)>gz(y

k)−>, 1nw

]
∈ Rnw×ny , (3.8)

10



of the nullspace of the constraint Jacobian, i.e. gy(yk)Z = 0, we can locally express

any other feasible direction in the form

δy = δȳ + Zδw (3.9)

for δw ∈ Rnw . Substituting δy in (3.6) yields the unconstrained problem

min
δw∈Rnw

1

2
δw>Z>∇2

yL(yk, λk)Zδw+(∇2
yL(yk, λk)δȳ+∇yL(yk, λk))>Zδw. (3.10)

The solution is then obtained by solving the system

(Z>∇2
yL(yk, λk)Z)δw = −Z>(∇2

yL(yk, λk)δȳ +∇yL(yk, λk)), (3.11)

and can be expanded back to the full variable space Rny using Equation (3.6b). In

order to calculate δλ and update λk we apply an inexact Newton method to the KKT

conditions for the NLP (3.1)


∇2
yL(yk, λk)

 gz(y
k)>

gw(yk)>


(
gz(y

k) gw(yk)
)

0



δz

δw

δλ

 = −

∇yL(yk, λk)

g(yk)

 . (3.12)

We can write down the first nz equations as

gz(y
k)>δλ = −[1nz 0](∇yL(yk, λk) +∇2

yL(yk, λk)δy) (3.13)

and thus we have

δλ = −[gz(yk)
−> 0](∇yL(yk, λk) +∇2

yL(yk, λk)δy). (3.14)
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This idea is summarized in Algorithm 1 where we used the approximations H̃ ≈

∇2
yL(yk, λk), (3.4) and

Z̃> =
[
−gw(yk)>M−>, 1nw

]
≈ Z>. (3.15)

Algorithmus 1 : inexact_newton(yk, λk,M)

// Get feasible direction

1 δz̄ = M−1g(yk)

// Solve condensed QP

2 b = −Z̃>∇yL(yk, λk) + Z̃>H̃

δz̄
0


3 δw = (Z̃>H̃Z̃)−1b

// Expand to full variable space

4 δz = −δz̄ −M−1gw(yk, λk)δw

5 δλ = −
[
M−> 0

]
(∇yL(yk, λk) + H̃δy)

// Update variables

6 yk+1 = yk + (δz>, δw>)>

7 λk+1 = λk + δλ

3.2 INIS for Equality Constrained Optimization

The algorithm introduced in this section introduces an additional variable D ∈ Rnz×nw

called the sensitivity matrix. This matrix is defined implicitly by the equation

gz(y)D − gw(y) = 0. (3.16)
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We solve this equation by applying Newtons method with the approximation M ≈ gz

and the current iterates yk of the SQP method, resulting in

δD = −M−1(gz(y
k)Dk − gw(yk)), (3.17)

and the updates

Dk+1 = Dk + δD. (3.18)

With the sensitivity matrix we can approximate the Jacobian gw(yk) via

MDk ≈ gw(yk). (3.19)

Hence, the QP solved in each SQP iteration reads as

min
δy∈Rny

1

2
δy>H̃δy +∇yL(yk, λk)δy (3.20a)

subject to Mδz +MDkδw + g(yk) = 0. (3.20b)

Applying the condensing procedure introduced for the inexact Newton method with

Z̃> :=
[
−D> 1nw

]
and δw̄ = 0 results in the condensed system

Z̃>H̃Z̃ δw = −Z̃>∇yL(yk, λk)− Z̃>H̃

−M−1g(yk)

0

 . (3.21)

and the expansion step

δz = −M−1g(yk)−Dkδw (3.22a)

δλ = −[M−> 0](∇yL(yk, λk) + H̃δy). (3.22b)

Subsequently, we update the sensitivity matrix via Equations (3.17) and (3.18). These

steps lead us to Algorithm 2.
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Algorithmus 2 : INIS(yk, λk, Dk,M)

// Get feasible direction

1 δz̄ = M−1g(yk)

// Solve condensed QP

2 b = −Z>∇yL(yk, λk) + Z>H̃

δz̄
0


3 δw = (Z>H̃Z)−1b

// Expand to full varaiable space

4 δz = δz̄ −Dkδw

5 δλ = −
[
M−> 0

]
(∇yL(yk, λk) + H̃δy)

// Update iterates

6 yk+1 = yk + (δz>, δw>)>

7 λk+1 = λk + δλ

// Update sensitivities

8 δD = −M−1(gz(y
k)Dk − gw(yk))

9 Dk+1 = Dk + δD

Remark 1. Because of the condensing procedure and the introduced approximation

M ≈ gz the INIS algorithm is best suited for problems where nz � nw. For small

nw step 3 of the Algorithm 2 is computational cheap and the costs for solving steps

5 and 7 are reduced due to the approximation M which should be a matrix that is

computational cheap to invert.
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3.2.1 Local contraction

In order to analyze the local convergence properties of the INIS method we state the

augmented FONC

FIS(y, λ,D) =


∇yL(y, λ)

g(y)

vec(gz(y)D − gw(y))

 = 0, (3.23)

where vec(·) vectorizes a given matrix in column major order. Thus FIS(y, λ,D) ∈

RnIS , with nIS = 2nz + nznw + nw. Since they contain the FONC conditions of the

original formulation (3.1) a solution of the augmented FONC is also a solution to the

original conditions.

Proposition 1. A regular KKT point (y∗, λ∗, D∗) of the augmented conditions (3.23)

corresponds to a regular KKT point (y∗, λ∗) of the NLP (3.1).

Proof. The KKT conditions of (3.1) are

∇yL(y, λ)

g(y)

 = 0 (3.24)

which are equal to the first two equations of FIS(y, λ,D) = 0.

Applying Newton’s method to (3.23) results in the system


∇2
yL(yk, λk)

 gz(y
k)>

gw(yk)>

 0

(
gz(y

k) gw(yk)
)

0 0

∂
∂yvec(gz(y

k)Dk − gw(yk)) 0 1nw ⊗ gz(yk)


︸ ︷︷ ︸

=:JIS(yk,λk,Dk)


δy

δλ

vec(δD)

 = −FIS(yk, λk, Dk)

(3.25)
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where ⊗ denotes the Kronecker product of matrices. We approximate JIS(yk, λk, Dk)

now be by the matrix

JINIS(yk, λk, Dk) :=


H̃

 M>

Dk>M>

 0

M MDk 0 0

0 0 1nw ⊗M


(3.26)

where we again used the approximations H̃, M and MDk introduced in the previous

sections. We assume these matrices to be such that JINIS(·) is continuously differen-

tiable and invertible.

Theorem 5. For the augmented linear system (3.23) on the NLP in (3.1), the

eigenspectrum of the INIS-type iteration matrix at the solution (y∗, λ∗, D∗) reads as

σ(J−1
INISJIS − 1nIS) = σ(M−1gz − 1nz) ∪ σ(H̃−1

Z HZ − 1nw) (3.27)

where Z ∈ Rny×nw denotes a basis for the null space of the Jacobian gy(y), such that

the reduced Hessians HZ := Z>HZ and H̃Z := Z>H̃Z are defined, with the exact

Hessian H := ∇2
yL(y, λ) and an approximation H̃ ≈ H.

More specifically, the iteration matrix has the nw eigenvalues of the matrix H̃−1
Z HZ −

1nw and the nz eigenvalues of M−1gz − 1nz with an algebraic multiplicity of (2 +nw).

Proof. The proof is based on the observation that the eigenvalues µ of the iteration

matrix

J−1
INISJIS − 1nIS (3.28)

are the zeros of

det(J−1
INISJIS − 1nIS − µ1nIS) = det(J−1

INISJIS − (µ+ 1)1nIS) = 0. (3.29)
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This matrix can be rewritten as product of block matrices where properties of the

determinant can be used to determine the eigenvalues and their algebraic multiplicity.

A detailed proof can be found in [9].

Based on this Theorem we can formulate a dependence of the contraction rate of the

forward problem and the INIS algorithm.

Corollary 1 (Local INIS-type contraction). The local rate of convergence for the

INIS-type optimization algorithm is defined by

κ∗INIS = ρ(J−1
INISJIS − 1nIS) = max

(
κ∗F , ρ

(
H̃−1
Z HZ − 1nw

))
(3.30)

where κ∗F = ρ
(
M−1gz − 1nz

)
is defined as the local contraction rate of the forward

problem (3.5).

Proof. Follows directly by Theorem 5.

From this corollary, it follows that local contraction of the forward problem is a

necessary condition for local contraction of the INIS-type algorithm. If an exact

Hessian is used in the INIS method the local contraction of the forward problem

is even a sufficient condition. More precisely, if the Hessian approximation is good

enough, i.e. ρ
(
H̃−1
Z HZ − 1nw

)
≤ κ∗F we have κ∗INIS = κ∗F . This connection between

the contraction properties of the forward problem and the INIS method is a special

property that makes the INIS method stand out fundamentally from the family of IN

methods.

That the contraction of the forward problem is neither sufficient or necessary for

convergence of the inexact Newton method in Algorithm 1 was discussed in [11] where

also an example is stated to further support this statement.
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4 Multi-Grid for Simulation of Partial

Differential Equations

Partial differential equations are often used to describe physical processes like fluid

dynamics, electricity, magnetism, heat, diffusion, etc., which are important in many

fields of physics and engineering sciences. Therefore, the numerical solution of PDEs

is an important task. In this chapter, we want to introduce the multi-grid method

[12, 13] which is particularly well suited for solving very fine discretized PDEs.

Definition 8 (Partial Differential Equation (PDE)). Let Ω ⊂ Rn be an open domain

and z ∈ Ck(Ω) than a partial differential equation is a mapping

G : Ω× Rn × Rn
2 × · · · × Rn

k → R, (4.1)

that defines a relation between the partial derivatives of z via the equation

G(t, z(t), Dz(t), D2z(t), . . . , Dkz(t)) = 0, (4.2)

for all z ∈ Ω.

Functions that satisfy this equation are called solution of the partial differential

equation. Generally, PDEs have got infinitely many solutions. To single out relevant

solutions, additional conditions are imposed in form of boundary value or initial value

conditions.

Definition 9 (Boundray Value Problem). Let Ω ⊂ Rn be an open domain and

z ∈ Ck(Ω̄). A boundray value problem is a PDE G(z) = 0 together with boundray
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conditions that are defined via an equation

H(t, z(t), Dz(t), D2z(t), . . . , Dk−1z(t)) = 0, (4.3)

for all t ∈ ∂Ω with a mapping

H : ∂Ω× Rn × Rn
2 × · · · × Rn

k−1 → R. (4.4)

4.1 Numerical Solution of Poisson Equation

Let us regard the example of the Poisson equation which we restrict for simplicity to

the 2-dimensional square Ω = (0, 1)2, although Ω could be a more general domain

or even of higher dimension. The following PDE will be part of our optimization

problem in chapter 5 and is well suited to explain the basic principle of the MG

method. Let us start with the simple Dirichlet boundary value problem

−∆z = f t ∈ Ω,

z = 0 t ∈ ∂Ω,
(4.5)

with f : Ω→ R. For the numerical solution the negative Laplace operator −∆ will be

discretized by finite differences [13]. This discretization is characterised by the choice

of the grid size h and the difference scheme. For an integer J ≥ 1 we set h = 1/J

and define the grid points ti,j = (ih, jh) for 0 ≤ i, j ≤ J . The partial derivatives of

the negative Laplace operator will be discretized by central difference quotients

∂2z(ti, tj)

∂t1∂t1
≈ ∂+

t1
∂−t1zi,j :=

zi−1,j − 2zi,j + zi+1,j

h2
. (4.6)
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where zi,j are approximations of the unknowns z(ti,j).

These approximations result in the discretized Poisson problem

−∂+
t1
∂−t1zi,j − ∂

+
t2
∂−t2zi,j = f(ti,j) for 1 ≤ i, j ≤ J − 1,

z0,j = zJ,j = zi,0 = zi,J = 0 for 0 ≤ i, j ≤ J.
(4.7)

Rewriting the left hand side of the first equation with the definition of the central

difference quotients we get

− ∂+
t1
∂−t1zi,j − ∂

+
t2
∂−t2zi,j = −h−2(zi,j−1 + zi−1,j − 4zi,j + zi+1,j + zi,j+1) (4.8)

The right hand side is often referred to the 5-point stencil which helps to get a visual

intuition of the discretized laplace operator, see Figure 1.

ti,j

h

Figure 1: 5-point-stencil on uniform grid with gridsize h.

The goal is to iteratively determine the coefficients (zi,j : i, j = 0, . . . , J) with a linear

system of equations resulting from the descretized Poisson problem. In order to

simplify the equations we introduce the lexicographic enumeration for the interior

grid points by identifying

(i, j) ≡ i+ (j − 1)(J − 1) = m, (4.9)

for i, j = 1, . . . , J − 1 and m = 1, . . . , N with N = (J − 1)2. An illustration is found

in Figure 2.
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z1

z2

z3

z4

z5

z6

z7

z8

z9

Figure 2: lexicographic enumeration of the interior grid points on uniform grid with
gridsize 1/4.

.

Because of the vanishing coefficients z0,j = zJ,j = zi,0 = zi,J = 0 for i, j = 0, . . . , J

the linear system of equations can be reduced and written as

h−2


X −1

−1
. . . . . .
. . . . . . −1

−1 X


︸ ︷︷ ︸

=:A


z1

z2

...

zN


︸ ︷︷ ︸

=:Z

=


f1

f2

...

fN


︸ ︷︷ ︸

=:F

, (4.10)

with the matrix X ∈ R(J−1)×(J−1) defined by

X =


4 −1

−1
. . . . . .
. . . . . . −1

−1 4

 , (4.11)

and fi = f(ti) for i = 1, . . . , N . This linear system of equations

AZ = F (4.12)

can be solved iteratively with methods like the Richardson, Gauss-Seidel or Jacobi
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method [14]. However, the drawback of suchlike iterative solvers is a decreasing

convergence rate for finer grids. Therefore, a single iteration does not only get more

expensive to compute due to the larger linear system, but also more iterations steps

are needed to converge to the solution. In the next sections, we will introduce the

MG method which does not suffer from this problem but instead has a convergence

rate independent of the gridsize and therefore is well suited to solve large systems

resulting from a fine grid. More details to Finite Difference Methods can be found in

[13].

4.2 Multi-Grid (MG) Method

The multi-grid method is an algorithm for linear systems resulting from the discretiza-

tion of PDEs. In contrast to basic iterative solvers for linear systems, the MG method

not only uses the linear system itself but also linear systems of lower dimension that

structurally depend on the system that actual has to be solved, which can be seen as

discretization on a coarser grid.

In the following, we summarized the basic concept of the multi-grid method to give a

first intuition.

4.2.1 Overview: Basic Concept of MG

We will limit ourself to the geometric approach of the MG method, in this concept

the structural dependence of the linear systems will be established with a hierarchy

of grids.

The MG method starts by calculating a fine grid approximation of the solution on the

initial/finest grid. The basic idea of the MG method is to improve this approximation

through a correction term which is obtained as solution of a defect problem on a

coarser grid. This problem is formulated with the help of the fine grid approximation.
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In order to formulate the defect problem on the coarser grid we have to transfer

the functions between the different refinement levels called gridlevels. The transfer

from a fine grid onto a coarse grid is called restriction and the other way around

prolongation.

It is important to note that the correction of the fine grid approximation with the

solution of the defect problem is not sufficient for convergence of the MG method.

The key component is the so called smoother. Its purpose is to reduce certain parts of

the error resulting in a "smoother" error. The error of a current approximation can

be divided into low- and high-frequency errors. The goal of the coarse grid correction

is to reduce the low-frequency error and the smoother reduces the high-frequency

error, in combination they lead to the MG method. Typically basic iterative methods

are used as smoother. Even tough these methods are not suited to solve the system

directly as mentioned above, they do quickly remove high frequency errors.

These series of steps are commonly referred to one MG-Cycle or one iteration of the

MG method.

4.2.2 Grid Hierarchy

Recalling the Poisson test problem

−∆z = f t ∈ Ω,

z = 0 t ∈ ∂Ω,
(4.13)

we will know introduce a hierarchy of grids starting with the largest grid size h0 = 1/2

and corresponding grid Ω0 = {1/2}. A hierarchy of refined grids is know established

by successively halving the grid sizes

hl =
1

2
hl−1, (4.14)
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resulting in the sequence

h0 > h1 > . . . > hl > . . . > hL with hl = 2−l−1 (4.15)

for given L > 0. The index l is called gridlevel with corresponding interior grid

Ωl = {(ihl, jhl) : 1 ≤ i, j ≤ Jl} with Jl = h−1
l − 1. This hierarchy is illustrated in

Figure 3 with the lexicographic enumeration introduced in Equation (4.9).

1
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35

36

37

38

39

40

41

42
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44

45

46

47

48

49

Figure 3: Grid hierarchy for gridlevels l = 0, 1 and 2 with interior grid point
enumeration

From now on, we will formulate the discretized Poisson problem for a given gridlevel
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l ∈ N, i.e. we write Equation (4.12) as

AlZl = Fl. (4.16)

Based on this linear system of equations, we investigate the smoothing effect of the

smoother.

4.2.3 Richardson Method as Smoother for the MG Method

Different iterative methods has been proved to be effective smoothers for the Poisson

equation, such as the iterations Gauß-Seidel, damped Jacobi, alternating direction

implicit iteration (ADI) and the Richardson method [12]. For simplicity, we restrict

ourselves in the following to the Richardson iteration as introduced in [13],

Zkl = Zk−1
l − ω(AlZ

k−1
l − Fl). (4.17)

For a given number ν ∈ N and an inital guess Z0
l , Algorithm 3 performs ν ∈ N

Richardson iterations.

Algorithmus 3 : richardson(Al, Fl, Z0
l , ω, ν)

1 for k ← 1 to ν do

2 Zkl = Zk−1
l − ω(AlZ

k−1
l − Fl)

3 end

4 return Zνl

Condition Number of Discretization Matrix

For convergence analysis we want to investigate the eigenvectors of the discretization

matrix Al, [12, 15].
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We note that the eigenvectors of Al are

vi,jl = vil ⊗ v
j
l (4.18)

for i, j = 1, . . . , Jl with

vil = [sin(iπhl), sin(2iπhl), . . . , sin(Jliπhl)]
T (4.19)

for i = 1, . . . , Jl. The corresponding eigenvalues are

ξi,jl = 4h−2(sin(iπhl/2)2 + sin(jπhl/2)2). (4.20)

i, j = 1, . . . , Jl. With the eigenvalues

ξmax = 8h−2 sin((h−1
l − 1)πhl/2)2,

ξmin = 8h−2 sin(πhl/2)2,
(4.21)

we can obtain the condition number approximately for hl � 1 by

κcond =
ξmax

ξmin

=
sin((h−1

l − 1)πhl/2)2

sin(πhl/2)2

≈ sin(π/2)2

sin(πhl/2)2

=
1

sin(πhl/2)2
.

(4.22)

Taylors formula than yields

κcond ≈
1

(0 + πhl/2 + 0 +O(h3
l ))

2
≈ h−2

l . (4.23)

Hence the condition number is large for hl � 1 and classical iterative solvers typically

converge slowly [13]. An illustration of ξmax and ξmin can be found in Figure 4.
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Figure 4: Illustration of the low and high frequency eigenvectors ξmin and ξmax of
Al.

Smoothing Effect of the Richardson Method

For the solution Z∗l we analyse the error ekl = Zkl − Z∗l ,

ekl = Zkl − Z∗l

= Zk−1
l − ω(AlZ

k−1
l − Fl)− Z∗l

= ek−1
l − ω(AlZ

k−1
l −AlZ∗l )

= (1J2
l
− ωAl)ek−1

l .

(4.24)

Thus, the error converges to zero if

|1J2
l
− ωξi,jl | < 1 (4.25)

for i, j = 1, . . . , Jl. This is guaranteed if we chose ω ∈ (0, 2/ξmax), e.g. ω = 1/ξmax.

Using the eigenvectors of Al we have

e0
l =

Jl∑
i=1

Jl∑
j=1

ηi,jvi,jl (4.26)
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for some coefficients ηi,j ∈ R. ν steps of the Richardson method then yield

eνl =

Jl∑
i=1

Jl∑
j=1

θi,jvi,jl (4.27)

with
θi,j = ηi,j(1− ωξi,jl )K

= ηi,j(1−
ξi,jl
ξmax

)K .

(4.28)

Consequently the high frequency parts of the error vanish much faster than low

frequency parts. An illustration of this observation is provided in Figure 5. So

we have seen convergence of the Richardson Iteration is only lacking in the low

frequencies.
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Figure 5: Error eνl = |Zνl −Z∗l | after ν = 20, 200, 1000 iterations with the Richardson
method on gridlevel l = 6 to show the smoothing effect.
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Linearity of the Richardson Method

We want to close the section about the Richardson method with a linearity estimate,

which we use later in this chapter to prove a similar result for the MG method.

Lemma 1 (Linearity of the Richardson Method). For ν ∈ N there exist matrices

Sνl , T
ν
l such that ν Richardson iterations can compactly be written as

Zνl = Sνl Z
0
l + T νl Fl (4.29)

for all Z0
l , Fl ∈ RJ2

l . With

Sνl = 1J2
l
− ωAl,

T νl = 1J2
l
ω

(4.30)

for ν = 1 and
Sνl = (1J2

l
− ωAl)Sν−1

l ,

T νl = ((1J2
l
− ωAl)T ν−1

l − ω1J2
l
)

(4.31)

for ν > 1.

Proof. The proof is performed by induction.

For ν = 1 we can rewrite Equation (4.17) as

Zνl = (1J2
l
− ωAl)Z0

l − ωFl, (4.32)

hence Equation (4.29) holds.

Lets assume Equation (4.29) holds for ν − 1, hence, we can rewrite the Richardson

iteration as

Zνl = (1J2
l
− ωAl)Zν−1

l − ωFl

= (1J2
l
− ωAl)(Sν−1

l Z0
l + T ν−1

l Fl)− ωFl

= (1J2
l
− ωAl)Sν−1

l Z0
l + ((1J2

l
− ωAl)T ν−1

l − ω1J2
l
)Fl

(4.33)
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which proves the lemma.

4.2.4 Two-Grid Method

Based on the observation of the previous subsection, our next step is to introduce

a second iteration which manly focuses on reducing the smooth part of the error in

order to get a method efficiently reducing all parts of the error.

Given a grid Ωl with grid size hl and an approximation Zl of the solution Z∗l = A−1
l Fl.

As we have seen in the previous section, we can smooth this approximation with only

a few Richardson iterations resulting in Zνl where ν ∈ N is the number of smoothing

iterations. More precisely the error eνl = Zνl − Z∗l is smoother than the old error

el = Zl − Z∗l . With the residuum rl = AlZ
ν
l − Fl the error eνl is the solution of the

defect problem

Aldl = rl, (4.34)

since

Ale
ν
l = AlZ

ν
l −AlZ∗l = AlZ

ν
l − Fl = rl. (4.35)

Although we have formulated a new linear system of equations with the same

complexity as Equation (4.12), eνl can be approximated on a coarse grid better than

Z∗l , because it is a smoothed function.

To formulate the defect problem on a coarse grid we define a restriction operator

Rl : RJ
2
l → RJ

2
l−1

rl 7→ Rl rl.
(4.36)

There are different variants how to restrict a grid function to a coarser grid [12], we

used a version introduced in [13]. Rl is a sparse matrix and its sparsity pattern is

visualized in Figure 6 with repeating entries

[
1/2 1/2 0 . . . 0 1/2 1 1/2 0 . . . 1/2 1/2

]
(4.37)
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in each row.

Figure 6: Sparsity pattern for restriction matrix R3 : R49 → R9.

The effect of the restriction matrix Rl on the coefficient vector rl is illustrated in

Figure 7.

Figure 7: Restriction and prolongation for gridlevel l = 3.

The restricted defect problem is called coarse grid equation and reads as

Al−1dl−1 = rl−1 = Rlrl, (4.38)

where Al−1 is the matrix from the discretized Poisson problem on gridlevel l − 1. As

solution we obtain dl−1 = A−1
l−1rl−1 which we expect to be an approximation of the

error eνl . Since dl−1 is only defined on the coarse grid Ωl−1, we have to interpolate

33



this solution back to the fine grid. Therefore we define the prolongation operator

Pl : RJ
2
l−1 → RJ

2
l

dl−1 7→ Pl dl−1 = R>l dl−1.
(4.39)

This relates to a linear interpolation illustrated in Figure 7. Now, we can update our

smoothed approximation Zνl introducing the compact formula

Zνl 7→ Zνl − PlA−1
l−1Rl(AlZ

ν
l − Fl), (4.40)

called coarse grid correction . The combination of these steps is called two-grid

iteration summarized in Algorithm 4.

Algorithmus 4 : two_grid(Al, Fl, Z0
l , ω, ν)

1 Zνl = richardson(Al, Fl, Z
0
l , ω, ν) // smoothing inital guess

2 rl = AlZ
ν
l − Fl // calculation of the residuum

3 rl−1 = Rlrl // restriction of the residuum

4 dl−1 = A−1
l−1rl−1 // exact solution of the coarse-grid equation

5 Zl = Zνl −R>l dl−1 // correction step

6 return Zl

A common modification to the two-grid method is to apply pre-smoothing step before

the coarse-grid correction and a post-smoothing step afterwards [12].

4.2.5 Multi-Grid Method

For a very fine discretization of the Poisson problem (4.5) or other multi-dimensional

boundary value problems the computation of the exact solution dl−1 = A−1
l−1rl−1 is

expensive and unnecessary. Since dl−1 is an approximation of the exact correction

dl there is no need to solve the coarse-grid equation Al−1dl−1 = rl−1 exactly. Since
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the coarse-grid equation is of the same form as the original equation AlZl = Fl, we

can apply the two-grid method to approximate dl−1. Repeating this idea recursively

until a gridlevel lmin ≥ 0 is reached leads to a multi-grid method.

On the coarsest grid, the smallest system of equations has to be solved, in the case

of lmin = 0 this would only be a scalar equation. Hence, the exact solution can

be computed with low computational cost. The multi-grid method can easily be

described as a recursive algorithm.

A single multi-grid iteration is commonly referred to as cycle. The sequence of

operations during one multi-grid cycle is illustrated in Figure 8 and due to the form

it is also called V-cycle.

l = 0

l = 1

l = 2

l = 3

l = 4 pre-smoothing
post-smoothing
exact solution
restriction
prolongation

Figure 8: Graphical illustration of the recursive MG strategy.

An other common multi-grid cycle is the W-cycle illustrated in Figure 9. The W-cycle

introduces additional computational cost compared to the V-cycle, but is more stable

meaning that less smoothness requirements for the solution are needed [16]. The

W-cycle can be seen as a generalization of the V-cycle shown in Algorithm 5. The

V-cycle is obtained for η = 0 and the W-cycle for η = 1. For more details to MG

methods see [12, 17, 18].
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l = 0

l = 1

l = 2

l = 3

l = 4

pre-smoothing
post-smoothing
exact solution
restriction
prolongation

Figure 9: Graphical illustration of the operations during a single W-cycle.

Algorithmus 5 : multi_grid(Al, Fl, Z0
l , ω, νpre, νpost, lmin, l, η)

1 if l = lmin then

2 Zl = A−1
l Fl

3 end

4 else

5 Zl = richardson(Al, Fl, Z
0
l , ω, νpre) // pre-smoothing

6 rl−1 = Rl(AlZl − Fl) // restriction of the residuum

7 dl−1 = 0 // initial guess for coarse grid correction

// recursion

8 for 0 to η do

9 dl−1 = multi_grid(Al−1, rl−1, dl−1, ω, νpre, νpost, lmin, l − 1, η)

10 end

11 Zl = Zl −R>l dl−1 // correction step

12 Zl = richardson(Al, Fl, Zl, ω, νpost) // post-smoothing

13 end

14 return Zl
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4.3 Linearity of the Multi-Grid Method

In order to combine the MG method with the INIS method and preserve the local

convergence properties we have to prove that the MG method is linear in Z0
l and the

right side Fl.

For a given gridlevel l ∈ N we want to show that there exist matrices SMG
l , TMG

l ∈

RJ2
l ×J

2
l , such that

ZMG
l = SMG

l Z0
l + TMG

l Fl (4.41)

holds. For simplicity we restrict ourselves to the V-cycle, i.e. η = 1, even though this

estimate holds for η ∈ N. We define the mapping

ϕl : RJ
2
l × RJ

2
l → RJ

2
l

(Zl, Fl) 7→ ϕl(Zl, Fl)
(4.42)

as a single V-cycle with fixed number of pre- and post-smoothing steps νpre and

νpost.

Lemma 2 (Linearity of the V-cycle). The mapping ϕl is linear in Zl and Fl, i.e. for

l ≥ 0 there exist matrices SMG
l , TMG

l ∈ RJ2
l ×J

2
l such that

ϕl(Zl, Fl) = SMG
l Zl + TMG

l Fl (4.43)

for all Zl, Fl ∈ RJ2
l . For l = 0 these matrices are

SMG
l = 0,

TMG
l = A−1

l

(4.44)

and for l > 0 they are recursively defined as

SMG
l = S

νpost
l (S

νpre
l +RTl T

MG
l−1 RlAlS

νpre
l ),

TMG
l = S

νpost
l (T

νpre
l +RTl (TMG

l−1 RlAlT
νpre
l − TMG

l−1 Rl)) + T
νpost
l .

(4.45)
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Proof. The proof will be performed by induction.

For l = 0 we have

ϕl(Zl, Fl) = A−1
l Fl (4.46)

which proves the base case and Equation (4.44).

Lets assume Equation (4.43) holds for l − 1. With Lemma 1 the restriction of the

residuum after pre-smoothing can compactly be written as

rl−1 = RlAlS
νpre
l Zl + (RlAlT

νpre
l −Rl)Fl. (4.47)

With the induction for l − 1 the recursion step is given as

ϕl−1(0, rl−1)
(4.47)

= ϕl−1(0, RlAlS
νpre
l Zl + (RlAlT

νpre
l −Rl)Fl)

(4.43)
= TMG

l−1 (RlAlS
νpre
l Zl + (RlAlT

νpre
l −Rl)Fl)

= TMG
l−1 RlAlS

νpre
l Zl + (TMG

l−1 RlAlT
νpre
l − TMG

l−1 Rl)Fl

(4.48)

Applying the correction and post-smoothing step yields

ϕl(zl, fl) = S
νpost
l (S

νpre
l Zl + T

νpre
l Fl +RTl ϕl−1(dl−1, rl−1)) + T

νpost
l Fl

(4.48)
= S

νpost
l [S

νpre
l Zl + T

νpre
l Fl +RTl (TMG

l−1 RlAlS
νpre
l Zl

+ (TMG
l−1 RlAlT

νpre
l − TMG

l−1 Rl)Fl)] + T
νpost
l Fl

= S
νpost
l [(S

νpre
l +RTl (TMG

l−1 RlAlS
νpre
l ))Zl

+ (T
νpre
l +RTl (TMG

l−1 RlAlT
νpre
l − TMG

l−1 Rl))Fl] + T
νpost
l Fl

= S
νpost
l (S

νpre
l +RTl T

MG
l−1 RlAlS

νpre
l )Zl

+ (S
νpost
l (T

νpre
l +RTl (TMG

l−1 RlAlT
νpre
l − TMG

l−1 Rl)) + T
νpost
l )Fl

(4.49)

which proves the theorem.
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5 INIS-Multi-Grid (INIS-MG) for

Optimization of PDE

In this chapter we explain how the INIS method can be combined with the MG

method. Therefore, we state an PDE constrained optimal control test problem which

we discretize, resulting in an NLP where we can apply the INIS method. The MG

method can then be used to solve linear systems resulting from the discretization of

the PDE.

5.1 PDE Constrained Optimal Control Test Problem

We start by stating the optimization problem

minimize
z(·), u(·)

1− α
2

∫
Ω

∥∥z − fγref

∥∥2
dt+

α

2

∫
∂Ω
‖u‖2 ds, (5.1a)

subject to −∆z = βz3 t ∈ Ω = (0, 1)2, (5.1b)

u ∈ C(∂Ω), (5.1c)

u|∂Ωi
= ui i = 1, . . . , 4 , (5.1d)

ui ∈P5(∂Ωi) i = 1, . . . , 4 , (5.1e)

z|∂Ωi
= ui i = 1, . . . , 4 , (5.1f)

where the states z(·) have to satisfy the nonlinear Poisson Equation (5.1b) with

β ∈ R. The constraints in Equation (5.1c) - (5.1e) require the controls u(·) to be a

polynomial of degree 5 on each edge and continuous on the entire boundary ∂Ω. The

numeration of the boundary is illustrated in Figure 10.
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∂Ω1

(0, 0)

∂Ω2

∂Ω3

(1, 1)

∂Ω4

Figure 10: Domain Ω with numeration of its boundary.

The objective function penalizes the difference to the reference function

fγref(t) =

 γ, for t ∈ [0.2, 0.3]2

0, otherwise.

with γ ∈ R, illustrated in Figure 11, and the absolute value of the controls. The

contribution of the integrals to the objective function can be adjusted by the parameter

α ∈ [0, 1].

Figure 11: Reference function fγref(·) with γ = 4.
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5.2 Discretizing the PDE Constrained Test Problem

In this chapter, we want to discretize the optimization problem (5.1) such that we

approximate it by a finite-dimensional NLP. We will do so by using different tech-

niques like Riemann sums for the objective function and finite differences for the

PDE. Additionally, we can reduce the number of controls which is beneficial for the

INIS algorithm as explained in Remark 1.

First, we partition the domain Ω with a uniform grid by choosing a stepsize h = 1/J

with J = 2L+1 where L ∈ N corresponds to the finest gridlevel introduced in Sub-

section 4.2.2. We then define the gridpoints ti.j = (ih, jh) for 0 ≤ i, j ≤ J and the

number of interior grid points in a single row by I := J − 1.

The discretization of the objective function with Riemann sums leads to the double

sum
1− α

2
h2

I∑
i=1

I∑
j=1

(zi,j − fγref(ti,j))
2 +

α

2
h

4∑
i=1

J∑
j=1

u2
i ((j − 1)h) (5.2)

where h2 is the area of a single square of the uni-form grid for discretization of the

integral defined on Ω and h the step size for the integral defined on ∂Ω. Note that

ui ∈P5(∂Ωi), hence they are determined by their coefficients wji ∈ R for j = 0, . . . , 5,

i.e.

ui(t) =

5∑
j=0

wji t
j for i = 1, 2 (5.3a)

ui(t) =
5∑
j=0

wji (1− t)
j for i = 3, 4 (5.3b)

with t ∈ [0, 1] illustrated in Figure 12. The controls are these 24 coefficients, but they

can be reduced using Equation (5.1c), which requires continuity in the corners of Ω.

41



∂Ω1

(0, 0)

∂Ω2

∂Ω3

(1, 1)

∂Ω4

u2

u4

u1

u3

Figure 12: Discretization of Ω with uniform grid and boundary polynomials ui for
i = 1, . . . , 4.

We can eliminate 4 coefficients as:

w0
1 =

5∑
i=0

wi4 w0
3 =

5∑
i=0

wi2

w0
2 =

5∑
i=0

wi1 w0
4 =

5∑
i=0

wi3

(5.4)

Continuity then follows by definition and the controls are diminished to 20. The

boundary states can be easily be eliminated using Equation (5.1f),

zi,0 := u1(ih) zi,J := u3(ih)

zJ,j := u2(jh) z0,j := u4(jh)
(5.5)

for i, j = 0, . . . , J . As in Chapter 4 we discretize the Laplace operator with finite

differences. The discretization of the nonlinear PDE (5.1b) at an interior point ti,j ,

i.e. 1 ≤ j,m ≤ I, reads similar to Chapter 4 as

− h−2(zi,j−1 + zi−1,j − 4zi,j + zi+1,j + zi,j+1) = βz3
i,j . (5.6)

As for Equation (4.10) we can eliminate the states associated with the boundary grid

points from the left hand side. Substituting these states with Equation (5.5) and
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moving them to the right side leads e.g. for t1,j with 2 ≤ j ≤ I − 1 to

− h−2(z1,j−1 + z0,j − 4z1,j + z2,j + z1,j+1) = βz3
1,j

⇔− (z1,j−1 + u4(jh)− 4z1,j + z2,j + z1,j+1) = h2βz3
1,j

⇔− (z1,j−1 − (4− h2βz2
1,j)z1,j + z2,j + z1,j+1) = u4(jh)

(5.7)

Recalling the lexicographic enumeration for the interior points introduced through

Equation (4.9) we define the matrices Xi
L,β[ZL] ∈ RI×I by

Xi
L,β[ZL] =


4− h2βz2

(i−1)I+1 −1

−1
. . . . . .
. . . . . . −1

−1 4− h2βz2
iI

 (5.8)

for i = 1, . . . , I and the coefficient vector ZL = [z1, . . . , zN ]> with N = I2.

The nonlinear system of equations can be written as

AL,β[ZL]ZL = bL[w], (5.9)

with the matrix

AL,β[ZL] =


X1
L,β[ZL] −1

−1
. . . . . .
. . . . . . 1

−1 XI
L,β[ZL]

 (5.10)

and the vector

bL[w] =



d1[w]

d2[w]
...

dI−1[w]

dI [w]


,
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where the vectors di[w] are defined as

d1[w] =



u1(h) + u4(Ih)

u1(2h)
...

u1((I − 1)h)

u1(Ih) + u2(h)


, dI [w] =



u3(Ih) + u4(h)

u3((I − 1)h)
...

u3(2h)

u3(h) + u2(Ih)


and

di[w] =



u4((I − i)h)

0
...

0

u2(ih)


for i = 2, . . . , I − 1.

This leads us to the reduced NLP

minimize
ZL∈RN , w∈Rnw

1− α
2

h2
N∑
i=1

(ZiL − f
γ
ref(ti))

2 +
α

2
h

4∑
i=1

J∑
j=0

ui(jh)2 (5.11a)

subject to AL,β[ZL]ZL = bL[w] (5.11b)

where Equations (5.1c) - (5.1f) hold per definition.

5.3 INIS-MG Method

In this section, we want to derive an algorithm that combines INIS and MG to

efficiently solve NLP (5.11). Therefore, we first define the objective function fL and
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the constraints gL as

fL(ZL, w) :=
1− α

2
h2

N∑
i=1

(ZiL − f
γ
ref(ti))

2 +
α

2
h

4∑
i=1

J∑
j=0

ui(jh)2 (5.12a)

gL(ZL, w) := AL,β[ZL]ZL − bL[w] (5.12b)

The exact Jacobian gZL
reads as

gLZL
(ZL, w) =


X̃1
L,β[ZL] −1

−1
. . . . . .
. . . . . . −1

−1 X̃I
L,β[ZL]

 ∈ RI
2×I2 (5.13)

with

X̃i
L,β[ZL] =


4− 3h2βz2

i(I)+1 −1

−1
. . . . . .
. . . . . . −1

−1 4− 3h2βz2
iI+I

 (5.14)

Following the idea of an inexact method we want to use an approximate of gLZL
(ZL, w)−1.

A natural choice would be

AL,β[0]−1 = gLZL
(0, w)−1 ≈ gLZL

(ZL, w)−1, (5.15)

where AL,β [0] corresponds to the discretization matrix of the Poisson problem (4.5).

We go one step further an use the linear operator that corresponds to on V-cycle of

the MG method solving the equation

AL,β[0]x = b, (5.16)

which we refer to as M−1. One iteration of this combination of the INIS and MG

method, called INIS-MG, is illustrated in Algorithm 6. Note that in step 6 the
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transposed AL,β[0]> is used, but because AL,β[0] is a symmetric matrix this results

in the same linear operator M−1.

Algorithmus 6 : INIS_MG(AL,β[0], D, ykL, δz
0, δλ0, δD0, ω, νpre, νpost, lmin, L, η)

// Get feasible direction

1 δz̄ = −multi_grid(AL,β[0], g(ykL), δz0, ω, νpre, νpost, lmin, L, η)

// Solve condensed QP

2 b = Z>∇yL(ykL, λ
k
L)− Z>H̃

δz̄
0


3 δw = −(Z>H̃Z)−1b

// Expand to full variable space

4 δz = δz̄ −Dkδw

5 b = [1N 0]
(
∇yL(ykL, λ

k
L) + H̃δy

)
6 δλ = −multi_grid(AL,β[0]>, b, δλ0, ω, νpre, νpost, lmin, L, η)

// Update iterates

7 yk+1
L = ykL + (δz>, δw>)>

8 λk+1 = λk + δλ

// Update sensitivities

9 B = gz(y
k
L)Dk − gw(ykL)

10 δD = −multi_grid(M,B, δD0, ω, νpre, νpost, lmin, L, η)

11 Dk+1 = Dk + δD
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6 Numerical Experiments with INIS-MG

In this chapter we perform numerical experiments on a PDE constrained optimal

control test problem. We compare the MG method on solving the corresponding

forward problem with the built-in MATLAB function mldivide. After we solved the

test problem with INIS-MG and compared the result to a reference solution provided

by ipopt, we have a look at the performance of the INIS-MG method regarding the

CPU time for solving test problem. Last we provide a experimental verification of

Corollary 1.

6.1 Software and Implementation Framework

This section aims on giving an overview of the software used within this thesis. All

implementations were made using MATLAB on a laptop running Windows 10 equipped

with an Intel i7.8565U and 16GB of RAM.

6.1.1 CasADi

For the computation of derivatives, we used the open-source tool CasADi, which

calculates gradients, Jacobians, and Hessians with forward and reverse mode of

algorithmic differentiation (AD) [19, 20]. It is written in self-contained C++ and was

used via a full-featured interface to MATLAB.
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6.1.2 ipopt

ipopt is an open-source software package for solving large-scale nonlinear optimiza-

tion problems. ipopt implements an interior point line search filter method, hence

the name Interior Point Optimizer. ipopt is the default solver for NLPs in CasADi

and was usesd in this framework.

A comprehensive description of the algorithm can be found in [21], for more mathe-

matical details see [22] and a guide to using ipopt can be found in [23].

Termination criterion

For the class of NLP problems (3.1) introduced in Chapter 3, ipopt terminates if an

approximate solution (z∗, w∗, λ∗) satisfies the condition

E0(z∗, w∗, λ∗) ≤ ε, (6.1)

where the optimality error E0(·) is defined as

E0(z∗, w∗, λ∗) := max

{
‖∇f(z∗, w∗) +∇g(z∗, w∗)λ∗‖∞

sd(λ∗)
, ‖g(z∗, w∗)‖∞

}
(6.2)

with scaling factor

sd(λ
∗) = max

{
smax,

‖λ∗‖1
(2nz + nw)

}
/smax (6.3)

and smax = 100.

In order to compare the INIS-MG method to ipopt , we implemented our algorithm

with the same termination criterion.
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6.2 Test Problem

As test problem we use the reduced NLP (5.11) introduced in Section 5.2, i.e.

minimize
ZL∈RN , w∈Rnw

1− α
2

h2
N∑
i=1

(ZiL − f
γ
ref(ti))

2 +
α

2
h

4∑
i=1

J∑
j=0

ui(jh)2 (6.4a)

,subject to AL,β[ZL]ZL − bL[w] = 0, (6.4b)

with parameters

α = 0.5, β = 80, γ = 4. (6.5)

For a given w∗ ∈ R20 the equation

δZkL = −A−1
L,β[0](AL,β[ZL]ZL − bL[w∗]) (6.6)

is solved in each iteration for the forward problem.

For a fine discretization of Ω we have N � nw = 20 which makes the condensing

procedure very beneficial. Furthermore, the MG method is a very efficient solver

for the Poisson equation, which has to be solved approximately several times in

each INIS-MG iteration. Thus, the INIS-MG method is well suited for this test

problem.

6.3 Linear System Solve: Multi-Grid vs. mldivide

In each INIS iteration, the equation

AL,β[0]x = b (6.7)

has to be solved nw + 2 times for varying right hand sides b ∈ RN . Instead of using

the MG method to compute the solution x we could also use the MATLAB built-in
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function mldivide commonly know as the "\" operator to solve such equations.

The mldivide function takes the structure of matrix M into account to choose an

appropriate solver and therefore solves the problem very efficiently, for details see

[24]. In our case, we have a symmetric matrix where mldivide applies a Cholesky

factorization using CHOLMOD [25], a set of routines for solving linear equations

with sparse and symmetric positive definite matrices. So we are not able to solve the

system with a user-provided tolerance.

For that reason, we want to compare the MG method to mldivide in solving a linear

system that occurs when applying SQP and condensing to our test problem (6.4). We

calculated the solution for different tolerances on the residual, i.e. for a user-provided

ε > 0 the MG method terminates if the equation

‖AL,β[0]x− b‖∞ < ε (6.8)

is fulfilled. We also timed the computation time of a single V-cycle.

The MG method was called with the parameters

νpre = 2, νpost = 2, lmin = 0, η = 1 (6.9)

and the Richardson method with the parameter

ω = 0.2. (6.10)

We used the initial guess x0 = [0.005, . . . , 0.005]> and the right hand side b = g(x0).

The results are illustrated in Figure 13.
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Figure 13: CPU time to compute solution of AL,β[0]x = g(x0) for girdlevels L =
1, . . . , 12 using mldivide, the MG method with different tolerances and
a single V-cycle.

The highest accuracy for the MG method was chosen as ε = 10−14, which is the

accuracy of mldivide.

We were not able to outperform mldivide significantly in calculating the exact

solution on gridlevel L = 12 , i.e. on a linear system with (2L − 1)2 = 16, 769, 025

unknowns. Because of lack of memory MATLAB was not able to perform mldivide on

even higher gridlevels. Using only one V-cycle for solving Equation (6.7) approximately

is about 10 times faster than using mldivide to compute the exact solution and

leads to residuals in the order of magnitude 10−2.

6.4 Solving the Test Problem

The purpose of this section is to illustrate the solution obtained by ipopt and verify

that the INIS-MG method approximates the same solution.
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The test problem was solved on gridlevel L = 5 with the initial guess

y0
L = [0.005, . . . , 0.005]> (6.11)

and tolerance ε = 10−6. ipopt and INIS-MG provided the approximate solutions

(Z∗ipopt, w
∗
ipopt), (Z∗INIS, w

∗
INIS) ∈ R981, (6.12)

of the reduced NLP. These solutions have to be expanded back on to the boundary

∂Ω by evaluating the polynomials u1(·), . . . , u4(·) which are defined by the coefficients

w as explained in Section 5.2. The evaluation of these polynomials with coefficients

w∗ipopt is illustrated in Figure 14 where we also marked the corners of Ω.

Figure 14: Polynomials u1(·), . . . , u4(·) with coefficients w∗ipopt.

Adding these evaluated polynomials to the solutions Z∗ipopt, Z∗INIS leads to Figure 15,

which illustrates the solution Z∗ipopt of the PDE constraint optimal control problem

(5.1) and the pointwise relative error erel(Z∗ipopt, Z
∗
INIS), which is defined by its

entries

erel
i (Z∗ipopt, Z

∗
INIS) :=

|z∗ipopt,i − z∗INIS,i|
|z∗ipopt,i|

, (6.13)
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for i = 1, . . . , N .

Figure 15: Plot of the expanded solution Z∗ipopt for gridlevel L = 5 and the relative
error erel(Z∗ipopt, Z

∗
INIS).

As explained in Chapter 3, the controls w∗ have a special role since they implicitly

define Z∗L(w∗). Therefore we also want to have a closer look on w∗ipopt and w∗INIS.

Since we reduced the coefficients via Equation (5.4) we have to add the missing 4

coefficients. The coefficients w∗ipopt are illustrated in Figure 16 together with the

relative error erel(w∗ipopt, w
∗
INIS).
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Figure 16: Plot of the expanded coefficients w∗ipopt.

Figure 17: Relative error erel(w∗ipopt, w
∗
INIS) of expanded coefficients w∗INIS.

6.5 Computation Times of INIS-MG and ipopt

In this section, we want to compare the INIS-MG method to ipopt regarding the

CPU time for solving the test problem (6.4). As in the previous section we use the
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initial guess

y0
L = [0.005, . . . , 0.005]> (6.14)

and solve with accuracy

ε = 10−6

We solved the test problem for the gridlevels L = 1, . . . , 11 and summarized the CPU

times in Figure 18. With these settings the INIS-MG method converged only for

gridlevels L ≥ 4.

Figure 18: CPU time to compute NLP solution with INIS-MG and ipopt on
different gridlevels.

Only ipopt was able to find an optimal solution on these low gridlevels, but it took

ipopt too much time to compute solutions for gridlevels L ≥ 9.

On gridlevels 2, 7 and 8 ipopt needed much more iterations to converge than on

all the other gridlevels which explains the large jumps in the CPU time plot. The

number of iterations needed on each gridlevel in order to converge are illustrated in

Figure 19.
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Figure 19: Number of iterations needed for convergence of the algorithm ipopt
and INIS-MG solving the test problem on gridlevels L = 1, . . . , 11.

In order to get a better picture of the advantages of the INIS-MG method over

ipopt , let us regard the factor θL by which the computation times tipoptL , tINIS-MG
L

differ, i.e.

θL =
t
ipopt
L

tINIS-MG
L

, (6.15)

which is shown for a complete solve and a single iteration in Figure 20.

The NLP is solved faster by ipopt than with the INIS-MG method for gridlevels

L < 7. Since it takes ipopt less iterations to converge than INIS-MG and a single

iteration is also performed faster by ipopt. For gridlevels L ≥ 7 the number of

iterations of ipopt increases significantly while the number of iterations of the

INIS-MG stays constant. Additionally, a single ipopt iteration is more expensive

than a INIS-MG iteration. Hence, the INIS-MG method outperforms ipopt on

gridlevels L = 7, 8 by the factors θ7 = 17.55 and θ8 = 214.3 for the complete solve.
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Figure 20: Factor θL = t
ipopt
L /tINIS-MG

L on gridlevels L = 4, . . . , 8

6.6 Local Contraction of Forward Problem and INIS-MG

In this last section, we want to give an experimental verification of Corollary 1,

which states the connection between the contraction rate of the forward problem and

the INIS algorithm. In the case of the INIS-MG method, we use an exact Hessian.

Corollary 1 states

κ∗INIS = κ∗F .

To verify this result experimentally we regard the error

ek = |yk − y∗| (6.16)

for the iterates at iteration k of the INIS-MG method applied to the test problem (6.4)

and the iterates of the MG method applied to the corresponding forward problem.

For the forward problem we applied a single V-cycle to obtain the steps. The results

are illustrated in Figure 21
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Figure 21: Plot of the error |yk − y∗| for the iterates of the INIS-MG method and
the forward problem performed on gridlevel L = 7.

The Figure verifies that the methods convergence linearly with similar contraction

rate which can be obtained as exponential of the slope, i.e.

κ∗INIS-MG ≈ exp(−1.4446) = 0.2358

κ∗F ≈ exp(−1.4019) = 0.2461
(6.17)

Calculating κ∗F through its definition yields

κ∗F = ρ(M−1gz − 1nz) = 0.28232 (6.18)

which is about 14− 19% larger. Hence, both algorithms convergence better than the

theoretical result states.
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7 Conclusion and Outlook

This thesis aimed at combining the MG method with the INIS method to obtain an

efficient solver for PDE constraint optimal control problems.

Therefore, both the INIS and the MG method and its respective outstanding properties

have been presented and discussed. For both methods, it was emphasized how they

can be used to efficiently solve problems they are intended for. It was shown that

the MG method is an appropriate method to be used within the INIS algorithm

preserving the INIS specific convergence properties. In this thesis, only a special class

of NLPs was regarded but the INIS-MG algorithm can easily be generalized for NLPs

with inequality constraints and additional equality constraints. To test the INIS-MG

algorithm a test problem was stated for which the algorithm is well suited.

Because all implementations were made using MATLAB, the MG method was compared

against the built-in function mldivide on solving linear systems. Verifying that it

is beneficial to use the MG method as a solver for the forward problem instead of

mldivide. After verification that the INIS-MG method yields the same solution as

the NLP solver ipopt , both solvers were compared with respect to the CPU time.

Regarding the time needed for solving the 2-dimensional test problem, the INIS-MG

method outperformed ipopt by a factor up to 200. Furthermore, an experimental

verification of the connection between the contractions rates of the forward problem

and the INIS-MG method was verified experimentally.

Future work includes the extension of the presented INIS-MG method with respect to

more general PDEs, inequality constraints and 3-dimensional problems. Additionally,

different versions, such as a version with an inexact hessian can be investigated.

Moreover, a combination of the MG method with the IN method could be implemented

and benchmarked against the INIS-MG method and ipopt. Furthermore, in order

to improve the robustness of the INIS-MG method globalization strategies should
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be integrated and it would be interesting to investigate if the INIS-MG method

maintains its efficiency for other PDE constrainted optimal control problems.
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