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NOSNOC: A Software Package for Numerical
Optimal Control of Nonsmooth Systems

Armin Nurkanović and Moritz Diehl

Abstract—This letter introduces the NOnSmooth
Numerical Optimal Control (NOSNOC) open-source soft-
ware package. It is a modular MATLAB tool based on
CasADi and IPOPT for numerically solving Optimal Control
Problems (OCP) with piecewise smooth systems (PSS).
The tool supports: 1) automatic reformulation of systems
with state jumps into PSS (via the time-freezing reformula-
tion [1]) and of PSS into computationally more convenient
forms, 2) automatic discretization of the OCP via, e.g.,
the recently introduced Finite Elements with Switch
Detection [2] which enables high accuracy optimal control
and simulation of PSS, 3) solution methods for the result-
ing discrete-time OCP. The nonsmooth discrete-time OCP
are solved with techniques of continuous optimization in a
homotopy procedure, without the use of integer variables.
This enables the treatment of a broad class of nonsmooth
systems in a unified way. Two tutorial examples are given.
A benchmark shows that NOSNOC provides both faster and
more accurate solutions than conventional approaches,
including mixed-integer formulations.

Index Terms—Software, hybrid systems, optimal control,
numerical algorithms.

I. INTRODUCTION

NONSMOOTH and hybrid dynamical systems are a pow-
erful tool to model complex physical and cyber-physical

phenomena. Their theory is well established and many
good numerical simulation algorithms exist [3]. However,
optimal control of nonsmooth systems is yet not wide spread,
mainly due to the computational difficulty and lack of soft-
ware. A notable exception are mixed integer optimization
approaches [4]. However, they become intractable as soon as
nonconvexities appear or exact junction times need to be com-
puted. The open-source software package NOSNOC is designed
to reduce this gap [5]. We regard a nonsmooth OCP of the
following form:
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min
x(·),u(·)

∫ T

0
fq(x(t), u(t))dt + fT(x(T)) (1a)

s.t. x0 = s0, (1b)

ẋ(t) = fi(x(t), u(t)), if x ∈ Ri, i ∈ I, t ∈ [0, T], (1c)

0 ≥ Gineq(x(t), u(t)), t ∈ [0, T], (1d)

0 ≥ GT(x(T)), (1e)

where fq : Rnx ×R
nu → R is the stage cost and fT : Rnx → R is

the terminal cost, s0 ∈ R
nx is a given parameter. The path and

terminal constraints are collected in the functions Gineq : Rnx ×
R

nu → R
ng1 and GT : Rnx → R

ng2 , respectively. The ODE (1c)
is a piecewise smooth system (PSS), where I := {1, . . . , nf }.
The regions Ri are disjoint, nonempty, connected and open.
The functions fi(·) are smooth on an open neighborhood of
Ri, which denotes the closure of Ri.

The event of x reaching some boundary ∂Ri is called a
switch. The right-hand side (r.h.s.) of (1c) is in general discon-
tinuous in x. Several classes of systems with state jumps can
be brought into the form of (1c) via the time-freezing refor-
mulation [1], [6], [7]. Thus, the focus on PSS enables a unified
treatment of many different kinds of nonsmooth systems.

One might wonder why not just to apply standard direct
methods and existing software to problem with a smoothed
version of the r.h.s. of (1c)? The necessity for tailored methods
and software follows from two important results from the sem-
inal paper of Stewart and Anitescu [8]. First, in standard direct
approaches for (1c), the numerical sensitivities are wrong
no matter how small the integrator step-size is. This often
yields artificial local minima and impairs the optimization
progress [9]. Second, smoothing delivers correct sensitivi-
ties only if the step-size shrinks faster than the smoothing
parameter. Consequently, even for moderate accuracy, many
optimization variables are needed.

These two difficulties are overcome by the recently
introduced Finite Elements with Switch Detection (FESD)
method [2]. In this method, the ODE (1c) is transformed
into a Dynamic Complementarity System (DCS). FESD relies
on Runge-Kutta (RK) discretizations of the DCS, but the
integrator step-sizes are left as degrees of freedom as first
proposed by [10]. Additional constraints ensure implicit and
exact switch detection and eliminate spurious degrees of free-
dom. The discretization yields Mathematical Programs with
Complementarity Constraints (MPCC). They are highly degen-
erate and nonsmooth Nonlinear Programs (NLP) [11], [12], but
with suitable reformulations and homotopy procedures they
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can be solved efficiently using techniques for smooth NLP,
without any integer variables.

The MATLAB tool NOSNOC [5] aims to automate the whole
tool-chain and to make nonsmooth optimal control problems
solvable for non-experts. In particular, it supports:

• automatic model reformulation of the PSS (1c) into the
computationally more suitable DCS.

• time-freezing reformulation for systems with state jumps,
reformulations to solve time-optimal control problems
both for PSS and systems with state jumps,

• automatic discretization of the OCP (1) via FESD or RK,
• several algorithms for solving the MPCC with a homo-

topy approach,
• rapid prototyping with different formulations and algo-

rithms for nonsmooth OCP.
It builds on the open-source software packages: CasADi [13]
which is a symbolic framework for nonlinear optimization and
the NLP solver IPOPT [14]. Having these packages as a back-
end enables good computational performance, despite the fact
that all user inputs are provided in MATLAB. All steps above
can be performed in a couple of lines of code without needing
a deep understanding of the numerical methods and implemen-
tation details. In NOSNOC, the user has only to specify the
functions in (1) and the sets Ri via constraint functions c(x),
cf. Section II. The reformulation, discretization and solution
of the nonsmooth OCP is completely automated.

Notation: The complementarity conditions for two vectors
a, b ∈ R

n read as 0 ≤ a ⊥ b ≥ 0, where a ⊥ b means a�b =
0. The so-called C-functions � : R

n × R
n → R

n have the
property �(a, b) = 0 ⇐⇒ 0 ≤ a ⊥ b ≥ 0, e.g., �(a, b) =
min(a, b). The concatenation of two column vectors a ∈ R

na ,
b ∈ R

nb is denoted by (a, b) := [a�, b�]�, the concatenation
of several column vectors is defined in an analogous way. A
column vector with all ones is denoted by e = (1, 1, . . . , 1) ∈
R

n, its dimensions is clear from the context. The closure of
a set C is denoted by C, its boundary as ∂C. Given a matrix
M ∈ R

n×m, its i-th row is denoted by Mi,• and its j-th column
is denoted by M•,j.

Outline: Section II describes the reformulation of PSS
into DCS. Section III describes the discretization methods
in NOSNOC with a focus on FESD. In Section IV, solution
strategies for the discrete-time OCP are discussed. Section V
provides two tutorials for the use of NOSNOC and a numerical
benchmark. Section VI outlines some future developments.

II. PROBLEM REFORMULATION

System with state jumps do not fit in the form of (1c).
However, we use the time-freezing reformulation [1], [6], [7]
to automatically reformulate them into the from of (1c). An
example is given in Section V-C.

In this section, we detail how to compactly represent the
systems (1c) and a how to transform them into a Dynamic
Complementarity System (DCS) via Stewart’s approach [15].

It is assumed that
⋃

i∈I Ri = R
n and that R

n \ ⋃
i∈I Ri

is a set of measure zero. Moreover, we assume that Ri are
defined via the zero level sets of the components of the smooth
function c : Rnx → R

nc . We use a sign matrix S ∈ R
nf ×nc with

non repeating rows for a compact representations as follows:

S =

⎡
⎢⎢⎢⎣

1 1 . . . 1 1
1 1 . . . 1 − 1
...

... . . .
...

−1 − 1 . . . − 1 − 1

⎤
⎥⎥⎥⎦, (2a)

Ri = {x ∈ R
nx | diag(Si,•)c(x) > 0}. (2b)

For example, for the sets R1 = {x ∈ R | x > 0} and R2 =
{x ∈ R | x < 0}, we have c(x) = x and S = [

1 − 1
]�.

The dynamics are not defined on ∂Ri and to have a
meaningful notion of solution for the PSS (1c) we use the
Filippov convexification and define the following differential
inclusion [16]:

ẋ ∈ FF(x, u) =
{

F(x)θ
∣∣∣∑

i∈I
θi = 1, θi ≥ 0, θi = 0

if x /∈ Ri,∀i ∈ I
}
, (3)

where θ = (θ1, . . . , θnf ) ∈ R
nf and F(x) :=

[f1(x), . . . , fnf (x)] ∈ R
nx×nf . Note that in the interior of a set

Ri we have FF(x) = {fi(x)} and on the boundary between some
regions the resulting vector field is a convex combination of
the neighboring vector fields. To have a computationally use-
ful representation of the Filippov system (3), we transform it
into a DCS via Stewart’s reformulation [15]. In this reformu-
lation, it is assumed that the sets Ri are represented via the
discriminant functions gi(·):

Ri = {x ∈ R
nx | gi(x) < min

j∈I, j �=i
gj(x)}. (4)

Given the more intuitive representation via the sign matrix S
in Eq. (2), it can be shown that the function g : Rnx → R

nf

whose components are gi(x) can be found as [2]:

g(x) = −Sc(x). (5)

With this representation, the convex multipliers in the r.h.s.
of (3) can be found as a solution of a suitable Linear Program
(LP) [15], and (3) is equivalent to

ẋ = F(x, u)θ(x), (6a)

θ(x) ∈ arg min
θ̃∈Rnf

g(x)� θ̃ s.t. e�θ̃ = 1, θ̃ ≥ 0. (6b)

We use a C-function �(·, ·) for the complementarity con-
ditions and write the KKT conditions of the LP (6b) as a
nonsmooth equation

GLP(x, θ, λ, μ) :=
⎡
⎣g(x) − λ − μe

1 − e�θ

�(θ, λ)

⎤
⎦ = 0, (7)

where λ ∈ R
nf
≥0 and μ ∈ R are the Lagrange multipliers

associated with the constraints of the LP (6b). Note that
μ = minj∈I gj(x). Finally, the Filippov system is equivalent to
the following DCS, which can be interpreted as a nonsmooth
differential algebraic equation:

ẋ = F(x, u)θ, 0 = GLP(x, θ, λ, μ). (8)

A fundamental property of the multipliers λ(·) and μ(·) is their
continuity in time [2, Lemma 5], whereas θ(·) is in general a
discontinuous function in time.
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III. THE STANDARD AND FESD DISCRETIZATIONS FOR A

SINGLE CONTROL INTERVAL

This section describes the discretization of a single control
interval in NOSNOC via standard RK methods and FESD. We
start with a standard RK method for the DCS (8). We subse-
quently introduce step-by-step the additional constraints which
lead to FESD.

A. Standard Runge-Kutta Discretization

We consider a single control interval [0, T] with a given
constant control input q and a given initial value x0 = s0.
We divide the control interval into NFE finite elements (i.e.,
integration intervals) [tn, tn+1] via the grid points 0 = t0 <

t1 < . . . < tNFE = T . On each of these intervals, we apply an
ns-stage RK scheme, which is defined by its Butcher tableau
entries ai,j, bi, ci, i, j ∈ {1, . . . , ns} [17]. We denote the
step-size as hn = tn+1 − tn, n = 0, . . . , NFE − 1. The
approximation of the state at the grid points tn is denoted
by xn ≈ x(tn). The time derivative of the state at the stage
points tn + cihn, i = 1, . . . , ns, for a single finite element are
collected in the vector Vn := (vn,1, . . . , vn,ns) ∈ R

ns·nx . The
stage values for the algebraic variable θ(·) are collected in
�n := (θn,1, . . . , θn,ns) ∈ R

ns·nf . The vectors �n ∈ R
ns·nf and

Mn ∈ R
ns are defined accordingly. Let xnext

n denote the value
at the next time step tn+1, which is obtained after a single RK
step.

Now we can write the RK equations for the DCS (8) in
a compact differential form. We summarize all RK equations
of a finite element in Grk(xnext

n , Zn, hn, q) = 0, where Zn =
(xn,�n,�n, Mn, Vn) collects all internal variables, and define

Grk(x
next
n , Zn, hn, q)

:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vn,1 − F(xn + hn
∑ns

j=1 a1,jvn,j, q)θn,1
...

vn,ns − F(xn + hn
∑ns

j=1 ans,jvn,j, q)θn,ns

GLP(xn + hn
∑ns

j=1 a1,jvn,j, θn,1, λn,1, μn,1)

...

GLP(xn + hn
∑ns

j=1 ans,jvn,j, θn,ns , λn,ns , μn,ns)

xnext
n − xn − hn

∑ns
i=1 bivn,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To summarize all conditions for a single control interval in
a compact way, we introduce some new notation. The vari-
ables for all finite elements of a single control interval are
collected in the following vectors x = (x0, xnext

0 , . . . , xNFE) ∈
R

(2NFE+1)nx , V = (V0, . . . , VNFE−1) ∈ R
NFEnsnx and h :=

(h0, . . . , hNFE−1) ∈ R
NFE . The vectors � ∈ R

NFEnsnf , � ∈
R

NFEnsnf and M ∈ R
NFEns are defined analogously. The vector

Z = (x,�,�, M, V) collects all internal variables.
Finally, we can summarize all computations over a single

control interval and interpret it as a discrete-time nonsmooth
system:

s1 = Fstd(Z), 0 = Gstd(Z, h, s0, q) (9)

with Fstd(Z) = xNFE and

Gstd(Z, h, s0, q) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x0 − s0
Grk(xnext

0 , Z0, h0, q)

x1 − xnext
0

...

Grk(xnext
NFE−1, ZNFE−1, hNFE−1, q)

xNFE − xnext
NFE−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that we keep a dependency on hn in (9), but hn is implic-
itly given by the chosen discretization grid. This also means
that for a standard RK scheme for DCS, higher order accu-
racy can be achieved only if the grid points tn coincide with all
switching points, which is in practice impossible to achieve.

B. Cross-Complementarity

In FESD, the step-sizes hn are left as degrees of freedom
such that the grid points tn can coincide with the switch-
ing times. Consequently, the switches should not happen on
the stages inside a finite element. To exploit the additional
degrees of freedom and to achieve these two effects we intro-
duce additional conditions to the RK equations (9) called cross
complementaries. A key assumption, of course, is that there
are more grid points in the interior of the grid than switching
points.

For ease of exposition, we focus on the case where the
right-boundary point of a finite element is also an RK-stage
point, i.e., cns = 1 and tn+1 = tn + cnshn. Extensions can be
found in [2]. To achieve implicit and exact switch detection
at the boundaries of [tn, tn+1] and to avoid switching inside
an element we exploit the fact that λ(·) and μ(·) are continu-
ous functions. We need their values at tn and tn+1 which are
denoted by λn,0, μn,0 and λn,ns, μn,ns , respectively. Due to
continuity, we impose that λn,ns = λn+1,0 and μn,ns = μn+1,0
and use only the right boundary points of the finite elements
(λn,ns and μn,ns ) in the sequel.

To achieve the effects described above, we introduce the
cross complementarity conditions which read as [2]:

0 = Gcross(�,�) :=

⎡
⎢⎢⎢⎣

∑ns
i=1

∑ns
j=1,j �=i θ

�
1,iλ1,j

...∑ns
i=1

∑ns
j=0,
j �=i

θ�
NFE−1,iλNFE−1,j

⎤
⎥⎥⎥⎦. (10)

This additional constraint ensures two very important proper-
ties: (i) we have the same active-set in (9) in �(θn,m, λn,m)

for all m and changes can happen only for different n,
i.e., at grid points tn, (ii) whenever the active-sets for two
neighboring finite elements differ in the i-th and j-th compo-
nents of �(θn,m, λn,m), then these two components of λn,ns

must be zero [2]. This will implicitly result in the constraint
0 = gi(xn+1) − gj(xn+1) (which comes from (7) and the fact
that μn,ns = minj gj(xn+1)). This defines the boundary between
regions and Ri and Rj, cf. (4). Thus, it implicitly forces hn to
adapt for exact switch detection.

C. Step-Equilibration

If no switches occur then also no active-set changes happen,
hence the constraints (10) are trivially satisfied. Consequently,
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the step-size hn can vary in a possibly undesired way and
the optimizer can play with the discretization accuracy. To
remove the spurious degrees of freedom we introduce an
indicator function η(·) evaluated at the inner grid points
tn, n = 1, . . . , NFE − 1 and its value at tn is denoted by
ηn. It has the following property: if a switch happens at tn
its value is zero, otherwise it is strictly positive. We omit the
details on how a function η(·) is derived and refer to [2]. The
discrete-time function η(·) depends on the values of �n and
�n of neighboring finite elements and we define

ηn(�,�) := η(�n−1,�n−1,�n,�n).

Thus, the constraint 0 = Geq(h,�,�) removes the possible
spurious degrees of freedom in hn, where:

Geq(h,�,�) :=
⎡
⎢⎣

(h1 − h0)η1(�,�)
...

(hNFE−1 − hNFE−2)ηNFE−1(�,�)

⎤
⎥⎦. (11)

We call the condition (11) step-equilibration. A conse-
quence of (11) are locally equidistant state discretization grids
between switching point, within a single control interval. Since
this constraint can be quite nonlinear, NOSNOC offers several
reformulations and heuristics that help numerical convergence.

D. Finite Elements With Switch Detection

We now use the ingredients explained above to state the
FESD method. Similar to the standard RK scheme (9), we
summarize all computations over a single control interval
and interpret it as a discrete-time nonsmooth system where
internally exact switch detection is happening. The next step
is computed by

s1 = Ffesd(Z), 0 = Gfesd(Z, h, s0, q, T), (12)

and Ffesd(Z) = xNFE renders the state transition map and the
equation 0 = Gfesd(x, Z, q) collects all other internal com-
putations including all RK steps within the regarded control
interval:

Gfesd(Z, h, s0, q, T) :=

⎡
⎢⎢⎣

Gstd(Z, h, s0, q)

Gcross(�,�)

Geq(h,�,�)∑NFE−1
n=0 hn − T

⎤
⎥⎥⎦.

The last condition ensures that the length of the consid-
ered time-interval is unaltered. In contrast to (9), hn are now
degrees of freedom, s0, q and T are given parameters. The
formulation (12) can be used as an integrator with exact
switch detection for PSS (1c). This feature is implemented
in NOSNOC via the function integrator_fesd(). It can
automatically handle all kinds of switching cases such as:
crossing a discontinuity, sliding mode, leaving a sliding mode
or spontaneous switches [16].

IV. DISCRETIZING AND SOLVING A NONSMOOTH

OPTIMAL CONTROL PROBLEM

This section outlines how a nonsmooth OCP is discretized
in NOSNOC and how the resulting MPCC is solved.

A. Multiple Shooting-Type Discretization With FESD

One of the main goals of NOSNOC is to numerically solve
a discretized version of the OCP (1). We consider Nstg ≥ 1
control intervals of equal length, indexed by k, with piece-
wise constant controls collected in q = (q0, . . . , qNstg−1) ∈
R

Nstgnu . All internal variables are additionally equipped with
an index k. On every control interval k, we apply an FESD
discretization (12) with NFE internal finite elements. The
state values at the control interval boundaries are collected
in s = (s0, . . . , sNstg) ∈ R

(Nstg+1)nx . The vector Z =
(Z0, . . . , ZNstg−1) collects all internal variables and H =
(h0, . . . , hNstg−1) all step-sizes. Finally the discretized OCP
reads as:

min
s,q,Z,H

Nstg−1∑
k=0

f̂q(sk, xk, qk) + f̂T(sNstg) (13a)

s.t. s0 = x̄0, (13b)

sk+1 = Ffesd(xk), k = 0, . . . , Nstg − 1, (13c)

0 = Gfesd(xk, Zk, qk), k = 0, . . . , Nstg − 1, (13d)

0 ≥ Gineq(sk, qk), k = 0, . . . , Nstg − 1, (13e)

0 ≥ GT(sNstg), (13f)

where f̂q : Rnx × R
(NFE+1)nsnx × R

nu → R and f̂T : Rnx → R

are the discrteized stage and terminal costs, respectively.

B. Reformulating and Solving MPCC

The discrete-time OCP (13) is an MPCC. It can be written
more compactly as

min
w

f (w) (14a)

s.t. 0 ≤ h(w), (14b)

0 ≤ w1 ⊥ w2 ≥ 0, (14c)

where w = (w0, w1, w2) ∈ R
nw is a given decomposition of

the problem variables. MPCC are difficult nonsmooth NLP
which violate, e.g., the MFCQ at all feasible points [12].
Fortunately, they can often be solved efficiently via reformula-
tions and homotopy approaches [11], [12]. We briefly discuss
the different ways of solving MPCC that are implemented
in NOSNOC. They differ in how Eq. (14c) is handled. In all
cases, w1, w2 ≥ 0 is kept unaltered and the bilinear constraint
w�

1 w2 = 0 is treated differently.
In a homotopy procedure, we solve a sequence of more

regular, relaxed NLP related to (14) and parameterized by a
homotopy parameter σi ∈ R≥0. Every new NLP is initialized
with the solution of the previous one. In all approaches the
homotopy parameter is updated via the rule: σi+1 = κσi, κ ∈
(0, 1), σ0 > 0, where i is the index of the NLP in the homo-
topy. In the limit as σi → 0 (or often even for a finite i and
σi) the solution of the relaxed NLP matches a solution of (14).
NOSNOC supports the following approaches:

Smoothing and Relaxation: In smoothing the bilinear term
is replaced by the simpler constraint w�

1 w2 = σi and in relax-
ation by w�

1 w2 ≤ σi. Under certain assumptions for σi → 0 a
solution of the initial MPCC (14) is obtained [11].

�1-Penalty: In this approach, the bilinear constraint is dis-
carded and the term 1

σi
w�

1 w2 is added to the objective, which
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is a penalized �1 norm of the complementarity residual. When
the penalty 1

σi
exceeds a certain (often finite) threshold we

have w�
1 w2 = 0 and the solution of such an NLP is a solution

to (14) [12].
Elastic Mode: In elastic mode (sometimes called �∞-

approach) [12], a bounded scalar slack variable γ ∈ [0, γ̄ ] is
introduced. The relaxed bilinear constraint reads as w�

1 w2 ≤ γ

and we add to the objective 1
σi

γ . Variants with w�
1 w2 = γ and

−γ ≤ w�
1 w2 ≤ γ are supported as well. Once the penalty 1

σi
exceeds a certain (often finite) threshold, we have γ = 0 and
we recover a solution of (14) [12].

V. NOSNOC TUTORIALS AND A BENCHMARK

In this section, we provide two short tutorials on the use
of NOSNOC. A numerical benchmark where we compare our
software to conventional approaches is presented as well.

A. Solving a Time-Optimal Control Problem

We regard a time-optimal control problem of a double-
integrator car model with a normal and turbo mode. The state
vector x = (q, v) ∈ R

2 consists of the car’s position q and
velocity v. The PSS reads as

ẋ =
{

(v, u), if v < v̄
(v, 3u), if v > v̄

. (15)

Following Section II, we have f1(x, u) = (q, u) (nominal),
f2(x, u) = (q, 3u) (turbo). The two regions R1 and R2 described
by c(x) = v − v̄ and S = [−1 1

]�. The car should reach the
state xgoal = (200, 0) in optimal time T . Additionally, we have
constraints on the velocity |v| ≤ vmax and control |u| ≤ umax.
The parameters are vmax = 25, umax = 5 and v̄ = 10. This
OCP is formulated and solved with NOSNOC using the code:

The function default_settings_nosnoc() returns a
MATLAB struct with default values for all possible tuning
parameters. The needed time-transformations are automated
by the flag settings.time_optimal_problem = 1.
For the FESD-RK method we keep the default choice of a
Radau II-A, hence we have with ns = 2 an accuracy order
of 3 [17]. The MATLAB struct named model stores user
input data, given in lines 4 to 13, which defines the OCP (1).
NOSNOC automates all definitions, reformulations and updates
the model with all CasADi expressions for the DCS (8).
Moreover, possible inconsistencies in the provided settings
are refined. Finally, in line 14 we solve the discretized OCP

Fig. 1. The position of the car q(t) is shown in the left plot, the velocity
v (t) in the middle plot. Note the increase in acceleration in the turbo
mode for v>v̄ . The right plots shows the optimal control u(t).

Fig. 2. Comparison of NOSNOC to mixed integer formulations. The left
plot show CPU time as function of number of control intervals Nstg. The
right plot show the solution accuracy as function of CPU time in a Pareto
plot.

with a homotopy as described in Section IV-B. The solu-
tion trajectory is given in Fig. 1. The user has access to all
tuning parameters, intermediate results for all homotopy itera-
tions and to all CasADi symbolic expressions and Function
objects. This facilitates rapid prototyping and detailed analysis
of solutions.

B. Numerical Benchmark

We solve the OCP from the last section with four different
approaches. We use NOSNOC with the FESD discretiza-
tion (12) and NOSNOC with the standard discretization (9). The
latter approach is closely related to the smoothing approach
in [8] and [9]. For the MPCC, we use in both cases the
relaxation approach as it is usually the most robust one.
Additionally, we make a big M reformulation of the PSS (15)
and solve a mixed integer nonlinear program (MINLP).
Switches are allowed only at the control interval boundaries,
hence we have two binary variables per control interval. We
solve the MINLP with the dedicated solver Bonmin [18].
Moreover, since the only non-linearity is in time T , we fix
it and make a bisection-type search in T . For every fixed T
we solve a MILP with Gurobi. The MILP with the smallest T
that is still feasible delivers the optimal solution. We vary Nstg
from 10 to 80 with steps of 5. The computations are aborted
if the time-limit of 10 minutes is exceeded.

The results of the benchmark are depicted in Fig. 2.
NOSNOC-FESD is slightly slower than NOSNOC-Std, since it
has NstgNFE more variables, as hn are degrees of freedom.
We compare also the solution quality by making a high-
accuracy simulation xsim(t) of (15) with the obtained optimal
controls q. We compare the terminal constraint satisfaction
E(T) = ‖xsim(T) − xgoal‖. Due to the exact switch detec-
tion property, NOSNOC-FESD has by far the most accurate
solutions. The outlier where NOSNOC-Std achieves high accu-
racy corresponds to a local minima without switches. We see
that even a simple nonsmooth OCP is difficult to solve with
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conventional approaches, whereas NOSNOC-FESD provides
faster and several orders of magnitude more accurate solu-
tions. Further detailed comparisons of FESD to the standard
approach can be found in [2].

C. An Example With State Jumps and Time-Freezing

In this subsection we illustrate how to use NOSNOC with
systems with state jumps. We consider a planar bouncing ball
with elastic impacts. The state vector is defined as x = (q, v) ∈
R

4 with q = (q1, q2) ∈ R
2 and v = (v1, v2) ∈ R

2 being the
ball’s position and velocity, respectively. The initial state is
x(0) = (0, 0.5, 0, 0) and the ball is controlled with some force
u ∈ R

2. The ODE with state jumps reads as:

q̇ = v, v̇ = u − (0, g), (16a)

v2(t
+) = −ev2(t

−), if q2(t) = 0 and v2(t) < 0. (16b)

where e ∈ (0, 1] is the coefficient of restitution and determines
the post impact velocity. The goal is to reach qf = (4, 0.5) with
a minimal quadratic control effort modeled with the stage cost
fq(x, u) = u�u and a minimal terminal velocity expressed via
fT(x) = 100v�v, with T = 4. The control force is bounded
such that it is weaker than the gravitational force, i.e., u�u ≤
u2

max. The chosen parameters are e = 0.9, g = 9.81, umax = 9.
The following NOSNOC code solves the described nonsmooth
OCP with state jump:

The flag settings.time_freezing = 1 ensures that
system with state jumps (16) is transformed into a PSS of the
form of (1c) via the time-freezing reformulation [1]. A solution
trajectory is given in Figure 3, note the state jumps in v2(t) in
the middle plot.

Many more settings can be changed by the user, for exam-
ple, one can choose between different MPCC reformulations
via mpcc_mode, control the sparsity of the cross comple-
mentarities cross_complementarity_mode and so on.
A few more examples and a detailed user manual are available
NOSNOC’s repository [5].

VI. CONCLUSION AND OUTLOOK

In this letter we presented NOSNOC, an open-source soft-
ware package for nonsmooth numerical optimal control. With
the help of the Finite Elements with Switch Detection (FESD)
method and the time-freezing reformulation, it enables prac-
tical and high accuracy optimal control of several different
classes of nonsmooth system in a unified way. The discretized
OCP are solved with techniques solely from continuous

Fig. 3. The illustration of the optimal solution q(t) is shown in the left
plot. The middle plot shows the optimal velocities v (t) as a function of
the physical time t , where the state jumps are recovered. The right plot
shows the optimal controls u(t).

optimization, without the need for any integer variables. All
reformulations and details are hidden but accessible such that
a convenient use for users with different knowledge levels of
the field is ensured.

In future work, we aim to implement a python version
of NOSNOC. Moreover, further algorithmic developments in
FESD, e.g., different reformulations of PSS into DCS, sup-
port for time-freezing for other classes of hybrid systems will
be implemented.
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[1] A. Nurkanović, T. Sartor, S. Albrecht, and M. Diehl, “A time-freezing
approach for numerical optimal control of nonsmooth differential equa-
tions with state jumps,” IEEE Control Syst. Lett., vol. 5, no. 2,
pp. 439–444, Apr. 2021.
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