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Continuous Optimization for Control of Hybrid
Systems With Hysteresis via Time-Freezing

Armin Nurkanović and Moritz Diehl

Abstract—This letter regards numerical optimal control
of a class of hybrid systems with hysteresis using solely
techniques from nonlinear optimization, without any inte-
ger variables. Hysteresis is a rate independent memory
effect which often results in severe nonsmoothness in
the dynamics. These systems are not simply Piecewise
Smooth Systems (PSS); they are a more complicated form
of hybrid systems. We introduce a time-freezing reformu-
lation which transforms these systems into a PSS. From
the theoretical side, this reformulation opens the door to
study systems with hysteresis via the rich tools developed
for Filippov systems. From the practical side, it enables
the use of the recently developed Finite Elements with
Switch Detection (Nurkanović et al., 2022), which makes
high accuracy numerical optimal control of hybrid systems
with hysteresis possible. We provide a time optimal control
problem example and compare our approach to mixed-
integer formulations from the literature.

Index Terms—Hybrid systems, optimal control, numeri-
cal algorithms, software.

I. INTRODUCTION

HYSTERESIS occurs in many physical systems, e.g., fer-
romagnetism, plasticity, superconductivity, phase transi-

tions, but also in feedback control, e.g., thermostats [2], [3].
Hysteresis effects in dynamic systems are modeled with
nonsmooth differential equations. This letter focuses on trans-
forming some classes of systems with hysteresis into piecewise
smooth system (PSS) and numerically solving optimal control
problems (OCP) with PSS. We leverage recent advances in
numerical optimal control of PSS, namely we use the finite
elements with switch detection (FESD) method [1].

A hybrid system with hysteresis can be represented as
a finite automaton [3] which has two modes of operation
described by fA(x) and fB(x), cf. Fig. 1(a). If the system oper-
ates in mode A with ẋ = fA(x) and if ψ(x) ≥ 1, it switches
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Fig. 1. Hybrid system with hysteresis.

to mode B with ẋ = fB(x). On the other hand, if it operates
in mode B and if ψ(x) ≤ 0, it switches to mode A. This
is a typical hysteresis behavior given by the characteristic in
Fig. 1(b), which is often called the delayed relay operator [4].
The dynamics of the system depend on the value of w(t) and
the scalar switching function ψ(x). Notably, for ψ(x) ∈ [0, 1]
the function w(t) can be 0 or 1.

There are several other related characteristics, e.g., the
dashed lines in Fig. 1(b) could be solid, or the resulting poly-
gon in the middle of the plot might be tilted. In all these
cases the characteristic can be readily represented via a lin-
ear complementarity problem [5] and the nonsmooth dynamic
system recast into a Dynamic Complementarity System (DCS).
However, it is an open question if this DCS is a PSS.

Control of systems with hysteresis relying on Filippov
solutions was studied in, e.g., [6], [7]. In control theory,
systems with hysteresis are often studied via the hybrid
systems framework which uses integer state and control
variables [3], [8], [9]. Hence, in an optimal control context
this requires solving Mixed Integer Optimization Problems
(MIOP). They can be solved efficiently in case of discrete time
linear hybrid systems [8] where MILP or MIQP formulations
can be found. However, as soon as the junction times need
to be determined precisely or non-linearity is present, e.g.,
in time optimal control problems, solving MIOP can become
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arbitrarily difficult. On the other hand, the nonsmoothness
can be modeled with complementarity constraints [10] and
one must solve only nonsmooth Nonlinear Programs (NLP).
However, standard time-stepping schemes for DCS have only
first order accuracy and result necessarily in wrong numerical
sensitivities and artificial local minima [10], [11].

The time-freezing reformulation transforms systems with
state jumps into PSS and was first introduced in [12], [13].
This letter introduces a time-freezing reformulation to trans-
form systems represented with the finite automaton in Fig. 1(a)
into PSS. Here, the main idea is to regard w(t) as a continuous
differential state. However, w(t) exhibits jump discontinu-
ities in time at (0, 1) and (1, 0), which can be interpreted
as a state jump law. As in [12], [13], we introduce auxil-
iary dynamic systems and a clock state. The auxiliary dynamic
systems evolve in regions which are prohibited for the initial
system and their trajectory endpoints satisfy the state jump law.
Additionally, the evolution of the clock state is frozen during
the evolution of the auxiliary systems. By regarding only the
parts of w(·) when the clock state was evolving, we recover the
original discontinuous solution. Note that the resulting time-
freezing system is now a PSS, since the only remaining jump
discontinuities are in the system’s dynamics but not in the state
anymore. For high accuracy numerical optimal control of PSS
we use the FESD method [1]. An implementation is available
in the open source software package NOSNOC [14], [15].

Contribution: We present a time-freezing reformulation
for a class of hybrid systems with hysteresis, which transforms
them into PSS. Constructive ways for finding the auxil-
iary dynamics needed in time-freezing are provided. Solution
equivalence between the initial hybrid and time-freezing PSS
are proven. From the theoretical side, this contribution enables
one to treat hybrid systems with hysteresis with the tools for
PSS and Filippov systems [16]. From the practical side, the
highlight of this letter is that we can solve OCP with systems
with hysteresis with high accuracy and without the use of
any integer variables. The OCP discretized via FESD result
in Mathematical Programs with Complementarity Constraints
(MPCC). With appropriate reformulations the MPCC can often
be solved by only a few NLP solves [17], i.e., the highly
nonsmooth and nonlinear OCP are solved by purely deriva-
tive based algorithms. A time optimal control problem of
a hybrid system with hysteresis and illustrates theoretical
and algorithmic developments. We compare the continuous
optimization-based FESD method to mixed integer solution
strategies.

Outline: Section II gives some basic definitions on hybrid
systems with hysteresis and PSS. In Section III we develop the
time-freezing reformulation for a class of hybrid systems with
hysteresis and provide a simple tutorial example. Section IV
formalizes the relation between time-freezing PSS and hystere-
sis systems. Finally, Section V contains a numerical example
and Section VI concludes this letter.

Notation: For the physical time derivative of a function
x(t) we use ẋ(t) := dx

dt (t) and for the numerical time deriva-
tive of y(τ ) we use y′(τ ) := dy

dτ (τ ). The matrix In ∈ R
n×n

is the identity matrix, and 0m,n ∈ R
m×n is the zero matrix.

The concatenation of two column vectors a ∈ R
m, b ∈ R

n is

denoted by (a, b) := [a�, b�]�. The concatenation of several
column vectors is defined in an analogous way. The closure
of a set C is denoted by C, its boundary as ∂C and conv(C)
is its convex hull.

II. BASIC DEFINITIONS: HYBRID SYSTEMS WITH

HYSTERESIS AND FILIPPOV SYSTEMS

In this section we provide some of the basic definitions and
notation for PSS and hybrid systems.

A. PSS and Filippov Systems

We regard PSS of the following form

ẋ = fi(x), if x ∈ Ri ⊂ R
nx , i ∈ I := {1, . . . ,m}, (1)

with regions Ri ⊂ R
nx and associated dynamics fi(·), which

are smooth functions on an open neighborhood of Ri and
m is a positive integer. Note that in general the right hand
side (r.h.s.) of (1) is discontinuous in x. We assume that Ri

are disjoint, nonempty, connected and open sets. They have
piecewise-smooth boundaries ∂Ri. Moreover, we assume that⋃

i∈I
Ri = R

nx and that Rnx \ ⋃

i∈I
Ri is a set of measure zero. Note

that the dynamics are not defined on ∂Ri and to have a mean-
ingful solution concept for the PSS (1) we regard the Filippov
convexification of it [16]. The ODE (1) with a discontinuous
r.h.s. is replaced by a Differential Inclusion (DI) whose r.h.s.
is a convex and bounded set. Due to the assumed structure of
the sets Ri, if ẋ exists, functions θi(·) which serve as convex
multipliers can be introduced and the Filipov DI for (1) reads
as [1]

ẋ ∈ FF(x) =
{ ∑

i∈I
fi(x) θi |

∑

i∈I
θi = 1, θi ≥ 0,

0 = θi if x /∈ Ri,∀i ∈ I
}
. (2)

Note that in the interior of the regions Ri the Filippov set FF(x)
is equal to {fi(x)} and on the boundary between regions we
have a convex combination of the neighboring vector fields.
The evolution of x(·) on region boundaries ∂Ri are called
sliding modes. The sliding mode dynamics in Filippov’s set-
ting are implicitly defined by Differential Algebraic Equations
(DAE) [16].

B. Hybrid Systems With Hysteresis

We consider dynamic systems represented with the finite
automaton in Fig. 1(a):

ẋ = f (x,w) = (1 − w)fA(x)+ wfB(x), (3)

where the (w, ψ(x)) characteristic is illustrated in Fig. 1(b).
For a uniformly continuous function x(t) on t ∈ [0,T] and

a smooth ψ(·), there can be only finitely many oscillations
between 0 and 1. Consequently, the function w(t) is piecewise
constant and has only finitely many jumps between 0 and 1 [2].

The system in (3) has two modes of operation denoted by A
and B. In order to be able to simulate (3) for t ∈ [0,T] with a
given x(0) = x0 we must know w(0) as well. This property is
typical for systems with hysteresis. Furthermore, w(·) jumps
between 0 and 1, hence we can describe it by an ODE with
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the state vector z := (x,w) ∈ R
nx+1 which is associated with

a state jump law.

ż = (f (x,w), 0), (4)

accompanied by a state-jump law for w(·) at time-point ts
which covers two scenarios:

1) if w(t−s ) = 0 and ψ(x(t−s )) = 1, then x(t+s ) = x(t−s ) and
w(t+s ) = 1,

2) if w(t−s ) = 1 and ψ(x(t−s )) = 0, then x(t+s ) = x(t−s ) and
w(t+s ) = 0.

Clearly, due to the state jump law the ODE (4) is not sim-
ply a PSS as (1). Throughout this letter we assume, given
x(0) and w(0) that there exists a solution to the Initial Value
Problem (IVP) associated with (4). A way to define a mean-
ingful notion of solution for hybrid system as (4) is given in
e.g., [3, Sec. 5.4] and sufficient conditions for well-posedness
are provided [3, Th. 5.4].

III. THE TIME-FREEZING REFORMULATION FOR

HYBRID SYSTEMS WITH HYSTERESIS

This section introduces the time-freezing reformulation for
the system (4). We define step-by-step the corresponding
regions Ri of the time-freezing PSS and give constructive ways
to find vector fields associated to them. The section finishes
with a tutorial example.

A. The Time-Freezing System

The main idea is to transform the state w(t) which is a piece-
wise constant function of time into a continuous differential
state on a different time domain. We call this new time domain
the numerical time and denote it by τ . Instead of t as in (1), τ
will now be the time of the time-freezing PSS. Moreover, we
introduce a clock state t(τ ) in the time-freezing PSS which
we call physical time. It grows whenever the systems evolves
according to fA(x) or fB(x), i.e., dt

dτ (τ ) = 1. Otherwise the
physical time is frozen, i.e., dt

dτ (τ ) = 0. In other words, the
time is frozen whenever w /∈ {0, 1}. Consequently, the w(·)
takes only discrete values in physical time, i.e., when t(τ ) is
evolving.

The time-freezing PSS has the following state vector y :=
(x,w, t) ∈ R

ny , ny = nx+2. In the sequel, we define its regions
Ri ⊂ R

ny and the associated vector fields fi(y). Some key
observations can be made from Fig. 1(b). First, everything
except the solid curve is prohibited for the system (4) in the
(ψ,w)− plane. We use this prohibited part of the state space
to define auxiliary dynamics. Second, the evolution happens in
a lower-dimensional subspace since ẇ = 0. This corresponds
in Filippov’s setting to sliding modes. Hence, we define the
regions such that the evolution of the initial system (4) cor-
responds to sliding modes of the time-freezing PSS, i.e., it
happens on region boundaries ∂Ri.

A suitable partition of the (ψ,w)− plane can be achieved
with Voronoi regions. The regions are defined as Ri = {z |
‖z − zi‖2 < ‖z − zj‖2, j = 1, . . . , 4, j �= i}, z = (ψ(x),w) with
the points: z1 = ( 1

4 ,− 1
4 ), z2 = ( 1

4 ,
1
4 ), z3 = ( 3

4 ,
3
4 ) and z4 =

( 3
4 ,

5
4 ). An illustration of the regions is given in Fig. 2, where

the black solid lines denote the region boundaries. This choice

Fig. 2. Illustration of the partitioning of the state space in (ψ(x),w)-
plane for the time-freezing PSS via Voronoi regions with the correspond-
ing auxiliary and DAE-forming dynamic’s vector fields. The Voronoi
points zi , i = 1, . . . , 4, are marked by the crosses.

of zi defines regions such that their boundaries correspond to
the feasible set of the original system (4). Moreover, the space
is split by the diagonal line between R2 and R3 such that we
can define different auxiliary dynamics for the state jumps in
both directions. One can make other choices for the points zi

with the exact same properties. The proposed choice partitions
the space symmetrically, cf. Fig. 2. The figure illustrates also
the vector fields in the regions Ri whose meaning is detailed
below. It is important to note that the original system can
only evolve at region boundaries RA := {y ∈ R

ny | w =
0, ψ(x) ≤ 1} = ∂R1 ∩ ∂R2 and RB := {y ∈ R

ny | w =
1, ψ(x) ≥ 0} = ∂R3 ∩ ∂R4.

We exploit the interior of the regions Ri, i = 1, . . . , 4 to
define the needed auxiliary ODE. In what follows, in the
regions R2 and R3 we define auxiliary dynamic systems whose
trajectory endpoints satisfy the state jump law of (4). In the
regions R1 and R4 we will define so-called DAE-forming
ODE [13], which make sure that we obtain appropriate slid-
ing modes on RA and RB, which are described by index
2 DAE [16] and witch match the dynamics of the original
system. The next definition formalizes the desired proprieties
of an auxiliary ODE.

Definition 1 (Auxiliary ODE): The auxiliary ODE in
regions R2 and R3 are denoted by y′ = faux,A(y) and y′ =
faux,B(y), respectively. For every initial value y(τs) = ys
such that (w(τs), ψ(x(τs)) = (1, 0), for ys ∈ RB, (and
(w(τs), ψ(x(τs)) = (0, 1) for ys ∈ RA, respectively) and for
every well-defined and finite time interval Tjump := (τs, τr)

with the length τjump := τr − τs, the auxiliary ODE sat-
isfy the following properties: (i) w(τ ) ∈ (0, 1), ∀τ ∈ Tjump,
(ii) x(τs) = x(τr), and (iii) w(τr) = 0 (or w(τr) = 1).

In other words, we define an ODE whose trajectory end-
points on T jump satisfy the state jump law associated with
Eq. (4), cf. Fig. 2. The next proposition provides a constructive
way to find an ODE with the above described properties.

Proposition 1 (Auxiliary ODE): Given an initial value
y(τs) = ys such that w(τs) = 1 and ψ(x(τs)) = 0, the ODE
given by

y′(τ ) = faux,A(y) := (0nx,1,−γ (ψ(x)− 1), 0), (5)

where γ : R → R and γ (x) = ax2

1+x2 with a > 0, is an auxiliary
ODE defined in R2. Similarly, for y(τs) = ys with w(τs) = 0
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NURKANOVIĆ AND DIEHL: CONTINUOUS OPTIMIZATION FOR CONTROL OF HYBRID SYSTEMS 3185

and ψ(x(τs)) = 1, the ODE

y′(τ ) = faux,B(y) := (0nx,1, γ (ψ(x)), 0). (6)

is an auxiliary ODE in R3. In both cases τjump = 1
γ (−1) .

Proof: We prove the assertion for (5), since the second part
follows similar lines. Since x′(τ ) = 0nx,1 and t′(τ ) = 0
these two variables do not change their value, thus ψ(x(τ )) =
ψ(x(τs)) = 0 and t(τ ) = t(τs) for τ ≥ τs. Hence, we have
w′(τ ) = −γ (−1) < 0. By explicitly solving the ODE we
obtain w(τr) = 0 for τr = τs + τjump, where τjump = 1

γ (−1) .
All conditions of Definition 1 are satisfied thus the proof is
complete.

We briefly discuss some of the proprieties of such an aux-
iliary ODE, since the are several ways to construct similar
ODE. Loosely speaking, in Fig. 2 in R2 the vector field
should point in the negative w-detection and in R3 in the pos-
itive w-direction, and be zero in all other directions. Note
that for ψ(x) ∈ (0, 1) the vector fields of the auxiliary
ODE in both cases point away from the manifold defined
M = {y ∈ R

ny | w + ψ(x) − 1 = 0}. In such scenarios,
there is usually locally no unique solution to the associated
Filippov DI, as the trajectory can leave M at any point in
time [16]. However, the system should never be initialized in
this region, since this state is infeasible for the original system.
We show later that it can never reach this undesired state if
initialized appropriately. Furthermore, the auxiliary ODE from
Proposition 1 have by construction the favorable property that
they do not point away in both directions from M at the junc-
tion points (0, 1) and (1, 0). This is why the function γ (·) was
introduced in the auxiliary ODE. Another favorable property
is, if the system is initialized with the wrong value for w(·) for
ψ(x) /∈ (0, 1) the auxiliary ODE will automatically reinitialize
w(·) while the physical time is frozen, cf. Fig. 2.

We still need to define DAE-forming vector fields for
the regions R1 and R4. These vector fields should be such
that, together with the auxiliary dynamics in their respective
regions, they results in sliding modes on RA and RB which
match the dynamics of the initial system (4).

In a general PSS the vector fields are not defined on the
region boundaries, thus we use Filippov’s convexification [16]
as defined in Eq. (2), and denote the Filippov set associated to
the time-freezing PSS by FTF(·). The next proposition gives a
constructive way to find the desired vector fields.

Proposition 2 (DAE-forming ODE): Suppose the regions
R2 and R3 are equipped with the vector fields faux,A(·) and
faux,B(·) from Proposition 1, respectively. Let the region R1 be
equipped with the ODE

y′ = fDF,A(y) := 2(fA(x), 0, 1)− faux,A(y), (7)

then for y ∈ RA it holds that (fA(x), 0, 1) ∈ FTF(y) =
conv{faux,A(y), fDF,A(y)}. Similarly, let the region R4 be
equipped with the following ODE

y′ = fDF,B(y) := 2(fB(x), 0, 1)− faux,B(y), (8)

then for y ∈ RB it holds that (fB(x), 0, 1) ∈ FTF(y) =
conv{faux,B(y), fDF,B(y)}.

Proof: We prove the assertion for Eq. (7) and the sec-
ond part follows similar lines. Note that for y ∈ RA =

Fig. 3. Trajectories of the time-freezing PSS for a thermostat example
in numerical time τ (left plot) and physical time t (right plot).

{y | c(y) := w = 0, ψ(x) < 1} we have that
∇c(y)�faux,A(y) < 0 and ∇c(y)�fDF,A(y) > 0. Hence,
we have a sliding mode on w = 0 with dw

dτ = 0 [16].
From (2) we have that FTF(y) = {θ1(2(fA(x), 0, 1) −
faux,A(y)) + θ2faux,A(y) | θ1 + θ2 = 1, θ1, θ2 ≥ 0}. From
this relation and w′ = 0 we obtain that θ1 − θ2 = 0.
Thus we can solve for θ1 and θ2, i.e., θ1 = θ2 = 1

2 ,
which yields (fA(x), 0, 1) ∈ FTF(y). This completes the
proof.

Note that by construction the two sliding modes on RA and
RB agree with the r.h.s. of Eq. (4) augmented by the dynamics
of the clock state. Now we have defined vector fields in all
regions of the time-freezing PSS which corresponds to the
original system (4). Another favorable property of the chosen
auxiliary and DAE forming ODE is: since w′(τ ) is bounded
by a > 0 it cannot make the sliding mode DAE arbitrarily
stiff, especially if constraint drift happens.

B. A Tutorial Example

To illustrate the theoretical development we construct a
time-freezing PSS for a thermostat system with hysteresis. The
source code of the example is available in the repository of
NOSNOC [15]. The system has a single state x(·) which mod-
els the temperature of a room which should stay inside the
interval x ∈ [18, 20]. As soon as the temperature drops below
x = 18 the heater is switched on and when the temperature
grows above x = 20 it is switched off. The two modes of oper-
ation are given by ẋ = fA(x) = −0.2x + 5 when the heater
is on and ẋ = fB(x) = −0.2x when the heater is off. One
can see that for ψ(x) = 0.5(x − 18) we have a hybrid system
that matches the finite automaton in Fig. 1(a). For a time-
freezing PSS we define the regions Ri via the Voronoi points
as in the last section. The auxiliary ODE’s r.h.s. according to
Proposition 1 read as faux,A(y) = (0,−γ (0.5(x − 18)− 1), 0)
and faux,B(y) = (0, γ (0.5(x − 18), 0) with a = 1. Similarly,
the DAE-forming ODE r.h.s. according to Proposition 2 read
as fDF,A(y) = (−0.4x + 10, γ (0.5(x − 18) − 1), 2) and
faux,B(y) = (−0.4x,−γ (0.5(x − 18)), 2).

We simulate now the time-freezing PSS with a FESD
Radau-IIA integrator of order 3 [1] with x(0) = 15 and
w(0) = 0. The left plot in Fig. 3 illustrates the evolution
of the time-freezing PSS in numerical time. The red shaded

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 26,2022 at 08:58:24 UTC from IEEE Xplore.  Restrictions apply. 



3186 IEEE CONTROL SYSTEMS LETTERS, VOL. 6, 2022

areas indicate the phases when the auxiliary ODE is active
with w /∈ {0, 1} while the time is frozen, cf. bottom left plot.
In the middle left plot we can see that w(τ ) is now a con-
tinuous function in numerical time. The right plot in Fig. 3
shows the differential state in physical time t(τ ). Clearly, in
the middle right plot w(t(τ )) is now a discontinuous function,
hence the state jumps are successfully recovered in physical
time.

IV. SOLUTION EQUIVALENCE

From the developments in the last section, the solution
equivalence is nearly apparent. We formalize it in the next
theorem.

Theorem 1: Regard the IVP corresponding to: (i) the
Filippov DI of the time-freezing PSS equipped with the
vector fields from Proposition 1 and 2 with a initial value
y(0) = (z0, 0) with z0 = (x0,w0) and w0 ∈ {0, 1}, on a time
interval [0, τf], (ii) the ODE with state jumps from Eq. (4)
with z(0) = z0 on a time interval [0, tf] = [0, t(τf)]. Suppose
solutions exist to both IVP.

Then the solutions of the two IVPs z(t; z0) and y(τ ; y0)

fulfill at any
dt

dτ
= t′(τ ) �= 0:

z(t(τ ); z0) = My(t(τ ); y0), with M = [
Inx+1 0nx + 1, 1

]
.

(9)

Proof: Denote the solution of IVP (i) by y1(τ ; y0) for τ ∈
(0, τ̂ ) and for (ii) and t(τ ) ∈ (0, t(τ̂ )) by z1(t(τ ); z0). For
a given w(0) = 0 (or 1) we have from Proposition 2 that
y′ = (fA(x), 0, 1) (or y′ = (fB(x), 0, 1)). Note that if there is
no τs ∈ (0, τ̂ ) for the IVP (i) such that an auxiliary ODE
becomes active, then t(τ ) = ∫ τ

0 dτ1 = τ . Since (fA(x), 0) =
M(fA(x), 0, 1), (fB(x), 0) = M(fB(x), 0, 1) and z0 = My0 by
setting τ̂ = τf, it follows that (9) holds.

Suppose now that we have a τs ∈ (0, τf) such that for
w(τs) = 1 the auxiliary ODE y′ = faux,A(y) becomes active
(or similarly for w(τs) = 0, y′ = faux,B(y) becomes active).
From the first part of the proof we have that (9) holds
for τ ∈ (0, τs) and hence for all t(τ ) ∈ (0, t−s ), where
t−s = t(τs). From Proposition 1 we have that the solution satis-
fies x(τs) = x(τr) and w(τr) = 0 (or w(τr) = 1) with t′(τ ) = 0
for τ ∈ [τs, τr]. Hence, we have also t(τr) = t+s = t(τs).
Denote by ys = (x(τr),w(τr), t(τr)). Using this we have
y1(τ −τr, ys) = y(τ, y0) for τ ∈ (τr, τ̃ ) and denoting zs = Mys
we see that z1(t(τ ) − ts; zs) = x(t(τ ), z0) for t(τ ) ∈ (t+s , τ̃ ).
Assume that a single activation of an auxiliary ODE takes
place and set τ̃ = τf. Since the intervals (ts, tf) and (τr, τf)

have the same length and zs = Mys from the definitions of
the corresponding IVP, we conclude that relation (9) holds. If
the auxiliary ODE becomes active multiple times we simply
apply the same argument on the corresponding sub-intervals.
This completes the proof.

The last theorem opens the door to study the regarded hybrid
system with hysteresis as a Filippov system and to apply their
rich theory, e.g., solution existence results [16]. From the prac-
tical side, we can use numerical methods for Filippov systems
which allows us to avoid the use of integer variables.

V. NUMERICAL EXAMPLE: TIME OPTIMAL PROBLEM OF

A CAR WITH TURBO CHARGER

In this section we apply the theoretical developments in a
numerical example of a time optimal control problem of a car
with turbo from [9]. We consider a double-integrator car model
equipped with a turbo accelerator which follows a hysteresis
characteristic as in Fig. 1(b). This makes the seemingly simple
model severely nonlinear and nonsmooth.

The car is described by its position q(t), velocity v(t) and
turbo charger state w(t) ∈ {0, 1}. The control variable is the car
acceleration u(t). The turbo accelerator is activated when the
velocity exceeds v ≥ 15 and is deactivated when it falls below
v ≤ 10. When it is on, it makes the nominal acceleration
u(t) three times greater. One can see that ψ(x) = v−10

5 . In
summary, the state vector reads as z = (q, v,w) ∈ R

3 with
two modes of operation described by fA(z) = (v, u, 0) and
fB(z) = (v, 3u, 0). The acceleration is bounded by |u| ≤ ū,
ū = 5 and the velocity by |v| ≤ v̄, v̄ = 25.

In the OCP we consider the time-freezing PSS associated
to the car model on a numerical time interval τ ∈ [0, τf].
The car should reach the goal q(t(τf)) = qf = 150 with
v(t(τf)) = vf = 0, whereby z(0) = z0 = 03,1. The auxiliary and
DAE-forming dynamics are chosen according to Propositions 1
(with a = 1) and 2, respectively. The OCP reads as:

min
y(·),u(·),s(·) t(τf) (10a)

s.t. y(0) = (z0, 0), (10b)

y′(τ ) ∈ s(τ )FTF(y(τ ), u(τ )), τ ∈ [0, τf], (10c)

−ū ≤ u(τ ) ≤ ū, τ ∈ [0, τf], (10d)

s̄−1 ≤ s(τ ) ≤ s̄, τ ∈ [0, τf], (10e)

−v̄ ≤ v(τ ) ≤ v̄, τ ∈ [0, τf], (10f)

(q(τf), v(τf)) = (qf, vf). (10g)

The objective consist of minimizing the final physical time.
Since a time optimal control problem is considered, we intro-
duce the scalar speed-of-time control variable s(·) which
introduces a time-transformation and enables to have a vari-
able terminal physical time Tf = t(τf). It is bounded by (10e)
with s̄ = 10. NOSNOC ensures equidistant control grids in
numerical and physical time τ .

The OCP is discretized with a FESD Radau-IIA scheme
of order 3 with N = 10 control intervals and Nfe = 3 addi-
tional integration steps on every control interval, with τf = 5.
The controls are taken to be piecewise constant over the con-
trol intervals. The OCP discretization and MPCC homotopy
is carried out via the open source tool NOSNOC, which has
IPOPT [18] and CasADi [19] as a back-end.

Additionally, we compare our approach to the mixed integer
formulation of [9]. We take the same control and state dis-
cretization as in NOSNOC which results 56 binary variables.
Switches in the integer formulation are allowed only at the
control interval boundaries, as a switch detection formulation
requires significantly more integer variables and introduces
more nonlinearity.

The problem is solved with the dedicated mixed inte-
ger nonlinear programming (MINLP) solver Bonmin [20].
Note that the only nonlinearity in the MINLP is due to the

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on June 26,2022 at 08:58:24 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE I
COMPARISON OF NOSNOC TO MIXED INTEGER FORMULATIONS

Fig. 4. Solutions of the OCP (10) in physical time. The top left and
right plots show the velocity v (t) and optimal controls u(t), respectively.
The bottom left and right plots show the hysteresis state w(t) and the
solution trajectory in the (v ,w)-plane, respectively.

time-transformation for the optimal time Tf. Therefore, in a
second experiment we fix Tf and solve the resulting MILP
with the commercial solver Gurobi. We make a bisection-
type search in Tf. The MILP with the smallest Tf that is
still feasible, delivers the optimal time Tf. In this experiment
22 MILP were solved for an accuracy of 10−6. To deter-
mine the solution quality, we additionally perform a high
accuracy solution with the computed optimal controls and
obtain xsim(t). We compare the terminal constraint satisfac-
tions: E(Tf) = ‖xsim(Tf)− (qf, vf)‖2. The source core for the
simulation and the two MIOP approaches are provided in the
NOSNOC repository [15].

The results are summarized in Table I. All three approaches
provide a similar objective value. Gurobi is the fastest solver,
NOSNOC is only slightly slower and Bonmin is significantly
slower. The smallest terminal error is achieved via NOSNOC.
This is due to the underlying FESD discretization, cf. [1].
Gurobi and Bonmin have the same discretization without
switch detection and result in the same terminal error. On
the other hand, Gurobi provides the most robust approach,
as NOSNOC (i.e., IPOPT as underlying NLP solver) fails to
converge in some variations of the discretization.

The results computed by NOSNOC is depicted in Fig. 4. One
can see an intuitive behavior as the car uses the turbo accel-
erator as much as possible to reach the goal time optimally,
with Tf = 10.26.

VI. CONCLUSION

In this letter we introduced a novel time-freezing reformula-
tion for a class of hybrid systems with hysteresis. It transforms
the systems with state jumps into PSS for which we lever-
age the recently developed FESD method which enables high
accuracy optimal control by solving only smooth NLP. Thus,
we can avoid use of computationally expensive mixed inte-
ger strategies in numerical optimal control and obtain quickly
good and accurate nonsmooth solutions. In the theoretical part,

constructive ways to find auxiliary and DAE-forming ODE
are provided and solution equivalence is proven. In future
time-freezing for other types of finite automaton and hystere-
sis systems, as, e.g., described in the introduction should be
investigated as well.

ACKNOWLEDGMENT

The authors thank Costas Pantelides from the Imperial
College London and PSE Enterprise for inspiring discussions
and providing the example in Section V.

REFERENCES
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