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Abstract. We provide an overview of a class of iterative convex approximation methods for nonlinear
optimization problems with convex-over-nonlinear substructure. These problems are characterized by
outer convexities on the one hand, and nonlinear, generally nonconvex, but differentiable functions on
the other hand. All methods from this class use only first order derivatives of the nonlinear functions
and sequentially solve convex optimization problems. All of them are different generalizations of the
classical Gauss-Newton (GN) method. We focus on the smooth constrained case and on three methods
to address it: Sequential Convex Programming (SCP), Sequential Convex Quadratic Programming
(SCQP), and Sequential Quadratically Constrained Quadratic Programming (SQCQP). While the
first two methods were previously known, the last is newly proposed and investigated in this paper.
We show under mild assumptions that SCP, SCQP and SQCQP have exactly the same local linear
convergence – or divergence – rate. We then discuss the special case in which the solution is fully
determined by the active constraints, and show that for this case the KKT conditions are sufficient
for local optimality and that SCP, SCQP and SQCQP even converge quadratically. In the context of
parameter estimation with symmetric convex loss functions, the possible divergence of the methods can
in fact be an advantage that helps them to avoid some undesirable local minima: generalizing existing
results, we show that the presented methods converge to a local minimum if and only if this local
minimum is stable against a mirroring operation applied to the measurement data of the estimation
problem. All results are illustrated by numerical experiments on a tutorial example.

1. Introduction

Throughout this paper we consider nonlinear optimization problems of the form

min
w ∈ Rn

φ0(F0(w)) s.t.
Fi(w) ∈ Ωi, i = 1, . . . , q,

g(w) = 0,
(1)

with nonlinear functions φ0 : Rm0 → R, v 7→ φ0(v), Fi : Rn → Rmi and g : Rn → Rp. Critically, the
function φ0(v) and the sets Ωi are assumed to be convex. The problem is thus characterized by “convex-over-
nonlinear” substructures φ0(F0(w)) and Fi(w) ∈ Ωi. We call φ0 and the Ωi “outer convexities” and Fi the
“inner nonlinearities”. A special – but still quite general – case is when the sets Ωi can be described by smooth
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Figure 1. Overview of the methods discussed in this paper. Arrows indicate specializations,
i.e., M1 →M2 means method M2 is a special case of method M1. SSDP is only a special case
of SCP if the SSDP variant with a zero Hessian is used.

convex functions φi : Rmi → R, i.e., Ωi = {v ∈ Rmi | φi(v) ≤ 0} for i = 1, . . . , q. The inequality constraints
could then be expressed as φi(Fi(w)) ≤ 0. We define fi(w) := φi(Fi(w)) as shorthand for this composition, for
i = 0, . . . , q.

The problem structure (1) arises in various contexts and applications, e.g., nonlinear least-squares formu-
lations for estimation and tracking [5, 24, 34], nonlinear matrix inequalities for reduced order controller de-
sign [12,38], nonlinear model predictive control with ellipsoidal feasible sets [7,18,41,44], robustified inequalities
in nonlinear optimization [9,29], tube-following optimal control problems [39], non-smooth composite minimiza-
tion [2, 23], as well as training of deep neural networks [25–27,33,42].

In this paper, we will give an overview over several methods that aim to exploit this convex-over-nonlinear
structure. They do so by sequentially solving a convex approximation to (1), in which the nonlinear functions
Fi and g have been linearized. The methods differ in the way they handle the outer convexities. In the case
of nonlinear least-squares, that is with φ0(v) = 1

2‖v‖
2
2 and no constraints, all of these methods simplify to the

classical Gauss-Newton method (GN). Thus, all of the presented approaches can be seen as generalizations of
Gauss-Newton, though only one of these methods will be called the Generalized Gauss-Newton method (GGN)
in the following. To avoid confusion it is important to be aware that so far there has been no generally used
naming convention and the same name may refer to different methods. For example, GGN in [33] refers to a
generalization of the Gauss-Newton method to general smooth outer convexities φ0, whereas GGN in [5] means
the generalization to constrained nonlinear least-squares problems. In this paper we keep the name GGN for
the method in [33] and call the method in [5] the Constrained Gauss-Newton method (CGN).

Outline

In this paper we distinguish between three classes of methods, each of them addressing a special case of
the general problem (1): smooth unconstrained NLP, smooth constrained NLP and constrained problems with
non-differentiable convex structure. Figure 1 gives an overview of the presented methods and the problem class
which they address. The most central method is Sequential Convex Programming (SCP), which can address
problems from all three classes. It obtains a convex approximation to (1) by linearizing the equality constraints
g(w) and the inner nonlinearities Fi(w), but keeping the outer convexities φ0(v) and Ωi. In its most general
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form, it can be stated as

wk+1 ∈ arg min
w ∈ Rn

φ0(F lin
0 (w;wk)) s.t.

F lin
i (w;wk) ∈ Ωi, i = 1, . . . , q,

glin(w;wk) = 0,
(2)

Besides SCP, the first class, i.e., methods for smooth unconstrained NLP, contains the original Gauss-Newton
method (GN) by Gauss [17] and the Generalized Gauss-Newton method (GGN) as introduced by Schraudolph
[33]. Section 2 gives a detailed introduction into the algorithms from this class.

In Section 3, we focus on methods for smooth constrained NLP, which is the second problem class. The
probably oldest method in this sector is Sequential Linear Programming (SLP), which Griffith and Stewart
introduced in 1961 under the name “method of approximation programming” [19]. This sector also contains the
classical Constrained Gauss-Newton method (CGN) proposed by Bock [5] for nonlinear least-squares problems
with nonlinear constraints. We present several methods that can be seen as generalizations of the CGN method:
we first present the smooth constrained variant of SCP, as well as Sequential Convex Quadratic Programming
(SCQP) [40], and Sequential Quadratically Constrained Quadratic Programming (SQCQP), a novel method
which can be seen as an intermediary between SCP and SCQP. These three methods share some intriguing
properties and are the main focus of this paper. To complete the picture, we also introduce the Constrained
Generalized Gauss-Newton (CGGN) method, a trivial combination of the CGN and GGN methods. We provide
a local convergence analysis of three methods – SCP, SCQP, SQCQP – in Section 4. We show under mild
assumptions that all of them share the same asymptotic linear contraction rate, which is exactly determined.
This analysis trivially extends to the methods for smooth unconstrained NLP. Furthermore, we analyze a special
case, in which the methods converge quadratically. In Section 5, we examine the interesting phenomenon of
“mirroring” and desirable divergence, as first described by Bock et al. in the context of L2 and L1 estimation
[3, 4]. We extend it to estimation problems with general smooth convex negative log-likelihood functions.

Algorithms of the third sector, i.e., constrained optimization problems with non-differentiable convex struc-
tures, are mentioned here for completeness, but are not discussed any further in the following. Besides SCP,
this category comprises one variant of the sequential semidefinite programming (SSDP) algorithm proposed
and analyzed by Fares et al [12]. While different, possibly indefinite Hessian approximations were discussed in
the original SSDP paper, only the variant with a zero Hessian falls into the class discussed in this paper. In
our notation, this SSDP variant corresponds to the SCP algorithm in Eq. (2) for the case in which there is no
convex structure in the objective, φ0(v) = v, and there is only one structured convex constraint, i.e., q = 1,
with the corresponding feasible set given by the positive-semidefinite cone, Ω1 = S+ of appropriate dimension.
The SSDP algorithm was also used and investigated under the name SSP in [15], and a special SSDP variant
exploiting convex-concave decompositions of nonconvex bilinear matrix inequalities was proposed in [36]. For
an overview of nonlinear SDP algorithms like SSDP and its variants we refer to the overview paper by Ya-
mashita and Yabe [43]. Another relevant subclass in the nondifferentiable sector is sequential second order cone
programming (SSOCP) which can be regarded a special case of SSDP.

All of the methods discussed here formulate and solve convex subproblems in each iteration, and in particular
use only positive semidefinite Hessian approximations. While this is desirable for both theoretical and practical
reasons, there is a price to pay for convexity of the subproblems: it generally limits the convergence speed to
only linear, even if arbitrary positive semidefinite – but bounded – Hessian approximations are used, as shown
in [10] for the simple example problem of minimizing the nonconvex objective f0(w) = −w2

1 − (w2 + 1)2 over
the Euclidean unit ball Ω1 = {w ∈ R2 | ‖w‖22 ≤ 1}.

The discussed methods can be seen as Newton-type methods if classified according to [14] or [21]. For exam-
ple, the methods solving QP subproblems (GN, GGN, CGN, CGGN, SCQP) are straightforward to recognize
as variants of Sequential Quadratic Programming (SQP), using a specific positive semi-definite Hessian approx-
imation, whereas SCP can be interpreted as a perturbed version of the Josephy-Newton method, cf. [21, 37].
As there are Newton-type methods which converge superlinearly or even quadratically, this opens the questions
of what advantages are to be gained by paying the price of the restriction to a linear convergence rate. The
first is the convexity of the subproblems. This makes the subproblems well behaved in the sense that, while
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their solutions are not necessarily unique, they are at least not isolated from each other. Further, this means
that convex solvers can be utilized, as well as all of the appropriate theory and results from the field of convex
optimization [6]. Second, the subproblems are constructed mainly from first-order derivatives, such that almost
no second-order derivatives need to be computed, which tend to be expensive. This is especially attractive
when problems have to be solved in real time, for example in feedback control, or in the context of large scale
optimization problems, where the cost of computing second-order derivatives might be prohibitively high, such
as in the training of deep neural networks. Third, most, though not all, of the methods are multiplier-free in
the sense that the construction of the subproblems depends only on the primal variables of the current iterate.
Therefore the dual variables are not part of the memory.

Notation and preliminaries

We denote by ∂f
∂w (w) ∈ Rm×n the Jacobian of a function f : Rn → Rm, w 7→ f(w), and use the convention

that the gradient symbol denotes its transpose, ∇f(w) = ∂f
∂w (w)>. Thus, for scalar f , the gradient is a column

vector. The gradient operator ∇ always refers to the first argument of a function, unless the argument is
explicitly written as subscript. For the Jacobian of Fi(w) we use the shortcut Ji(w). If f(·) is scalar valued,
its Hessian is denoted by ∇2f(w). Linearizations are referred to as f lin(w; w̄) := f(w̄) + ∇f(w̄)>(w − w̄).
The notation fS(w), for a set of indices S ⊂ {0, . . . , q}, means the vertical concatenation of the fi(w), i ∈ S.
Similarly, for a vector µ ∈ Rq+1, µS is the vector slice of the corresponding indices. Slightly less conventional,
φS(FS(w)) denotes the concatenation of the corresponding φi(Fi(w)). The cardinality of set S is |S|. For a
more lightweight notation, the vertical concatenation [x>, y>]> of two vectors x ∈ Rn, y ∈ Rm, is denoted by
(x, y). ‖·‖ denotes a general vector norm. More specifically, ‖·‖2 is the Euclidean norm and ‖·‖∞ the maximum
norm. For two vectors x, y ∈ Rn we use x ≥ y and similar to denote elementwise inequality. For two symmetric
matrices A,B ∈ Rn×n, the matrix inequality A � B means A−B � 0, i.e., that A−B is positive semidefinite,
and accordingly for similar inequalities. The identity matrix in Rn×n is denoted by In and the subscript n may
be dropped if the dimension is clear from the context. The set of non-negative reals is R+. Concepts from the
field of numerical optimization, such as strict complementarity, the linear independence constraint qualification
(LICQ) and the Karush Kuhn Tucker (KKT) conditions are defined as in textbooks such as [30] unless otherwise
stated. For several important results of this paper we require the functions defining problem (1) to be smooth.
Technically, requiring the Fi(w) and g(w) to be twice, the φi(v) three times continuously differentiable would
be sufficient for all results. Since this difference is in practice often irrelevant, and for a simpler text flow, we
decide to use “smooth” as requirement, but by this we actually mean the just stated weaker requirements.

Illustrative Example

We now introduce an example that will accompany us throughout this article. In this example we use the
pseudo Huber loss function

ϕδ : RN → R, ϕδ(v) :=

N∑
i=1

√
δ2 + v2

i − δ, (3)

parameterized by δ ∈ R+. For v close to 0, it approximates a least-squares loss function, whereas for v far from
0, it has linear behavior similar to the L1-norm. The size of the quadratic region is controlled by the Huber
parameter δ. The larger δ, the larger the quadratic region. In the limit case of δ → 0, the pseudo Huber loss
approaches the L1-norm. A visualization of this behavior is given in Figure 2 for a single component, N = 1.
The example problems are implemented via the Python interface of CasADi [1], using the solver Gurobi [20]
for second order cone programs (SOCP), and qpOASES for quadratic programs (QP) [13].

Example 1.1. Assume we have modeled the explicit time dependency of some output ψ ∈ R as

ψ(t) =
3

4
t+ sin(t). (4)
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Figure 2. The pseudo Huber loss ϕδ(v) as defined in (3) for two values of δ (δ1 = 10−2,
δ2 = 10−1) compared to the absolute value |v|, which corresponds to the L1 norm.

We have noisy measurements ηi of this output, obtained at times xi, but they are associated with some unknown
time delay w, i.e., xi = ti−w. Our aim is to identify this true time delay w from N input-output pairs (xi, ηi),
i = 1, ..., N , such that we obtain an estimate of the true time ti = xi + w at which the output ψ(ti) occurred.
We model the measurements as ηi = ψ(xi +w) + νi, where νi is unknown noise. The ηi are collected in η ∈ RN
and the model predictions in M(w), M : R → RN , with Mi(w) := ψ(xi + w). If we choose the pseudo Huber
loss (3) as penalty of the model-measurement mismatch, we obtain

min
w ∈ R

ϕδ (η −M(w)) (5)

as our identification problem. This has convex-over-nonlinear structure, with outer convexity φ0(v) = ϕδ(v)
and inner nonlinearity F0(w) = η −M(w). For the purpose of a clean demonstration of the concepts presented
in this paper, we assume N = 3 with the data given as x = (−0.5, 0, 0.5) and η = (0, 0, 1). Unless otherwise
stated, the Huber parameter is chosen as δ = 0.1.

2. Methods for smooth unconstrained NLP

Let us first regard only the unconstrained case,

min
w ∈ Rn

φ0(F0(w))︸ ︷︷ ︸
=:f0(w)

,
(6)

with φ0(v) and F0(w) smooth, and introduce two convexity exploiting methods, the unconstrained version
of SCP and the Generalized Gauss-Newton method (GGN). Both of them are generalizations of the classical
Gauss-Newton method to a general smooth outer convexity φ0(v). At the end of the section we state a theorem
that exactly characterizes their linear local convergence rate.

2.1. Sequential Convex Programming

Sequential Convex Programming (SCP) obtains a convex approximation of (6) by linearizing the inner
nonlinearity F0(w) at the current iterate wk, but keeping the full outer convexity φ0(v). It thus iterates as

wk+1 ∈ arg min
w ∈ Rn

φ0(F lin
0 (w;wk))︸ ︷︷ ︸

=:fSCP
0 (w;wk)

,
(7)

solving a convex – but generally nonlinear – subproblem at every iteration. In case the minimizer of (7) is
not uniquely defined, one has to take extra measures, such as picking the minimum norm solution, in order to
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obtain a well defined algorithm. If we apply SCP to the nonlinear least-squares problem, i.e., if φ0(v) = 1
2‖v‖

2
2,

we recover the classical Gauss-Newton method, as in this case fSCP
0 (w;wk) = 1

2‖F
lin
0 (w;wk)‖22.

2.2. Generalized Gauss-Newton

Generalized Gauss-Newton (GGN) iterates by solving a convex quadratic approximation of (6) at every
iteration [33]. As in the classical Gauss-Newton method, this approximation is obtained by splitting the Hessian
of the objective f0(w) into two terms, one of them positive semidefinite, and the other generally indefinite. The
Hessian approximation is then obtained by neglecting the indefinite term. For the objective function f0(w) this
split is given by

∇2f0(w) = J0(w)>∇2φ0(F (w))J0(w)︸ ︷︷ ︸
=:BGGN(w)

+

m0∑
i=1

∇2F0,i(w)
∂φ0

∂vi
(F0(w))︸ ︷︷ ︸

=:EGGN(w)

, (8)

where∇2F0,i(w) denotes the Hessian of the i-th component of F0(w). The first term BGGN(w) is the Generalized
Gauss-Newton Hessian approximation and contains the curvature of the outer convexity φ0(v). Due to convexity
of φ0, we have BGGN(w) � 0 for all w. Note that apart from ∇2φ0(v) one only needs first-order derivatives to
evaluate BGGN(w). The “error matrix” EGGN(w) comprises the components we neglect by choosing BGGN(w) as
our Hessian approximation. In particular, it contains the curvature of the inner nonlinearity F0(w). This error

is small if the neglected curvature ∇2F0,i(w) or the derivatives ∂φ0

∂vi
(F0(w)) are small. The second condition in

particular includes the case that the residuals F0(w) are close to a minimizer of φ0(v) (if it exists). Intuitively,
the smaller the approximation error, and therefore the closer BGGN(w) is to the true Hessian, the better is the
convergence behavior we would expect. We will exactly quantify this intuition in Theorem 2.2.

The GGN iterations are defined via the unconstrained Quadratic Program (QP)

wk+1 ∈ arg min
w ∈ Rn

1

2
(w − wk)>BGGN(wk)(w − wk) +∇f0(wk)>(w − wk) + f0(wk)︸ ︷︷ ︸

=:fGGN
0 (w;wk)

.
(9)

Since BGGN(w) � 0 for all w, this QP is always convex. As for SCP, in case the solution to (9) is not unique, we
need a procedure for picking exactly one solution, such that wk+1 is uniquely defined. A definition equivalent
to (9) is obtained by noting that (9) in effect amounts to solving the linear system

wk+1 ∈ {w ∈ Rn | BGGN(wk)(w − wk) = −∇f0(wk)} (10)

at every iteration. This is – in general – considerably faster than solving a full nonlinear optimization problem
at every iteration, as is necessary in SCP. If the SCP subproblem is solved with a Newton-type algorithm, this
in fact means several iterations with the structure of (10) per iteration of SCP. For the special case of nonlinear
least-squares, i.e., φ0(v) = 1

2‖v‖
2
2, we have ∇2φ0(v) = I. We therefore obtain BGGN(w) = J(w)>J(w). This is

the well-known Gauss-Newton Hessian approximation.

Example 2.1. Recall the guiding Example 1.1. We compute the SCP and GGN approximations to the objective
function, i.e., fSCP

0 (w; w̄) resp. fGGN
0 (w; w̄) as defined in (7) and (9). We do so for two distinct linearization

points, w̄1 = 0.1 and w̄2 = 0.3. The results are illustrated in Figure 3. It can be seen that SCP manages a
closer approximation to the objective function f0(w), since it keeps the information about the specific shape of
the outer convexity φ0(v). GGN on the other hand always approximates the objective as a quadratic function.

2.3. Local Convergence Analysis

We state here already a theorem on the linear local convergence rate of unconstrained SCP and GGN. This is
actually a special case of Theorem 4.5 which will be proven later for the smooth constrained case. We therefore
refrain from giving the proof here.
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Figure 3. Illustration of the SCP and GGN approximations to the nonlinear objective f0(w)
for two values of w̄. GGN approximates f0(w) only quadratically, whereas SCP is able to match
the characteristic shape of the outer convexity φ0(v). We can also see that for w̄2, which is
close to a local minimum, this difference does not seem to be too important, since locally both
methods provide a good approximation of the true objective.

Theorem 2.2 (Linear local convergence of SCP and GGN [11]). Regard a local minimizer w∗ of f0 that satisfies
∇f0(w∗) = 0 and BGGN(w∗) � 0. Then w∗ is a fixed point for both the SCP and GGN iterations, the iterates
of both methods are well-defined in a neighborhood of w∗, and the local linear contraction – or divergence –
rates of SCP and GGN are equal to each other and given by the smallest α ≥ 0 that satisfies the linear matrix
inequalities (LMI)

−αBGGN(w∗) � EGGN(w∗) � αBGGN(w∗). (11)

As a consequence, a sufficient condition for Q-linear local convergence with contraction rate α < 1 is given by
the LMI

1

1 + α
∇2f0(w∗) � BGGN(w∗) � 1

1− α
∇2f0(w∗). (12)

Also, a necessary condition for local convergence is given by BGGN(w∗) � 1
2∇

2f0(w∗). If ∇2f0(w∗) � 0, a

sufficient condition for local convergence is given by BGGN(w∗) � 1
2∇

2f0(w∗).

Example 2.3. We return to our example problem defined in (5). Since w ∈ R, the LMI in (11) simplify to
scalar inequalities. We can thus explicitly compute the smallest α satisfying (11) as

α̌(w) :=
|∇2f0(w)−BGGN(w)|

|BGGN(w)|
. (13)

Only for a local minimizer w∗ the interpretation of α̌(w∗) as linear local convergence rate is valid, but it is
still interesting to visualize α̌(w) for any w ∈ R. In Figure 4, the objective function f0(w) as well as α̌(w)
are illustrated for the example problem. For the local minimum at w∗good ≈ 0.1 – which is actually the global

minimum – we compute the theoretical contraction rate α̌(w∗good) ≈ 0.02. Furthermore, we hope to awaken the
reader’s curiosity by pointing to an interesting observation: there is also a second, worse, local minimum at
w∗bad ≈ 3.7, for which holds α̌(w∗bad) ≈ 3200� 1. This means that SCP and GGN would strongly diverge from
this undesirable local minimum. This is actually not a coincidence and later in this paper we dedicate a full
section to this behavior.
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Figure 4. Visualization of the objective function and α̌(w). Note that α̌(w) attains its mean-
ing as local contraction rate only at local minima.

3. Methods for smooth constrained NLP

We will now return to the constrained case and consider methods that can be applied to NLP of the form

min
w ∈ Rn

φ0(F0(w)) s.t.
φi(Fi(w)) ≤ 0, i = 1, . . . , q,

g(w) = 0,
(14)

composed of only smooth functions, and with φi(Fi(w)) =: fi(w), i = 0, . . . , q. We define its Lagrangian as

L(w, λ, µ) = φ0(F0(w)) +

q∑
i=1

µiφi(Fi(w)) +

p∑
i=1

λigi(w), (15)

with Lagrange multipliers – or dual variables – µ ∈ Rq and λ ∈ Rp. In this section, we discuss four methods that
exploit the convex substructure of (14), namely the smooth constrained version of SCP, Constrained Generalized
Gauss-Newton (CGGN), Sequential Convex Quadratic Programming (SCQP) and Sequential Quadratically
Constrained Quadratic Programming (SQCQP).

3.1. Sequential Convex Programming

In a straight-forward generalization of the unconstrained case, SCP approximates (14) by linearizing the
inner nonlinearities Fi(w), while keeping the outer convexities φi(v). In every iteration, SCP thus solves a
nonlinear but convex optimization problem of the following form:

wk+1 ∈ arg min
w ∈ Rn

φ0(F lin
0 (w;wk)) s.t.

φi(F
lin
i (w;wk)) ≤ 0, i = 1, . . . , q,

glin(w;wk) = 0,
(16)

In accordance with the definition of fSCP
0 (w;wk), we introduce fSCP

i (w;wk) := φi(F
lin
i (w;wk)) for i = 0, . . . , q

as shorthand for the approximation functions. We point out that – though every solution to (16) is also
associated with Lagrange multipliers µk+1 ∈ Rq and λk+1 ∈ Rp – the iterations only depend on the primal
variable wk. In other words, SCP is a multiplier-free method. For constrained nonlinear least-squares with no
(or ignored) convex substructure in the constraints, i.e., φ0(v) = 1

2‖v‖
2
2 and φi(v) = v for i = 1, . . . , q, SCP
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recovers the constrained Gauss-Newton (CGN) method [5], in which the objective function is approximated as
1
2‖F

lin
0 (w; w̄)‖22 and the constraints are completely linearized. Another special case occurs if additionally there

is no convex substructure in the objective, φ0(v) = v. Then also the objective function is completely linearized
and SCP simplifies to Sequential Linear Programming (SLP) [19].

3.2. Constrained Generalized Gauss-Newton

As for the unconstrained case, SCP has to solve a generally nonlinear program at every iteration, which can
be quite expensive. We therefore turn our attention to methods that approximate (14) by cheaper subproblems,
similar to GGN. Unlike SCP, the generalization of GGN to constrained NLP can go into several directions, such
that none of them can be considered to be the most straightforward. Maybe the simplest idea is to use the
GGN Hessian approximation BGGN(w; w̄) – as defined in (8) – for a quadratic approximation of the objective
function and to linearize the constraints in order to obtain a constrained QP. This yields a method that we call
the Constrained Generalized Gauss-Newton method (CGGN), with the subproblem defined as

wk+1 ∈ arg min
w ∈ Rn

1

2
(w − wk)>BGGN(wk)(w − wk) +∇f0(wk)>(w − wk) + f0(wk)

s.t. f lin
i (w;wk) ≤ 0, i = 1, . . . , q,

glin(w;wk) = 0.

(17)

To the authors’ knowledge, CGGN has never been explicitly discussed before. Given the straightforwardness
of the approach, this seems surprising. It might be due to the fact that GGN originates from the neural
network community, which usually deals with unconstrained optimization problems [26, 33]. Note that CGGN
only uses information about the curvature of the objective function in its approximation, as BGGN(w̄) only
depends on f0(w). Possible convex curvature information of the inequality constraints is thrown away. This
method is therefore mainly interesting for problems without exploitable convex substructure in the constraints,
i.e., when φi(v) = v for i ≥ 1. In the case of nonlinear least-squares, φ0(v) = 1

2‖v‖
2
2, the CGGN method

simplifies to CGN [5]. CGGN can therefore be seen both as a generalization of GGN to constrained NLP and
as generalization of CGN to general smooth convexities in the objective. When there is no convexity in the
objective function, φ0(v) = v, the Hessian approximation is BGGN(w̄) = 0, and CGGN recovers SLP [19].

3.3. Sequential Convex Quadratic Programming

We will now try to improve upon CGGN by exploiting our knowledge of the convex-over-nonlinear structure
in the constraints, while still only solving a QP at every iteration. This leads us to Sequential Convex Qua-
dratic Programming (SCQP), which was introduced by Verschueren et al in [40]. Consider the Hessian of the
Lagrangian (15) of the original problem, which is given by

∇2L(w, λ, µ) =

=:BSCQP(w,µ)︷ ︸︸ ︷
J0(w)>∇2φ0(F0(w))J0(w) +

q∑
i=1

µiJi(w)>∇2φi(Fi(w))Ji(w)

+

m0∑
j=1

∇2F0,j(w)
∂φ0

∂vj
(F0(w)) +

q∑
i=1

µi

mi∑
j=1

∇2Fi,j(w)
∂φi
∂vj

(Fi(w)) +

p∑
i=1

λi∇2gi(w)︸ ︷︷ ︸
=:ESCQP(w,µ,λ)

, (18)

where Fi,j denotes the j-th entry of Fi. In the spirit of Gauss-Newton, we split the true Hessian into the SCQP
Hessian approximation BSCQP(w, µ) – containing the curvature of all outer convexities φi(v) – and the SCQP
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Hessian approximation error ESCQP(w, µ, λ), which contains the curvature of the inner nonlinearities Fi(w) and
the equality constraints g(w). We introduce the shorthands

Bi(w) := Ji(w)>∇2φi(Fi(w))Ji(w) for i = 0, . . . , q, (19)

such that BSCQP(w, µ) = B0(w) +
∑q
i=1 µiBi(w), and see that B0(w) is exactly the GGN Hessian as defined in

(8), i.e., B0(w) = BGGN(w). An immediate consequence is the following proposition.

Proposition 3.1. Assume (w∗, λ∗, µ∗) is a KKT point of (14). Then it holds that BSCQP(w∗, µ∗) � BGGN(w∗).

Proof.

BSCQP(w∗, µ∗) = B0(w∗) +

q∑
i=1

µ∗iBi(w
∗) = BGGN(w∗) +

q∑
i=1

µ∗i︸︷︷︸
≥0

Bi(w
∗)︸ ︷︷ ︸

�0

� BGGN(w∗) (20)

�

We can now use BSCQP(w, µ) as Hessian in a QP approximation to (14), and define the SCQP subproblem
as

wk+1 ∈ arg min
w ∈ Rn

1

2
(w − wk)>BSCQP(wk, µk)(w − wk) +∇f0(wk)>(w − wk) + f0(wk)

s.t. f lin
i (w;wk) ≤ 0, i = 1, . . . , q,

glin(w;wk) = 0,

(21)

with fSCQP
0 (w; w̄) the shorthand for the objective function. Here, we point to a subtle, but important, difference

that should be kept in mind: all convex approximation schemes introduced so far, and also all that will follow,
only depend on the current primal iterate wk as linearization point. To construct BSCQP(wk, µk) on the other
hand, we also need the dual iterate µk. The full SCQP iteration scheme thus needs to extract µk+1 from the
multipliers satisfying the KKT conditions of (21). An immediate consequence is that all components of µk+1

are nonnegative. It follows that, similar to Proposition 3.1, we have BSCQP(wk+1, µk+1) � 0 for all k ≥ 0.
Therefore we only need to pick an initialization µ0 ≥ 0 to ensure convexity of (21) at all iterations. If φi(v) = v
for all i ≥ 1, we recover CGGN, since then ∇2φi(v) = 0 for all i ≥ 1.

3.4. Sequential Quadratically Constrained Quadratic Programming

A different approach to exploit the known curvature information would be to approximate both the objective
function and the inequality constraints by convex quadratic functions. This leads to the Sequential Quadratically
Constrained Quadratic Programming method (SQCQP). To our knowledge this method – using generalized
Gauss-Newton Hessian approximations to ensure convexity of the subproblems – was not yet presented in the
literature. An exact-Hessian variant has been proposed and discussed in [16]. SQCQP solves a Quadratically
Constrained Quadratic Program (QCQP) at every iteration:

wk+1 ∈ arg min
w ∈ Rn

1

2
(w − wk)>B0(wk)(w − wk) +∇f0(wk)>(w − wk) + f0(wk)

s.t.
1

2
(w − wk)>Bi(wk)(w − wk) +∇fi(wk)>(w − wk) + fi(wk) ≤ 0, i = 1, . . . , q,

glin(w;wk) = 0,

(22)

with the Hessian approximations Bi(w) as defined in (19). We abbreviate these quadratic approximations by

fquad
i (w; w̄) := 1

2 (w−wk)>Bi(wk)(w−wk)+∇fi(wk)>(w−wk)+fi(wk). Compared to SCQP, this method should
lead to a slightly closer approximation of the original NLP, as the constraints are approximated quadratically
instead of linearized. On the other hand, each iteration is in general more expensive, as a QCQP has to be
solved instead of a QP. Compared to SCP, the QCQP approximation is generally worse, while each iteration of
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Figure 5. Number of iterations until convergence to w∗ ≈ 0.1 depending on the initial
guess w0. SCP converged to w∗ in 100.0% of the cases in 100 iterations or less, SQCQP
in 95.7%, and SCQP in 90.3%.

SQCQP is possibly cheaper. We might say that SQCQP is in between SCP and SCQP. As for SCQP, for the
case that φi(v) = v for i = 1, . . . , q, we get ∇2φi(v) = 0 for all i ≥ 1 and therefore recover the CGGN method.

Example 3.2. We now illustrate the global convergence behavior of SCP, SCQP and SQCQP. To this end, we
revisit Example 1.1. We reformulate the parameter estimation problem (5) as

min
w, s

N∑
i=1

si s.t.
0 ≤ si, i = 1, . . . , N,√

δ2 + Fi(w)2 − δ ≤ si, i = 1, . . . , N,
(23)

where we introduced slack variables s ∈ RN , and subsumed the model-measurement residual in Fi(w) =
ηi−Mi(w). Note that the positiveness constraint on s is not strictly necessary as it is implicitly enforced by the
first constraint. For the SCQP and SQCQP approximations to (23) though, this is not the case and including
the constraint significantly improves their global convergence behavior. Note that the SCP subproblem is a
second order cone program (SOCP) and in consequence solved as such. We initialize all three methods at 1000
different values of w0, linearly spaced between -1.1 and 1.5. The slack variables are initialized as zero, and, in the
case of SCQP, all multipliers by one. The resulting number of iterations is shown in Figure 5. As heuristically
predicted, SCP shows the best global convergence behavior, both in terms of the number of iterations and the
fraction of initializations for which it converges. Furthermore, it has the steadiest behavior, in the sense that
the number of iterations does not jump around wildly for small changes in w0. SCQP shows the worst behavior
for these three measures, whereas SQCQP is in between the other two methods. Nonetheless we point out that
the take-away message of this example is not that SCP should always be the method of choice. This would
ignore the fact that the iterations of SCQP are significantly cheaper than those of SCP. A globalized SCQP
method might outperform full step SCP on the considered properties.

4. Local Convergence Analysis

We will now investigate the local convergence behavior of the introduced methods. The most general are SCP,
SCQP and SQCQP, so we will focus our attention on them. All other methods, namely GGN and CGGN, and
of course also GN and CGN, are special cases in the absence of convex structure in the constraints. Therefore
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the results trivially extend to them as well. For unconstrained SCP and GGN, the results on linear convergence
have been obtained already in [11]. Tran-Dinh et al. proved linear convergence of general SCP methods under
mild assumptions, but without a tight characterization of the rate [35]. For SCQP a tight characterization has
been obtained in [40], and for constrained SCP in [28], while SQCQP has not yet been investigated before.

We start by establishing stationarity of the methods at a solution to (14). Collecting both primal and dual
variables in zk = (wk, µk, λk), the subproblems of each method, i.e., (16), (21), resp. (22), define iteration maps

zk+1 = zsol
SCP(zk), zk+1 = zsol

SCQP(zk) resp. zk+1 = zsol
SQCQP(zk). (24)

We assume uniqueness of the next iterate has been assured by taking the solution closest to zk. More specifically,
if a subproblem has a set of solutions Z, we define zk+1 := arg minz∈Z‖z − zk‖. Note that in order to obtain a
simpler notation, the iteration maps have been defined as taking the full zk as input. This hides the fact that
zsol

SCP(zk) and zsol
SQCQP(zk) only depend on wk, since they are multiplier-free, and that zsol

SCQP(zk) additionally
depends on µk, but none of the methods depends on λk.

We denote the set of KKT points of (14) as Z∗. The active set A(z) ⊆ {1, . . . , q} contains the indices of all
inequality constraints which are active at z. For a specific z∗ ∈ Z∗, we use the shorthand A∗ := A(z∗), with
corresponding multipliers µA∗ . Accordingly, we have the inactive set I(z) with I∗ := I(z∗) and µI∗ .

Lemma 4.1. Let z∗ be a feasible point of (14) at which LICQ holds. Then z∗ is a fixed point of all three
iteration maps in (24) if and only if z∗ ∈ Z∗. Furthermore, strict complementarity of the SCP, SCQP and
SQCQP subproblems (16), (21) and (22) holds at z∗ ∈ Z∗ if and only if it also holds for (14) at z∗. More
specifically, the active set A∗ and the corresponding multipliers are identical.

Proof. To increase readability we only state the proof for SCP. The proofs for SCQP and SQCQP are completely
analogous. Assume z̄ is a fixed point of zsol

SCP(zk), i.e., zsol
SCP(z̄) = z̄. This means that z̄ solves the SCP subproblem

(16) and, due to LICQ, is also a KKT point. Then, by substituting zk+1 = zk = z̄ into the KKT conditions of
(16) – which we know to hold in this case – they collapse to the KKT conditions of (14) – which therefore also
hold. It follows that z̄ ∈ Z∗. Vice versa, assume that z∗ ∈ Z∗. Writing down the KKT conditions of (16), we
can see that they hold at zk+1 = zk = z∗. Therefore, due to convexity, z∗ solves (16) at z∗. Denote by Z the
set of all solutions to (16) at z∗. We know that z∗ ∈ Z. From zk+1 = arg minz∈Z‖z − z∗‖ = z∗ it follows that
z∗ is stationary w.r.t. the SCP iteration defined in (24). For the statement on strict complementarity we point
again to the fact that the KKT conditions of (14) and (16) are identical at zk+1 = zk = z∗ ∈ Z∗. �

In order to prepare the statement and proof of the main theorem of this paper, Theorem 4.5, we start by
pointing out that for a KKT point z∗ the inactive constraints have no influence on its position (apart from
necessitating µI∗ = 0). The active inequality constraints on the other hand can be treated exactly like equality
constraints. In fact, if the active set A(w∗) of a local minimizer w∗ is known, finding w∗ simplifies to the
solution of an equality constrained problem. Furthermore, if the active set is stable, i.e., if it does not change
close to w∗, then the inactive inequality constraints will also not influence the local convergence behavior, and
for the purpose of local convergence analysis we can completely disregard them. Having this already in mind,
we need to set up some notation and intermediate results. We consider a local minimizer w∗ of (14) with active
set A∗ and define the corresponding extended equality constraints as

G(w) :=

[
fA∗(w)

g(w)

]
, GSCP(w; w̄) :=

[
fSCP
A∗ (w; w̄)

glin(w; w̄)

]
, GSCQP(w; w̄) :=

[
f lin
A∗(w; w̄)

glin(w; w̄)

]
, GSQCQP(w; w̄) :=

[
fquad
A∗ (w; w̄)

glin(w; w̄)

]
, (25)

with output dimension r := |A∗| + p. The associated Lagrange multipliers are collected in γ = (µA∗ , λ). We
note that if their Jacobians with respect to the first argument are evaluated at the given linearization point w̄,
we obtain

Γ(w̄) :=
∂G(w)

∂w

∣∣∣∣∣
w=w̄

=
∂GSCP(w; w̄)

∂w

∣∣∣∣∣
w=w̄

=
∂GSCQP(w; w̄)

∂w

∣∣∣∣∣
w=w̄

=
∂GSQCQP(w; w̄)

∂w

∣∣∣∣∣
w=w̄

=

[
∇fA∗(w̄)>

∇g(w̄)>

]
. (26)
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This is not surprising, given that at the linearization point all three approximations match the original NLP
up to first order. We also regard the Hessians of the Lagrangians of the subproblems (16), (21) resp. (22) at z̄,
which are

BSCP(w, µ; w̄) := J0(w̄)>∇2φ0

(
F lin

0 (w; w̄)
)
J0(w̄) +

q∑
i=1

µiJi(w̄)>∇2φi
(
F lin
i (w; w̄)

)
Ji(w̄), (27)

BSCQP(w̄, µ̄) := J0(w̄)>∇2φ0 (F0(w̄)) J0(w̄) +

q∑
i=1

µ̄iJi(w̄)>∇2φi (Fi(w̄)) Ji(w̄), (28)

BSQCQP(µ; w̄) := J0(w̄)>∇2φ0 (F0(w̄)) J0(w̄) +

q∑
i=1

µiJi(w̄)>∇2φi (Fi(w̄)) Ji(w̄). (29)

As the expressions look confusingly similar, we explicitly point out the differences. First, recall that w and µ
are variables of the subproblems, whereas w̄ and µ̄ are parameters defining the point of approximation. SCP
and SQCQP are multiplier-free methods, so their Hessians do not depend on µ̄. BSCP depends on w via the
functions F lin

i (w, w̄). As these are the arguments of the ∇2
iφ(·), SCP keeps some curvature information of φi

even when moving away from w̄. The SCQP subproblem is a QP. Therefore its Hessian is constant with respect
to the decision variables, and only depends on the linearization point (w̄, µ̄). The expressions for SCQP and
SQCQP are almost identical, with the slight difference that µ̄ is substituted by µ. All three methods linearize
the equality constraints g(w) without keeping any curvature information, so none of the Hessians depends on the
corresponding multiplier λ. An important property is that for z = (w, λ, µ) = (w̄, λ̄, µ̄) = z̄, all three Hessians
are identical, i.e.,

BSCP(w̄, µ̄; w̄) = BSCQP(w̄, µ̄) = BSQCQP(µ̄; w̄) =: B(z̄), (30)

which follows directly from F lin
i (w̄; w̄) = Fi(w̄). Finally, we define B∗ := B(z∗), Γ∗ := Γ(w∗) ∈ Rr×n and Z as

a basis of the null space of Γ∗. The reduced Hessian approximation is denoted by B̃∗ := Z>B∗Z. One way to
obtain Z would be via the QR factorization

Γ>∗ = QR̄ =
[
Y Z

] [R
0

]
, (31)

where Q ∈ Rn×n is orthogonal, Q>Q = I, with block components Y ∈ Rn×r and Z ∈ Rn×(n−r). The non-zero
block of R̄ ∈ Rn×r is the upper triangular R ∈ Rr×r. Note that Γ∗Z = 0 and Γ∗Y = R>, which is invertible if
Γ∗ has full rank (LICQ holds). We can now state the following lemma on stability of the active set. This has
in fact been proven by Robinson for a more general class of iterative methods for solving NLPs [32]. We thus
refrain from giving a proof here. The reader interested in a proof for our specific case and notation is referred
to [28].

Lemma 4.2. Assume LICQ and strict complementarity hold at z∗ ∈ Z∗, and that B̃∗ � 0. Then, for z̄
sufficiently close to z∗, the active sets of problems (16), (21) and (22) are stable and correspond to A∗, the
active set of the original NLP (14) at z∗.

Lemma 4.2 implies that we can disregard the inactive inequality constraints if we are close enough to z∗.
This leads us to the definition of y := (w, µA∗ , λ) = (w, γ), where we have dropped the inactive multipliers µI∗ .
Note that µI∗ = 0. If we furthermore treat the active inequality constraints as equality constraints, the KKT
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conditions of the resulting NLP and the corresponding subproblems define the following residual maps:

R(y) :=

[
∇f0(w) +∇G(w)γ

G(w)

]
, (32)

RSCP(y; ȳ) :=

[
∇fSCP

0 (w; w̄) +∇GSCP(w; w̄)γ

GSCP(w; w̄)

]
, (33)

RSCQP(y; ȳ) :=

[
∇fSCQP

0 (w; w̄) +∇GSCQP(w; w̄)γ

GSCQP(w; w̄)

]
, (34)

RSQCQP(y; ȳ) :=

[
∇fquad

0 (w; w̄) +∇GSQCQP(w; w̄)γ

GSQCQP(w; w̄)

]
. (35)

Since SCQP approximates (14) by a QP, its residual map is affine in y and can be written as

RSCQP(y; ȳ) =

[
BSCQP(w̄, µ̄) ∇G(w̄)

∇G(w̄)> 0

] [
w − w̄
γ

]
+

[
∇f0(w̄)

G(w̄)

]
. (36)

For SCP and SQCQP this map is generally nonlinear. All KKT points y∗ of the reduced problem are char-
acterized by R(y∗) = 0 and each method iterates by solving the root-finding problem RM (yk+1; yk) = 0, for
M = SCP,SCQP,SQCQP, until a stationary point is found. Before taking a closer look at these iterations, we
state a lemma on the residual maps, which is central to our later theorem on the local convergence rates.

Lemma 4.3. Consider the just defined residual maps. The residual maps of SCP, SCQP and SQCQP are
identical up to second order,

RSCP(y; ȳ) = RSCQP(y; ȳ) +O(‖y − ȳ‖2) (37)

RSQCQP(y; ȳ) = RSCQP(y; ȳ) +O(‖y − ȳ‖2), (38)

but match the residual map of the original problem (14) only up to first order,

RSCQP(y; ȳ) = R(y) +O(‖y − ȳ‖). (39)

Proof. The proof will go by showing identity of the residuals and their partial derivatives at y = ȳ. From (26) we
already know that ∇GSCP(w̄; w̄) = ∇GSCQP(w̄; w̄) = ∇GSQCQP(w̄; w̄) = Γ(w̄)>. From glin(w̄; w̄) = g(w̄) and

fSCP
i (w̄; w̄) = fquad

i (w̄; w̄) = f lin
i (w̄; w̄) = f(w̄), we have that GSCP(w̄; w̄) = GSCQP(w̄; w̄) = GSQCQP(w̄; w̄) =

G(w̄). It follows that RSCP(ȳ; ȳ) = RSCQP(ȳ; ȳ) = RSQCQP(ȳ; ȳ) = R(ȳ). The partial derivative w.r.t. w of the
first row of each residual map is exactly the Hessian of the Lagrangian of the corresponding subproblem. They
are given in (27) to (29) and from (30) we know them to be identical at y = ȳ. In consequence,

∂RSCP(y; ȳ)

∂y

∣∣∣∣∣
y=ȳ

=
∂RSCQP(y; ȳ)

∂y

∣∣∣∣∣
y=ȳ

=
∂RSQCQP(y; ȳ)

∂y

∣∣∣∣∣
y=ȳ

=

[
B(ȳ) Γ(w̄)>

Γ(w̄) 0

]
. (40)

�

Before moving to the next theorem, we consider the special case in which a local minimizer w∗ is fully
determined by the active constraints.

Definition 4.4 ( [22]). We say a feasible point w of NLP (14) is fully determined by the active constraints if
LICQ holds at w and |A(w)| = n− p.
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We introduce this special case for two reasons. First, if a local minimizer w∗ is fully determined by the
active constraints, the constraint Jacobian Γ∗ ∈ R(|A∗|+p)×n is a square matrix, since for the fully determined
case |A∗| + p = n. Due to LICQ, Γ∗ is invertible and its null space contains only the zero vector. Therefore
the null space basis Z would be empty, Z ∈ R0×0, and in consequence the reduced Hessian approximation

B̃ := Z>BZ, which plays a central role in the following theorem, would be ill-defined, B̃∗ ∈ R0×0. Second, this
case distinction is not only technical, but interesting in its own right. In a later theorem, we will actually obtain
quadratic convergence for this special case. For now, we only focus on the case that w∗ is not fully determined
by the active constraints.

4.1. Linear Convergence Rate

We are now ready to state the main theorem of this paper. Similarly to the reduced Hessian approx-

imation B̃∗, we define Λ̃∗ := Z>∇2L(w∗, µ∗, λ∗)Z for the true Hessian of the original problem (14), and

E∗ := ESCQP(w∗, µ∗, λ∗) as well as Ẽ∗ := Z>E∗Z for the corresponding Hessian approximation error. Note

that Λ̃∗ = B̃∗ + Ẽ∗.

Theorem 4.5. Assume z∗ = (w∗, µ∗, λ∗) is local minimizer of (14), at which LICQ and strict complementarity
hold. Then z∗ is a fixed point of SCP, SCQP and SQCQP. If w∗ is not fully determined by the active constraints

and B̃∗ � 0 holds, then all three methods have the same asymptotic local linear contraction – or divergence –
rate. This asymptotic contraction rate is given by the smallest α that fulfills the condition

−αB̃∗ � Ẽ∗ � αB̃∗. (41)

In consequence, if

1

1 + α
Λ̃∗ � B̃∗ �

1

1− α
Λ̃∗ (42)

holds for some α < 1, the methods converge Q-linearly with contraction rate α and a necessary condition for local

convergence is given by B̃∗ � 1
2 Λ̃∗. Finally, if Λ̃∗ � 0, then B̃∗ � 1

2 Λ̃∗ is sufficient for local linear convergence.

Proof. Stationarity follows from Lemma 4.1. From Lemma 4.2 we know that the active set A∗ of all three
methods is stable close to z∗. It follows that the µI will be zero, µI∗ = µ∗I∗ = 0, for z sufficiently close to z∗.
We can therefore disregard the inactive constraints and characterize the convergence behavior from the residuals
maps RM (y; ȳ) as defined in (33) to (35) for M = SCP,SCQP,SQCQP. As a consequence of Lemma 4.3 their
partial derivatives are identical at y = ȳ = y∗ and given by

K∗ :=
∂RM (y; ȳ)

∂y

∣∣∣∣∣y=y∗

ȳ=y∗

=

[
B∗ Γ>∗
Γ∗ 0

]
, L∗ :=

∂RM (y; ȳ)

∂ȳ

∣∣∣∣∣y=y∗

ȳ=y∗

=

[
E∗ 0

0 0

]
(43)

for M = SCP,SCQP,SQCQP. We have RM (y∗; y∗) = 0, and RM (·; ·) is continuously differentiable with respect
to both arguments, due to the assumptions made on the composing functions. Furthermore, K∗ is invertible

due to the KKT Lemma [30, Lem. 16.1], which holds because of LICQ and B̃∗ � 0. We thus know from
the implicit function theorem that there exists a neighborhood of y∗ in which the continuously differentiable
functions ysol

M (ȳ) are uniquely defined by RM (ysol
M (ȳ); ȳ) = 0, with M = SCP,SCQP,SQCQP. For ȳ sufficiently

close to y∗, their Jacobians are given by

dysol
M

dȳ
(ȳ) = −

(
∂RM
∂y

(ysol
M (ȳ); ȳ)

)−1
∂RM
∂ȳ

(ysol
M (ȳ); ȳ). (44)
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At the fixed point y∗, with ysol
M (y∗) = y∗, this evaluates to

dysol
M (ȳ)

dȳ

∣∣∣∣∣
ȳ=y∗

= −K−1
∗ L∗︸ ︷︷ ︸
=:A∗

= −
[
B∗ Γ>∗
Γ∗ 0

]−1 [
E∗ 0

0 0

]
(45)

for M = SCP,SCQP,SQCQP. Now consider the iteration yk+1 = ysol
M (yk), with y0 sufficiently close to y∗.

Taylor expansion around y∗ yields

yk+1 − y∗ = −A∗(yk − y∗) +O(‖yk − y∗‖2). (46)

As is a standard result of linear stability analysis of nonlinear systems, convergence of yk to y∗ is determined
by the spectral radius ρ(A∗) [31, Chap. 22]. If 0 < ρ(A∗) < 1, the sequence converges linearly with asymptotic
contraction rate ρ(A∗). When ρ(A∗) = 0, it converges faster than linear. If ρ(A∗) = 1, we cannot decide about
convergence by considering only ρ(A∗), and if ρ(A∗) > 1, then y∗ is an unstable stationary point.

We now derive an explicit expression of A∗, to be able to characterize its spectral radius ρ(A∗). Note that
to compute A∗ – due to the special structure of L∗ – we only need the first block column of

K−1
∗ =

[
D C>

C F

]
, (47)

with D ∈ Rn×n, C ∈ Rr×n, F ∈ Rr×r. Noting that K∗K−1
∗ = I, we can compute the first block column of K−1

∗
by solving the linear system

K∗

[
D

C

]
=

[
B∗ Γ>∗
Γ∗ 0

] [
D

C

]
=

[
I

0

]
(48)

via the null space method [30, Chap. 16.2]. We split D into two components,

D = Y DY + ZDZ (49)

with DY ∈ Rr, DZ ∈ Rn−r, Z ∈ Rn×(n−r) an orthonormal basis of the null space of Γ∗ and Y ∈ Rn×r such that
[Y Z]>[Y Z] = I. Y and Z might be obtained via QR factorization of Γ>∗ , see (31). From the second block row
of (48) we have

Γ∗Y DY + Γ∗ZDZ = 0 ⇔ DY = 0 (50)

since Γ∗Z = 0 and Γ∗Y ∈ Rm×m has full rank due to LICQ. Left-multiplying the first block row of (48) by Z>

we get

Z>B∗D + Z>Γ>∗ C = Z>. (51)

Substituting D = ZDZ and noting that Z>Γ>∗ = 0 and that Z>B∗Z � 0 is invertible by assumption, DZ =
(Z>B∗Z)−1Z> follows, and therefore

D = ZDZ = Z(Z>B∗Z)−1Z>. (52)

Similarly, left-multiplying the first block row of (48) by Y > and substituting the above result for D yields

C = (Γ∗Y )−>Y >(I −B∗Z(Z>B∗Z)−1Z>). (53)

Finally, we can explicitly write A∗ as

A∗ := K−1
∗ L∗ =

[
DE∗ 0

CE∗ 0

]
. (54)
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The next step is to find the spectral radius ρ(A∗). Due to the zero blocks on the right-hand side, the non-zero
eigenvalues of A∗ coincide with those of its upper left block,

Â∗ := DE∗ = Z
(
Z>B∗Z

)−1
Z>E∗. (55)

Now Â∗ is similar to

Â′∗ :=

[
Y >

Z>

]
Â∗
[
Y Z

]
=

[
0 0

B̃−1
∗ Z>E∗Y B̃−1

∗ Ẽ∗

]
, (56)

where we used Y >Z = 0, Z>Z = I, B̃∗ = Z>B∗Z and Ẽ∗ = Z>E∗Z. It follows that Â∗ and Â′∗ have the same

eigenvalues. The non-zero eigenvalues of Â′ are given by the eigenvalues of its lower right block Ã∗ := B̃−1
∗ Ẽ∗.

Due to B̃∗ � 0, the symmetric positive definite square root B̃
1
2∗ exists and is uniquely defined. Therefore

Ã′∗ := B̃
1
2∗ Ã∗B̃

− 1
2∗ = B̃

− 1
2∗ Ẽ∗B̃

− 1
2∗ (57)

is similar to Ã∗ and they share the same eigenvalues. From the rightmost expression in (57) we can see that Ã′∗
is symmetric, so its eigenvalues are real. Its spectral radius ρ(Ã′∗) = ρ(Ã∗) = ρ(Â′∗) = ρ(Â∗) = ρ(A∗) is then
given by the smallest α satisfying

−αI � B̃−
1
2∗ Ẽ∗B̃

− 1
2∗ � αI. (58)

These two LMI are equivalent to non-negativity of ξ>(αI ± B̃
− 1

2∗ Ẽ∗B̃
− 1

2∗ )ξ for all ξ ∈ Rn−r. Substituting

ζ = B̃
− 1

2∗ ξ, non-negativity of ζ>(αB̃∗± Ẽ∗)ζ for all ζ ∈ Rn−r follows, which is equivalent to −αB̃∗ � Ẽ∗ � αB̃∗.
Recalling that Ẽ∗ = Λ̃∗ − B̃∗, (42) is a direct consequence. Substituting α = 1 into the left-hand side LMI of

(42) we can see that B̃∗ � 1
2 Λ̃∗ is a necessary condition for convergence: if we had B̃∗ ≺ 1

2 Λ̃∗, the LMI could

only hold for α > 1. Finally, if Λ̃∗ � 0, we know that the right-hand side LMI of (42) has to hold for some

α < 1, and the same goes for the left-hand side LMI if B̃∗ � 1
2 Λ̃∗ holds. Therefore B̃∗ � 1

2 Λ̃∗ is sufficient for
linear convergence. �

Example 4.6. To illustrate the local convergence behavior, we revisit the problem formulation introduced in
Example 3.2. We initialize the three methods at w0 = 0, s0 = 0, and, in the case of SCQP, µ0 = 1. For the
obtained iteration sequences we compute the empirical contraction rate as

κk =
‖ωk+1 − ωk‖2
‖ωk − ωk−1‖2

, (59)

where ωk = (wk, sk). The theoretical asymptotic rate α̌(w∗) is computed as defined by the LMI in (41). The
results are shown in Figure 6. Note how the empirical rates approach the theoretically predicted rate in the
final iterations.

4.2. Analysis of the Fully Determined Case

In this subsection, we consider the case in which the solution is fully determined by the active constraints, as
defined in Definition 4.4. As we will show, this is an interesting special case in which the KKT conditions are
sufficient for local optimality and SCP, SCQP, and SQCQP converge quadratically. We motivate the analysis
with the following example.

Example 4.7. We continue with the just introduced slack reformulation (23). This time we want to investigate
the convergence behavior when varying the Huber parameter δ. Recalling that for δ → 0 the pseudo Huber
penalty approaches the L1-norm, we also consider a variation of our example in which the residuals are penalized
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Figure 6. Convergence to the local minimum at w∗ ≈ 0.1. The observed contraction rate
of the three methods is compared to the theoretically predicted rate α̌(w∗). During the final
iterations, all three methods approach this rate. Also note how SCP has the fastest rate during
the initial iterations, whereas SCQP is the slowest.

by the L1-norm. This leads us to the problem minw∈R‖η−M(w)‖1, for which the smooth epigraph reformulation
is

min
w, s

N∑
i=1

si s.t.
Fi(w) ≤ si, i = 1, . . . , N,

−Fi(w) ≤ si, i = 1, . . . , N.
(60)

We use SCP to solve the above problem, as well as the problem given in (23) for values of δ ∈ [10−6, 102]. Note
that applying SCP to (60) actually simplifies to SLP [19]. For each δ we compute the theoretical contraction
rate. The results are visualized in Figure 7 on the left side. For δ � 1 the contraction rate flatlines at α̌ ≈ 0.04.
This happens when δ is so large that all residuals are penalized quadratically, i.e., in a least-squares fashion.
For δ → 0 something much more interesting happens: it seems that α̌ → 0 as δ approaches 0, i.e., in the limit
we would obtain convergence faster than linear. As in Example 4.6 we also compute the empirical contraction
rate κk of SCP for a few values of δ and the L1-norm, initializing at w0 = 2. The resulting contraction rates
are compared to the theoretically predicted rate α̌ in Figure 7 on the right side. What happens here is that as
δ → 0, we approach the SLP iterations defined by the L1-norm. For a linear program, the solution – if it exists
and is unique – always lies in a vertex of the feasible set. This corresponds to the fully determined case and
therefore the convergence rate is quadratic, as we will see in the following.

Intuitively, the quadratic convergence can be explained as follows: If the active set A∗ is known, i.e., we
know G(w∗), and w∗ is fully determined by the active constraints, i.e., G(w∗) has n components and Γ∗ is of
full rank, then solving (14) simplifies to solving the feasibility problem G(w) = 0, which is independent of the
objective function. Solving this nonlinear root-finding problem with the classical Newton’s method would yield
locally quadratic convergence [8]. Now SCQP linearizes all constraints, and thus in effect solves this special case
with Newton’s method, and should therefore converge quadratically. SCP and SQCQP keep some curvature
in the constraints, so this reasoning is not fully applicable, but we will see that nonetheless they converge
quadratically as well. A second consequence is the following proposition, which we might call the first order
sufficient conditions (FOSC).

Proposition 4.8. Suppose z∗ = (w∗, λ∗, µ∗) is a KKT point of (14). If w∗ is fully determined by the active
constraints and LICQ and strict complementarity hold at z∗, then w∗ is a strict local minimizer of (14), i.e.,
the KKT conditions are necessary and sufficient conditions for optimality.

Proof. LICQ and strict complementarity hold at z∗, so the critical cone C(w∗, µ∗) is given by the null space of
the Jacobian of the extended equality constraints G(w∗), i.e., C(w∗, µ∗) = null (Γ∗) . As w∗ is fully determined
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by the active constraints, Γ∗ is an n × n matrix and due to LICQ has full rank. Thus, the null space of Γ∗
contains only the zero vector, C(w∗, µ∗) = {0}. For any non-zero feasible direction d ∈ F(w∗), with tangent
cone

F(w∗) =
{
d ∈ Rn | ∇g(w∗)>d = 0 and ∇fi(w∗)>d ≤ 0 for i ∈ A(w∗)

}
, (61)

there exists at least one index j ∈ A∗ such that d>∇fj(w∗) < 0. From ∇L(w∗, λ∗, µ∗) = 0, we can conclude
that

d>∇f0(w∗) = −µ∗j d>∇fj(w∗)︸ ︷︷ ︸
<0

−
∑

i∈A∗\{j}
µ∗i d

>∇fi(w∗)︸ ︷︷ ︸
≤0

−
d∑
i=1

λ∗i d
>∇gi(w∗)︸ ︷︷ ︸

=0

> 0. (62)

Thus, any non-zero feasible direction d is an ascent direction, which implies that w∗ is a strict local minimizer
of (14). �

Theorem 4.9. Assume z∗ = (w∗, µ∗, λ∗) = (w∗, ϑ∗) is a KKT point of (14), at which LICQ and strict
complementarity hold. If w∗ is fully determined by the active constraints, then w∗ is a local minimizer and
SCP, SCQP and SQCQP converge Q-quadratically in the primal variable w, and R-quadratically in the dual
variable ϑ = (µ, λ), i.e., there are constants c1, c2 ∈ R+ such that

‖wk+1 − w∗‖ ≤ c1‖wk − w∗‖2 (63)

while ‖ϑk+1 − ϑ∗‖ ≤ c2‖wk − w∗‖. (64)

Proof. Proposition 4.8 implies that w∗ is a local minimizer of (14). For the convergence analysis, we follow
the proof of Theorem 4.5: We disregard the inactive multipliers µI∗ = 0 and focus the analysis on y =
(w, µA∗ , λ) = (w, γ). Consider again the iterations defined by the solution operators yk+1 = ysol

M (yk), for
M = SCP,SCQP,SQCQP, and their Jacobian at y∗, as given in (45) as −A∗ = −K−1

∗ L∗. For the fully
determined case, Γ∗ is a square matrix and due to LICQ invertible. We can therefore obtain the first block
column of K−1

∗ as D = 0 and C = Γ−>∗ , cf. (47), and subsequently

A∗ =

[
0 0

Γ−>∗ E∗ 0

]
. (65)

The only non-zero block of A∗ is in its lower left, from which ρ(A∗) = 0 and therefore at least superlinear
convergence follows. Now consider again the Taylor expanded iteration map (46),

yk+1 − y∗ = −A∗(yk − y∗) +O(‖yk − y∗‖2) = −
[

0 0

Γ−>∗ E∗ 0

]
(yk − y∗) +O(‖yk − y∗‖2). (66)

We now make two observations: (a) both SCP and SQCQP are multiplier-free methods, i.e., their solution
operators depend only on wk, but not on γk; (b) while SCQP is in general not multiplier-free, for the fully
determined case we can explicitly obtain the primal part of its solution operator as wk+1 = wk−Γ(wk)−1G(wk)
from the second block row of (36), which does not depend on γk. Combining these observations with the first
block row of (66), we can write wk+1−w∗ = O(‖wk−w∗‖2), from which Q-quadratic convergence of the primal
variable w follows. The second block row is given as

γk+1 − γ∗ = −Γ−>∗ E∗(wk − w∗) +O(‖yk − y∗‖2). (67)

For yk sufficiently close to y∗, we can find a constant c2 ∈ R+ such that ‖γk+1 − γ∗‖ ≤ c2‖wk − w∗‖. Since
the sequence ‖wk − w∗‖ converges Q-quadratically to zero, R-quadratic convergence of the sequence γk to γ∗

follows. �



ESAIM: PROCEEDINGS AND SURVEYS 83

10−6 10−5 10−4 10−3 10−2 10−1 100 101 102
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Huber parameter δ

th
eo

re
ti

ca
l

ra
te
α̌

(w
∗ )

1 2 3 4 5 6

10−5

10−4

10−3

10−2

10−1

100

δ=10−1

δ=10−2

δ=10−3

δ=10−4

iteration k
li

n
ea

r
co

n
tr

a
ct

io
n

ra
te

δ = 10−1

δ = 10−2

δ = 10−3

δ = 10−4

L1

Figure 7. Left: Theoretical linear contraction rate for varying the pseudo Huber loss parame-
ter δ. Right: Empirical convergence rate of SCP for several δ and the limit case of the L1-norm
(which corresponds to δ = 0). The dotted lines indicate the theoretically predicted rates. For
the L1-norm this rate is 0, and therefore not visualizable on a log-scale.

5. Mirroring and desirable divergence

We now turn our attention to an interesting phenomenon that arises in the context of parameter estimation.
As we have seen in the previous section, the discussed methods do not always converge locally. At first glance
this might seem like a weakness. In this section we argue why – in the context of maximum likelihood estimation
– this is actually a strength. This idea has first been presented by Bock in the context of L2 estimation [3]
and was later extended to L1 estimation [4]. In [11] we generalized to unconstrained NLP with general convex
symmetric penalty functions, and now generalize this further to problems with equality constraints.

Imagine we have a model function m(x; w̄) that maps an input x ∈ Rnx to an output m(x; w̄) ∈ R, depending
on a parameter w̄ ∈ Rn. Of this output we only have noisy measurements ηi = m(xi; w̄) + νi, where νi ∈ R is
some form of noise. Our wish is now to identify this parameter from input-output pairs (xi, ηi), i = 1, . . . , N .
In the framework of maximum-likelihood estimation this leads to an objective function in the form of f(w) =∑N
i=1 ϕ(ηi −m(xi;w)) with a cost function ϕ : R → R determined by the assumed probability distribution of

νi. More generally we may phrase this as

min
w

φ0 (η −M(w)) s.t. g(w) = 0. (68)

Here M(w) is the vertical concatenation of the m(xi;w) and correspondingly for η. The constraint g(w) encodes
further prior knowledge on the parameter, that might be derived from physical insight into the problem. As
should be straightforward to see, (68) includes scenarios more general than the one described, e.g., it also
includes scenarios with multi-output models or models with time dependency. Central to our results here is the
observation that most commonly used noise distributions are radially symmetric. That is, if a measurement
is perturbed by some noise realization ν, its negative version −ν should be equally likely. In consequence, the
cost function defined by the corresponding distribution is symmetric, φ0(y) = φ0(−y). With these properties
in mind we define the “mirror problem”.

Definition 5.1 (Mirror problem). Consider a point w′ ∈ Rn. The corresponding residual error is e(w′) :=
η −M(w′), which we can rephrase as η = M(w′) + e(w′). We obtain “mirrored” measurements η̆ by using this
error to perturb the model into the opposite direction, η̆(w′) := M(w′)− e(w′) = 2M(w′)− η. These mirrored
measurements then define the mirror problem at w′ as

min
w

φ0 (η̆(w′)−M(w)) s.t. g(w) = 0. (69)
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Figure 8. Illustration of the mirror problem for two local minima, w∗good and w∗bad. The
mirrored measurements η̆ are obtained by mirroring the original measurements η vertically at
the model function.

Example 5.2. We return to our example as defined in (5). For the two local minima, w∗good and w∗bad, we

compute the mirrored measurements η̆(w∗good) resp. η̆(w∗bad) as explained in Definition 5.1. This is visualized
in Figure 8 alongside the measurement model for the respective minimizer. In this context the model is
m(xi;w) := ψ(xi + w) as defined in (4). Note that varying the model parameter w corresponds to shifting
ψ horizontally.

Lemma 5.3. Assume z∗ = (w∗, λ∗) is a KKT point of (68). Then z̆ = (w∗,−λ∗) is a KKT point of its mirror
problem (69) at w∗ and vice versa.

Proof. We start by defining the Lagrangian of (68) as

L(z) = L(w, λ) = φ0((η −M(w))) + λ>g(w), (70)

and correspondingly for its mirror problem (69). Now consider the KKT conditions of the mirror problem:

J(w)>∇φ0(η̆(w∗)−M(w)) +∇g(w)λ = 0, (71a)

g(w) = 0. (71b)

In these, first substitute z̆ = (w∗,−λ∗) for z. Then note that due to symmetry ∇φ0(v) = −∇φ0(−v), and
therefore ∇φ0(η̆(w∗)−M(w)) = −∇φ0(M(w)− η̆(w∗)). Finally substitute η̆(w∗) = 2M(w∗)− η, to obtain

−
(
J(w∗)>∇φ0(η −M(w∗)) +∇g(w∗)λ∗

)
= 0, (72a)

g(w∗) = 0. (72b)

These are exactly the KKT conditions of (68) at z∗, which hold by assumption. Therefore (71) holds at z̆ and
z̆ is a KKT point of the mirror problem. For the reverse direction note that the mirror problem of the mirror
problem is the original problem. �

Lemma 5.4. Assume z∗ is a KKT point of (68), and z̆ the corresponding KKT point of the mirror problem
at w∗ as obtained in Lemma 5.3. Define B∗ := B(z∗) and E∗ := E(z∗). Then the Hessians of the Lagrangians
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of the original resp. the mirror problem are given by

Λ∗ := ∇2L(z∗) = B∗ + E∗ and Λ̆∗ := ∇2L̆(z̆) = B∗ − E∗. (73)

Proof. The Hessians of the Lagrangians of (68) and (69) are

∇2L(z) =

=:B(z)︷ ︸︸ ︷
J0(w)>∇2φ0(η −M(w))J0(w) +

=:E(z)︷ ︸︸ ︷
N∑
i=1

∇2Mi(w)
∂φ0

∂vi
(η −M(w)) +

p∑
i=1

λi∇2gi(w) (74)

and ∇2L̆(z) = J0(w)>∇2φ0(η̆ −M(w))J0(w) +

N∑
i=1

∇2Mi(w)
∂φ0

∂vi
(η̆ −M(w)) +

p∑
i=1

λi∇2gi(w), (75)

where we dropped the argument of η̆(w∗) for readability. The expression for Λ∗ = ∇2L(z∗) follows directly

from (74). For Λ̆∗ = ∇2L̆(z̆) we recall that z̆ = (w∗,−λ∗), ∇φ0(−v) = −∇φ0(v), ∇2φ0(v) = ∇2φ0(−v), and
η̆ = 2M(w∗)− η. Substituting all of this in (75) we see that

Λ̆∗ = J0(w∗)>∇2φ0(η −M(w∗))J0(w∗)−
N∑
i=1

∇2Mi(w
∗)
∂φ0

∂vi
(η −M(w∗))−

p∑
i=1

λ∗i∇2gi(w
∗) = B∗ − E∗. (76)

�

We are now ready to state the main theorem of this section. But before we do so, we would like the reader
to note that the estimation problem (68) has no inequality constraints. This leads to the fact that in this case
both SCQP and SQCQP simplify to CGGN. As in the previous section, a tilde is used to denote the reduced

Hessians, e.g., B̃∗ = Z>B∗Z.

Theorem 5.5 (Divergence from undesirable local minima). Assume z∗ is a local minimizer of (68), at which

LICQ, strict complementarity, Λ̃∗ � 0 and B̃∗ � 0 hold. Then z∗ is a KKT point of (68) and z̆ as defined
in Lemma 5.3 is a KKT point of its mirror problem. Both are therefore stationary points of SCP and CGGN
applied to the respective problem. But if these methods applied to (68) diverge from z∗, then z̆ is not a local
minimizer of the mirror problem.

Proof. z∗ is a KKT point by definition, and that z̆ is a KKT point follows from Lemma 5.3. Stationarity of the
methods at z∗ resp. z̆ follows from Lemma 4.1. From Theorem 4.5 we know that local divergence means that

−αB̃∗ � Ẽ∗ � αB̃∗ only holds for some α > 1. Therefore there exists some α′ ∈ (1, α) such that one of the two

LMI is violated. The left-hand side can be reformulated as αB̃∗ + Ẽ∗ � 0, and due to B̃∗ + Ẽ∗ = Λ̃∗ � 0 and

B̃∗ � 0 we see that this can never be violated for α > 1. It follows that the right-hand side must be violated.
This means that there exists some p ∈ RnZ \ {0} – with nZ the dimension of the null space – such that

0 > p>(α′B̃∗ − Ẽ∗)p = p>((α′ − 1)B̃∗ + B̃∗ − Ẽ∗)p = (α′ − 1)︸ ︷︷ ︸
>0

p>B̃∗p︸ ︷︷ ︸
>0

+p> ˘̃
Λ∗p > p> ˘̃

Λ∗p, (77)

where we used Λ̆∗ = B∗−E∗ from Lemma 5.4 and introduced its reduced version
˘̃
Λ := Z>Λ̆Z. Therefore

˘̃
Λ � 0.

Since
˘̃
Λ is the reduced Hessian of the mirror problem evaluated at z̆, it follows that the second order necessary

conditions do not hold and z̆ cannot be a minimizer of the mirror problem. �

Example 5.6. Continuing directly on Example 5.2, we now investigate the mirror problem as defined in (69).
From Example 2.3 we recall that for the asymptotic linear contraction rates we have α̌(w∗good) ≈ 0.02 and
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Figure 9. Comparison of the original objective function f0(w) to the objective functions

f̆(w;w∗) of the mirror problems for the two local minima w∗good and w∗bad. The bad local
minimum at w∗bad turns into a maximum of the corresponding mirror problem.

α̌(w∗bad) ≈ 3200 � 1. In Figure 9, we visualize the objective functions of the mirror problems at both local
minima and see how w∗good remains a clear minimizer for the mirror problem, whereas the local minimum at
w∗bad is transformed into a local maximum of the mirror problem.

6. Conclusions

We provided an overview of methods that exploit convex-over-nonlinear substructure in optimization prob-
lems. These were divided into three sectors: smooth unconstrained NLP, smooth constrained NLP, and opti-
mization problems with non-smooth convex substructures. For all three sectors we discussed methods for the
most general problem formulation as well as special cases, of which the simplest is nonlinear least-squares. A
special focus lay on methods for smooth constrained problems and for these we provided an analysis of local
convergence. We proved that under mild assumptions SCP, SCQP and SQCQP have the same local linear
contraction rate. For a fully determined solution, they even converge quadratically. For a simple numerical
example we have seen that SCP has better global convergence behavior, whereas SCQP has cheaper iterations.
SQCQP can be seen to provide a trade-off between these two cases. It would be interesting to further validate
this on a broad set of example problems and with a rigorous comparison of the computational cost. As we have
only considered the full step methods here, an analysis of globalized versions might also yield important results.
Furthermore, we have shown that the generalized CGN and SCP methods locally converge to a local minimizer
for equality constrained estimation problems with symmetric convex penalties if and only if this minimizer is
stable under a mirroring operation. Thus, the methods are only attracted by those local minima that satisfy
the desirable property of stability under mirroring.

The authors would like to thank Matilde Gargiani, Joris Gillis, James Martens, Dominikus Noll and Stephen Wright for
inspiring discussions.
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