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Abstract— We propose an algorithm for solving tube-based
robust nonlinear optimal control problems based on the approx-
imate propagation of ellipsoidal uncertainty tubes. Crucially,
the algorithm does not only optimize the nominal control tra-
jectory, but the decision variables include linear feedback gains
for each time step. In consequence, the resulting trajectories do
not suffer from the unrealistically large uncertainty sets of open-
loop robust trajectories, but are able to approximately capture
the feedback behavior implicit to model predictive control.
The proposed algorithm iterates by alternatingly performing
a Riccati recursion and solving a perturbed nominal optimal
control problem. We provide a theoretical analysis of the local
convergence behavior and demonstrate its basic applicability
on the example problem of controlling a towing kite.

I. INTRODUCTION

Model predictive control (MPC) is an advanced method
for the control of dynamical systems [27]. At each time
instance, the control input is obtained by solving an optimal
control problem (OCP), in which a model of the system
is used to plan a trajectory over a given time horizon.
This especially allows for the inclusion of explicit state
and control constraints into the plan. Due to model-plant
mismatch and disturbances this plan will never be perfect,
such that already after one time step the model prediction
will be different from the real state of the system. MPC
reacts to this deviation by resolving the OCP based on
the new information. However, in standard, i.e., nominal,
MPC this form of feedback is only implicit: no model
of the uncertainty is taken into account. In terms of con-
straint satisfaction this can be devastating. If the originally
planned trajectory was already at the edge of a constraint, a
small perturbation will suffice to cause constraint violation.
Keeping a heuristically chosen fixed safety distance from
every constraint seems an easy solution, but the choice of
distance is arbitrary while still not allowing for guarantees
of constraint satisfaction.

Robust model predictive control (RMPC) takes into ac-
count the uncertainty explicitly [21], [27]. Under the as-
sumption of bounded uncertainty sets, it plans trajectories
that will be feasible for every possible disturbance. Two
major approaches for this are scenario-tree based RMPC
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(a) nominal, T̂F = 260.07 kN
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(b) open loop robust, T̂F = 253.23 kN
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(c) closed loop robust, T̂F = 260.04 kN

Fig. 1. Trajectories and resulting average thrust T̂F for the towing kite
problem detailed in Sec. V. The trajectories are obtained by solving (a) the
nominal OCP, (b) the robustified OCP without including feedback in the
prediction (K = 0), (c) the robustified OCP with optimal linear feedback at
every time point. While the nominal OCP ignores the uncertainty, such that
the slightest pertubation could lead to constraint violation, the open loop
robust solution suffers from a growing uncertainty tube and needs to keep a
large backoff. By taking into account future feedback, the closed loop robust
OCP obtains a trajectory similar to the nominal one, with the important
difference that a small backoff is kept to ensure constraint satisfaction.



[3], [6], [16] and tube-based RMPC [15], [18], [20], [25],
[26]. Based on discrete uncertainty sets, scenario-tree based
RMPC spans up a tree of every possible scenario, one
for each realization of uncertainty. As the planned control
trajectory will be different for every branch of the tree, this
approach inherently considers the possibility of future feed-
back. However, the tree grows exponentially in the horizon
length, such that issues of computational tractability arise
already for moderate horizon lengths. Tube-based approaches
on the other hand usually consider continuous uncertainty
sets, and instead of a finite collection of trajectories they
plan a tube: for each time point the tube defines a connected
set in the state space in which the true state will be contained
for every possible disturbance trajectory [4]. If only an open-
loop control trajectory is planned, this tube will quickly grow.
This can have a detrimental effect on controller performance,
and even lead to infeasibility, as the trajectory will keep
an unrealistically high distance from constraints. By incor-
porating the possibility of future feedback in the planned
trajectory, this growth of uncertainty can be counteracted.
Ideally, this feedback would correspond to the solution of
the optimal control for each future time instance. However,
this creates an infinite recursion, and is impractical even for
a truncated recursion. Instead, it can be approximated by a
linear feedback law [19]. One possibility is to use a constant
feedback gain, precomputed, e.g., at a target steady state. The
resulting optimal control problem is then still equivalent in
structure to the robust open-loop problem, but with reduced
growth of uncertainty. An alternative is to also optimize
this feedback gain, by including an individual feedback gain
for every time instant in the decision variables. It is well
known that optimization over state feedback policies can
significantly reduces the conservatism present in open-loop
robust MPC [22], and was shown to even lead to convex
optimization problems in the special case of constrained
linear systems with additive disturbances [2], [10]. For a
discussion of stability in this context we refer to [14]. The
difference between solving a nominal OCP, an open loop
robust OCP in which no feedback is considered, and a closed
loop robust OCP with optimal linear feedback is illustrated
in Fig. 1. However, due to the additional degrees of freedom,
this problem is in general challenging to solve.

In this paper we propose an algorithm for the solution
of robust nonlinear OCP based on ellipsoidal tubes that
include linear feedback gains in the decision variables. The
new algorithm exploits the specific problem structure to
uncouple the nominal trajectory and the uncertainty part.
This allows one to alternate between the solution of a
perturbed nominal OCP and a feedback problem based on
the current nominal trajectory. We show that the feedback
problem can be efficiently solved via a Riccati recursion.
The combination of these two ideas leads to an efficient
algorithm for solving robust OCP of the given structure.
Under standard assumptions on regularity, we prove that
the proposed algorithm will converge to a solution of the
original problem if initialized sufficiently close to the so-
lution and if the uncertainty is not too large. Further, we

illustrate the behavior of the algorithm for the example of
controlling a towing kite. Similar ideas of uncoupling the
uncertainty part have been proposed in [8], [31], but with
the important difference that the feedback gains were not
decision variables. Open-loop covariance predictions based
on linearization along trajectories are also used in [12] to
perform a simplified backoff computation, which can be
interpreted as one iteration of the more recent zero-order
robust MPC method from [31].

A. Notation and preliminaries

For vectors x ∈ Rn, y ∈ Rm we denote by (x, y) :=
[x>, y>]> their vertical concatenation. For a matrix A ∈
Rm×n, the operation vec(A) means the vertical concate-
nation of its columns, such that a vector z ∈ Rmn is
obtained. The square root of a vector

√
x is to be understood

elementwise, and diag(x) returns a diagonal matrix with x
as its diagonal. The set of all positive semi-definite matrices
of a given size is Sn+. Each matrix Q ∈ Sn+ defines an
ellipsoid E(Q) := {Q 1

2x | x ∈ Rn, x>x ≤ 1}, centered
at the origin. For a vector valued function f : Rn → Rq ,
we denote by ∇f(x) the gradient, which is defined as the
transpose of the Jacobian ∂f(x)

∂x . For a function with multiple
arguments, g : Rn × Rm → Rq , we use ∇f(x, y) to denote
the vertically concatenated gradient w.r.t. both arguments,
or specify the argument as ∇xf(x, y). For concepts from
numerical optimization, such as the First Order Necessary
Conditions (FONC), Linear Independence Constraint Quali-
fication (LICQ), the Karush-Kuhn-Tucker (KKT) conditions,
and Second Order Sufficient Condition (SOSC) we refer to
[23]. For a nonlinear program (NLP) with decision variable
x ∈ Rn, we define the active set A(x) to denote the index set
of all inequality constraints active at x, and correspondingly
inactive set I(x) for the inactive ones.

II. APPROXIMATELY ROBUST OPTIMAL
CONTROL WITH ELLIPSOIDAL TUBES

In the following, we describe the considered problem
set-up in detail and define the robustified optimal control
problem we want to solve. We consider uncertain discrete-
time nonlinear dynamical systems of the form

x0 = ¯̄x0, xk+1 = fk(xk, uk, wk), k = 0, . . . , N−1, (1)

with state xk ∈ Rnx , control uk ∈ Rnu and perturbations
wk ∈ Rnw . The perturbations w = (w0, . . . , wN−1) are
drawn collectively from an ellipsoidal set, w ∈ E(σ2I), and
scaled by the uncertainty parameter σ ≥ 0. We note that
choosing σ2I as the ellipsoid matrix is more general than
it seems at the first glance as transformations of wk can
always be considered to be part of the dynamics function
fk(xk, uk, wk).

The corresponding nominal optimal control problem, ig-
noring the uncertainty by setting wk = 0 everywhere, takes



the form

min
x̄, ū

N−1∑
k=0

lk(x̄k, ūk) + E(x̄N ) (2a)

s.t. x̄0 = ¯̄x0, (2b)
x̄k+1 = fk(x̄k, ūk, 0), 0 ≤ k < N, (2c)

0 ≥ hk(x̄k, ūk), 0 ≤ k < N, (2d)
0 ≥ hN (x̄N ), (2e)

where x̄ = (x̄0, . . . , x̄N ), ū = (ū0, . . . , ūN−1) denotes the
nominal trajectory, and hk : Rnx × Rnu → Rnhk , k =
0, . . . , N − 1, and hN : Rnx → RnhN are the stage resp.
terminal constraints.

To robustify this problem against perturbations wk, we
need to first describe and propagate the uncertainty tube.
Following [9] and [13], we approximate it by ellipsoidal sets
E(Pk) around the nominal trajectory. Crucially, instead of
planning only open loop trajectories, we assume that at each
k = 1, . . . , N − 1, linear feedback with gain Kk ∈ Rnu×nx

is applied,
uk = ūk +Kk(xk − x̄k), (3)

reacting to deviations from the nominal trajectory. Starting
at P0 = 0, the state uncertainty ellipsoids are propagated as

Pk+1 = (Ak +BkKk)Pk(Ak +BkKk)> + σ2ΓkΓ>k

=: ψk(x̄k, ūk, Pk,Kk, σ),
(4)

k = 0, . . . , N −1, based on the sensitivities of the dynamics
evaluated at the nominal trajectory as given by

Ak := ∇xfk(x̄k, ūk, 0)>, Bk := ∇ufk(x̄k, ūk, 0)>,

Γk := ∇wfk(x̄k, ūk, 0)>, k = 0, . . . , N − 1.
(5)

We point out that due to P0 = 0 the value of K0 is irrelevant.
However, to avoid ambiguity while keeping notation simple,
we set K0 = 0 everywhere and remove it from the decision
variables. Finally, approximating robust constraint satisfac-
tion by local linearization of the inequality constraints, cf.
[9], [13], we obtain the robustified optimal control problem

min
x̄,ū,
K,P,β

N−1∑
k=0

lk(x̄k, ūk) + E(x̄N ) (6a)

s.t. x̄0 = ¯̄x0, (6b)
x̄k+1 = fk(x̄k, ūk, 0), 0 ≤ k < N, (6c)
P0 = 0, (6d)

Pk+1 = ψk(x̄k, ūk, Pk,Kk, σ), 0 ≤ k < N, (6e)

0 ≥ hk(x̄k, ūk) +
√
βk + ε, 0 ≤ k < N, (6f)

0 ≥ hN (x̄N ) +
√
βN + ε, (6g)

βk = Hk(x̄k, ūk, Pk,Kk), 0 ≤ k < N, (6h)
βN = HN (x̄N , PN ), (6i)

with P = (P0, . . . , PN ), K = (K1, . . . ,KN−1), K0 = 0,
β = (β0, . . . , βN ), βk ∈ Rnhk , k = 0, . . . , N , and where,

for k = 0, . . . , N − 1 and i = 1, . . . , nhk
, the functions

Hi
k(x̄k, ūk, Pk,Kk) =

∇hik(x̄k, ūk)>

[
I

Kk

]
Pk

[
I

Kk

]>
∇hik(x̄k, ūk),

(7)

Hi
N (x̄N , PN ) = ∇hiN (x̄N )>PN∇hiN (x̄N ) (8)

define the backoff that has to kept from every inequality
constraint in dependence of the uncertainty in the relevant
direction. Further, to ensure differentiability at all feasibile
points, we add some small offset ε = 1ε under each square
root, with ε > 0 and 1 a vector of ones, effectively resulting
in a minimal backoff

√
ε to be kept from each constraint.

While it would be straight-forward to eliminate β from (6)
it will be relevant for the proposed algorithm to keep the
problem in the given form.

Remark 1. As the propagation of the uncertainty tube and
the robustification of the inequality constraints are based on
linearization, only approximate robustness can be claimed.
Without the linearization error, i.e., for affine dynamics and
constraints, one would obtain an exact and tight robustifica-
tion with respect to the given assumptions on the uncertainty.

Remark 2. For clarity of exposition we restrict ourselves to
a robust framework. However, the problem formulation (6)
can also be given a stochastic interpretation. Here, under the
assumption of Gaussian i.i.d. noise, the Pk correspond to co-
variance matrices with corresponding confidence ellipsoids,
and the inequality constraints to (single) chance constraints,
cf. [8], [12], again approximate within linearization.

III. SEQUENTIAL INEXACT ROBUST
OPTIMIZATION (SIRO)

In this section, we derive the proposed algorithm and pro-
vide a theoretical analysis of its local convergence properties.
To be able to describe and analyze the algorithm on a higher
level of abstraction, we summarize the robustified problem
(6) as

min
y,M, β

f(y) (9a)

s.t. g(y) = 0, (9b)

h(y) +
√
β + ε ≤ 0, (9c)

σ2H(y,M)− β = 0, (9d)

where y = (x̄, ū) ∈ Rny contains the variables associated
with the nominal trajectory, g : Rny → Rng are the nominal
dynamics, and h : Rny → Rnh the nominal part of the
inequality constraints. The uncertainty part σ2H(y,M), with
H : Rny × RnM → Rnh , is obtained by eliminating P from
(6d) and (6e) and stacking the right-hand sides of (6h) and
(6i), such that M = (vec(K1), . . . , vec(KN−1)) ∈ RnM is
the remaining variable. We define the Lagrangian of (9) as

L(y,M, β, λ, µ, η) = f(y) + λ>g(y)

+ µ>(h(y) +
√
β + ε) + η>(σ2H(y,M)− β), (10)



with λ, µ, η the corresponding multipliers of appropriate
dimension. Further, we define the shorthand

L̂(y, λ, µ) = f(y) + λ>g(y) + µ>h(y). (11)

A. Algorithm

Consider the KKT conditions of (9), given by

∇yL̂(y, λ, µ) + σ2∇yH(y,M)η = 0, (12a)

σ2∇MH(y,M)η = 0, (12b)
1
2 diag(β + ε)−

1
2µ− η = 0, (12c)
g(y) = 0, (12d)

0 ≤ µ ⊥ h(y) +
√
β + ε ≤ 0, (12e)

σ2H(y,M)− β = 0. (12f)

We can interpret (12b) as the FONC of

min
M

η>H(y,M). (13)

Under the assumption that (13) is strictly convex, its solution
is the unique root of (12b) in M given y, η, and (12b)
implicitly defines the function

m(y, η) = arg min
M

η>H(y,M), (14)

such that
∇MH(y,m(y, η))η = 0. (15)

Using this definition to eliminate M from (12), we obtain
the reduced system

∇yL̂(y, λ, µ) + σ2∇yH(y,m(y, η))η = 0, (16a)
1
2 diag(β + ε)−

1
2µ− η = 0, (16b)
g(y) = 0, (16c)

0 ≤ µ ⊥ h(y) +
√
β + ε ≤ 0, (16d)

σ2H(y,m(y, η))− β = 0, (16e)

which is equivalent to the KKT conditions (12). The core
idea of the proposed algorithm is to freeze the uncertainty
parts of (16) at some given ȳ, η̄ and M̄ = m(ȳ, η̄), obtaining

∇yL̂(y, λ, µ) + σ2∇yH(ȳ, M̄)η̄ = 0, (17a)
1
2 diag(β + ε)−

1
2µ− η = 0, (17b)
g(y) = 0, (17c)

0 ≤ µ ⊥ h(y) +
√
β + ε ≤ 0, (17d)

σ2H(ȳ, M̄)− β = 0. (17e)

Defining c̄ = ∇yH(ȳ, M̄)η̄ and H̄ = H(ȳ, M̄), we can
interpret (17) as the KKT conditions of the perturbed nominal
problem

P(σ, z̄) :

min
y, β

f(y) + σ2c̄>y (18a)

s.t. g(y) = 0, (18b)

h(y) +
√
β + ε ≤ 0, (18c)

σ2H̄ − β = 0, (18d)

where z̄ = (ȳ, β̄, λ̄, µ̄, η̄). While it would be straight-forward

to eliminate β in (18), we abstain from doing so as this
will simplify the notation of the analysis. The algorithm
then iterates by sequentially solving this perturbed nominal
problem and updating the perturbations at the obtained
solution. As the sensitivities of the frozen parts are
neglected, the algorithm can be interpreted as an inexact
Newton method for the solution of (16).

B. Local Convergence Analysis

Denote by z = (y, β, λ, µ, η) the primal dual variables of
(18). Then, for a given σ and current iterate zk, the next
iterate is obtained as a KKT point of P(σ, zk). Since (18) is
in general not convex, this point is not necessarily unique.
To obtain a well-defined iteration operator

zk+1 = zsol(zk), (19)

we assume that necessary precautions are taken, e.g., by
always picking the solution which has the least distance to
zk in some norm. In a slight abuse of notation we define
m(z) := m(y, η). We start by establishing a relationship
between stationary points of (19) and KKT points of the
original robust problem (9), which we want to solve.

Assumption 3. Assume that H(y,M) ≥ 0 for all y ∈ Rny ,
M ∈ RnM , and that (13) is strictly convex for all η ∈ Rnh

+

that correspond to a KKT point of P(σ, z̄) for σ > 0 and
arbitrary z̄.

Lemma 4. Let Ass. 3 hold, z∗ be a fixed point of (19) with
associated M∗ = m(z∗), and σ ≥ 0. Then (z∗,M∗) is a
KKT point of (9). On the other hand, let (z∗,M∗) be a KKT
point of (9), and σ > 0. Then z∗ is a stationary point of
(19) and M∗ = m(z∗).

Proof. For the first statement, it follows from the premise
that the KKT conditions (17) of the perturbed nominal
problem (18) hold at z = z̄ = z∗, and (12b) holds by
construction of M∗. It follows that the KKT conditions
(12) of the original problem (9) hold at z = z∗. For the
second statement, it follows from the premise that the KKT
conditions (12) of (9) hold at z∗. We point out that for σ > 0,
M∗ is uniquely defined from (12b) given z∗, due to Ass. 3.
As this corresponds to the definition of m(z), we have that
M∗ = m(z∗). It then follows that the KKT conditions (17)
of (18) hold at z = z̄ = z∗, such that z∗ is a stationary point
of (19).

Before continuing the convergence analysis for fixed σ,
we want to develop an understanding of regularity of the
perturbed nominal problem P(σ, z̄) as given in (18). It turns
out that this is strongly related to regularity of the nominal
problem P(0, z̄), which for σ = 0 is actually independent of
z̄. As a side node we point out that due to the squaring
P(σ, z̄) is symmetric in σ, in the sense that an identical
problem is obtained if one uses −σ instead of a given σ.
Therefore the problem is well-defined also for negative σ,
even if they are not meaningful in the context of uncertainty.
We can then state the following lemma, which is due to a
more general result by Robinson [28, Thrm 2.1].



Lemma 5. Let ẑ∗ be a KKT point of P(0, ẑ∗), at which
LICQ, strict complementarity and SOSC hold. Then there
exist open neighborhoods Nz and N ′z of ẑ∗, Nσ of 0, as
well as a continuously defined function Z : Nσ ×N ′z → Nz
such that ẑ∗ = Z(0, ẑ∗). Further, for σ ∈ Nσ and z̄ ∈ N ′z ,
the perturbed problem P(σ, z̄) has the locally unique solution
Z(σ, z̄) ∈ Nz , at which LICQ, strict complementarity and
SOSC hold.

We now consider P(σ, z̄) for a fixed σ > 0. To establish
contraction of the iteration map (19), we will need the
following assumptions.

Assumption 6. Assume (z∗,M∗) is a local minimizer of the
robust problem (9) for a given σ > 0.

Assumption 7. Assume that LICQ, strict complementarity
and SOSC of P(σ, z∗) hold at z∗.

Remark 8. To be able to consider only a fixed σ > 0
in the statement and proof of the convergence theorem, we
require Ass. 7 directly. However, Lemma 5 tells us that Ass. 7
follows from regularity of the nominal problem for any σ that
is sufficiently small.

Before stating the main theorem, we need the following
lemma, which is a standard property of problems with strict
complementarity [28].

Lemma 9. Let Ass. 6 and 7 hold for z∗. Then, for z̄
sufficiently close to z∗, the active set of P(σ, z̄) is stable
and corresponds to A∗ = A(z∗), the active set of P (σ, z∗).
Analogously, the same holds for the inactive set I∗ = I(z∗).

Theorem 10. Let Ass. 3, 6, and 7 hold for z∗, M∗. Then z∗
is a fixed point of (19) and the iteration sequence {zk}∞k=0

defined by (19) converges q-linearly to z∗, if initialized
sufficiently close to z∗ and if σ is sufficiently small. Further,
the corresponding sequence of Mk = m(zk) converges r-
linearly to M∗.

Proof. That z∗ is fixed point under these assumptions is
the content of Lemma 4, which also means that z∗ is a
solution to P(σ, z∗). A consequence of Lemma 9 is that
for local convergence analysis we can disregard the inactive
constraints, and regard the active inequality constraints as
equality constraints. For the inactive multipliers we know
that µI∗ = 0, which due to (17b) implies ηI∗ = 0, and we
collect the remaining variables in ζ = (y, β, λ, µA∗ , ηA∗),
with ζ̄, ζ∗, ζk defined correspondingly. The locally relevant
information of the KKT conditions (17) can be summarized
in the residual map

r(ζ, ζ̄) =


∇L̂(y, λ, µ) + σ2∇yH(ȳ,m(z̄))η̄

[ 1
2 diag(β + ε)−

1
2µ− η]A∗

g(y)

[diag(µ)(h(y) +
√
β + ε)]A∗

σ2H(ȳ,m(z̄))− β

 , (20)

where the relevant equations are selected line-wise, as de-
noted by [ · ]A∗ . The components of µ, z̄, η̄ corresponding

to inactive constraints are understood the be given by 0.
Locally, the algorithm iterates by finding ζk+1 such that
r(ζk+1, ζk) = 0. We have that r(ζ∗, ζ∗) = 0 and the residual
map is differentiable in both arguments and and we denote
the derivatives at z∗ by

R∗ =
∂r(ζ, ζ̄)

∂ζ

∣∣∣∣
ζ=ζ̄=ζ∗

, E∗ =
∂r(ζ, ζ̄)

∂ζ̄

∣∣∣∣
ζ=ζ̄=ζ∗

. (21)

R∗ in fact corresponds to the KKT matrix of P(σ, z∗) at z∗
and due to LICQ and SOSC is invertible [23, Lem. 16.1].
Since every term in r(ζ, ζ̄) depending on ζ̄ is multiplied
by σ2, there exists E′∗, which does not depend on σ, such
that E∗ = σ2E′∗. Then we know from the implicit function
theorem that there exist open neighborhoodsNζ andN ′ζ of ζ∗
as well as a continously differentiable function ζsol : N ′ζ →
Nζ , such that ζsol(ζ∗) = ζ∗. For ζ̄ ∈ N ′ζ a locally unique
solution of r(ζ, ζ̄) = 0 is given by ζsol(ζ̄). Further,

∂ζsol(ζ̄)

∂ζ̄

∣∣∣∣
ζ̄=ζ∗

= −R−1
∗ E∗ = −σ2R−1

∗ E′∗ =: Z∗. (22)

Locally, the method iterates as ζk+1 = ζsol(ζk), which
corresponds to the ζ-part of zsol(zk) as defined in (19). A
first order taylor approximation of ζsol(ζk) at ζ∗ yields

ζk+1 − ζ∗ = Z∗(ζk − ζ∗) +O(‖ζk − ζ∗‖2). (23)

Convergence of {ζk}∞k=0 to ζ∗ for ζ0 sufficiently close to
ζ∗ is then determined by the spectral radius ρ(Z∗) [24]. If
ρ(Z∗) = σ2ρ(R−1

∗ E′∗) < 1, the iterates will converge q-
linearly to ζ∗ with asymptotic rate ρ(Z∗). This condition
clearly holds for σ sufficiently small. Due to stability of the
active set, this result directly transfers to the iterates in z,
and the sequence {zk}∞k=0 as defined by (19) converges q-
linearly to z∗, if initialized sufficiently close to z∗.

Now consider the corresponding Mk = m(zk). Due
to strict convexity of (13) we have that m(z) is continu-
ously differentiable for all z. This means for each bounded
neighborhood N ′′z of z∗, there exists ` ≥ 0 such that
‖m(z)−m(z∗)‖ ≤ `‖z− z∗‖ for z ∈ N ′′z . Now choose N ′′z
such that it includes all zk, k ≥ 0, which is always possible
under the given assumptions, as we have already established
convergence of {zk}∞k=0. Then it holds that ‖Mk −M∗‖ =
‖m(zk) −m(z∗)‖ ≤ `‖zk − z∗‖, i.e., {‖Mk −M∗‖}∞k=0 is
upper bounded by a q-linearly converging sequence, which
corresponds to r-linear convergence.

IV. A RICCATI RECURSION FOR EFFICIENT SIRO

In the following, we describe the application of the
proposed algorithm to the robustified optimal control prob-
lem (6). This will result in alternatingly solving a perturbed
nominal optimal control problem and a performing Riccati
recursion, which allows us to efficiently solve the uncertainty
minimization problem (13).

We start by specifying the optimization problem (13)
associated with the uncertainty part. For (6), after a few



manipulations, the corresponding problem can be stated as

min
K,P

N−1∑
k=0

Tr

Ck [ I
Kk

]
Pk

[
I

Kk

]>+ Tr(CNPN )

(24a)
s.t. P0 = 0, (24b)

Pk+1 = ψk(x̄k, ūk, Pk,Kk, σ), 0 ≤ k < N, (24c)

where K = (K1, . . . ,KN−1), K0 = 0. The cost matrices
are given by

Ck = ∇hk(x̄k, ūk) diag(ηk)∇hk(x̄k, ūk)>, (25)

CN = ∇hN (x̄N ) diag(ηN )∇hN (x̄N )>, (26)

where ηk, k = 0, . . . , N , are the Lagrange multipliers
associated with (6h) resp. (6i). The exact form of (13) can
be obtained by eliminating P in (24). We further split the
stage cost matrices into block components,

Ck =

[
Cxk Cxuk
Cuxk Cuk

]
, (27)

such that Cxk ∈ Snx
+ , Cuk ∈ Snu

+ and Cuxk = Cxu>k of
corresponding dimension, for k = 0, . . . , N − 1. It turns out
that (24) can be analytically solved via a Riccati recursion.

Lemma 11. Let CN � 0, Ck � 0, Cxk � 0, Cuk � 0, for
k = 0, . . . , N − 1. Further, let Pk � 0 for all feasible Pk,
k = 1, . . . , N . Then the solution to (24) is uniquely defined
by the Riccati recursion

SN = CN , (28a)

K∗k = −(Cuk +B>k Sk+1Bk)91(Cuxk +B>k Sk+1Ak), (28b)

Sk = Cxk +A>k Sk+1Ak + (Cxuk +A>k Sk+1Bk)K∗k , (28c)

with k = N−1, . . . , 1, followed by a linear Lyapunov matrix
forward simulation

P ∗0 = 0, P ∗k+1 = ψk(x̄k, ūk, P
∗
k ,K

∗
k , σ), (29)

for k = 0, . . . , N − 1, where K∗0 = K0 = 0.

Proof. The proof goes by showing structural equivalence to
the associated discrete time finite-horizon stochastic linear
quadratic regulator (sLQR) problem, for which the solution
is known. This switch to a stochastic frame work might be
surprising, but we only make an argument from the algebraic
structure of the problem, not from its interpretation. The
sLQR problem is given by

min
π(·)

E
ω

{N−1∑
k=0

[
∆xπk (ω)

πk(∆xπk (ω))

]>
Ck

[
∆xπk (ω)

πk(∆xπk (ω))

]
+ ∆xπN (ω)>CN∆xπN (ω)

} (30)

where, ∆xπ0 (ω) = 0 and, for k = 0, . . . , N − 1,

∆xπk+1(ω) = Ak∆xπk (ω) +Bkπ(∆xπk (ω)) + Γkωk, (31)

and ω = (ω0, . . . , ωN−1) ∼ N (0, σ2I) is normally dis-
tributed noise. Here, π(·) = (π1(·), . . . , πN−1(·)) denotes

a control policy, which gives the control input as a function
of the current state, ∆uk = πk(∆xk). As a standard result
from linear control theory [29], the unique optimal policy
for the given problem is linear feedback, πk(∆x) = K∗k∆x,
with control gains K∗k defined by the Riccati recursion (28).
Incorporating this knowledge, we can rephrase (30) as

min
K

E
ω

{N−1∑
k=0

[
∆xKk (ω)

Kk∆xKk (ω))

]>
Ck

[
∆xKk (ω)

Kk∆xKk (ω)

]
+ ∆xKN (ω)>CN∆xKN (ω)

} (32)

where ∆xK0 (ω) = 0 and, for k = 0, . . . , N − 1,

∆xKk+1(ω) = (Ak +BkKk)∆xKk (ω) + Γkωk, (33)

which has the same solution as (30). Noting that[
xk

Kkxk

]>
Ck

[
xk

Kkxk

]
= Tr

Ck [ I
Kk

]
xkx

>
k

[
I

Kk

]> ,

we can transcribe (32) to

min
K

E
ω

{N−1∑
k=0

Tr

Ck [ I
Kk

]
∆xKk (ω)∆xKk (ω)>

[
I

Kk

]>
+ Tr

(
CN∆xKN (ω)∆xKN (ω)>

)}
.

(34)
Introducing P0 = 0 and, for k = 0, . . . , N − 1,

Pk+1 = (Ak +BkKk)Pk(Ak +BkKk)> + σ2ΓkΓ>k , (35)

it turns out that

E
ω
{∆xKk (ω)∆xKk (ω)>} = Pk (36)

for k = 0, . . . , N , i.e., Pk are the covariance matrices of
∆xKk (ω), defining ellipsoidal confidence levels. Substituting
this in (34) and interpreting the confidence ellipsoids as
robust ellipsoids instead – which is possible as we are
only making an argument from the algebraic structure – the
resulting problem is the same as (24), which concludes the
proof.

After deriving the solution of the uncertainty minimization
problem (13) associated with the robustified optimal con-
trol problem, the corresponding perturbed nominal problem
(18) alongside the perturbations remains to be be specified.
Denote by K̄, P̄ the solution to (24) for a given nominal
trajectory x̄, ū, η̄. The backoffs can then be obtained as

b̄k =
√
Hk(x̄k, ūk, P̄k, K̄k) + ε, k = 0, . . . , N − 1, (37a)

b̄N =
√
HN (x̄k, P̄k) + ε. (37b)

The gradient correction, using the notation of the general for-
mulation and M̄ corresponding to K̄, is c̄ = ∇yH(ȳ, M̄)η̄,
and the c̄0, . . . , c̄N can be obtained by splitting c̄ into its
corresponding components. Thus, the algorithm (28) to (29)
for obtaining K̄ and P̄ needs to be differentiated with



Algorithm 1 SIRO for tube-based robust optimal control
Input: Initial guess x̄, ū, η, λ, µ

(e.g. solution to nominal OCP)
repeat

K ← riccatiRecursion(x̄, ū, η) // (28)
P ← lyapunovForward(x̄, ū,K) // (29)
if isStationary(x̄, ū,K, P, η, λ, µ) // (12a)

break
end if
b̄, c̄← getPerturbation(x̄, ū, η, P,K) // (37)
x̄, ū, λ, µ← solvePerturbedOCP(c̄, b̄) // (38)
η ← 1

2 diag(b̄)−1µ // (17b)

return: x̄, ū, P,K

respect to its input arguments x̄ and ū, cf. (24) to (26).
However, note that to obtain c̄> = η̄>∇yH(y, M̄)>, it is
not necessary to compute the full Jacobian ∇yH(y, M̄)>.
Rather, it is sufficient to use one pass of the backward mode
of Algorithmic Differentiation seeded by η̄ [11]. Due to the
optimal control structure, there may be further exploitable
structure hidden in the computation of c̄, which we do not
discuss here. The perturbed nominal problem is then

min
x̄, ū

N−1∑
k=0

lk(x̄k, ūk) + c̄>k

[
x̄k

ūk

]
+ E(x̄N ) + c̄>N x̄N

(38a)
s.t. x̄0 = ¯̄x0, (38b)

x̄k+1 = fk(x̄k, ūk, 0), 0 ≤ k < N, (38c)
0 ≥ hk(x̄k, ūk) + b̄k, 0 ≤ k < N, (38d)
0 ≥ hN (x̄N ) + b̄N . (38e)

Opposed to (9), here the β are eliminated to highlight the
optimal control problem structure. In consquence, solutions
to (38) do not include the multipliers η of the eliminated
constraints needed for updating the perturbations. However,
this is not a problem as given a solution to (38), they can be
easily obtained via (17b). The resulting procedure is sketched
in Algorithm 1.

V. NUMERICAL EXAMPLE

We now demonstrate the algorithm for the control of a
towing kite. For the formulation of the control problem we
follow [17], with the model taken from [5], [7].

For constant tether length L the position of the kite
is defined by angles θ and φ, and its orientation by ψ.
Subsuming them in state x = (θ, φ, ψ), the continous time
dynamics are given as

θ̇ =
(v̄0 + wv)E(u) cos θ

L

(
cosψ − tan θ

E(u)

)
+ wθ (39a)

φ̇ =
−(v̄0 + wv)E(u) cos θ sinψ

L sin θ
+ wφ (39b)

ψ̇ =
(v̄0 + wv)E(u) cos θ

L
u+ φ̇ cos θ + wψ (39c)

TABLE I
PARAMETER VALUES FOR THE KITE MODEL .

L (m) E0 c̃ v̄0 (m
s

) hmin (m) ǔ ρ ·A ( kg
m

)

400 5 0.028 10 100 10 300

where the glide ratio is given by E(u) = E0 − c̃u2, and the
control input is the steering deflection u. We assume some
perturbations in every state, but the main source of uncer-
tainty is the unknown apparent wind speed v0 (referenced to
the boat), expressed via deviations from an assumed nominal
v̄0. The overall perturbation vector is w = (wθ, wφ, wψ, wv)
with w ∈ E(W ), where W = diag(ε2

θ, ε
2
φ, ε

2
ψ, ε

2
v) and

εθ = εφ = εψ = 10−4 and εv = 1 m/s. The discrete time
dynamics are obtained by integrating (39) with one step of
a Runge-Kutta integrator of fourth-order, while keeping u
and w piecewise constant, for a time step of ∆t = 0.3 s.
The horizon length is N = 80. The control goal is the
maximization of the nominal achieved thrust,

lk(x, u) = − 1
2ρv̄

2
0A cos2 θ(E(u) + 1)

√
E2(u) + 1 (40)

with air density ρ and kite area A. The controls are bounded
and the kite has to stay above a minimal height hmin,

−ǔ ≤ uk ≤ ǔ, k = 0, . . . , N − 1, (41)
hmin ≤ L sin θk cos θk, k = 1, . . . , N, (42)

which defines the stage and terminal constraints. The values
for all parameters are given in Table I.

The algorithm is implemented via the Python interface of
CasADi [1] and the perturbed nominal problems are solved
with IPOPT [30]. The initial guess is obtained by solving
the nominal problem without perturbation. For comparison
we also solve the nominal problem, as well as the open
loop robust OCP, in which the possibility of feedback is
not included in the plan. The solution can be obtained by a
modification of the algorithm: instead of solving the Riccati
recursion, the feedback is always set to K = 0, which is in
principle similar to variants of [8], [31]. The trajectories are
visualized in Fig. 1. Note how the closed loop robust solution
does not suffer from a growing uncertainty set. Instead it
achieves low uncertainty where necessary, i.e., in the vicinity
of the inequality constraint.

We now investigate the local convergence behavior. To this
end, we solve the robustified OCP for three different levels
of uncertainty, σ ∈ {0.5, 1, 2}, where σ = 1 corresponds
to the perturbation parameters reported earlier in the text.
The resulting convergence behavior, again with initializa-
tion at the unperturbed nominal problem, is illustrated in
Fig. 2. The algorithm is considered converged when the
max-norm of the KKT conditions (12) is smaller than 10−3.
As predicted in Theorem 10 the convergence rate appears
to be linear. Further, larger values of σ slow down the
convergence, as would also be expected. We perform no
rigorous benchmarking of CPU times, as the focus was on
a proof of concept implementation. However, we can state
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Fig. 2. Convergence behavior of SIRO for different levels of uncertainty σ.
Top: primal-dual variables z of the perturbed nominal problem. Bottom: the
eliminated variable M , here corresponding to the feedback matrices K. The
convergence rate is linear, with slower convergence for higher uncertainty.
The final iterate (excluded from plot) is used as proxy for the true solution.

that after initialization to the nominal solution the algorithm
took roughly 0.5 s for σ = 0.5 and 1.5 s for σ = 2, on a
standard personal notebook, while there is still ample room
for improvement. The solution of each perturbed nominal
OCP consistently needed 14 iterations of IPOPT.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a novel algorithm for the solution of
robustified optimal control problems that involve linear feed-
back gains as optimization variables. Important next steps
are an investigation of its resulting performance when used
in an MPC framework as well as an efficient implementation
to explore its real-time potential.
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