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Abstract: Airborne Wind Energy refers to systems capable of harvesting energy from the wind
by flying crosswind patterns with a tethered aircraft. Tuning and validation of flight controllers
for AWE systems depends on the availability of reasonable a priori models. In this paper,
aerodynamic coefficients are estimated from data gathered from flight test campaign using
an efficient multiple experiments model based parameter estimation algorithm. Data fitting is
performed using mathematical models based on full six degree of freedom aircraft equations of
motion. Several theoretical and practical aspects as well as limitations are highlighted. Finally,
both model selection and estimation results are assessed by means of R-squared value and
confidence ellipsoids.
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1. INTRODUCTION

Airborne wind energy (AWE) is a novel technology emer-
ging in the field of renewable energy systems. The idea of
using tethered aircraft for wind power generation, initially
motivated by Loyd (Loyd, 1980), has never been closer to
a large scale realization than today. High power-to-mass
ratio, capacity factors, flexibility and low installation costs
with respect to the current established renewable techno-
logies, encourage both academia and industries to invest
on these systems. However, complexities arise significantly
in terms of control, modeling, identification, estimation
and optimization. Among the different concepts in the
landscape of AWE (Diehl, 2013), one interesting case study
is the so called pumping mode AWE system (AWES).
In a pumping mode AWES, the airplane delivers a high
tension on the tether which is anchored to a ground-based
generator. During production phase, the tether tension is
used to rotate a drum that drives an electric generator.
Due to finite tether length, a retraction phase is needed,
hence the tether is wound back by changing the flight
pattern in such a way that less lifting force is produced,
with significant lower energy investment than what was
gained during the production phase. A pumping mode
AWES is being developed by Ampyx Power (AP, 2016).
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Fig. 1. Example of a pumping cycle with a production and
retraction phase

The airborne component is referred to as a PowerPlane.
An artist’s rendering of the two main phases of a pumping
mode AWES is shown in Fig. 1. The PowerPlane, is a high
lift aircraft designed for extremely challenging operational
environment including high tension from the tether and
high accelerations that arise during the pattern. A concept
design of the PowerPlane 3rd generation (AP3) is shown in
Fig. 2. System simulators require adequate models of the
entire system, including the PowerPlane. Existing analysis
tools such as Computational Fluid Dynamics (CFD) (Ver-
steeg and Malalasekera, 2007) or lifting line (Anderson Jr,
2010) are able to provide initial estimates of parameters,
but in most cases the full dynamic effects on the real
system have to be determined through flight testing. In
this case, the main issue is to describe mathematically
the aerodynamic forces and moments as a function of



Fig. 2. CFD analysis of 3rd generation PowerPlane

airspeed, angle of attack, angle of side slip and body
rotation rates. Usually, Taylor series expansion are used
to represent the aerodynamic properties. The parameters
of the expansion are known as aerodynamic derivatives (or
simply derivatives) and for conventional aircraft they are
mainly used for control system design and handling qua-
lities studies. For AWES, accurate modeling also enables
computation of reliable trajectories by means of optimal
control problems (OCPs) (Horn et al., 2013; Licitra et al.,
2016), as well as design of advanced feedback controls such
as non linear model predictive control (NMPC) (Zanon
et al., 2013). In the aerospace field, it is the current
practice to retrieve derivatives by empirical data obtained
from similar aircraft configurations or with tools based
on CFD, augmenting and verifying them by wind tunnel
tests. For standard aircraft configurations such methods
for obtaining aerodynamic characteristics is generally in
good agreement with experimentally obtained values. Ho-
wever, CFD and wind tunnel tests are expensive and time
consuming, and tend to be limited to static effects. There-
fore, an intensive flight test campaign must be set in order
to gain additional insight about aerodynamic properties.
In this paper, aerodynamic derivatives are determined by
means of time domain system identification techniques
using measurements coming from real flight tests.

The paper is organized as follows. In Section II, model
structure is retrieved from a high fidelity aircraft model
augmented with description of model assumptions as well
as neglected dynamics. Section III presents an efficient
formulation of multiple experiment model based parame-
ter estimation (MBPE) algorithm. In Section IV, data
fitting is computed first with simulated experiments where
the block structure of the nonlinear program (NLP) is
shown, observation with respect to aircraft inertia are
provided and confidence ellipsoids are introduced. Finally,
data fitting is computed with the real experiments where
the reliability of both model and estimates are assessed
respectively by the R-squared value and confidence ellip-
soids.

2. POWERPLANE MATHEMATICAL MODEL

2.1 Model Selection

A pumping mode AWES can be modeled via Differential
Algebraic Equations (DAEs) described both by minimal
(Williams et al., 2007, 2008) and non-minimal coordinates
(Gros and Diehl, 2013). By means of Lagrangian mecha-
nics one can build the equations of motion for a six degree

of freedom (DOF) tethered aircraft model. For parameter
estimation purposes, let us consider the translational and
rotational dynamics of a pumping mode AWES expressed
in the body-fixed reference frame:

m · v̇b = Fc + Fp + Fa + Fg −m (ωb × vb) (1a)

J · ω̇b = Mc + Mp + Ma − (ωb × J · ωb) (1b)

where vb = [u, v, w]T and ωb = [p, q, r]T are respecti-
vely the translational and rotational speed vector, m the
aircraft mass and J the inertia dyadic of the aircraft.
The aircraft is subject to forces F(.) and moments M(.)

coming from the cable, propellers, gravity and the in-
teraction between aircraft with the air mass is denoted
by Fa = [X,Y, Z]T and Ma = [L,M,N ]T . Notice that,
although pumping mode AWES does not assume any pro-
pellers during power generation phase, they are present
in the studied PowerPlane design for assisting launch and
landing as well as performing general purpose untethered
flights.

In order to identify the aerodynamic forces Fa and mo-
ments Ma, one has to discard or have good models of
the other contributions. Hence, the flight test campaign
aimed to identification of aerodynamic models should be
performed without cable such that the cable does not
interfere with the overall aircraft dynamics. Additionally,
propellers are switched off whenever an excitation signal
occurs in order to decouple the uncertainty in thrust effects
on the aerodynamic parameter estimation, simplifying (1)
to

m · v̇b = Fa + Fg −m (ωb × vb) (2a)

J · ω̇b = Ma − (ωb × J · ωb) (2b)

In general, the aerodynamic forces and moments are all
dependent on the time history of the aircraft state in time,
which mean that if the pitch moment M depends on the
pitch rate q only, then:

M(t) = f(q(t)), t ∈ (−∞, τ ] (3)

In theory, the function in time q(t) can be replaced by the
following Taylor series:

q(t) = q(τ) +

∞∑
i=1

1

i!

∂iq

∂τ i
(t− τ)i (4)

i.e. that the whole information regarding the parameter
history q is captured, if we were able to compute all the
possible derivatives. However, for subsonic flight the influ-
ence of the derivatives is bounded and can be neglected
with some exception (Mulder et al., 2000). Furthermore,
the aerodynamic properties can be normalized with re-
spect to the dynamic pressure q̄ = 1

2ρV
2 with ρ the free-

stream mass density, V the free-stream airspeed, and a
characteristic area for the body

Fa = q̄ S · [CX , CY , CZ ]T (5a)

Ma = q̄ S · [bCl , c̄ Cm , b Cn]T (5b)

In (5) S, b, c̄ are respectively reference wing area, wing
span and mean aerodynamic chord while CX , CY , CZ
denote the forces and Cl, Cm, Cn the moment coefficients.
During the system identification flight test, excitation
signals are performed only along one axis in open-loop,
keeping trimmed the other dynamics. Therefore, one can
decouple the full dynamics in two sets of independent
dynamics, three equations for the translational motion and
three for the rotational one. Still, from an optimization



point of view, embedding the full mathematical model
shown in (2), would add complexity to the estimation al-
gorithm without any particular benefit since the trimmed
dynamics will not provide meaningful experimental data.
As far as it regards the translational dynamics (2a), deno-
ting θ and φ respectively pitch and roll angle and g gravity,
the decoupled equations of (2a) will be

u̇ =
X

m
− qw + rv − g sin θ (6)

v̇ =
Y

m
− ru+ pw + g cos θ sinφ (7)

ẇ =
Z

m
− pv + qu+ g cos θ cosφ (8)

while roll, pitch and yaw dynamics are retrieved from (2b)

• Roll dynamics

ṗ = −Jz L+ Jxz N − q r Jp1 + p q Jp2
J2
xz − JxJz

Jp1 =
(
J2
xz + J2

z − Jy Jz
)

Jp2 = Jxz · (Jx − Jy + Jz)

(9)

• Pitch dynamics

q̇ =
M + Jxz

(
r2 − p2

)
+ p r (Jz − Jx)

Jy
(10)

• Yaw dynamics

ṙ = −JxzL+ JxN + p q Jr1 + q r Jxz Jr2
J2
xz − Jx Jz

Jr1 =
(
J2
x + J2

xz − Jx Jy
)

Jr2 = (Jy − Jx − Jz)

(11)

where Jx, Jy, Jz are the moments of inertia with respect to
the axis specified by the subscript while Jxz is the product
of inertia. Jyz as well as Jzy are zero due to the symmetry
of the aircraft.

In this paper we focus on the 2nd generation PowerPlane
(AP2) shown in Fig. 3. For this aircraft, coefficients defined
in (5) are broken down into a sum of terms which depend
on normalized body rates p̂, q̂, r̂ , angle of attack α and of
side slip β, as well as aileron δa, elevator δe and rudder δr
deflections:

CX = CXp p̂+ CXq q̂ + CXr r̂ (12a)

CY = CYββ + CYp p̂+ CYq q̂ + CYr r̂ (12b)

CZ = CZββ + CZp p̂+ CZq q̂ + CZr r̂ (12c)

Cl = Clββ + Clδa δa + Clδr δr + Clp p̂+ Clr r̂ (12d)

Cm = Cmαα+ Cmδe δe + Cmq q̂ + Cm0
(12e)

Cn = Cnββ + Cnδa δa + Cnδr δr + Cnp p̂+ Cnr r̂ (12f)

p̂ =
b p

2V
, q̂ =

c̄ q

2V
, r̂ =

b r

2V
(13)

α = arctan
(w
u

)
, β = arcsin

( v
V

)
(14)

The coefficients Cij with i = {X,Y, Z, l,m, n} and j =
{α, β, p, q, r, δa, δe, δr, 0} are the aerodynamic derivatives
that need to be identified.

2.2 Model Assumption and Neglected Dynamics

Focusing exclusively on the aircraft dynamics, several as-
sumptions are made to simplify the identification problem,
and these are summarized below:

Fig. 3. 2nd generation PowerPlane

• By neglecting the influence of the derivatives in time
shown in (4), one neglects the influence of parameter
variation through time. Such influence arises from
non-stationary wing-fuselage and tail interference, in-
creasing during aggressive maneuvers (Mulder et al.,
2000), in our case mainly during the power-generation
phase. However some dynamics can be captured in-
troducing a first-order differential equation involving
angle of attack rate α̇ (Goman and Khrabrov, 1994).

• Aircrafts have flexible modes that are neglected in
(1-2) since we rely on rigid-body equations. The Po-
werPlane utilizes a high-strength wing with relatively
high stiffness. Flexible modes need to be considered
for the control system design because of possible
structural-coupling issues. However, the effect of the
flexible modes on aerodynamics are neglected.

• The model assumed in (12) is implicitly a function
of α though, estimations performed via flight tests
are typically valid only for small neighborhood of α
with respect to its trim value α0 given at a specific
trim airspeed VT . Because aircraft deployed for pum-
ping AWES are intended to fly over a wide rage of
flight conditions, flight test maneuvers and parameter
identification needs to be performed at multiple trim
conditions. Fig. 4 shows the estimated pitch damping
coefficient Cmq related to AP2, as a function of α
with the corresponding value of Cmq at VT = 20 m/s,
the latter denoted in the aerospace field as trimmed
coefficient.

α [deg]
-15 -10 -5 0 5 10 15 20 25

C
m

q

(α
)

-11.4

-11.2

-11

-10.8

-10.6

-10.4

-10.2

Untrimmed coefficients 
Trimmed coefficient

angle of attack flight envelope

Fig. 4. Estimated pitch damping coefficient Cmq (α) with
corresponding trimmed coefficient for VT = 20 m/s



3. FORMULATION OF MULTIPLE EXPERIMENT
PARAMETER ESTIMATION

Whenever parameter estimation is intended for identifica-
tion of aircraft dynamics, multiple experiments are usually
required to deal with the following issues:

• Reduce the effect of sensor biases as well as colored
noise (atmospheric turbulence) on estimation results;
• Individual maneuvers might have good information

content only for a subset of parameters, while mul-
tiple maneuvers taken together can provide a better
information w.r.t the complete set of parameters;
• The flight test area and operating safety case restricts

the flight paths that can be flown, limiting the avai-
lable duration of any particular maneuver.

In this case, the estimated parameters can be retrieved
via data fitting for each independent experiment and sub-
sequently weighted w.r.t. to their inverse (estimated) co-
variance matrix Σθ∗ (Ljung, 1998). However, such method
might lead to wrong results whenever computed Σθ∗ are
not reliable. Furthermore, from (9,10,11) one can observe
that angular acceleration measurements are required in
order to retrieve estimates of derivatives. Usually, accele-
rations are not measured though, they can be retrieved by
numerical differentiation methods from rates, which are
noisy. Consequently, signal distortion may arise degrading
the overall estimation performance (Morelli, 2006). Accor-
ding to what was mentioned above, multiple experiment
MBPE algorithms might be beneficial for estimation of
aerodynamic derivatives.

In this context, let us consider a mathematical model
defined as a set of ODEs

ẋ(t) = f(x(t),u(t), θ, t) (15a)

y(t) = h(x(t),u(t), θ, t) (15b)

with differential states x ∈ Rnx , output state y ∈ R
control inputs u ∈ Rnu , parameters θ ∈ Rnθ , and time t. A
multiple experiments MBPE problem can be first stated
using an optimal control problem (OCP) perspective in
continuous time as follows

minimize
θ

Ne∑
i=1

∫ T i

0

(
ŷi(t)− h

(
xi(t), ûi(t), θ

)
σ2
i

)2

dt

(16a)

subject to ẋi(t) = f(xi(t), ûi(t), θ, t) (16b)

t ∈
[
0, T i

]
, i ∈ ZNe1 (16c)

with Ne number of experiments, σi noise variance, ûi(t)
and ŷi(t) respectively input, output measurements for
ith experiment running a length T i. By means of direct
methods (Diehl, 2014), (16) can be transformed into a
finite dimensional nonlinear programming problem (NLP)
which is then solved by numerical optimization methods.
In this paper, we implemented a direct multiple shooting
method (Bock and Plitt, 1984) since it is more stable with
respect to the initial guess than a single shooting strategy.
Let us define an equidistant grid over the experiment
consisting in the collection of time points tk, where tk+1−
tk = T i

Nim
:= Ts, ∀i = 0, . . . , Ne with N i

m the number

of measurements for ith, assuming implicitly that the

measurements are collected with a fixed sample time Ts.
Additionally, we consider a piecewise constant control
parametrization u(τ) = uk for τ ∈ [tk, tk+1). A function
φ(.) over each shooting interval is given, which represents
a numerical approximation for the solution xk+1 of the
following initial value problem (IVP)

ẋ(τ) = f(x(τ),uk, θ, τ), τ ∈ [tk, tk+1] (17)

Such function is evaluated numerically via integration
methods, such as the Runge-Kutta of order 4 (RK4) as
implemented in this paper. Thus, the OCP in (16) can be
formulated into the following NLP

minimize
θ,X

Ne∑
i=1

Nm∑
k=0

(
ŷik − h

(
xik, û

i
k, θ
)

σ2
i

)2

(18a)

subject to xik+1 − φ(xik, û
i
k, θ) = 0 (18b)

k ∈ ZNm−1
0 , i ∈ ZNe1 (18c)

where X ∈ RnX with nX =
∑Ne
i=1 nx(N i

m − 1) is sorted as

X = [x1
0, . . . , x

1
N1
m−1, . . . , x

Ne
0 , . . . , xNeNem−1]T (19)

in order to ensure diagonal block structure on the NLP
formulation. Notice that in (19) the number of measure-
ments Nm are assumed different for each ith experiment.
The NLP initialization can be chosen e.g. from previous
estimates of θ while X can be initialized using the mea-
surements ŷ and/or estimates of the state x. For further
details refer to Bock et al. (2013).

4. DATA FITTING

4.1 Assessment of estimation performance via simulated
flight tests

The PowerPlane is an autonomous aircraft, hence no
action of the pilot occurs during the parameter identi-
fication flight test unless system failures are detected.
During the design of maneuvers, reliable simulators play
an important role both for the assessment of estimation
performance and especially to prevent violation of flight
envelope due to aggressive maneuvers.

For the sake of simplicity, let us consider the longitudinal
dynamics (10), assuming Jxz = 0 since Jxz is only the 1.8%
of the smallest moment of inertia related to AP2, which is
Jx (see Table A.1 in the Appendix). Experimental data are
generated from a full 6 DOF AP2 simulator by injecting
feasible time based excitation signals type 3-2-1-1 with
different amplitudes and pulse width. For a more detailed
description of input signals and their rationale behind,
the reader is referred to Mulder et al. (1994). During
the excitation signals, the aircraft is in gliding mode
(Fp = Mp = 0) while roll and yaw rate are kept constantly
trimmed (p = r = 0) by feedback control. In the simulation
environment all gusts and turbulence was turned off. The
logged simulated outputs are then corrupted with white
Gaussian noise with standard deviation σ shown in the
appendix Table A.2 and in agreement with the available
sensors. The controllable input i.e. the elevator deflection
δe has no discernible noise, though quantization errors are
present and equal to 0.25 deg. According to the assumption
taken into account, the model used for data fitting is



q̇ =
1
2ρV

2 ·
[
Cmαα+ Cmq

c̄q
2V + Cmδe δe + Cm0

]
Jy

(20)

with
ŷ(t) = x(t) = q

û(t) = [V , α , δe]
T

θ = [Cm0
, Cmα , Cmδe , Cmq ]

T

(21)

The multiple experiment parameter estimation problem
(18) is constructed in Matlab as a CasADi (Anders-
son, 2013) computational graph and solved with IPOPT
(Wächter and Biegler, 2006). CasADi discovers the struc-
ture shown in Fig. 5 and computes the full sparse Jacobian
and Hessian with a minimal of algorithmic differentiation
sweeps. CasADi’s for-loop equivalents are used to effi-
ciently build up the large number of dynamic constraints
(18b). Furthermore, since this application requires a large
number of control intervals, the CasADi map functionality
was used to achieve a memory-lean computational graph.
For this specific case, solution wopt was found after 6
iterations with 3912 samples and Ts = 10. Both simulation
experiments as well as data fitting are shown in Fig. 6
while the deviation in percentage of estimates θ∗ with
respect to the true values θ0 are collected in Table 1. One
can observe that all estimates are within the satisfactory
engineering accuracy.

Table 1. Estimation results: simulation case
(values in percentage)

Cm0 Cmα Cmδe
Cmq

|θo − θ∗|% 4.73 4.82 3.79 1.25

4.2 Confidence ellipsoids and turbulence effect

One way to assess the quality of the estimation results
θ∗ is by means of 1-σ confidence ellipsoids and in short
they help to assess the probability that the true value θ0

is contained in the set ε1(θ∗) defined by

ε1(θ∗) := {θ ∈ Rd | ‖θ − θ∗‖2Σθ∗ 6 1} (22)

with d the dimension of the parameter space. The 1-σ
confidence ellipsoids can be computed from an estimate
of the covariance matrix Σθ∗ . The uncertainties of each
parameter is retrieved from the diagonal entries of Σθ∗
while the correlation over the parameters is characterized
by the non-diagonal entries. For more details the reader is

Fig. 5. Jacobian and Hessian Sparsity of the NLP
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The case with turbulence is performed using the same
boundary condition described in section 4.1 but with
turbulence switch on. Turbulence are generated by
Von Karman turbulence model.

referred to (Diehl, 2015) for the single experiment case
and (Bock et al., 2013; Morelli, 2006) for the multiple
experiment case. At any rate, whenever significant process
noise is present, 1-σ confidence ellipsoids computed by
the estimation algorithm presented in section 3 might not
be reliable as shown in Fig. 7, where the 1-σ confidence
ellipsoid for the pair of estimates (Cmδe , Cmα) is provided
with and without the presence of turbulence.



4.3 Data fitting via real flight experiments

After the assessment of estimation accuracy via a priori
models, a set of experimental data was retrieved from flight
tests using AP2 with trim airspeed VT = 20 m/s. During
the flight test, six signal input 3-2-1-1 type were perfor-
med along the longitudinal dynamics. Unfortunately, wind
speed was rather consistent with an average of ≈ 10 m/s,
which is not optimal for system identification purposes
with an aircraft that flies at 20 m/s. Among the six maneu-
vers, one was discarded due to dominant turbulences with
respect to excitation signal while four experiments were
used as estimation data and one as validation data. The
two maneuvers designed and shown in Section 4.1 were
computed and collected in the estimation data set.

In this study, the full pitch dynamics was taken into
account, where the model is assembled using eq. (10),(12e)
implementing the same criteria described in Section 4.1
with the difference that Jxz 6= 0 and û = [p, r, V, α, δe, q̄]

T ∈
R6. Although the inclusion of q̄ in û might appear re-
dundant (since q̄ = 1

2ρV
2, ρ ≈ 1.23), flight computer

control (FCC) computes dynamic pressure measurements
ˆ̄q considering an estimate of the air-density ρ̂ which is
function of several parameters e.g. temperature and al-
titude, providing in this way additional accuracy. Further-
more, measurements were suitably low-pass filtered using
zero-lag filtering since we are interested in the rigid-body
modes only and inertia values are assumed to be known
and equal as in Table A.1 in the appendix. The control
surface inputs are measured via feedback sensors on the
aircraft, which allows the estimation to proceed without
requiring knowledge of the actuator dynamics. However, a
one frame transport delay of the measurements was used.

Fig. 8 shows one system identification flight test, where
the data fitting is computed right after that the throttle
percentage δt is set to zero. The excitation signal was
injected during the open-loop phase while aileron and
rudder stabilize respectively roll and yaw dynamics (see
fig. 9). Note that the last data in the open-loop phase
were omitted from the data fitting because it was found
to skew the result, apparently due to the contribution of
turbulence to the dynamic response. Finally, data fitting
of the whole estimation data set are shown in terms of
residual distribution ε which is defined as follow (fig. 10):

εk = ŷk − h (xk, ûk, θ
∗) , k = 1, . . . , Nm

θ∗ = [Cm∗α, C
∗
mδe

, C∗mq , C
∗
m0

]T
(23)

Practically speaking, the residual is the part of the data
that the model is not able to reproduce; the aim is to
achieve a residual resembling a white noise signal. At
any rate, it is well-known that the residuals will not be
white noise if the real system has significant process noise
(turbulence).

4.4 Assessment of model and estimation results

There are severals ways to assess the goodness of model
structure. One straightforward way is to perform a forward
simulation given by the selected model combined with
the estimates θ∗ along the validation data set. Fig. 11
shows the comparison between the forward simulation with
respect to pitch rate response and respective residual dis-
tribution. Another indicator for determining the goodness
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Fig. 8. Data fitting along longitudinal dynamics: real flight
experiment

of fit is given by the so called R-squared (R2) value which
is represented by the following expression

R2 = 1−
∑Nv
k=1(ŷk − h (xk, ûk, θ

∗))2∑k=Nv
k=1 ŷ2

k

(24)

with Nv number of measurements related to validation
data set. The R2 value is always between zero and one,
often expressed in percentage and it is independent from
the problem data size. A value of one means perfect fit
while a zero value means that model is not able to explain
any of the data. For this specific model structure, R2 was
around 93%.

As far as it regards the quality of estimation performance,
the confidence ellipsoids show reasonable uncertainties on
the estimates (see Fig 12). However, due to the presence
of turbulence during the flight tests, computed covariance
may not have been very reliable as mentioned in section
4.2. In particular, it turned out that C∗mq differs widely
from previous experiments as well as from numerical
methods, which will be addressed with future studies,
validation and design of proper excitation signals.
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Fig. 10. Residual distribution of four remaining indepen-
dent experiments with corresponding mean value µ
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5. CONCLUSION

In this paper, we have shown theoretical and practical
aspects related to identification of aerodynamic derivatives
by means of real flight tests related to pumping AWES.
An MBPE algorithm has been implemented for handling
multiple experiments using a large scale optimization algo-
rithm. The reliability of both estimates and mathematical
model have been assessed by tool such R2 value and
confidence ellipsoids. The results highlight the importance
of conducting flight tests in a low disturbance environment
to minimize the effects of process noise.
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Appendix A. TABLES

Table A.1. parameters PowerPlane 2nd genera-
tion

Name Symbol Value

mass m 36.8kg
inertia Jx, Jy , Jz , Jxz 25, 32, 56, 0.47 kg ·m2

reference wing area S 3 m2

reference wing span b 5.5 m
reference chord c̄ 0.55 m

Table A.2. Available sensors with correspon-
ding noise standard deviation σ

Sensor Variable σ

IMU q 0.1 deg/s
Pitot tube V 3.6 m/s
Air Probe α 0.5 deg
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