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Abstract— Multiple-kite airborne wind energy systems
(MAWES) aim to efficiently harvest the stronger, less-
intermittent winds at high altitude without material-intensive
towers. Solving a series of optimal control problems for two-
kite MAWES, we show that pumping-cycle MAWES have three
distinct operational regions: Region I, where power is consumed
to stay aloft; Region II, where the power harvesting factor grows
until the design wind speed; and Region III, where the power
extraction is curtailed so as to respect the physical limitations
of the system. The actuator disk (AD) method is arguably the
simplest tool to model aerodynamic induction effects, though
its validity is limited. In this paper, we show that AD is not
valid for Region I.

I. INTRODUCTION

Airborne wind energy (AWE) systems harvest the stronger,
less-intermittent winds at high altitude without material-
intensive towers. In AWE systems, kites fly crosswind to
produce power either in a pumping-cycle, using a ground-
station generator turned as the tether reels in and out, or
in drag-mode, using an on-board turbine [1]. Multiple-kite
airborne wind energy systems (MAWES) are an AWE system
concept where orbiting kites balance the forces on the main
tether in order to increase system efficiency.

Launching may be the most expensive portion of MAWES
operation. As such, MAWES economic viability depends
heavily on the model used to decide whether to remain
aloft or to land and re-launch. The system should only land
when re-launching is less expensive than continued flight
considering, for example, fatigue damage in strong winds
and energy expenditure in low winds. To ensure the validity
of the landing-decision modelling assumptions, there must
be a rough idea of MAWES behavior over a range of wind
velocities.

However, the existing literature does not yet show the
relationship between wind velocity and system behavior for
pumping-cycle MAWES with simplified wake modelling and
six degree of freedom kite dynamics. This existing literature
describes: the behavior of point-mass kites in pumping-cycle
[2]; the relative advantages of drag-mode MAWES over
single-kite systems [3]; model predictive control strategies
for drag-mode MAWES [4]; the impact of actuator disk
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(AD) modelling on drag-mode power output [5]; and AD
modelling of rotationally-steady reel-out behaviors [6].

In this paper, a series of optimal control problems (OCP)
are solved for a two-kite MAWES, to consider two questions.
First, can MAWES behavior be grouped into distinct oper-
ational regions by wind speed? Second, does the resulting
MAWES behavior indicate preliminary restrictions to model
selection? Section II describes a simplified MAWES model;
Section III, the OCP to be solved; Section IV, some results;
with conclusions given in Section V.

II. SIMPLIFIED MAWES MODEL

The model of the MAWES incorporates the aerodynamic
forces and moments acting on the system components into
an expressions of the system dynamics.

A. Geometry

The MAWES is placed in an earth-fixed coordinate frame,
whose origin is where the main tether joins the winch. Then,
x̂ points in the dominant wind direction; ŷ, across the wind
window, and ẑ, vertically upwards.

x̂

ŷẑ

u∞

n = 1

n = 2

n = 3
êT

P (2) = 1, C(1) = K = {2, 3}
N = {1, 2, 3}

Fig. 1: MAWES geometry, as described by tree structure

The MAWES geometry is represented as a tree structure,
shown in Figure 1 and described in more detail in [3], with
nodes n ∈ N that demarcate the top of every tether segment.
Some of these nodes are ’kite’ nodes k ∈ K ⊂ N . In this
tree structure, each node has a ’parent’ named P (n). The set
of nodes with parent n is named C(n).

Every node n has states that describe the position qn and
velocity q̇n of the top of its tether segment. The tether seg-
ments are straight, homogeneous, and cannot carry compres-
sive forces. Note that this analysis assumes an undiscretized
main tether with diameter dT = d1 and length lT = l1 and
orientation êT = q1/ ||q1||2, as well as secondary tethers
with diameters dS = dn and lengths lS = ln, for n > 1.
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TABLE I: MAWES modelling parameters
sym. value src. sym. value src.
b 5.5 m [8] ρd 970 kg/m3 [9]
cref 0.55 m [8] fs 10
mK 36.8 kg [8] σmax 3.6 GPa [9]
Jxx 25 kg m2 [8] CT 1.0 [10]
Jyy 32 kg m2 [8] zref 10 m [11]
Jzz 56 kg m2 [8] z0 0.1 m [11]
Jxz 0.47 kg m2 [8] γ 1.4 [10]
mW 100 kg R 287 J/kg/K [10]
CL,0 0.528 [12] Cn,0 0.0 [12]
CS,0 0.0 [12] Cm,δa 0.29 [12]
CD,0 0.027 [12] Cl,δe 0.81 [12]
CL,α 4.63 [12] Cn,δr 0.04 [12]
CD,α 0.097 [12] Cm,α -0.75 [12]
CD,α2 1.27 [12] Cl,β -0.058 [12]
CS,β -0.217 [12] Cn,β 0.059 [12]
CD,β2 -0.162 [12] Cl,p -0.55 [12]
CS,δr 0.113 [12] Cn,p -0.013 [12]
Cl,0 0.0 [12] Cl,r 0.06 [12]
Cm,0 0.0 [12] Cn,r -0.045 [12]

The rotational degrees of freedom of the kth kite are
described with a direct cosine matrix Rk = [ê1,k, ê2,k, ê3,k],
whose unit vectors give the kite chord-wise, span-wise, and
up axes, and an angular velocity vector ωk. As a rotation
matrix, Rk must be orthonormal:

Put

(
R>kRk − I

)
= 0, (1)

where the projection operator Put selects the six upper
triangular elements [7]. The aileron-, elevator- and rudder-
deflection, written as δk = [δa,k, δe,k, δr,k]

>, determine the
aerodynamics of the kth kite. The deflection rates δ̇k are used
to control δk. A realistic kite geometry - wingspan b, mean
aerodynamic chord cref , and planform area Sref = bcref - is
chosen to correspond to the Ampyx AP2, a real power kite.
These values, and other modelling parameters can be found
in Table I.

Using this tree geometry, the dynamics of the MAWES
can be formulated such that the behavior of the system can
be studied at various wind velocities.

B. Dynamics

The MAWES mechanical power can be found when mod-
elling the motion of the three degree-of-freedom tether nodes
and the six degree-of-freedom kite nodes.

1) Translational dynamics: The translational MAWES
dynamics can be described with Lagrangian dynamics using
a set of generalized coordinates q = [q>n ]

>.
The mass of a node is considered to be half of the mass

of its connected tether segments. For kite nodes, the node
mass additionally contains the mass of a kite mK. Then, the
node mass mn can be found as:

mn = mKδ(n∈K) +
1

2
ρd

snln +

C(n)∑
c

sclc

 , (2)

where δ(n∈K) is 1 for kite nodes and 0 otherwise, ρd is the
tether density, and the tether diameter dn gives the cross-
sectional area sn = πd2n/4.

Each node’s potential energy Vn and kinetic energy Tn
can be found, using g as the gravitational acceleration:

Vn = mng q
>
n ẑ, Tn =

1

2
mnq̇n

>q̇n. (3)

The tether likely does not contribute much to the system
inertia; however, the heavy generator drum which reels-in
and -out may contribute. As such, the kinetic energy of
the drum TW is included in the Lagrangian dynamics, by
assuming the drum is a solid cylinder of mass mW which
has a no-slip condition with the main tether:

TW =
1

4
mW l̇

2
T. (4)

The tethers constrain the distance between the nodes. With
q0 at the origin, the constraints for all n ∈ N read:

cn =
1

2

(
(qn − qn−1)> (qn − qn−1)− l2n

)
, (5)

and are concatenated into a vector c. Similarly, the constraint
multipliers λn can be concatenated into a vector λ.

The Lagrangian of the MAWES is then given by

L =

N∑
n

Tn + TW −
N∑
n

Vn − λ>c. (6)

Let the generalized force vector F = [F>n ]> contain each
node’s external force Fn. Then, the Lagrangian dynamics,
after performing an index reduction on the holonomic con-
straints, are summarized by:

d

dt

∂L
∂q̇
− ∂L
∂q

= F , c̈+ 2κċ+ κ2c = 0. (7a)

Note that Baumgarte stabilization with parameter κ is applied
to the constraint (c̈ = 0) to preserve linear independence in
a periodic context [7].

Using the tether tension τn = λnln, the tether stress σn
must be within a safety factor fs of the tether yield stress
σmax. For n ∈ N , this reads:

τnfs
σmaxsmax

− sn
smax

≤ 0, (8)

where smax is the cross-sectional area at the maximum tether
diameter dmax. For an undiscretized main tether, the main
tether stress τT = τ1.

The dynamics of the remaining translational states read:

d[q>n , δ
>
k , lT, l̇T]

>

dt
− [q̇>n , δ̇

>
k , l̇T, l̈T]

> = 0. (9)

2) Rotational dynamics: The tethers are assumed to hold
the kites at their center of mass. Then, ωx,k, the skew-
symmetric matrix of ωk, the kite moment of inertia J , and
the external moment Mk about the body-fixed axes, give the
rotational dynamics of the kth kite as:

dRk

dt
−Rkωx,k = 0, (10a)

J
dωk
dt

+ ωk × (Jωk)−Mk = 0. (10b)
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TABLE II: Variable bounds, êi ∈ {x̂, ŷ, ẑ} , sf ∈ {a, e, r}
ν νmin νmax units ν νmin νmax units
q>n ẑ 10 5 · 103 m lT 0 104 m
q̈>n êi -12g 12g m/s2 l̇T -∞ 5uref m/s
δa,k -0.35 0.35 rad l̈T -15 15 m/s2
δe,k -0.52 0.52 rad/s lS b 100b m
δr,k -0.52 0.52 rad/s dn 10−3 10−1 m
λn 0 104 N/m tf 0 500 s
δ̇sf -2 2 rad/s2 α -7.4 21.8 deg
β -15 15 deg

3) Energy dynamics: The energy produced by the
MAWES is the integrated instantaneous mechanical power:

Ė = P = τT l̇T, (11)

where P is the instantaneous power produced, with P =
E(tf)/tf the average power over the pumping cycle period
tf . The energy starts the pumping cycle at zero:

E(t0) = 0. (12)

A number of bounds are applied in order to preclude non-
physical solutions, such as subterranean flight, and compres-
sive tether forces. For the variables named in Table II, these
bounds read as:

νmin ≤ ν ≤ νmax. (13)

With the dynamic framework in place, the MAWES model
now needs to find Fn and Mk using an aerodynamic model.

C. Aerodynamic model

The aerodynamics of the tether and kites are determined
by their motion within the modelled atmosphere, including
simplified wake modelling.

1) Atmosphere: For simplicity, the atmosphere is approx-
imated as a steady boundary layer, despite not well repre-
senting altitudes above 500m or instantaneity. This model, as
well as parameters appropriate to the AWE context, are given
in [11], with international standard atmosphere relations for
temperature T (z), density ρ(z), a log-wind profile for the
free-stream velocity u∞(z), and dynamic pressure q∞(z):

u∞(z) = uref
log z

z0

log zref
z0

x̂, q∞(z) =
1

2
ρ(z)u>∞u∞, (14)

where the reference wind velocity uref = uref x̂ is measured
at altitude zref , and z0 is the roughness length.

2) Tether aerodynamics: The drag force FS,n on the
nth segment of tether is determined by approximating the
tether segment as a non-rotating cylinder, with an average
velocity and altitude zn = (qn + qP (n))

>ẑ/2 from the
segment endpoints:

FS,n =
CT

2
ρ(zn) ||ua,n||2 dnlnua,n, (15)

using the tether drag coefficient CT and ua,n is the apparent
velocity of the midpoint of the tether:

ua,n = u∞(zn)−
1

2

(
q̇n + q̇P (n)

)
. (16)

The tether drag on a given segment of tether is shared
equally between the segment’s two endpoints. The decision

to use this first order approximation was made to limit model
complexity. One caveat is that the approximation underes-
timates the effective moment on the kites from secondary
tether drag.

The nth node experiences a tether drag FN,n found as:

FN,n =
1

2

FS,n +

C(n)∑
c

FS,c

 . (17)

For nodes that do not have kites (n /∈ K), the external force
is purely the tether drag force: Fn = FN,n.

3) Axial induction approximation: The wind velocity at
the kite is different from the free-stream described in (14)
due to induction, the wind field’s reaction to the aerodynamic
force exerted by the kite. The actuator disk (AD) method
gives a first-order induction model. The AD determines the
induced velocity at the kite by requiring the flow to decrease
its momentum to compensate for the aerodynamic force on
the kite along the axis of rotation.

The AD approximation assumes that the kite orbit axis of
rotation, the main tether, and the free-stream wind direction
are aligned; that wake expansion and rotation is negligible;
and that the flow is potential, in equilibrium, and uniform
within a stream-tube cross-section containing the kites. Fol-
lowing the derivation applied for conventional wind turbines
[13], the AD approximation reads:

4 q∞
(
q>c ẑ

)
A a(1− a)− ê>T

( K∑
k

Fk

)
= 0, (18a)

0 ≤ a ≤ 0.4, (18b)

where qc =
∑K
k qk/|K| is the arithmetic center of the kites.

Here, the annulus area A is approximated as an average
of the annuli approximated per kite. Each kite’s annulus is
defined by an outer radius from the outer wing-tip to qc, and
an inner radius to the inner wing-tip. This approximation was
chosen for its simplicity, as it can be computed in both the
reel-in and reel-out phases.

A =

K∑
k

4π

|K|

(
1

2
bê2,k

)>
(qk − qc) . (19)

4) Kite aerodynamics: Given the wind velocity defined
previously, aerodynamic stability derivatives describe the
kite’s aerodynamics [8].

With apparent velocity ua,k = u∞(q>k ẑ) (1 − a) − q̇k,
the kth kite’s orientation with respect to the flow is given by
the angle-of-attack αk and the side-slip angle βk:

αk =
u>a,kê3,k

u>a,kê1,k
, βk =

u>a,kê2,k

u>a,kê1,k
, (20)

where the flow remains attached by requiring that:

αmin ≤ αk ≤ αmax, βmin ≤ βk ≤ βmax. (21)

The aerodynamic force and moment coefficients of
the kth kite - drag CD,k, side CS,k, lift CL,k, roll
Cl,k, pitch Cm,k, and yaw Cn,k - can be found
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with the standard linearizations about αk, βk, δk, and
diag([b, cref , b]) ωk/(2 ||ua,k||2).

Then, the aerodynamic force FK,k and moment Mk on
the kth kite can be found, using the dynamic pressure qk =
1
2ρ(q

>
k ẑ) ||ua,k||22, and the abbreviations cα = cosαk, sα =

sinαk, cβ = cosβk, and sβ = sinβk:

FK,k = qkSrefRk

cαcβ −cαsβ −sα
sβ cβ 0

cβsα −sαsβ cα

CD,k

CS,k

CL,k

 , (22a)

Mk = qkSref

b 0 0
0 cref 0
0 0 b

 Cl,k

Cm,k

Cn,k

 . (22b)

For kite nodes k ∈ K, the external force sums the tether
force (17) and the kite force: Fk = FN,k + FK,k.

To prevent the solution from leaving the incompressible
flow regime where the stability derivative linearizations are
valid, the MAWES Mach numbers - calculated for dry air
using the heat capacity ratio γ and the gas constant R - are
restricted:

||ua,k||2√
γ R T (q>k ẑ)

− 0.3 ≤ 0. (23)

D. Periodicity

Assuming periodic MAWES trajectories in steady wind
conditions requires that the initial and final states are equiv-
alent:

ξ(tf)− ξ(t0) = 0, (24)

where ξ ∈ [q>n , q̇>n , ω>k , δ>k , lT, l̇T]>. To prevent a linear
dependence with the rotation matrix orthonormality (1), the
projection method [7] is employed to enforce the periodicity
of Rk as

Plt

(
Rk(t0)

>Rk(tf)− I
)
= 0, (25)

where the projection operator Plt selects the three lower
triangular elements.

Using the MAWES model described to this point, it
remains to formulate an OCP capable of optimizing MAWES
trajectories at different wind speeds.

III. OCP TO MAXIMIZE AVERAGE POWER

A power-maximization periodic optimal control problem
is formulated using the previously described model:

minimize
x

− P + x>Wx (26a)

subject to (1), (7)− (13), (18), (21), (23)− (25) (26b)

The decision variables x = [w>,θ>]> include time-
varying states, algebraic variables, and controls w =
[q>n , q̇

>
n , vec (Rk)

>
,ω>k , δ

>
k , lT, l̇T, E, a, λn, δ̇

>
k , l̈T]

>; and
parameters θ = [dT, dS, lS, tf ]

>. These variables are regu-
larized with a small diagonal weighting matrix W .

Direct collocation is employed with Radau polynomials
of degree 4 in 20 collocation intervals. A homotopy strategy
similar to [14] is used to generate a feasible initial guess for
the problem, after which (26) can typically be solved within

one minute. The NLP is formulated in the algorithmic differ-
entiation frame-work CasADi [15] in Python, and solved by
the interior point NLP solver IPOPT [16], using the linear
solver MA57 [17].

IV. RESULTS

First, (26) is solved at a typical reference wind speed
[11] of u∗ref = 5 m/s, to find reasonable values for the
geometric parameters θ: secondary tether-length lS = 72
m, and diameter dS = 7.0 mm, and main tether diameter
dT = 8.7 mm. These values are frozen by modifying the
bounds of (13), while the period tf remains free. Then,
(26) is solved over a range of reference wind speeds υ =
uref/u

∗
ref ∈ [0.2, 3], a region limited by the ability of the

solver to find a feasible solution.

A. Operational regions for MAWES

At different wind velocities, three distinct regions
of MAWES behavior are found. The average power
P (υ) and the average power harvesting factor ζ(υ)
are shown in Figure 2, where ζ is the time aver-
age of the instantaneous power harvesting factor ζ =
P/
(
q∞(q>1 ẑ)

∣∣∣∣u∞(q>1 ẑ)
∣∣∣∣
2
|K|Sref

)
[1].

In Region I, the wind speed is not sufficient for the
MAWES to harvest energy, and the system consumes energy
to remain aloft. In Region II, the system is effectively
’over-designed’ for the wind conditions, such that the power
harvesting factor increases with the wind speed. In Region
III, the system limits its energy extraction, due to active tether
stress constraints. For the studied MAWES, the boundary
between Regions I and II lays at υI = 0.37; between
Regions II and III, at the ’design’ reference wind speed
υIII = 1. MAWES behavior and preliminary aerodynamic
modelling applicability to Regions II, III, and I are described,
respectively, in subsections IV-B, IV-C, and IV-D.

III III

ζ
[-

]
P

[k
W

]

0

0
100
200

-80
-40

1.00.5 1.5 2.0 2.5 3.0
υ [-]

Fig. 2: Average power harvesting factor ζ and average power
P vs. reference velocity ratio υ, for Regions I, II, and III.

B. Region II and the design case

When u∗ref = 5 m/s and υ = 1, the solution predicts
an average power of P = 51.7 kW with an average
power harvesting factor ζ = 16.5. This estimate of power
production from a two-kite MAWES is approximately 25
times larger than the 2 kW predicted for a single-kite AP2
in the same wind conditions [18]. This increase appears very
large - even considering the doubling in planform area -
as drag-mode systems [3] have been predicted to produce
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Fig. 3: Trajectory at design-case, υ = 1, u∗ref = 5 m/s, in (a)
side-, (b) downstream-, (c) top-, (d) isometric-view.
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Fig. 4: Induction factor a vs. (left) main tether length lT,
and (right) reel-out velocity l̇T, for design case with υ = 1.

six times more power in a two-kite MAWES configuration
compared to a single-kite system of equal total planform
area. This large value may be due to the underestimation of
tether drag mentioned previously.

The solution cannot be guaranteed to be a global solution,
but it appears to be meaningful. As expected, the trajectory
(Figure 3) has a helical reel-out phase, with a swooping reel-
in that decreases the component of force along the main
tether. At υ = 1, the average reel-out factor during the reel-
out phase fout = 0.39 falls close to the Loyd single-kite
optimum of one-third, using the instantaneous reel-out factor
f = l̇T/

∣∣∣∣u∞(q>1 ẑ)
∣∣∣∣
2
.

The induction factors, describing the energy extracted
from the wind, shown in Figure 4, follow a cycle of very
small values during reel-in, and moderate values - limited by
the tether stress constraint - during the reel-out. Considering
the light loading of the AD annulus shown by the induction
factors less than 1/3, small elevation angles between 10-
15o, and the orbit about the free-stream wind axis as in
Figure 3, no indications were found that AD-type methods
are invalid in Region II. However, the average Region II
Reynolds number of 1.8·106 may recommend models valid
over flow transition.

C. Region III behavior

The geometric parameters were sized with active tether
stress constraints when υ = 1. As the wind speed increases,
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Fig. 5: Trajectory in Region III, υ = 2.8, in (a) side-, (b)
downstream-, (c) top-, (d) isometric-view.
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Fig. 6: Induction factor a vs. (left) main tether length lT,
and (right) reel-out velocity l̇T, in Region III with υ = 2.8.

the MAWES must become less efficient at harvesting energy
or these stress constraints will be violated. In response, the
flight altitude decreases (see Figure 5) and the average reel-
out factor increases, reaching the value fout = 0.68 at
υ = 2.8. Additionally, the average elevation angle increases
- to 12o in Region II and 15o in Region III - increasing
the cosine losses due to tether and wind misalignment.
Further, the helical trajectory tightens as induction effects
become less relevant. To extract less energy from the flow,
the induction factors drop (Figure 6) until they are very small
except during the strongest reel-in. Further study is needed
to assess whether such jumps are consistent with the AD
assumption of equilibrated flow.

D. Region I behavior

In Region I, the optimizer prefers trajectories that stay
aloft at a minimum power cost. These ’holding patterns’
appear to orbit primarily about the ẑ axis, as seen in Figure 7,
to allow the lift force to better counteract gravity. Such
a vertical orbit is fundamentally inconsistent with the AD
assumptions. As such, wake modelling methods that are more
flexible than the - very inexpensive - AD are required for
the study of landing in Region I, leading to larger and more
nonlinear OCPs.

V. CONCLUSION

In this paper, two-kite pumping-cycle MAWES behavior
has been considered for different wind velocities. Analogous
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Fig. 7: Trajectory in Region I, υ = 0.2, in (a) side-, (b)
downstream-, (c) top-, (d) isometric-view.

to wind turbines, there are three distinct operational regions
for MAWES: Region I, where power is consumed to stay
aloft, Region II, where the power harvesting factor grows
until the design wind speed, and Region III where the system
intentionally limits power extraction to respect its physical
limitations. Results also indicate that Region I modelling
requires a more flexible wake modelling method than AD,
though this will likely lead to an increase in OCP size, non-
linearity and expense. Further assessment of wake-modelling
strategies within MAWES OCPs is in progress.
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