
University of Freiburg

Master Thesis

Periodic Optimal Control and Model
Predictive Control of a Tethered Kite for

Airborne Wind Energy

Author:
Jesus Lago Garcia

A thesis submitted in fulfillment of the requirements
for the degree of Master of Microsystems Engineering

in the

Chair of Systems Control and Optimization
Department of Microsystems Engineering

Faculty of Engineering

July 26, 2016

http://www.uni-freiburg.de/
 https://de.linkedin.com/in/jesus-lago-garcia-63639053
http://syscop.de/
https://www.imtek.de/en

Thesis period:
January 2016 - July 2016

Supervisor:
Dr. Michael Erhard
Prof. Dr. Moritz Diehl

Examineers:
Prof. Dr. Moritz Diehl
Dr. Andreas Greiner

iii

Declaration of Authorship
I, Jesus Lago Garcia, declare that this thesis titled, “Periodic Optimal Control and Model
Predictive Control of a Tethered Kite for Airborne Wind Energy” and the work presented in
it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this
University.

• Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Date: Signed:

v

Acknowledgements
“I would like to thank Prof. Dr. Moritz Diehl for his support and supervision: the opportunity
he gave me 18 months ago was a key factor for my academic development. When I first came
to his group, I was a student with many ambitions but little knowledge; now, I realize that,
looking back throughout this process, I have not only acquired valuable knowledge but I have
also started the academic path that I have always wanted.

I would also like to express my sincere gratitude to my supervisor, Dr. Michael Erhard;
your continuous feedback, joint work, ideas and suggestions were the most fruitful input to
my research; without your enduring help this thesis would have never been possible.

I gratefully acknowledge Dr. Andreas Greiner as part of the examination committee. I
am aware that the volume of this work exceeds the standards; however, your flexibility, help,
advice and understanding made my work much easier.

I am also grateful to Skysails for giving me the opportunity to work and research in the
field of Airborne Wind Energy and to the members of the Systems Control and Optimization
Laboratory for all the support and help.

I would like to show my gratitude to my wife, my eternal source of strength; without
your daily advice, understanding, and love, I would have never made it that far. I also want
to give thanks to my parents, sisters, aunt and grandparents; since I can remember, you
have been a continuous source of support and help, caring for me in an unconditional way;
without you, none of this would have ever been possible.

Finally, I would like to thank my friend Cem; during the last three years you have been
like a brother to me; in particular, without your help during the last month, writing this
thesis would not have been possible. Also thank to the rest of my friends: Gizem, Pau, Ruiz,
Xoa, Villar and Anton; part of my success was the joy you added to my life.”

vii

Abstract

Classical wind turbines suffer from a significant problem: while their power output scales
with the square of the height, the mass does so cubically; as a result, material costs are
high and the technology becomes non-competitive. Considering that the bulk of the power
is generated by the outer parts of the rotor blades, airborne wind energy (AWE) tries to
extract wind power by means of tethered kite or airplanes ("wings") while avoiding these
high material costs. The conceptual idea is to fly these "wings" in a crosswind motion with
the help of a strong cable and extract power by means of pumping cycles or small generators
on board.

In this context and in collaboration with the company Skysails, this Masters thesis focuses
on two research areas: computation of optimal trajectories for energy maximization by means
of an optimal control problem (OCP) and design and implementation of nonlinear model
predictive control (NMPC) on a real AWE system.

Using as a basis a previous research on periodic optimal trajectories, this thesis con-
tributes to the field of optimal control and airborne wind energy with a set of four ideas:
new safety conditions to augment the extracted power; the study of dynamic invariants
within the periodic OCP; a proposed tethered kite model in natural coordinates and a per-
formance comparison between the introduced model, a quaternion parameterization, and a
model based on Euler angles; and the generation of different flight topologies to enhance the
power efficiency.

Furthermore, in its second research domain, this thesis strengthens the field of airborne
wind energy and control theory with the following three contributions: the design of a NMPC
scheme on a real AWE system to track generated optimal trajectories; NMPC stability
and robustness against real life perturbations such as wind gusts, delays in control inputs,
parameter mismatches and realistic estimation errors; and development of the theory of
warping systems, a manifold of dynamical systems for which an algorithm to perform online
generation of optimal trajectories is proposed.

ix

Kurzzusammenfassung
Klassische Windturbinen leiden unter dem entscheidenden Nachteil, dass ihre Ausgangsleis-
tung nur quadratisch mit Ihrer Höhe steigt im Vergleich zur Gesamtmasse, die kubisch
skaliert. Materialkosten werden zu groß, um diese Technologieart unter anderen Energieerzeu-
gungsmethoden wettbewerbsfähig zu halten. Da der Hauptanteil dieser Leistung von den
Spitzen der Rotorblättern erzeugt wird, bietet sich die Entwicklung von neuen Methoden an.

Die sogenannte AWE - Airborne Wind Energy (auf Deutsch Flugwindkraftenergie) zeich-
net sich aus durch die Erzeugung von der erwähnten Leistung mittels am Boden gefesselter
Drachen oder Segelflieger ("Flügel"), was große Materialkosten vermeidet. Das Funktions-
prinzip beruht auf dem Fliegen der Flügel quer zum Wind ("crosswind"), wobei Energie
mithilfe von Pumpzyklen oder kleinen Generatoren an Bord erzeugt wird.

Mit dem obengenannten Hintergrund und in Kooperation mit der Firma Skysails be-
trachtet diese Masterarbeit folgende zwei Teile: die Berechnung von optimalen fliegbaren
Trajektorien, die Energiemaximierung mittels eines OCP - Optimal Control Problem (im
Deutschen Optimalsteuerungsproblem) gewährleisten, sowie Entwurf und Umsetzung von
einem NMPC - Nonlinear Model Predictive Controller (Englisch für Nichlinearer Modell-
prädiktiver Regler) auf einem existierenden AWE-System.

Auf der Grundlage vorher existierender Untersuchungen im Bereich OCP für optimale
Trajektorien [1], wird diese Masterarbeit mit dem Ziel abgeschlossen, zu dem Anwendungs-
horizont der optimalen Regelung und der Flugwindkraftenergie mit vier wichtigen Ergebnis-
sen beizutragen:

(i). Die Modifizierung von Sicherheitsbedingungen zur Steigerung der Gesamtleistung eines
AWE-Systems.

(ii). Die Analyse von dynamischen Systeminvarianten innerhalb des OCP.

(iii). Die dynamische Erweiterung des Modells unter Verwendung von natürlichen Koordi-
naten und der daraus folgende Performancevergleich zwischen drei dynamischen Mo-
dellen.

(iv). Die Erzeugung von unterschiedlichen Topologien beim Fliegen zur Erhöhung der Ener-
giegewinnungseffizienz.

Außerdem wird im zweiten Abschnitt dieser Arbeit ein NMPC geplant, um vorausberech-
neten optimalen Trajektorien zu folgen. Die daraus kommenden Erkenntnisse erweitern dann
den Bereich der optimalen Regelung bzw. den der Flugwindkraftenergie mit den folgenden
Kernpunkten:

(i). Das Design eines Real-time Iteration Scheme (in Echzeit-Implementierung) für ein exis-
tierendes AWE-System.

(ii). Die Verbesserung der Stabilität und Robustheit des Systems gegenüber realen Störun-
gen wie Windstößen, Totzeiten, Regelungs-Offsets, Parameter-Missmatch und nor-
malerweise vorhandenen Schätzfehlern der verwendeten Zustandsschätzer.

(iii). Die Entwicklung einer Theorie für "Warping"-Systeme, indem ein Algorithmus zur
Onlinegenerierung von optimalen Trajektorien vorgeschlagen wird.

xi

Acronyms

AWE Airborne Wind Energy
DAE Differential Algebraic Equation
DDE Delay Differential Equation
GN Gauss-Newton approximation
IP Interior Point
KKT Karush–Kuhn–Tucker
LICQ Linear Independence Constraint Qualification
MHE Moving Horizon Estimation
MIMO Multiple Input Multiple Output
MOL Method of Lines
MPC Model Predictive Control
NLP Nonlinear Programming (Problem)
NMPC Nonlinear Model Predictive Control
OCP Optimal Control Problem
ODE Ordinary Differential Equation
PDE Partial Differential Equation
pNLP Parametric Nonlinear Programming (Problem)
QP Quadratic Programming
RK4 Runge-Kutta integrator of order 4
RTI Real Time Iteration
SISO Single Input Single Output
SO(3) Group representing rotations and orientations in the 3D Euclidean Space R3

SQP Sequential Quadratic Programming
SWOCP Semi-Warpable Optimal Control Problem
TP Target Point
t-WOCP Warpable Optimal Control Problem in a time frame t
WOCP Warpable Optimal Control Problem

xiii

Nomenclature

General Symbols
φw Wind direction
ηLoyd Ratio between real and ideal power
A Area of an airfoil
CD, CL Aerodynamic drag, lift coefficients
P Average power generated by an AWE system
PLoyd Maximum power generated by an ideal AWE system
R2 Goodness of fit
va Apparent airspeed
vw Ambient wind speed

Kite Terminology
ψ Orientation of ~eroll with respect to wind direction
ϕ Angle between tether projection into ~ey-~ez and −~ez

ϑ Angle between ~ex and tether direction
δ Steering command for the control pod (normalized)
E Glide ratio (=CL/CD)
~epitch Kite pitch axis
~eroll Kite roll axis
~eyaw Kite yaw axis
~ex, ~ey, ~ez x,y,z-axes of the reference frame
gk Parameter relating the turn rate and the steering deflection
l Tether length
q Quaternion vector defining the kite position (in combination with l)
qi Element i in the quaternion vector
R Rotation matrix defining the kite position (in combination with l)
Rij Rotation matrix element in the row i and column j
vwinch Reeling velocity, change in tether length
ωpitch Angular velocity around pitch axis
ωroll Angular velocity around roll axis
ωyaw Angular velocity around yaw axis

OCP Terminology
γ Decay term used for invariant stabilization in periodic OCPs
Φ System dynamics
Φk Discrete system dynamics at time tk
h Path constraints
I(·) Invariant in the system dynamics
N Number of discrete time intervals
oi ith topology constraint

xiv

r Boundary constraints
T Time horizon
tk kth node of the time grid of a discrete OCP
u(t) Control vector in a continuous time frame t
x(t) State vector in a continuous time frame t
y(t) Concatenation of x(t) and u(t)
xk Discrete state at time tk
uk Discrete control at time tk
X Concatenation of discrete state vectors xk
U Concatenation of discrete control vectors uk
Y Concatenation of discrete states X and controls U
Z Basis matrix of the null space of ∇I

NMPC Terminology
∆t Time step
M Number of time intervals in the periodic optimal trajectory
N Number of time intervals in the NMPC time horizon
Q Weighting matrix for the states
QN Weighting matrix for the end state
R Weighting matrix for the controls
(·)opt Subindex for the periodic optimal trajectory used as NMPC reference
(·)track Subindex for the tracking trajectory in a single NMPC iteration
uopt,i ith control of the optimal trajectory
xopt,i ith state of the optimal trajectory
Uopt Vector with the M optimal controls uopt,i

Xopt Vector with the M + 1 optimal states xopt,i

utrack,k Tracking control vector at time tk
xtrack,k Tracking state vector at time tk
Utrack Vector with the N tracking controls utrack,k

Xtrack Vector with the N + 1 tracking states xtrack,k,
Ytrack Concatenation of the tracking trajectories Xtrack and Utrack

x̄0 Observed initial state

Time Warping Terminology
t Normal time frame
τ Warped time frame
ẇ Warping factor
p(t) Time variable parameter in a time frame t
(·)ref Subindex used for variables in the reference time frame τ
pref Constant parameter in a reference time frame τ
uref(τ) Control vector of a warpable system in a reference time frame τ
xref(τ) State vector of a warpable system in a reference time frame τ
yref(τ) Concatenation of the state xref(τ) and control uref(τ)
yp(t) Feasible trajectory in a time frame t obtained by warping yref(τ)
Yref Discretization of yref(τ) used as reference in warping NMPC
u1 Linear controls of a warpable system
u2 Subset represented by u \ u1

Y ∗worst Optimal trajectory for the worst vwinch-path constraint scenario
Y warp
vw,k

Feasible trajectory for a wind speed vw,k that is obtained by warping Y ∗worst

xv

Contents

Acknowledgements v

Abstract vii

Acronyms xi

Nomenclature xiii

Contents xv

1 Introduction and Motivation 1
1.1 Airborne Wind Energy Foundations . 1

1.1.1 Crosswind Power . 1
1.1.2 Working Principles . 2
1.1.3 Comparison with Other Sources of Energy 4

1.2 Skysails System Description . 4
1.2.1 Power Generation . 5
1.2.2 System Model . 6
1.2.3 System Controller . 8

1.3 Goal . 9
1.4 Mathematical Notation . 10

I Offline Optimal Control 13

2 Optimal Control in a Nutshell 15
2.1 Continuous Optimization . 15
2.2 Discrete Optimal Control . 16
2.3 Continuous Time Optimal Control . 18
2.4 Direct Methods . 18

2.4.1 Single Shooting . 19
2.4.2 Multiple Shooting . 20
2.4.3 Direct Collocation . 22

2.5 Online Optimal Control . 22

3 Offline Generation of Optimal Trajectories 25
3.1 Original Problem . 25

3.1.1 Optimal Control Problem Formulation 25
3.1.2 Numerical Results . 30

3.2 Modified Safety Conditions . 31
3.3 Invariants and LICQ Deficiency . 32

3.3.1 Invariants in Periodic OCP . 32

xvi

3.3.2 The Projection Method for Invariants 33
3.3.3 Stabilization of Invariants . 34
3.3.4 The Quaternion Case . 34
3.3.5 Projection Method Implementation . 35
3.3.6 Results . 35

3.4 Dynamical Model Variations . 38
3.4.1 Rotation Matrices Model . 39
3.4.2 Euler Angles . 42
3.4.3 Linearity Comparison . 43
3.4.4 Results . 44

3.5 Flight Topologies . 50
3.5.1 Topology Constraints . 50
3.5.2 Circular Trajectories . 51

3.6 Conclusion . 57

II Nonlinear Model Predictive Control 59

4 Model Predictive Control in a Nutshell 61
4.1 Classical Feedback Control Limitations . 61
4.2 NMPC Theory . 63

4.2.1 Economic Versus Tracking NMPC . 65
4.2.2 Nominal Stability . 66
4.2.3 NMPC Initialization . 67
4.2.4 Real-Time Optimization . 68

4.3 Real Time Iteration Scheme . 69

5 Controller Implementation 75
5.1 ACADO Toolbox . 75
5.2 Base NMPC Implementation . 76

5.2.1 Objective Function . 76
5.2.2 Dynamics . 77
5.2.3 Constraints . 77
5.2.4 Numerical Algorithms and Parameters 78
5.2.5 Formulation . 81

5.3 System Simulator . 81
5.3.1 First Simulation Results . 81
5.3.2 Evaluation Metrics . 82

5.4 Control Delay . 83
5.4.1 Delay Differential Equation . 84
5.4.2 DDE Implementation . 85
5.4.3 Delay Mismatch . 88
5.4.4 Conclusion . 88

6 Simulation of Real Conditions 89
6.1 Wind Gusts . 89

6.1.1 Wind Profile Generation . 90
6.1.2 NMPC with Real Wind Profile . 90

6.2 Parameter Mismatch . 92
6.2.1 Nominal Mismatch of 10% . 93

xvii

6.2.2 Maximum Mismatch of 20% . 96
6.2.3 Online Parameter Estimation . 99
6.2.4 Conclusion and Remark . 104

6.3 Wind Direction . 104
6.3.1 Extended Dynamics . 105
6.3.2 Wind Direction Profile . 106
6.3.3 Implementation . 106

6.4 Control Bias . 107
6.5 Real Observer . 109

6.5.1 Estimation Error Models . 109
6.5.2 Simulation Results . 112
6.5.3 Analysis of a Positive ϑ Offset . 116

6.6 Conclusion and Remarks . 119

7 Time Warping 121
7.1 Motivation . 121
7.2 Warping Theory . 122

7.2.1 Theoretical Idea . 122
7.2.2 Warped Time Frame Interpretation . 126
7.2.3 Optimality of Warped Trajectories . 128

7.3 Warping NMPC . 134
7.3.1 Theoretical Foundations . 134
7.3.2 Algorithm Implementation . 137

7.4 Warping Kite . 140
7.4.1 Theory . 140
7.4.2 Optimality of Warped Trajectories . 145
7.4.3 Warping NMPC on Skysails Kite . 146

7.5 Conclusion . 152

8 Towards Real Life Experiments 155
8.1 Flight Permissions . 155
8.2 Skysails Simulation Framework . 156

9 Conclusion and Future Work 159
9.1 Conclusion . 159
9.2 Future Work . 161

Appendices 165

A Derivation of Alternative SO(3) Parameterizations 165
A.1 Angular Velocities in Natural Coordinates . 165
A.2 Relation between Euler Angles, Quaternions and Natural Coordinates 167

B Wind Speed Profile Generation 169

Bibliography 171

1

Chapter 1

Introduction and Motivation

1.1 Airborne Wind Energy Foundations
As climate change continues to grow and its effects start to be present in today’s societies,
it is important to reconsider its causes and how to tackle its problems.

Recent studies have shown that electricity production accounts for 30% of the greenhouse
emissions in the EU [1] and in the US [2]. In this framework, renewable energy sources are
a sustainable and cleaner alternative to today’s fossil fuel based energy production.

In particular, solar and wind energy are conceived to be the future of energy production
as they seem to be capable enough to satisfy human energy needs, with wind being in general
cheaper and more broadly available everywhere [3]. Nevertheless, wind power faces several
issues that has to be overcome in order to become efficient enough in comparison to fossil
fuel power plants.

The main concern of wind power lays within classical wind turbines: while the power scales
with the square of the height, the mass does so cubically. That produces a set of material
costs that make them non-competitive with respect to other technologies. In addition to
that, the bulk of the power (more than 50 %) is generated by the outer 30 % of the rotor
blades, while the rest of the construction (and in turn most of the material costs) is just
needed to keep these wings in their fast crosswind motion [4]. Finally and due to structural
limits, the turbine heights are limited to 150 [m] making them profitable only at locations
with medium-high wind speed. The result of these issues is a power density per km2 200-300
times lower than thermal plants [5].

A novel idea, which has received quite of attention during the last years, is to redesign
the turbine eliminating the bulk material of the turbine (tower and the inner parts of the
blades), and then model the outer parts of the rotor blades as tethered airfoils flying in a
crosswind motion anchored to the ground with a strong cable or tether. This concept is
known as airborne wind energy (AWE) and it solves the two previously mentioned problems:

(i). Since the only material needed is the airfoil and cable, the savings on material costs
are tremendous and the profits much more advantageous.

(ii). AWE systems can reach much higher altitudes, regions where wind speed is stronger
and more consistent, which leads in turn to more profitable power efficiency.

1.1.1 Crosswind Power
The scientific explanation behind this technology is based on the fact that the lift force on
an airfoil increases with the square of the apparent airspeed at the airfoil:

2 Chapter 1. Introduction and Motivation

FL =
1

2
CLρAva

2

where va is the apparent airspeed, A the area of the airfoil, CL the lift coefficient and ρ the
air density.

As a result, a kite flying in crosswind direction with a velocity va five times faster than
the wind speed vw will produce a force on the tethered line 25 higher than a static kite. As
a consequence, by maintaining the high kite velocity by means of the ambient wind flow, a
huge amount of wind power can be extracted by means of the high force on the tether (Lift
mode) or by using a wind turbine on this high airspeed va.

This concept is further explained in Figure 1.1 where specially the material reduction is
seen in a graphical manner.

Figure 1.1: AWE concept: the outer part of the blades, which produces 60 % of the energy in
conventional turbines but represents 30% of the material cost, are substituted by a flying airfoil to
reduce costs while harvesting the same energy. [4]

It is important to remark that this idea was first developed and studied by Loyd [6] in
1980, who showed that the maximum power P that can be generated by an ideal AWE
system is given by:

PLoyd =
2

27
ρAv3

wCL

(
CL

CD

)2

(1.1)

with CD, CL as the drag coefficient, vw the wind speed, A the area of the airfoil, CL the lift
coefficient and ρ the air density. Nevertheless, it was not until recent years that interest and
importance in AWE has risen considerably [4, 7, 8], becoming a research topic that annually
gathers scientists from all over the world in the annual conference on Airborne Wind Energy
and that has led to the creation of a number of companies developing diverse AWE systems,
including the Google owned Makani Power [9] or the German Skysails [10] and EnerKite [11].

1.1.2 Working Principles
AWE systems have two working principles:

(i). Drag mode: the basic idea is to use a small wind turbine in the airfoil in order to
extract the energy coming from the high apparent airspeed. This mode is also known
as on-board generation due to the fact that the energy is produced at the airfoil.

1.1. Airborne Wind Energy Foundations 3

(ii). Lift mode: the high tether force that the airfoil produces is used to pull a load at
ground level, usually the load is to unroll the tether to rotate an electric generator.
This method is also known as ground-based power generation because of the location
of the main power elements. This mode requires a retraction phase to roll back the
tether, which is usually done by moving the airfoil to an area where the lift force is
small so that the energy spent in this retraction phase is much less than the energy
harvested.

Since in the scope of this thesis we will work on an AWE system using the lift, we will
primarily focus on this specific setup. As briefly described before, in order to harvest energy
from the wind during the lift mode, the airfoil has to unroll the tether to produce energy
and then to roll it back to restart the process. This periodic cycle, which is usually known
as pumping cycle, is illustrated in Figure 1.2 and summarized as follows:

(i). A power generation phase, where the airfoil flies laying eights in crosswind motion,
inducing high line forces and winching out the tether to produce energy on the ground
generator.

(ii). A transfer phase that brings the kite to a neutral position where the orientation with
respect to the wind results in a low line force.

(iii). A return phase, where the tether is winched in and the kite is kept at a neutral wind
window position. As the tether force at the neutral position is much lower than during
the power generation phase, only a small fraction of the generated energy is consumed
in this retraction phase.

2. Transfer Phase

3. Return Phase

1. Power Phase

~ex = wind direction

Figure 1.2: AWE system pumping cycle: a power phase where the airfoil flies in crosswind motion
to produce energy using the high tether forces, a transfer phase to fly to a neutral wind window
position of low line forces and a return phase in this neutral position to restart the cycle without
consuming a large amount of energy [12].

4 Chapter 1. Introduction and Motivation

1.1.3 Comparison with Other Sources of Energy
In order to explain the motivation of this thesis, it is very instructive to compare this novel
technology with current commercialized and implemented renewable energy systems.

AWE Versus Photovoltaic Cells (PV)

As explained in [4], a modern airfoil with a drag coefficient CD = 0.07, lift coefficient CL = 1
and at a wind speed vw = 13m/s would be able to extract approximately 40 kW per m2 of
wing area. On the other hand and considering a solar irradiation of 1.3 kW/m2, a photovoltaic
cell with a standard efficiency of 20% would produce 150 times less power per m2. As a result,
it is obvious why AWE is such a promising field of research.

AWE Versus Wind Turbines

Despite costs on material reduction have been stated as a clear AWE advantage, no specific
details have been given. As reported by [4], considering an AWE wing of the size of an
Airbus 380, i.e. a wing area of 845m2 and 80m of span that weights 30 tons, which is
tethered by a modern fiber with 1GPa of tensile strength, 30MW could be produced by
using approximately 40 tons of material. By contrast, this 30MW of power is approximately
the power that the biggest existing wind turbines can produce, however, these turbines
require 12400 tons of material. As a result, the turbines using 300 times as much material
as the AWE counterpart are an expensive and inefficient alternative.

AWE Disadvantages

Nevertheless, not everything is good news when AWE systems are regarded. Despite all the
mentioned advantages, a flying airfoil that harvests energy at high altitudes is an intrinsically
unstable system that requires robust automatic control algorithms that ensure safety. By
contrast, photovoltaic cells and traditional wind turbines are stable systems that do not need
fancy controllers to guarantee stability.

As a result, in the scope of this thesis, we will aim at overcoming this instability problem
by the implementation of a robust NMPC controller that ensures stable flights under real
life disturbances.

1.2 Skysails System Description
SkySails GmbH [10] is a company that was born in 2001 as a researcher and manufacturer
of automated towing kite systems for vessel propulsion [13]. The idea behind the technology
is, in order to save costs and reduce emissions, to use high winds as the power system for
vessels. Figure 1.3a shows one of their implementation in a real vessel and in couple with
Figure 1.3b they represent the main components of the SkySails system:

(i). The tether fiber, which is connected to the ship and transmits the wind force in the
kite to the ground.

(ii). A control pod at the end of the towing line, which is the kite’s main actuator and can
apply kite deflections in order to obtain a curved flight. It will be referred to as the
steering actuator.

(iii). The kite itself, which is the main element for energy harvesting.

1.2. Skysails System Description 5

(a) Real propulsion system [13].

Control Actuator

Yaw Rate

Kite

Steering Lines

Passive Lines

Fixed Lines

Steering Deflection

Control Pod

Towing Line

(b) Skysails kite system schematic [13].

Figure 1.3: Left: BBC SkySails using a towing kite as a propulsion system. Right: Schematic of
the Skysails kite system: the kite body, a towing line that transmits the wind forces to the ground
and a control pod that deflects the steering lines in order to perform curved flights.

1.2.1 Power Generation
Recently, Skysails has created a company branch called SkySails Power to research and
fabricate an AWE system based on their vessel propulsion kites. A first prototype was
developed and tested in real life conditions using a target point controller to fly a flight
topology composed by lemniscates (laying eights) [14]. Figure 1.4 shows this prototype
during a real test flight.

kite

winch with

motor/
generator

control pod

towpointground station

tether

120−300m

Figure 1.4: SkySails kite prototype for power generation in a real flight test [12].

6 Chapter 1. Introduction and Motivation

In order to generate power, the kite flies a three stages periodic cycle as the one described
in the previous section as in Figure 1.2: the three mentioned power, transfer and return
phases. Using this cycle and the target point controller, their system harvests an estimated
power equivalent to the 18% of the ideal maximum power PLoyd given by Equation (1.1).
This ratio between the real and the ideal maximum power,

ηLoyd =
P

PLoyd
, (1.2)

is used as the efficiency evaluation for many AWE systems, and as such, from now until the
end of the thesis, Equation (1.2) will be used to evaluate the performance of the different
developed models and algorithms. In this framework, [14] stated that the original SkySails
system had an efficiency of 18%.

1.2.2 System Model
A simplified dynamical model was developed and validated for the original kites for vessel
propulsion [13] and rescaled for the smaller size prototype. In this Section, only the model
and its assumptions will be presented; for a extended derivation of the model, refer to [15].

The dynamical system is defined in the inertial reference (~ex, ~ey, ~ez), with ~ex always
parallel to the wind direction φw. A fair assumption would be to think that, due to the
dependence on φw, the reference system is not inertial. Nevertheless, φw is an averaged
measure of the wind direction to filter wind gusts, so that in practice φw varies in the order
of some degrees per hour and makes the reference coordinate system a good approximation
of an inertial frame.

To explain the model, it has to be considered that at a constant tether length the kite
performs a motion on a spherical surface, and therefore, the tether length l and two polar
coordinates, ϑ and ϕ to determine its position. Moreover, since the tether direction is always
nearly perpendicular to the kite plane (~eyaw parallel to the tether direction), a single angle
ψ is enough to determine the orientation of the kite. As a consequence, the model state is
given by x = [ψ,ϕ, ϑ, l]

> and is illustrated in Figure 1.5.

~eroll

~epitch

~e
yaw

~ez

~ex

~ey

ϑ

ϕ

Wind

Figure 1.5: Kite model coordinate system [12].

Furthermore, Figure 1.5 also depicts the inertial frame [~ex, ~ey, ~ez] as well as the mov-
ing frame defined by the standard aircraft principal axes [~eyaw, ~eroll, ~epitch]. In the inertial
coordinate system, the kite position is defined as:

1.2. Skysails System Description 7

~r = l

 cosϑ
sinϕ sinϑ
− cosϕ sinϑ

 ,
where ϑ is the angle between ~ex and the tether direction −~eyaw, where ϕ is the angle between
the tether projection into the ~ey-~ez plane and the −~ez axis, l the tether length and where the
angle ψ represents the orientation of the kite longitudinal axis (~eroll) with respect to the wind
direction. In particular, ψ0 = 0 would represent the point where the scalar product (~eroll, ~ex)
is minimum, and then ψ would represent the angle increment/decrement of rotating the kite
around the yaw axis ~eyaw starting at this reference orientation ψ0.

For a derivation of the position using rotation matrices, the kite should begin at the
position l~ex = [l, 0, 0]> with ~eroll = −~ez, and then, the following rotations should be applied:

R = Rx(ϕ)Ry(ϑ)Rx(−ψ),

i.e. a rotation −ψ around ~ex, followed by ϑ around ~ey ending with a rotation ϕ around ~ex.

Model Assumptions

Before continuing with the derivation of the equations of motion, the model assumptions
should be briefly explained.

• The aerodynamic forces are much larger than the system masses and therefore accel-
eration effects play no role.

• The tether is assumed to be massless and rigid.

• The kite is assumed to be in aerodynamic equilibrium so that the air flow is defined
by the glide ratio E, which describes the ratio of the air flow between the roll and yaw
axis. A strict definition of E is given by:

E =
CL

CD
,

where CL and CD are the lift and drag coefficients.

• The steering of the kite is defined by a simple turn rate law.

Equations of Motion

Considering the above assumptions, the equations of motion can be described as:

ψ̇ = gkvaδ + ϕ̇ cosϑ,

ϕ̇ = − va

l sinϑ
sinψ,

ϑ̇ = −vw

l
sinϑ+

va

l
cosψ,

l̇ = vwinch,

(1.3)

where [δ, vwinch]> are the system control inputs, with δ representing the steering input of the
control pod and vwinch determining directly the winching tether velocity, and where va is the

8 Chapter 1. Introduction and Motivation

air path velocity which can also be described as:

va = vwE cosϑ− l̇E. (1.4)

The dynamics also have two parameters gk and E, with gk representing the linear dependence
of the kite turn rate law and the steering deflection and E the glide ratio.

Finally, it is important to point out that because of Equation (1.4), the set of Equations
(1.3) can be reformulated in several different ways representing the same dynamics.

1.2.3 System Controller
This section does not aim to give an extensive explanation of the system current controller,
instead, it provides a general explanation for its working principle and its advantages and
disadvantages. For a more detailed description consult [12].

The main principle of the controller is to move the kite between target points TP using
the steering deflections δ, while simultaneously adjusting the winch velocity vwinch to reel
in/out the kite and perform the desired fly phases. A TP is defined by TP = [ϕTP, ϑTP]>,
and the selection of the TP and vwinch depends on the cycle phase (power, transfer, and
return). This produces a periodic trajectory with laying eights on the power phase, and with
low traction forces on the transfer and return phases. Due to the decoupling between vwinch

and δ, the controller is designed using two independent modules:

• A first module that takes care of the trajectory phase (power, transfer and return) and
selects the TP and the vwinch.

• The flight control, which manages the steering deflection to bring the kite towards the
desired TP.

Figure 1.6 illustrates these two modules. Furthermore, it already outlines the fact that the
flight control is composed out of the three individual controllers connected in cascade.

of target
points

Switching

Cycle and
winch
control

δ
Flight

direction orientation

Control Stabilize

yaw axis

ψs ψ̇′
sTP

vwinch

Flight control

ϕm, ϑm, l
Position

ϕm, ϑm, l̇ ψm ψ̇′
m

Figure 1.6: Classical controller overview [14].

Each of these different flight control modules has clearly defined functions:

(i). Flight direction: given the real measured values [ϕm, ϑm]
> and the desired target point

[ϕTP, ϑTP]>, it computes the flight direction γ based on these four values. Then, it
uses γ to compute the desired ψs angle that brings the system to the TP.

(ii). Control orientation: computes the error between ψs and the measured ψm and uses
this value to compute the desired ψ̇s to bring ψ to ψs.

1.3. Goal 9

(iii). Stabilize yaw axis: computes the error between ψ̇s and ψ̇m and uses it to compute the
required steering actuation δ.

The idea of the flight control module is represented in Figure 1.7: by setting two different
TPs and switching from one to the other when getting close enough to them, a laying eight
trajectory (lemniscate) is obtained; moreover, when combining the laying eights with the
full controller, i.e. controlling also vwinch and the trajectory phases, the resultant trajectory
resembles the desired trajectory represented in Figure 1.2.

γ1 γ2

TP1 TP2
ϕTP, ϑTP

ϕm, ϑm

Figure 1.7: Pattern generation due to target points [14].

Advantages and Disadvantages

The main advantage of such a controller is quite clear: its simplicity and robustness are
important features that are very hard to obtain with other approaches. In particular, due to
the independence between δ and vwinch, and due to the fact that it uses two TP per laying
eight, the controller is quite robust to disturbances and is able to continuously correct its
trajectory to bring the kite to the different TPs. Furthermore, it has been tested under real
flight conditions with successful results, achieving, as already mentioned in Section 1.2.1, an
efficiency ηLoyd of 18%.

On the other hand, the simplification of having a limited number of target points and
allowing the kite to fly any kind of trajectory (as long as it produces a laying eight pattern)
results in trajectories, which despite producing net energy, have an efficiency that is quite
below the maximum and optimal ηLoyd.

A first conclusion that can be drawn from this analysis is that a δ and vwinch decoupling
affects the controller efficiency. In that framework, it is likely that better trajectories can be
obtained if they are considered as a couple.

1.3 Goal
The objectives of this thesis are related with the disadvantages of the current controller and
how to overcome them. The basic idea is to design and implement a new controller in order
to improve the efficiency ηLoyd. In particular, we will focus on two different lines of work:

(i). We will study different methods and dynamical models to solve an Optimal Control
Problem (OCP) to obtain a periodic trajectory that maximizes the power per cycle
and in turn ηLoyd. Due to the large cycle period, solving such an OCP is a hard task
which can suffer from different problems and numerical errors.

10 Chapter 1. Introduction and Motivation

(ii). In a second focal point, we will implement a Non-Linear Model Predictive Controller
(NMPC) to track the optimized periodic trajectories. This controller has to be robust
against every sort of real life disturbance (delays, parameter and model mismatches,
wind gusts, etc.) and simultaneously keep the kite flying optimal trajectories. Further-
more, the NMPC should also adapt the optimal trajectories and the dynamical model
as a function of the wind speed, which can create disturbances and unstable situations
if the changes are done in a discrete manner.

These two works together allow to fly optimal trajectories in a robust manner so that
the extracted power is maximized. This in turn leads to a more economically attractive
renewable energy product.

1.4 Mathematical Notation
In the following, a brief overview of the mathematical notation used in the thesis will be
given.

Matrices and Vectors

Rn and Rn×m will respectively denote the set of real vectors of dimension n and the set of
matrices with n rows and m columns.

Matrices and vector symbols will not be shown visually distinct from scalars; their di-
mensions will follow from the context; nevertheless, square brackets will be used to present
vectors and matrices elementwise.

Vectors will be considered column vectors. Concatenations of several vectors, e.g. x ∈ Rn
and y ∈ Rm yielding a vector in Rn+m, will be shortened as (x, y) instead of the correct but
bulkier notations [x>, y>]>.

It is important to remark that square and round brackets will also be used in a second and
different context; specifically, given two real numbers a < b, [a, b] and (a, b) will respectively
denote the closed and open intervals in R between a and b.

The transpose of a matrix A will be defined by A>, the identity matrix of dimension n
will be denoted by In, and diagonal matrices will be denoted by:

diag(a1, a2, . . . , an) =

a1

a2

. . .
an

A<0 will denote that a symmetric matrix A is positive semi-definite, i.e. all its eigenvalues

are larger or equal to zero; likewise, A�0 will denote that A is positive definite.
‖x‖ will denote the Euclidean norm, i.e. ‖x‖2 = x>x; similarly, ‖x‖Q will denote a

weighted Euclidean norm with a positive definite weighting matrix Q ∈ Rn×n, i.e. ‖x‖2Q =

x>Qx.

Functions

For derivatives of functions f(x) : Rn → Rm, the Jacobian matrix will be defined by:

∂f

∂x
(x) ∈ Rm×n.

1.4. Mathematical Notation 11

For scalar functions f : Rn → R, ∇f(x) ∈ Rn will denote the gradient column vector.
Less standard, the gradient symbol will be generalized to every function f : Rn → Rm to
denote the transpose of the Jacobian matrix:

∇f(x) =
∂f

∂x
(x)> ∈ Rn×m.

Also for scalar functions f : Rn → R, the Hessian matrix will be defined by:

∇2f(x) ∈ Rn×n.

The modulo operation to find the remainder of a division between two positive real
numbers, say dividing a between b, will be defined by a mod b.

13

Part I

Offline Optimal Control

15

Chapter 2

Optimal Control in a Nutshell

Optimal control can be defined as the optimization of dynamical systems. As a result, it
merges two important fields of research: systems theory and numerical optimization. A
dynamical system can be regarded as a process evolving in time that is characterized by
states x and controls u. The states define the system status and the controls modify the
states evolution. OCPs use numerical optimization methods to obtain the set of controls
u that optimize some objective function while respecting some given constraints. One of
the most important constraints in OCPs are the system dynamics: a mathematical model
ensuring that the equation of motions are fulfilled.

As explained in the previous chapter, the work performed in this thesis will require the
design and solution of two types of OCPs:

(i). In order to obtain the periodic optimal trajectories, an OCP has to be solved in order
to maximize the power per cycle while obeying the system dynamics and many other
constraints.

(ii). The NMPC is itself a special case of an OCP: despite being a real time controller, it
solves at every iteration an optimization problem in order to obtain an optimal control
policy at the same time that ensures correct dynamic and safety constraints.

Therefore, due to the great importance of OCPs within this thesis, a brief overview will
be given.

2.1 Continuous Optimization
Continuous optimization solves the generic class of optimization problems where the decision
variables are continuous. In particular, one important class of problems that lay in this field
are the so called nonlinear programs (NLPs), which can be stated as:

minimize
w ∈ Rn

f(w)

subject to g(w) = 0,

h(w) ≤ 0,

(2.1)

where f : Rn → R, g : Rn → Rm and h : Rn → Rp are assumed to be at least once
continuously differentiable. Before explaining how the solution of (2.1) can be obtained, a
series of definitions shall be given [16].

Definition 2.1 (Active Constraint). An inequality constraint h(w) ≤ 0 is defined to be
active at a point w̄ if and only if h(w̄) = 0.

16 Chapter 2. Optimal Control in a Nutshell

Definition 2.2 (Active Set). The set of indices A(w̄) ⊂ {1, . . . , p} of the active constraints
at a point w̄ is called the active set.

Definition 2.3 (Linear Independence Constraint Qualification (LICQ)). A general NLP
defined by (2.1) it is said to satisfy the LICQ at a point w̄ if and only if the vectors ∇gi(w̄)
for i ∈ {1, . . . ,m} and ∇hk(w̄) for k ∈ A(w̄) are linearly independent.

Definition 2.4 (Lagrangian function). An important function associated with (2.1) is its
Lagrangian function

L(w, λ, µ) = f(Y) + g(w)>λ+H(w)>µ,

where λ and µ are the so-called Lagrange multipliers.

Considering the above definitions, the solution of the NLP can be obtained the following
Theorem:

Theorem 2.5 (Karush–Kuhn–Tucker (KKT) conditions). If w∗ is a local minimizer of (2.1)
and LICQ holds at w∗, then there exists a λ∗ ∈ Rm and µ∗ ∈ Rp such that:

∇wL(w∗, λ∗, µ∗) = 0, (2.2a)
g(w∗) = 0, (2.2b)
h(w∗) ≤ 0, (2.2c)

µ∗ ≥ 0, (2.2d)
hk(w∗) µ∗k = 0, k = 1, . . . , p. (2.2e)

Since all the OCPs that will be implemented follow the structure of (2.1), NLPs will be
of great importance within this thesis. However, since there are NLP solvers to tackle the
KKT conditions defined by (2.2), we will just use these solvers to work with the OCPs and in
this section no more details on numerical algorithms will be given. Nevertheless, shall more
information be required, [16] is an excellent source for optimization algorithms.

2.2 Discrete Optimal Control
Discrete OCPs solve discrete time dynamical systems. Such systems evolve in time in a
predefined time grid, usually defined by a set of integers, and their dynamics can be model
by:

xk+1 = Φk(xk, uk), k = 0, 1, 2, . . . N − 1 (2.3)

A general discrete OCP is modeled as a NLP. In particular, the objective function is
modeled as the sum of local non linear functions at time k that depend on uk and xk,
i.e.

∑N−1
k=0 L(xk, uk), plus a final special term E(xN) to penalize the last state within the

system motion. Each of these L(xk, uk) is known as a stage cost whereas E(xN) as the final
cost. Furthermore, the NLP has to ensure the dynamical constraints given by (2.3), plus
some other constraints including path and boundary conditions. As a result, a very generic
discrete OCP can be formulated as the following NLP:

2.2. Discrete Optimal Control 17

minimize
x0,u0,x1,...,
uN−1,xN

N−1∑
k=0

L(xk, uk)+E(xN) (2.4a)

subject to xk+1 − Φk(xk, uk) = 0, k = 0, . . . , N − 1, (2.4b)
h(xk, uk) ≤ 0, k = 0, . . . , N − 1, (2.4c)
r(x0, xN) ≤ 0. (2.4d)

where Equation (2.4c) are the so-called path constraints and they ensure that every state xk
and control uk ensure a certain condition along the solution. An example of these type of
constraints would be safety limits on the actuations uk. On the other hand, Equation (2.4d)
represent the boundary conditions on the first and last states x0 and xN . Such conditions
might include periodicity constraints, i.e. x0 = xN , or fixed value x̄0 for the initial state,
i.e. x0 = x̄0. In order to solve this type of problem, a general NLP solver is very often used.

Figure 2.1 illustrates the solution of a specific OCP with x ∈ R2 and u ∈ R. Furthermore,
the minimization function is quadratic and given by:

N−1∑
k=0

L(xk, uk) =

N−1∑
k=0

‖xk‖2

so that the optimal solution brings the last state to [0, 0]> (assuming of course that [0, 0]>

is feasible). Finally, the OCP also imposes a boundary condition on the last state xN and a
couple of path constraints to prevent the states from violating certain values.

0 5 10 15 20 25 30 35 40 45
−2

−1

0

1

2

Path constraint h1(xk) ≤ 0

Path constraint h2(xk) ≤ 0

Initial value:
x0,2

Initial value: x0,1

Terminal conditions:
r (xN) ≤ 0

k

State xk(1)

State xk(2)

Control uk

Figure 2.1: Discrete Time Optimal Control Problem

18 Chapter 2. Optimal Control in a Nutshell

2.3 Continuous Time Optimal Control
As the name already states, this type of OCPs solve problems where the system lives in
a continuous time frame t ∈ R. As a result, the states x(t) and the controls u(t) are a
function of time and the dynamics are defined by a differential equation F (ẋ(t), x(t), u(t)).
Without loss of generality, we shall consider from now on that the dynamics are defined
by an ordinary differential equation (ODE), i.e. the evolution of the system is given by the
following equation:

ẋ(t) = Φ
(
x(t), u(t)

)
Nevertheless, the theoretical foundations that will be covered can easily be extended to the
more general class of system dynamics defined by differential algebraic equations (DAEs).

The OCP structure in continuous time is very similar to the discrete NLP defined by (2.4),
nevertheless there are some key differences that must be considered. First, the problem is
evaluated at a time interval T , which leads to continuous optimization variables x(t) and u(t)
having infinite dimension. Second and as a results of the previous fact, the constraints have
to be ensured in a continuous time grid. Finally, the minimization function is in many cases
an integration over the whole time interval and not a sum of discrete terms. As a result, the
general NLP defining a continuous OCP is given by:

minimize
x(·), u(·)

∫ T

0

L
(
x(t), u(t)

)
dt+ E

(
x(T)

)
subject to ẋ(t)−Φ

(
x(t), u(t)

)
= 0, t ∈ [0, T], (ODE model),

h
(
x(t), u(t)

)
≤ 0, t ∈ [0, T], (path constraints),

r
(
x(0), x(T)

)
≤ 0, (boundary constraints)

Figure 2.2 illustrates the solution of a specific continuous OCP. Now the state x ∈ R and
the control u ∈ R are a continuous function of t. Furthermore, the OCP imposes a linear
initial constraint and some terminal and path constraints.

In order to solve a continuous OCP there exists several options: the Hamilton-Jacobi-
Bellman equation, indirect methods and direct methods. Due to their flexibility, success and
widespread use nowadays, in this thesis only direct methods will be regarded.

2.4 Direct Methods
The idea of direct methods is to transform the infinite dimension continuous optimal control
problem into a discrete and finite NLP. The idea behind is to use a numerical simulation
method in a discrete and defined time grid 0 = t0 < t1 < t2 < . . . tN = T so that the
continuous time dynamics can be approximated as a discrete system. As a result, instead
of the infinite dimensional decision variables u(t) and x(t), a finite set of discrete values xk
and uk, which represent the u(t) and x(t) values at the nodes of the discrete time grid, is
obtained. The constraints are then evaluated at the nodes of this discrete time grid. Finally,
once the problem is discretized, the problem is solved as in the general case of a discrete OCP.
Because of the specific procedure, these methods are sometimes known as "first discretize,
then optimize.

2.4. Direct Methods 19

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−2

−1.5

−1

−0.5

0

0.5

Path constraint: h
(
x(t), u(t)

)
≤ 0

Initial value:
x(0) = x0

Terminal conditions:
r
(
x(T)

)
≤ 0

t [s]

State x(t)

Control u(t)

Figure 2.2: Continuous Time Optimal Control Problem

Depending on how the dynamics are discretized, three different direct methods can be
distinguished: single shooting, multiple shooting, and direct collocation.

2.4.1 Single Shooting
The approach that single shooting takes is to define the discrete time grid 0 = t0 < t1 < . . . <
tN = T and then model the infinite dimension controls u(t) by piecewise polynomials. Since
the most common choice is piecewise constant controls, this parameterization is normally
used; in particular, the controls are referred to as U = (u0, u1, . . . , uN−1), with uk constant
in [tk, tk+1]. In a second step, single shooting computes the states x(t) as dependent variables
using a numerical integration method, an initial value x0 and the discrete controls U . This
computed trajectory can be defined as x(U, t, x0).

In this framework, single shooting substitutes x(t) by the function x(U, t, x0) so that the
only decision remaining variables are the discrete set of controls U and the initial value x0.
Furthermore, the constraints are evaluate in the specific nodes of the time grid. The resulting
NLP is depicted below:

minimize
U, x0

∫ tN

0

L
(
x
(
U, t, x0

)
, U
)
dt+ E

(
x
(
tN , U, x0

))
subject to h

(
x
(
tk, U, x0

)
, uk

)
≤ 0, i = 0, . . . , N − 1,

r
(
x
(
tN , U, x0

))
≤ 0.

20 Chapter 2. Optimal Control in a Nutshell

Finally, Figure 2.3 illustrates this method. It can be observed how the controls are
parameterized as piecewise constant in a time grid and the states are given as a function of
these controls and x0.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−2

−1.5

−1

−0.5

0

0.5

Path constraint: h
(
x(U, t, x0), U

)
≤ 0

Initial value:
x0 = x̄0

Terminal conditions:
r
(
x(U, tN , x0)

)
≤ 0

t [s]

x(U, t, x0)

U = (u0, . . . , uN−1)

Figure 2.3: Single shooting OCP

2.4.2 Multiple Shooting
Originally developed by Bock and Plitt [17] and similarly to single shooting, it models piece-
wise controls in the discrete time grid 0 = t0 <t1 <t2 <. . . < tN = T , i.e.:

u(t) = uk, t ∈ [tk, tk+1].

The key difference with respect to single shooting is that, instead of computing x(t) as
a dependent variable x(U, x0, t), it discretizes the states in the time grid nodes and keeps
them as independent variables. To do so, it solves the equations of motion locally on each
interval [tk, tk+1] and it constrains this set of local solutions to be feasible and consistent.
In other words, it defines the discrete states as X = (x0, x1, . . . , xN); it uses a numerical
integration routine Φk(t, xk, uk) for each interval [tk, tk+1]to compute the integration of the
system dynamics starting at xk, with constant control uk, and ending at time t; it ensures
that each of these local numerical integration at the end of the interval equals to the next
state:

Φk(tk+1, xk, uk)− xk+1 = 0.

Finally, the objective function integral is approximated by:

lk(xk, uk) =

∫ tk+1

tk

L
(
Φk(tk+1, xk, uk), uk

)
dt

2.4. Direct Methods 21

and the discrete OCP can be formulated as:

minimize
X,U

N−1∑
k=0

lk(xk, uk) + E (xN)

subject to x0 − x̄0 = 0,

Φk(tk+1;xk, uk)− xk+1 = 0, i = 0, . . . , N − 1,

h(xk, uk) ≤ 0, i = 0, . . . , N − 1,

r (xN) ≤ 0.

Figure 2.4 pictures this method in the middle of the optimization solver iterations. It can
be seen how, as in single shooting, the controls are given as piecewise constant in a discrete
time grid, but by contrast:

(i). The states are now independent variables.

(ii). The solution in the middle of the optimization algorithm is not dynamically feasible,
i.e. in general Φk(tk+1;xk, uk) is not equal to the variable xk+1 representing the state
at the end of interval k. Remember that in single shooting, since x(U, x0, t) represents
the model simulation at time t, starting at x0 and using U , the dynamics are in turn
always feasible and preserved.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

Path constraint: h(xi, ui) ≤ 0

Initial value:
x0 = x̄0

Terminal conditions:
r(xN) ≤ 0

Φ1(t, x1, u1) 6= x2

x0

x1

x2

t [s]

X = (x0, x1, . . . , xN)

U = (u0, . . . , uN−1)

Φi(t, xi, ui) 6= x2

Figure 2.4: Multiple shooting OCP

22 Chapter 2. Optimal Control in a Nutshell

2.4.3 Direct Collocation
Direct collocation is very similar to multiple shooting in the sense that it also uses the same
discrete time grid 0 = t0 <t1 <t2 <. . . < tN = T with the piecewise constant controls
U = (u0, u1, . . . , uN−1) and the states as variables X = (x0, x1, . . . , xN).

However, it differs with respect to multiple shooting in a key aspect: the integration
of the dynamics Φ

(
x(t), u(t)

)
at every local interval [tk, tk+1] is approximated by a local

polynomial pk(t, qk), with qk as the polynomial coefficient vector. In order to ensure that the
local polynomials are a good model of the system motion, a series of collocation conditions
are added to the NLP.

In particular, the idea behind the collocation conditions is to divide the collocation interval
[tk, tk+1] into a set ofm collocation points t1,k, . . . , tm,k, and then to ensure that the derivative
of the local polynomial at each one of these nodes matches the evaluation of the dynamics
ODE at the same nodes. These conditions are represented for a single collocation interval
by:

ck(xk, vk, uk) =

Φ
(
pk(t1,k, qk), uk

)
− ṗk(t1,k, qk)

Φ
(
pk(t2,k, qk), uk

)
− ṗk(t2,k, qk)

...

Φ
(
pk(tm,k, qk), uk

)
− ṗk(tm,k, qk)

 = 0

Moreover and as in multiple shooting, the continuity conditions xk+1 = pk(tk+1, qk) are also
enforced. Finally, the objective function integral is approximated by a quadrature formula
lk(xk, qk, uk) using the same collocation points. Then, considering Q = (q0, . . . , qN−1) as the
collection of polynomial parameters, the resulting NLP can be stated as:

minimize
X,U,Q

N−1∑
k=0

lk(xk, qk, uk) + E (xN)

subject to x0 − x̄0 = 0,

ck(xk, vk, uk) = 0, i = 0, . . . , N − 1,

pk(tk+1, qk)− xk+1 = 0, i = 0, . . . , N − 1,

h(xk, uk) ≤ 0, i = 0, . . . , N,

r (xN) ≤ 0.

A very common set of polynomials used for direct collocation are Lagrange polynomi-
als which use two variants, Legendre and Radau, in order to perform the selection of the
collocation nodes.

2.5 Online Optimal Control
The previous sections explain how to optimize a dynamical system offline, i.e. how to obtain
the optimal policy U∗ that can bring the system to a desired state. Nevertheless, if this
policy U∗ is used to control the real system, it is very likely that the result will not be
as expected. This is a widely know problem of the so-called open-loop controllers: using a

2.5. Online Optimal Control 23

precomputed control policy without any system feedback in a real system, which has model-
plant mismatches disturbances, ends up bringing the system to an undesired state. In the
specific case of unstable plants, this effect can even lead to system breakdowns.

A different approach explained in this section is to observe the system evolution and use
this information to recalculate the policy U∗, so that, despite mismatches and disturbances,
the system evolves as desired. This type of control is known as close-loop control or feedback
control.

A basic implementation of feedback control is the well known PID controller. However,
if an optimal policy U∗ is desired, i.e. a set of controls that optimizes a cost function and
guarantees some constraints, U∗ has to be computed in real time (online) by solving an OCP
at every time step.

This task is quite challenging due to the computational effort: the controller has to solve
at each iteration a new optimization problem in a very small amount of time ∆t, where ∆t
is the discretized time step. In order to tackle the high computational load of solving such a
problem, online optimal control has to exploit a series of numerical/algorithmic approxima-
tions. The implementation of this set of approximations is known as embedded optimization or
real-time optimization, and optimal feedback control using embedded optimization is known
as model predictive control (MPC). For the particular case of non-linear dynamics, the term
nonlinear MPC (NMPC) is used instead.

NMPC defines a family of control algorithms which do not designate a specific control
strategy but instead share a very similar structure and make use of the same set of conceptual
ideas [18]:

• They make explicit use of a system model to predict the system output in a future time
interval (horizon).

• They calculate the optimal control policy U∗ by minimizing an objective function
J(X,U).

• At each time step the first control of U∗ is applied to the system and the horizon is
shifted a time step into the future. This is also known as receding strategy.

With this set of conceptual ideas, the basic NMPC scheme can be summarized as follow:

(i). Obtain the current system state x̄0.

(ii). Solve an OCP using a limited time window T with N steps. The OCP should impose
the initial constraint x0 = x̄0 as well as dynamic constraints. Path or other constraints
might also be also enforced.

(iii). Apply the first control u∗0 of the optimal policy U∗ to the system.

(iv). Move the optimization horizon a time step forward, observe the new current state x̄0

and repeat the procedure.

Figure 2.5 represents four consecutive iterations of a NMPC controller. This NMPC tries
solve the OCP that minimize the least square error between the system state X and some
state reference trajectory Xref . As a result, at each iteration it computes the optimal control
policy that makes the state X converge towards the reference trajectory Xref .

24 Chapter 2. Optimal Control in a Nutshell

t0
∆t

5 tN
∆t

15
−2

−1

0

1
N =

T

∆t

x̄0

u∗0

k

Xtrack

X

U

(a) t0 = 0

0 t0
∆t

5 10 tN
∆t

15
−2

−1

0

1
N =

T

∆t

x̄0

u∗0

k

Xtrack

X

U

(b) t0 = ∆t

0 t0
∆t

5 10 tN
∆t

15
−2

−1

0

1
N =

T

∆t

u∗0

x̄0

k

Xtrack

X

U

(c) t0 = 2∆t

0 t0
∆t

5 10 tN
∆t

15
−2

−1

0

1
N =

T

∆t

x̄0

u∗0

k

Xtrack

X

U

(d) t0 = 3∆t

Figure 2.5: NMPC evolution in 4 consecutive time steps

25

Chapter 3

Offline Generation of Optimal
Trajectories

As stated in the thesis introduction, the first line of work will be committed to study and
research numerical methods and dynamical models to obtain periodic flight trajectories that
maximize the system efficiency ηLoyd; in particular, we will continue the work of [12] by
looking at four different issues:

(i). Reformulation of flight safety condition to increase the extracted power.

(ii). Examination of LICQ deficiency in periodical OCPs and how it might influence our
specific problem.

(iii). Performance comparison between dynamical models based on quaternions, Euler an-
gles, and rotation matrices.

(iv). Analysis of flight topologies by looking at two different topics: study of OCPs without
topology constraints and generation of circular flight topologies that differ from the
standard lemniscates.

3.1 Original Problem
Before diving into the different contributions of this thesis and in order to set a comprehensi-
ble background, the original problem [12] used as a base for this research shall be explained.
In particular, the initially proposed OCP will be defined and the obtained results illustrated.

3.1.1 Optimal Control Problem Formulation
In order to explain the OCP in a consistent manner, this section will be divided into the
main OCP parts: objective function, dynamical model and constraints; in particular, a
continuous OCP will be first formulated, and then, the discretization procedure to obtain a
computational algorithm will be defined.

OCP Objective Function

In order to model the objective function, two different goals were considered:

(i). The main target of maximizing the generated power per flight period.

(ii). A secondary objective to smoothen the actuation δ.

26 Chapter 3. Offline Generation of Optimal Trajectories

In particular, the extracted power was obtained as the generated mechanical power aver-
aged over a periodic cycle:

P =
1

T

∫ T

0

l̇Ftetherdt =
ρACR

2

E√
1 + E2

1

T

∫ T

0

l̇v2
adt,

where T represent the time period, A the projected area of the kite in the ~eroll-~epitch plane, ρ
the air density and CR =

√
C2

L + C2
D the aerodynamic force coefficient; moreover, in order to

model the above equation, an extra system stateW was introduced and its dynamics defined
by Ẇ = l̇va.

Secondly, since the actuation pod has a speed limitation, the control δ was introduced
as a system state and its rate δ̇ as a control; then, a penalty on δ̇ was added as part of the
objective function. As a result, the objective function was modeled by:

fobj = − 1

T

∫ T

0

l̇v2
adt+ εδ

∫ T

0

|δ̇|2dt = −W (T)

T
+ εδ

∫ T

0

|δ̇|2dt (3.1)

Dynamical Model

Aiming at singularity-free equations of motions as well as system dynamics without trigono-
metric functions, [12] proposed an equivalent model of Model (1.3) by replacing the three
angles ψ, ϕ, and ϑ by a quaternion formulation q = [q0, q1, q2, q3]>. The main claim
to perform this change was that, by avoiding singularities and trigonometric functions, the
optimization problem had a more convenient structure.

Considering the above quaternion formulation, the tether length as a fifth state, and the
extra states W and δ, the equations of motion were derived as:

q̇ =

q̇0

q̇1

q̇2

q̇3

 =
va

2l

−q2

−q3

q0

q1

+
vw

l

q0(q2

2 + q2
3)

q1(q2
2 + q2

3)
−q2(q2

0 + q2
1)

−q3(q2
0 + q2

1)

+
gkvaδ

2

q1

−q0

−q3

q2

,
l̇ = vwinch,

Ẇ = l̇va,

δ̇ = δ̇c,

(3.2)

with the system state x and the system controls u given by:

x = [q0, q1, q2, q3, l, δ,W]>

u = [vwinch, δ̇c]>,

and where the air path speed was defined as:

va = Evw(q2
0 + q2

1 − q2
1 − q2

3)− El̇.

Physical Constraints

Due to physical limitations, a first set of OCP constraints had to be modeled; in particular,
due to weight and geometrical design considerations, vwinch, δ, the rate of δ, and the tether
length were bounded:

3.1. Original Problem 27

|δ̇| ≤ δ̇max,

|δ| ≤ δmax,

vwinch,min ≤ vwinch,

l ≤ lmax,

(3.3)

Furthermore, in order to keep the system tethered, a minimum air path was also imposed:

va = Evw(q2
0 + q2

1 − q2
1 − q2

3)− El̇ ≥ va,min. (3.4)

Geometric Constraints

Regarding the nature of the flight periods, a second set of OCP constraints was modeled; in
particular, since the pumping cycles have to be closed, periodic boundary conditions on the
system states were enforced:

q(T) = q(0), (3.5a)
l(T) = l(0), (3.5b)
δ(T) = δ(0). (3.5c)

Furthermore, to ensure a proper initialization of the power integration, an initial boundary
condition was considered:

W (0) = 0. (3.6)

Finally, in oder to ensure a safety distance with respect to the ground surface, a minimum
elevation angle θmin was derived [12, Equations (58)-(59)] as:

(q2
0 + q2

1 − q2
2 − q2

3) tan θmin + 2(q1q3 − q0q2) ≤ 0. (3.7)

Topological Constraints

Considering that the kite should fly lemniscates to avoid tether twisting, a third and final
set of constraints was modeled; in particular, in order to ensure this flight topology, extra
constraints were added to the problem to impose a specific flight direction (kite flying to the
left or to the right).

In particular, in order to enforce the flight direction in a scenario with n lemniscates, the
time period T was divided into a time grid 0 = t0 <t1 < . . . < tn = T of n+ 1 points. Then,
in each of these intervals, a constraint on the flight direction was imposed by:

ϕ̇ ≤ 0 (fly left), for t2i−2 ≤ t ≤ t2i−1 and i = 1, . . . , (n− 1)/2,

ϕ̇ ≥ 0 (fly right), for t2i−1 ≤ t ≤ t2i and i = 1, . . . , (n− 1)/2
(3.8)

Then, considering that ϕ̇ = −va sinψ/(l sinϑ), that sinϑ is always positive as the kite flies
above the ground, and that ψ = arctan2 (q0q3 − q1q2, q0q2 + q1q3), the topology constraint
was equivalently expressed by:

q0q3 − q1q2 ≥ 0, for t2i−2 ≤ t ≤ t2i−1 and i = 1, . . . , (n− 1)/2,

q0q3 − q1q2 ≤ 0, for t2i−1 ≤ t ≤ t2i and i = 1, . . . , (n− 1)/2.
(3.9)

28 Chapter 3. Offline Generation of Optimal Trajectories

This whole idea is better depicted in Figure 3.1. From it, the equivalence between flying to
the left (right) and ϕ̇ ≤ 0 (ϕ̇ ≥ 0) can be easily understood.

t0=0 t1 t2 t3 t4=T

T

T2T1 T3 T4

t2

0 t

ϕ

t3

t1 t0,t4

ϕ̇ > 0

ϕ̇ < 0

Trajectoryq0q3 − q1q2 ≤ 0 q0q3 − q1q2 ≥ 0

Figure 3.1: Topological constraints shown for a pumping cycle consisting of two lemniscates. It
can be observed how the sign of q0q3 − q1q2 indicates whether the kite flies to the right or to the left
[12].

It is important to remark that, in the topology constraints defined by Equation (3.9), no
topology is defined in the last interval tn−1 ≤ t ≤ tn; the reason for this lack of constraint is
that in the last interval the kite is in the retraction phase, and thus, a topology constraint is
not required.

As a last observation, it is important to indicate that the durations Ti = ti − ti−1 of
the n time grid intervals were included in the optimization problem as variables; this was
a mandatory requirement in order to have a flexible time grid that allows a full power
optimization.

Quaternion Regularization

As it is widely known, any quaternion formulation has to ensure the well known invariant
‖q‖2 = 1. Moreover, since in general the quaternion norm is directly preserved by the
system dynamics given by Equation (3.2), an idea to impose this condition could be to add
‖q(0)‖2 = 1 as an OCP constraint. However, as shown in previous studies [19], this scenario
leads to LICQ deficiency and it is in practice a very poor choice.

To solve this issue, the OCP included a decay regularization in the dynamics so that
‖q‖2 = 1 could be ensured without incurring in LICQ deficiency; in particular, the new
dynamics were defined by:

q̇ =
va

2l

−q2

−q3

q0

q1

+
vw

l

q0(q2

2 + q2
3)

q1(q2
2 + q2

3)
−q2(q2

0 + q2
1)

−q3(q2
0 + q2

1)

+
gkvaδ

2

q1

−q0

−q3

q2

− γq(‖q‖2 − 1)q,

l̇ = vwinch,

Ẇ = l̇va,

δ̇ = δ̇c,

(3.10)

3.1. Original Problem 29

where the term γq(‖q‖2−1)q ensured that, at the end time T of the simulation, ‖q(T)‖2 = 1,
and that as a result, any other quaternion state q(t) would also preserve the invariant.

It is important to remark that LICQ deficiency is an important topic in periodic OCPs,
and that as a result, Section 3.3 discusses the same matter but more extensively.

System and OCP parameters

In order to provide an overview of the different parameters used in the previous sections to
model the dynamics, objective and constraints, Table 3.1 summarizes their numerical values
and definitions.

Table 3.1: System parameters used for modeling and solving the original OCP.

Parameter Value Units Description.

A 21 m2 Projected area of the kite.

CR 1 Aerodynamic force coefficient.

δ̇max 0.6 1/s Bound of the steering actuator speed.

δmax 0.7 Bound of the steering actuator.

E 5 Glide ratio.

gk 0.1 rad/m Steering constant.

lmax 300 m Bound on the tether length.

θmin 0.35 rad Minimum elevation angle.

ρ 1.2 kg/m3 Air density.

vw 10 m/s Wind speed which is assumed to be constant.

va,min 5 m/s Minimal air path speed to ensure stability.

vwinch,min -5 m/s Lower bound on the winch speed.

γq 0.01 1/s Quaternion decay to enforce the quaternion norm.

OCP Continuous Formulation

Regarding the defined objective, dynamics and constraints, the OCP can be finally summa-
rized as:

minimize
x(·),u(·),
t1,...,tn

E(x(tn), tn) +

∫ tn

0

L(u(t))dt

subject to ẋ− Φ(x(t), u(t)) = 0, t ∈ [t0, tn] (Dynamical model),
r(x(t0), x(tn)) = 0 (Boundary conditions),
h(x(t), u(t)) ≤ 0, t ∈ [t0, tn] (Path constraints),

oi(x(t)) ≤ 0, t ∈ [ti−1, ti], i = 1, . . . , n, (Topology constraints)
(3.11)

30 Chapter 3. Offline Generation of Optimal Trajectories

where the dynamical model Φ(·) is defined by (3.10), the boundary constraints r(·) by (3.5)
and (3.6), the path constraints by (3.3), (3.4) and (3.7), the topological constraints oi(·) by
(3.9), and where the objective terms E and L respectively represent the mechanical power
and the control regularization of Equation (3.1).

OCP Discrete Formulation

In order to discretize the continuous OCP, a multiple shooting method was used. However,
since the total time T of the OCP was divided into several time intervals Ti, the multiple
shooting approach required some small modifications.

In particular, for each time interval Ti an independent and equally distributed time grid
of mi points was created. Then, for each of these intervals, mi + 1 states, mi controls and
the time Ti were defined as problem variables:

wi = (xi,0, ui,0, . . . , xi,mi−1, ui,mi−1, xi,mi
, Ti).

Finally, the states within each time grid were related by the multiple shooting constraints
xi,k+1 = Φk(xi,k, ui,k, Ti/mi).

However, unlike the standard multiple shooting approach, the above formulation is not
enough; in particular, by only considering the defined constraints, the states between time
intervals would be independent of each other. As a result, continuity conditions xi,mi = xi+1,0

between the time grids had to be added. The resulting discrete OCP can be defined by:

minimize
w1, . . . , wn

E(xn,mn ,

n∑
i=1

Ti) +

n∑
i=1

mi∑
k=1

li(ui,k, Ti)

subject to

xi,k − Φk(xi,k−1, ui,k−1, Ti) = 0, i = 1, . . . , n, j = 1, . . . ,mn (Dynamical contraints),
xi,mi − xi+1,0 = 0, i = 1, . . . , n− 1, (Continuity conditions),
r(x1,0, xn,mn) = 0, (Boundary conditions),
h(xi,k, ui,k) ≤ 0, i = 1, . . . , n, j = 1, . . . ,mn (Path contraints),

oi(xi,k) ≤ 0, i = 1, . . . , n, j = 1, . . . ,mn (Topology contraints),

with:

li(ui,k, Ti) =
Ti
mi

εδ δ̇
2
i,k +

Ti
mi

εv(vwinch,i,j − vwinch,next(i,j))
2,

next(i, j) denoting the subsequent index par, and where the second term penalizing the
acceleration on the winch speed was only added to the discrete formulation.

It is important to remark that, in order to discretize the dynamics and obtain the
Φk(xi,k−1, ui,k−1, Ti) integrators, a Runge-Kutta integrator of order 4 (RK4) [20] was used.

3.1.2 Numerical Results
In order to solve the discrete OCP, CasADi [21, 22] and IPOPT [23] were used. In particular,
using a total number of 250 discrete time points and 6 lemniscates (n=12), the OCP was
solved in 487 iterations with an efficiency ηLoyd of 33%.

3.2. Modified Safety Conditions 31

3.2 Modified Safety Conditions
In the original OCP formulation, the safety condition given by Equation (3.7) was designed
to ensure a minimum distance between the kite and the ground. In particular, (3.7) imposed
a constraint in the elevation angle so that a minimum altitude was achieved.

However, the above implementation has a problem: despite ensuring a minimum distance,
this minimum altitude increases with the tether length (larger tether leads to larger altitude).
As a result, the airpath speed va decreases as the tether reels out and the extracted power
and ηLoyd factor are not fully maximized.

An alternative and more natural approach would be to impose a constraint to ensure a
minimum altitude hmin:

2l(q0q2 − q1q3) ≥ hmin, (3.12)

where the altitude value 2l(q0q2 − q1q3) is obtained from [12, Equation (39)].
Finally, considering that in the conventional OCP solution the kite achieved a minimum

altitude of 40m, a sensible value (with a safe margin) for hmin could be 60m.

Results

After replacing (3.7) by (3.12) with hmin = 60m, the OCP was solved again. A comparison
between the solution of this OCP and the standard one can be seen in Figure 3.2. By
comparing the ηLoyd factor of both scenarios, it can be concluded that the new constraint
does indeed increases the extracted power; in particular, the new safety condition leads to a
power efficiency 2.1% larger.

0100200−200

0

0

−50

−100

−150

x [m]

y [m]

z
[m

]

Elevation
ηLoyd = 33.0 %

(a) Optimal solution imposing a minimum eleva-
tion angle as a safety condition.

0100200

−200

0

0

−50

−100

−150

x [m]

y [m]

z
[m

]

Altitude
ηLoyd = 35.1 %

(b) Optimal solution imposing a minimum alti-
tude as a safety condition.

Figure 3.2: Optimal solution comparison considering the two different options to impose the safety
condition. The altitude as safety condition leads to a more power efficient solution.

32 Chapter 3. Offline Generation of Optimal Trajectories

3.3 Invariants and LICQ Deficiency
As a first step to research and comprehend the original formulation, the OCP was recreated
and tested. During this process, two different effects made us suspect that the original
formulation could be ill-posed:

(i). The final solution was very sensitive to the initial guess: small changes in the initial
conditions would lead in some cases to a divergent solution. In particular, even when
the algorithm was initialized using an old solution, the OCP did not always converge.

(ii). In those cases were a solution was found, the states during the iteration procedure
reached highly infeasible values.

3.3.1 Invariants in Periodic OCP
As previously explained in Section 2, the KKT conditions defined by (2.2a)-(2.2e) are not by
themselves a strong enough condition to ensure optimality. In particular, it was demonstrated
that a point w∗ would be a local optimal of a NLP if and only if, besides solving (2.2a)-(2.2e),
LICQ would also hold at w∗.

Definition 3.1 (Invariants in Dynamical Systems). Regard a general dynamical model ẋ =
Φ(x, u), where Φ ∈ Rn → Rn. The dynamics have a k-dimensional invariant I(x(t)), with
k < n, if:

I(x(t)) = constant ∀ x(0), u(t).

In this scenario, the system state x(t) ∈ Rn is forced to evolve in a n − k dimensional
manifold.

Theorem 3.2 (LICQ Deficiency in Periodic Optimal Control Problems). Regard a simple
and general periodic optimal control problem:

minimize
x(·), u(·)

fobj(x(·), u(·))

subject to ẋ(t)− Φ(x(t), u(t)) = 0,

x(T)− x(0) = 0.

If the system dynamics ẋ(t) = Φ(x(t), u(t)) have an invariant I(x(t)), then the periodicity
constraint leads to LICQ deficiency [19, 24].

Proof. The above OCP can be reformulated by considering an integration function x(t) =
F (x0, u, t) and defining the last state x(T) by F (x0, u, T) = G(x0, u):

minimize
u, x0

fobj(x0, u)

subject to π = G(x0, u)− x0 = 0.

Then, by the invariant definition:

3.3. Invariants and LICQ Deficiency 33

I
(
G(x0, u)

)
− I

(
x0

)
= 0, ∀ w =

[
u
x0

]
and thus:

∇w
[
I
(
G(x0, u)

)
− I

(
x0

)]
=
(
∇wG(x0, u)∇wx0

)
∇x0
I(x0) = 0,

which finally yields:

∇wπ · ∇x0
I(x0) = 0

Since in general ∇x0
I(x0) 6= 0, the above condition implies that ∇wπ = 0 and that in

turn there is LICQ deficiency in the periodic conditions [24].

The conceptual idea behind the above result is that, since the dynamics preserve some
system condition, the periodicity constraint contains redundant information. In particular,
since the dynamics evolve in a reduced n−k dimensional manifold, the periodicity constraint,
which was originally defined in Rn, should be defined in Rn−k to avoid redundancy.

3.3.2 The Projection Method for Invariants
In order to avoid the LICQ deficiency, a proposed method [19] is to impose the periodicity
constraints only along the directions that are tangential to the invariant. To do that, the
periodicity constraints have to be projected into the manifold of tangential directions. In
particular, regarding the Jacobian of the invariant evaluated at x0:

∂I(x0)

∂x
= ∇I(x0)>

and the basis matrix Z of its null space:

∇I(x0)>Z = 0, with Z>Z = I,

LICQ failure can be avoided by reformulating the periodicity constraint g(x0, u)−x0 = 0 by:

Z>(g(x0, u)− x0) = 0.

Note that, since Z ∈ Rn×z−k, the above conditions projects the original periodicity
constraint into a reduced z − k dimensional manifold.

In the method described above, it was assumed that the invariant was a property of the
dynamics but that its specific value was not relevant for the OCP; nevertheless, in many
applications, the invariant has a fixed and known value K that the OCP must ensure. In
this scenario, the projection method still works; particularly, the OCP can be modified as:

minimize
u, x0

fobj(x0, u)

subject to Z>(g(x0, u)− x0) = 0,

I(x0) = K,

and LICQ would still hold [24].

34 Chapter 3. Offline Generation of Optimal Trajectories

3.3.3 Stabilization of Invariants
Given some system dynamics ẋ = Φ(x, u) preserving a 1-dimensional invariant I(x) ∈ R, if
the value of the invariant is known and fixed, i.e. I(x) = K, the invariant stabilization [25]
can be used as an alternative to the projection method in oder to avoid LICQ deficiency in
periodic OCPs.

In particular, the working principle is to add a decay term to the system dynamics:

ẋ = Φ(x, u)− γx
(
I(x)−K

)
,

so that, the new dynamics do no longer preserve the invariant I(x), but instead, they ensure
that the value of the invariant at the end of the simulation horizon is equal to the desired
value K:

I
(
x(T)

)
= K.

As a result, since the dynamics do no longer preserve the invariant, the periodicity con-
dition x(0) = x(T) can be imposed without LICQ deficiency; furthermore, since x(0) = x(T)
is enforced, the method also ensures that:

I
(
x(0)

)
= I

(
x(T)

)
= K. (3.13)

Finally, considering the effect of the decay in the system evolution, it should hold that:

I
(
x(0)

)
≥ I

(
x(t1)

)
≥ I

(
x(t2)

)
≥ I

(
x(T)

)
, ∀ 0 ≤ t1 ≤ t2 ≤ T

which considering (3.13) ensures that:

I
(
x(t)

)
= K, ∀ t ∈ [0, T].

As a result, the stabilization method avoids LICQ deficiency by removing the invariant
from the dynamics, and by doing so, ensures that the invariant value is fixed to some value
K along the solution.

It is important to note that, in practice, this algorithm has some drawbacks which must
be outlined:

• Unlike the projection method, its performance depends on the selected value for the
parameter γ. In particular, a small γ might not ensure the correct value of the invariant
at the end of the horizon; by contrast, a large γ might modify the real dynamics too
much.

• By adding the stabilization term, the dynamics might become stiff and the use of an
implicit integrator might be required.

• Since the dynamics are modified, the integration might become harder to compute and
the solver might struggle more to solve the OCP.

3.3.4 The Quaternion Case
As explained in Section 3.1, the kite dynamics have the quaternion invariant ‖q‖2 = 1.
Therefore, any periodic OCP using the kite dynamics has to implement one of the above two
methods to avoid LICQ deficiency. In particular, as described in Section 3.1, the original
formulation used the stabilization method with a decay −γq(‖q‖2 − 1).

3.3. Invariants and LICQ Deficiency 35

Nevertheless, after observing the strange numerical performance of the original formula-
tion and considering the mentioned drawbacks of the stabilization method, we decided that
a deeper study on the topic had to be conducted. In particular, we determined that, in order
to assess the quality of both approaches, the original OCP and a modified OCP including
the projection method had to be compared for different test scenarios.

3.3.5 Projection Method Implementation
As a first step to implement the projection method, the Jacobian ∇qI(q)> has to be com-
puted. In particular, considering I(q) = ‖q‖2, the Jacobian can be computed as:

∇qI(q) = ∇q‖q‖2 =

2q0

2q1

2q2

2q3

.
In a second step, the basis matrix Z ∈ R4×3 of the null-space of ∇qI

(
q(0)

)
has to be

obtained. In particular, a basis matrix satisfying:

ZT∇qI(q(0)) = ZT

2q

(0)
0

2q
(0)
1

2q
(0)
2

2q
(0)
3

 = 0

with q(0)
i = qi(0), is given by:

Z =

−q(0)

1 −q(0)
2 −q(0)

3

q
(0)
0 0 0

0 q
(0)
0 0

0 0 q
(0)
0

.
Finally, the projection method is directly implemented within the OCP by simply sub-

stituting the periodicity constraint (3.5) by

ZT (q(0)− q(T)) = 0,

and then adding the boundary condition:

‖q(0)‖2 = 1.

3.3.6 Results
In order to obtain a good evaluation of the two alternative methods, the OCPs will be solved
considering combinations of the following problem variations:

(i). In order to test the performance of different initial guesses, the OCPs will consider three
different initializations: the standard real flight data used in the original approach, an
optimal trajectory obtained from a different OCP, and a trajectory obtained by a
simulation routine.

36 Chapter 3. Offline Generation of Optimal Trajectories

(ii). In order to study the stiffness of the dynamics, three different direct methods will be
regarded: multiple shooting with an explicit RK4 integrator, a direct collocation using
a Radau scheme, and direct collocation with a Legendre scheme.

(iii). To judge the effect of the wind speed, the OCPs will be solved for three different wind
speeds: 6, 10 and 15m/s.

(iv). Finally, to measure the effect of the problem size, three different number of discrete
points will be considered: the original N=250, N=500 and N=1000.

Considering every possible combination of the above variations, a total of 162 tests (81 per
invariant method) have to be performed. A summary of the outcome of these 162 experiments
is depicted in Figure 3.3; particularly, it can be observed that, while both approaches have low
success rates, the projection method solves 60% more cases than the invariant stabilization
method does. As a result, despite both methods show problems in finding optimal solutions,
the stabilization method seems to be a more erratic algorithm.

Stabilization Projection
0 %

20 %

40 %

60 %

80 %

100 %

12 %
10

20 %
16

88 %
71

80 %
65

Success
Failure

0

20

40

60

80

Figure 3.3: Performance comparison between the invariant stabilization and the projection
method. A total of 81 test per invariant method are performed.

To further comprehend the performance difference between both algorithms, Figure 3.4
illustrates the individual success ratios in the four OCP variations. In particular, in addition
to the better performance of the projection method, the following effects can be observed:

(i). By using the stabilization method in combination with the original initial guess, i.e. real
flight data, the OCP never finds a solution. It is important to explain that, since the
same real flight data was successfully used in [12] as initial guess, the outcome of this
experiment might seem contradictory; nevertheless, considering the different safety
condition used in [12], it is a perfectly plausible result.

(ii). The system dynamics are not stiff as the RK4 explicit integrator performs good enough.

3.3. Invariants and LICQ Deficiency 37

Original Simulation Optimized
0 %

20 %

40 %

60 %

80 %

100 %

0 %

15 %
4

22 %
6

11 %
3

15 %
4

33 %
9

Invariant Stabilization
Projection Method

0

9

18

27

N
um

be
r

of
Su

cc
es

sf
ul

T
es

ts

(a) Success rate for the initial guess.

RK4 Legendre Radau
0 %

20 %

40 %

60 %

80 %

100 %

33 %
9

4 %
1 0 %

41 %
11

11 %
3 7 %

2

Invariant Stabilization
Projection Method

0

9

18

27

N
um

be
r

of
Su

cc
es

sf
ul

T
es

ts

(b) Success rate for the type of integrator.

6m/s 10m/s 15m/s
0 %

20 %

40 %

60 %

80 %

100 %

19 %
5 11 %

3 7 %
2

15 %
4

33 %
9

11 %
3

Invariant Stabilization
Projection Method

0

9

18

27

N
um

be
r

of
Su

cc
es

sf
ul

T
es

ts

(c) Success rate for the wind speed vw.

250 500 1000
0 %

20 %

40 %

60 %

80 %

100 %

19 %
5

4 %
1

15 %
4

19 %
5

22 %
6 19 %

5

Invariant Stabilization
Projection Method

0

9

18

27

N
um

be
r

of
Su

cc
es

sf
ul

T
es

ts

(d) Success rate for the number of points N .

Figure 3.4: Performance comparison between the invariant stabilization and the projection
method. The performance is measured as a function of the success rate on periodic optimal so-
lutions across four different OCP variations: initial guess, integrator type, number of discrete points
and wind speed. Each benchmark category, e.g. vw = 6m/s or N=20, comprises 27 test scenarios.

(iii). The type of integrator seems to be a key factor. In particular, multiple shooting with
an explicit RK4 seems to outperform by far the collocation structures. In particular,
it is noteworthy that, using RK4, the projection method succeeds more than 40% of
the times.

(iv). As it would be expected, using a nearly optimal trajectory as initial guess is the most
successful initialization method.

In the view of the above results, it is clear that both methods depict very low success rates.

38 Chapter 3. Offline Generation of Optimal Trajectories

After analyzing the different sources of failure, it was concluded that the low performance of
the quaternion formulation could be explained due to a combination of three effects:

• The equation of motions and OCP constraints are quite nonlinear; as a result, the solver
struggles to find a good feasible local minima. In particular, it has been observed that,
in several occasions, the solver fails because it stays in an infeasible point and is not
able to compute a step to escape from it.

• It has also been observed that the Hessian of the Lagrangian achieves sometimes eigen-
values close to 0; as a result, the Hessian becomes almost singular, the OCP becomes
numerically ill-posed, and as a result, by trying to solve that bad conditioned OCP,
the solver demands too much computer memory and the solver crashes.

• Finally, the OCP might also fail because the solver exceeds the maximum number of
iterations. This might be again explained due to the OCP nonlinearity.

As a result, we can conclude that, while both methods are not good, the projection
method seems to be a more consistent and successful method to avoid LICQ deficiency in
the context of periodic OCPs for AWE kites. Furthermore, given the poor performance of
the invariant stabilization, we can justify the strange numerical behavior observed in the
original approach.

Finally, it is important to remark that, due to the poor performance of both quaternion
formulations, in the following section different dynamical models will be proposed and tested.

3.4 Dynamical Model Variations
In order to define the kite position, it is necessary to use a parametrization of the 3D rotation
group (SO(3)), the mathematical group representing all the rotations and orientations in the
3D Euclidean space R3.

In particular, since given an orthonormal basis of R3 any rotation can be described by
an orthogonal 3 × 3 matrix R, the SO(3) group and its composition are identified with the
group of orthogonal matrices with matrix multiplication. As a result, parametrizations of
SO(3) are given by any manifold that can be used to generated the orthogonal 3×3 matrices,
where typical example of these manifolds are Euler angles or quaternions.

An important thing to be considered when using Euler angles is that, despite using the
minimum number of parameters to define SO(3), they often lead to highly nonlinear and
singular dynamics [26]. As a result, their mathematical models are often easy to derive but
when embedded in optimization problems they tend to lead to computational issues. Because
of the cited problems, [12] argued that a quaternion model, when compared with the original
Euler dynamics defined by (1.3), would reduce the nonlinearity and singularities of the kite
dynamics and would result in a more convenient OCP formulation.

Nevertheless, considering the poor performance of the quaternion model in the previous
section, the above claim might not be entirely true. In particular, we consider that, in order
to effectively assess the quality of the different SO(3) parametrization, a further study on
the topic is required. As a result, a third model based on rotation matrices will be first
discussed, and then, its performance will be compared against the quaternion formulation
and the Euler angle model.

3.4. Dynamical Model Variations 39

3.4.1 Rotation Matrices Model
As suggested by [26], a model based on rotation matrices reduces the nonlinearity of the
equations of motion even more than a quaternion formulation; thus, despite increasing the
system state size, it is in many cases better suited for optimal control. Based on the above
fact, it was concluded that it is essential to derive a model based on them, and then, to test
its performance in our application.

Orientation Representation

Before deriving the kite mode, it is necessary to understand the conceptual idea behind
rotation matrices. In particular, it is important to consider that, in order to define a system
orientation, rotational matrices use a full 3× 3 orthogonal matrix:

R =

R11 R12 R13

R21 R22 R23

R31 R32 R33

, with R>R = RR> = I3,

where each of the columns of R defines the vectors of a moving reference frame attached to
the system body.

Moreover, due to the fact that SO(3) is identified with the group of orthogonal matrices,
this type of parametrization is also known as natural coordinates [26].

Dynamical Model

Considering the definition of the columns of R, the first natural step to obtain a model
in natural coordinates is to select an inertial and a body reference frame for our specific
application. In particular, in order to be consistent with the previous work, we decided to
use again the definitions given by [12], where the inertial reference frame was defined by ~ex,
~ey, and ~ez, the moving frame described by ~eyaw, ~epitch and ~eroll], and where they were both
related by a rotation matrix R(t) such that:

~eyaw(t) = −R(t)~ex,

~epitch(t) = −R(t)~ey,

~eroll(t) = −R(t)~ez.

To have a better picture of the above definitions, Figure 3.5 depicts both reference frames
for the case of zero rotation.

Wind

~ex

~ey

~ez

~eyaw

~epitch

Reference frame axes
~eroll

Kite body frame axes

Figure 3.5: Reference frame axes for the derivation of the natural coordinates equations of motion.
The depicted orientation corresponds to the zero-rotation, i.e. R = I3 [12].

40 Chapter 3. Offline Generation of Optimal Trajectories

Then, by using the same definitions, the natural coordinates parameterization can be
described by:

R(t) =

 R11

R21

R31

R12

R22

R32

R13

R23

R33

 =

 −~eyaw(t) −~epitch(t) −~eroll(t)

. (3.14)

Once R is selected, the second step is to derive its dynamics. In particular, using (3.14),
the equations of motion can be obtained by [26]:

Ṙ(t) = R(t)ω(t)× (3.15)

where ω(t) ∈ R3 represents the angular velocities of the column vectors of R(t), i.e. negative
angular velocities of the roll, yaw and pitch axis, and .× a skew operator that transforms a
vector in R3 into the corresponding skew symmetric matrix:

ω× =

−ωyaw

−ωpitch

−ωroll

×

=

 0 −ωroll ωpitch

ωroll 0 −ωyaw

−ωpitch ωyaw 0

. (3.16)

In order to obtain a final expression for the dynamics, the angular velocities ωyaw, ωpitch

and ωroll have to be described as a function of R(t). For simplicity reasons, the expressions
for ωyaw, ωpitch and ωroll will be directly given; nevertheless, in order to legitimize the model,
Appendix A.1 provides their full derivation:

ωyaw = gkvaδ (3.17a)

ωpitch = −va

l
+
vw

l
R13 (3.17b)

ωroll = −vw

l
R12. (3.17c)

Finally, by introducing Equations (3.17a)-(3.17c) into (3.16), Equation (3.15) can be
expanded to obtain the full set of equations of motion:

Ṙ11

Ṙ21

Ṙ31

Ṙ12

Ṙ22

Ṙ32

Ṙ13

Ṙ23

Ṙ33

=
vw

l
R12

−R12

−R22

−R32

R11

R21

R31

0

0

0

+ gkvaδ

0

0

0

R13

R23

R33

−R12

−R22

−R32

+
vwR13 − va

l

−R13

−R23

−R33

0

0

0

R11

R21

R31

, (3.18)

with air path speed:
va = EvwR11 − El̇. (3.19)

3.4. Dynamical Model Variations 41

System Constraints

In order to obtain an equivalent formulation of the system constraints, the relation between
the nine elements of R and the the four quaternions will be used. However, in order to keep
this section legible, the required relations for deriving the constraints will be directly used;
nevertheless, should the total set of relations or its derivation be required, Appendix A.2 can
be consulted.

In order to model the altitude safety constraint equivalent to Equation (3.12), the relation
R31 = 2(q1q3 − q0q2) can be used to obtain:

−lR31 ≥ hmin.

In the case of the constraint (3.4) ensuring that the kite is always tethered, an equivalent
version can be derived using the equation R11 = (q2

0 + q2
1 − q2

2 − q2
3):

vwER11 − El̇ ≥ va,min.

For the topology constraints defined by (3.9), a natural coordinates version can be ob-
tained by considering R12 = −2(q0q3 − q1q2):

−R12

2
≥ 0, for t2i−2 ≤ t ≤ t2i−1 and i = 1, . . . , (n− 1)/2,

−R12

2
≤ 0, for t2i−1 ≤ t ≤ t2i and i = 1, . . . , (n− 1)/2.

(3.20)

Finally, to impose the R(0) = R(T) periodicity constraint, the orthogonality of R(t) is
regarded to set:

R(0)>R(T)− I3 = 0. (3.21)

LICQ Deficiency

As with the quaternion formulation, the system dynamics have also the matrix orthogonality
invariant:

I
(
R(t)

)
= R(t)>R(t) = I3.

Furthermore, in order to ensure that the above equation is fulfilled an orthogonality
constraint at some time point has to be added; in particular, a usual convention is to impose
it in the initial point:

R(0)>R(0)− I3 = 0. (3.22)

As a result, considering that Equation (3.22) together with (3.21) create a set of 18
constraints on the initial state and that the R(t) ∈ R3×3, from Theorem 3.2 it follows that
LICQ does not hold.

A known methodology to avoid LICQ deficiency, while still imposing the periodicity and
orthogonality condition, is to select three matrix elements from (3.21) and six from (3.22);
in particular, imposing the three upper triangular elements from (3.21) and the six lower
triangular elements from (3.22) is a common choice [27, 24]:

42 Chapter 3. Offline Generation of Optimal Trajectories

︸ ︷︷ ︸
R(0)>R(T)−I3

= 0,

︸ ︷︷ ︸
R(0)>R(0)−I3

= 0

3.4.2 Euler Angles
Despite leading to very non-linear and singular dynamics, Euler angles still have the ad-
vantage of representing the smallest SO(3) parametrization; consequently, the number of
variables on an OCP formulation is reduced, and in turn, the complexity of the problem
does not necessarily have to get worse. Moreover, due to this minimal number of states,
the dynamics have no invariant and the periodicity conditions do not compromise LICQ;
therefore, even with a more complex model, the lack of LICQ deficiency might lead to easier
numerical computations.

Taking into account the described advantages, it is obvious the interest and necessity of
including Euler angles in the SO(3) comparison.

OCP Dynamics

To model the equations of motion, the same dynamical model given by Equation (1.3) is
used:

ψ̇ = gkvaδ + ϕ̇ cosϑ,

ϕ̇ = − va

l sinϑ
sinψ,

ϑ̇ = −vw

l
sinϑ+

va

l
cosψ,

l̇ = vwinch,

(3.23)

with:

va = vwE cosϑ− l̇E.

OCP Constraints

In order to find the equivalent set of constraints, the relations between the quaternion and
the Euler angles will be used. Moreover, to keep the section legible, the required relations
will be directly stated and their derivations are left for Appendix A.2.

Considering that − sinϑ cosϕ = 2(q1q3 − q0q2), the altitude safety constraint given by
Equation (3.12) is equivalent to:

l sinϑ cosϕ ≥ hmin.

In the case of (3.4), an equivalent formulation can be obtained by regarding that cosϑ =
(q2

0 + q2
1 − q2

2 − q2
3):

vwE cosϑ− El̇ ≥ va,min.

For the topology constraint, an equivalent formulation was already given by (3.8):

3.4. Dynamical Model Variations 43

ϕ̇ ≤ 0, for t2i−2 ≤ t ≤ t2i−1 and i = 1, . . . , (n− 1)/2,

ϕ̇ ≥ 0, for t2i−1 ≤ t ≤ t2i and i = 1, . . . , (n− 1)/2.

Finally, w(0) = w(T), with w = [ψ, ϕ, ϑ]>, has to be added to the OCP as the periodicity
constraint.

3.4.3 Linearity Comparison
Considering that the state dimension and the OCP linearity will determine the NLP perfor-
mance, it is important that, before understanding and explaining the experimental results,
a comparison between the linearity of Euler angles, quaternions, and natural coordinates is
depicted; in particular, the equations of motion as well as the OCP constraints of the three
formulations will be contrasted.

Dynamics

By comparing the three sets of equations of motion, the following conclusions can be drawn:

(i). The Euler dynamics, which are described by Equation (3.23), display the highest non-
linear structure; particularly, they include a singularity at ϑ = 0 as well as several
trigonometric functions that create complex equations of motion.

(ii). The natural coordinates formulation, which is represented by Equation (3.18), repre-
sents the least nonlinear dynamics; in particular, it avoids singularities and leads to
uncomplicated quadratic equations of motion.

(iii). Finally, the quaternion formulation as given by Equation (3.2) display better linearity
than Euler angles but less than natural coordinates; specifically, it avoids singularities
but forms a set of cubic equations of motion.

Constraints

In order to have a clearer picture on the linear properties of the constraints, a full comparison
on the path constraints is depicted in Table 3.2

Table 3.2: Linearity comparison between the constraints of the three studied SO(3) parametriza-
tion: Euler angles, quaternions and natural coordinates.

Euler angles Quaternions Natural coordinates

Safety altitude l cosϕ sinϑ −2l
(
q1q3 − q0q2

)
−lR31

Minimum va vwE cosϑ− El̇ vwE
(
q2
0 + q2

1 − q2
2 − q2

3

)
− El̇ vwER11 − El̇

Topology ϕ̇ | sinψ q0q3 − q1q2 −R12

From analyzing the table, two facts can be observed:

(i). Natural coordinates represent the only linear constraint formulation.

44 Chapter 3. Offline Generation of Optimal Trajectories

(ii). An assessment between Euler angles and quaternion is more complicated: while quater-
nions lead to quadratic constraints for the three scenarios, Euler angles involve trigono-
metric relations in two cases but a linear constraint in the third one.

It is important to outline that, since periodicity constraints only bound a single time
point, they are not expected (as long as LICQ holds) to modify the end solution as much as
path constraints; as a result, their comparison was omitted in this section.

Interpretation

Regarding the previous analysis, it is possible that, when solving the OCPs, the following
effects might appear:

(i). Considering their high state dimension, natural coordinates might show slower conver-
gence than the other two methods; nevertheless, due to their linear structure, it is also
likely that they will form a more robust environment: the solver might struggle less to
find the optimal value and solutions might represent more efficient trajectories.

(ii). By contrast, Euler angles should provide a fast convergence model due to its low di-
mensional representation; nevertheless, due to the high nonlinearity, it is possible that
the solver does not find a solution or, even if it does, that the solution represents less
efficient optimal trajectories.

(iii). Since quaternions represent linear conditions and a state dimension that are in between
Euler angles and natural coordinates, its performance should be an average of the other
two. However, as it has been shown in Section 3.3, their performance is slightly poor;
therefore, their results might be worse than expected.

3.4.4 Results
In order to obtain a complete evaluation of the three dynamical models, they will be tested
against several OCPs variations. In particular, similarly to Section 3.3, the following problem
modifications will be regarded:

(i). To test the model behavior for different initial guesses, the OCPs will consider three
different initializations: the standard real flight data used in the original approach, an
optimal trajectory of a slightly different OCP, and a trajectory obtained by a simulation
routine.

(ii). In order to study the stiffness of the three models, three different direct methods will
be used: multiple shooting with an explicit RK4 integrator, a direct collocation using
a Radau scheme, and direct collocation but with a Legendre scheme.

(iii). To judge the effect of the wind speed, the OCPs will be solved for three different wind
velocities: 6, 10 and 15m/s.

(iv). To measure the effect of the problem size, two number of discrete points will be re-
garded: the original N=250 and N=500.

(v). Since the topology constraints were claimed to be an important part of the quaternion
model, the three parameterizations will be tested with and without topology constraints
in order to examine if they are indeed necessary. Nevertheless, since the results of this
experiment are more extensive and independent from the type of model, its discussion
and results will be left for the next section, together with a study on flight topologies.

3.4. Dynamical Model Variations 45

Considering every possible combination of the above variations, a total of 332 tests (108
per dynamical model) have to be performed. A first summary of these 332 experiments is
depicted in Figure 3.6; in particular, by only comparing the number of tests that are success-
fully solved, Euler angles seem to be the most favorable model implementation; specifically,
they are able to solve two times as many cases as rotation matrices and approximately four
times as many problems as quaternions.

Quaternions Rotation Euler
0 %

20 %

40 %

60 %

80 %

100 %

15 %
16

25 %
27

56 %
61

85 %
92

75 %
81

44 %
47

Success
Failure

0

20

40

60

80

100

Figure 3.6: Performance comparison between the three different dynamical models. Each model
is tested in 108 different scenarios.

It is important to remark that Figure 3.6 is just a brief compilation of all the results;
therefore, to have a better understanding between the three models, the coming sections will
expand the analysis.

Individual Success Ratios

To further comprehend the performance difference between the three models, Figure 3.7
illustrates the individual success ratios considering four OCP variations. In addition to the
better performance of the Euler model, the following effects can be observed:

(i). None of the system dynamics are stiff as all of them perform remarkably good with the
RK4 explicit integrator.

(ii). The type of discretization method seems to be important for quaternions and rotation
matrices, where multiple shooting with the explicit RK4 outperforms the collocation
structures.

(iii). It was expected that the three models would show the best performance when the initial
guess was a semi-optimal trajectory. Nevertheless, despite being true for quaternions
and rotations matrices, Euler angles seem to perform even better when the OCP is
initialized with real data.

(iv). The OCPs are easier to solve when vw=10m/s; this is quite noticeable for Euler angles.
A possible explanation for this effect is the fact that the simulated trajectory and the
real trajectory used as initial guesses were obtained with wind profiles whose average
was close to 10 m/s.

46 Chapter 3. Offline Generation of Optimal Trajectories

Original Simulation Optimized
0 %

20 %

40 %

60 %

80 %

100 %

6 %
2

14 %
5

25 %
9

11 %
4

22 %
8

42 %
15

78 %
28

33 %
12

58 %
21

Quaternion Rotation Matrix
Euler Angles

9

18

27

36

N
um

be
r

of
Su

cc
es

sf
ul

T
es

ts

(a) Success rate for the initial guess.

RK4 Legendre Radau
0 %

20 %

40 %

60 %

80 %

100 %

39 %
14

3 %
1

3 %
1

56 %
20

17 %
6

3 %
1

72 %
26

39 %
14

58 %
21

Quaternion Rotation Matrix
Euler Angles

0

9

18

27

36

N
um

be
r

of
Su

cc
es

sf
ul

T
es

ts

(b) Success rate for the type of integrator.

6m/s 10m/s 15m/s
0 %

20 %

40 %

60 %

80 %

100 %

17 %
6

19 %
7

8 %
3

28 %
10

33 %
12

14 %
5

33 %
12

83 %
30

53 %
19

Quaternion Rotation Matrix
Euler Angles

0

9

18

27

36

N
um

be
r

of
Su

cc
es

sf
ul

T
es

ts

(c) Success rate for the wind speed vw.

250 500
0 %

20 %

40 %

60 %

80 %

100 %

13 %
7

17 %
9

20 %
11

30 %
16

56 %
30

57 %
31

Quaternion Rotation Matrix
Euler Angles

0

9

18

27

36

45

54

N
um

be
r

of
Su

cc
es

sf
ul

T
es

ts

(d) Success rate for the number of points N .

Figure 3.7: Performance comparison between the three dynamical models. The performance is
measured as a function of the success rate on periodic optimal solutions across four different OCP
variations: initial guess, integrator type, number of discrete points and wind speed.

(v). The performance seems to be independent of the number of discrete points.

(vi). In every variation the same trend can be observed: Euler angles have the best perfor-
mance, rotation matrices show an intermediate performance, and quaternions seem to
represent the worst model.

Loyd Factor Versus Converge Rate

In the past sections, the success ratios of the three dynamical models were compared. Nev-
ertheless, a model might solve a large number of tests by obtaining poor local minima, i.e. it
might find optimal solutions more often but these solutions might represent trajectories with

3.4. Dynamical Model Variations 47

lower power efficiencies. As a result, the success ratio alone does not provide a fair indicator
of the model’s performance and some other metrics must be considered.

In addition, not only might the power efficiency differ from the success ratio, but also the
average computation time is also critical: a method might solve many tests but at a high
computational cost; therefore, it is possible that, despite solving many scenarios, a model
might not be computationally tractable.

As a result, a necessary indicator to assess the goodness of the models is to compare the
average efficiency factor ηLoyd and the average computational time tc in those cases where
the models obtain an optimal solution. The results of this comparison are depicted in Figure
3.8; by analyzing the figure, several conclusions can be drawn:

(i). Euler angles seem to be the computationally cheapest method but at the same time
the one with the worst average efficiency.

(ii). Quaternions, when compared to Euler angles, depict a very similar efficiency factor but
a higher computation time.

(iii). In contrast with the other two, rotation matrices are able to obtain better optimal
solutions; in particular, the average ηLoyd is 2% larger than the other two scenarios.
However, this improvement in efficiency comes at a cost of computation time; specifi-
cally, natural coordinates require, in average, 2 to 3 times as much time as the other
two models in order to solve an OCP.

Quaternions Rotation Euler

33 %

34 %

35 %

η L
o
y
d

Average
ηLoyd

(a) ηLoyd factor comparison.

Quaternions Rotation Euler
0

200

400

600

t c
[s

]

Average
tc

(b) Computational time tc comparison.

Figure 3.8: ηLoyd factor and computation time comparison between the three different dynamical
models. Each model is tested in 108 different scenarios.

The fact that one of the three models is able to extract wind power with such a broad mar-
gin is quite interesting; therefore, it is necessary to understand why the natural coordinates
formulation outperforms the other two by such a large difference.

A logical answer can be found in the linearity comparison of Section 3.4.3; in particular,
considering that an OCP using natural coordinates had a more linear structure when com-
pared to Euler angles or quaternions, it is plausible that, due to the more convenient NLP
structure, the solver is able to find better local minima.

The above explanation is reinforced when the following observation is considered: the
OCP formulations in Euler angles and quaternions were detected to find local minima that
had the same number of lemniscates as the initial guess had. By contrast, natural coordi-
nates formulations, due to its more linear structure, were found to expand the number of
lemniscates in order to increase the time the kite is in crosswind motion and in turn improve
the power efficiency.

48 Chapter 3. Offline Generation of Optimal Trajectories

This specific effect can be seen in Figure 3.9 representing the solver iterations of a natural
coordinates formulation; specifically, it can be seen how, along the iteration process, the solver
generates an extra lemniscate and ηLoyd increases.

0
200

−200

0

−200

−100

0

x [m]

y [m]

z
[m

]

Iteration 0
ηLoyd = 35.2 %

0
200

−200

0

−200

−100

0

x [m]

y [m]

z
[m

]

Iteration 250
ηLoyd = 29.1 %

0
200

−200

0

−200

−100

0

x [m]

y [m]

z
[m

]

Iteration 750
ηLoyd = 27.3 %

0
200

−200

0

−200

−100

0

x [m]

y [m]

z
[m

]

Iteration 1000
ηLoyd = 35.0 %

0
200

−200

0

−200

−100

0

x [m]

y [m]

z
[m

]

Iteration 1400
ηLoyd = 35.6 %

0
200

−200

0

−200

−100

0

x [m]

y [m]

z
[m

]

Iteration 1800
ηLoyd = 35.9 %

0
200

−200

0

−200

−100

0

x [m]

y [m]

z
[m

]

Iteration 2500
ηLoyd = 36.0 %

0
200

−200

0

−200

−100

0

x [m]

y [m]

z
[m

]

Iteration 3290
ηLoyd = 36.3 %

Figure 3.9: Generation of an extra lemniscate by using a natural coordinates formulation.

3.4. Dynamical Model Variations 49

Results Analysis

Considering the above results, it can be concluded that quaternions are the worst approach
with no apparent advantages; in particular, they only solve 16% of the cases with a power
efficiency similar to Euler angles, which, in comparison, are able to solve 56% of the scenarios
and in shorter times.

By contrast, Euler angles are the fastest model with computation times that outperform
the other two; moreover, they represent the most successful implementation with more than
half of the performed tests being solved. Nevertheless, they have the drawback that, when
compared to rotation matrices, their optimal solutions represent trajectories with lower power
efficiencies.

As a result, while comparing the relative quaternion performance is easy, an assessment
between Euler angles and natural coordinates is harder to obtain; in particular, while the
former solves a higher number of cases and it does it much faster, rotation matrices have
been proven to obtain better solutions. As a consequence, Euler angles is the best candidate
when many scenarios have to be solved or when a first rapid solution has to be obtained;
however, after a fast and good solution is obtained with Euler angles, rotation matrices might
be preferred to improve the power efficiency.

Finally, before ending this section, it is necessary to explain the failure mechanisms of
the three formulations described. In particular, as already explained at the end of Section
3.3.6, quaternion breakdowns are due to three effects:

• The major source of failure is the OCP nonlinearity that leads to a solver that struggles
to find a feasible local minima. In particular, the solver reaches an infeasible point and
is unable to escape from it.

• As a second effect, the Hessian of the Lagrangian might become nearly singular leading
to a numerically ill-posed OCP; as a consequence, by trying to solve a bad conditioned
OCP, the solver demands too much computer memory and the solver crashes. This
issue represents 15% of the breakdowns.

• Finally, 15% of the times, the OCP fails because the solver exceeds the maximum
number of iterations. This is likely to be caused due to the OCP nonlinearity.

In the case of Euler angles, 95% of the solver breakdowns are due to the nonlinear
condition of the OCP. In particular, due to the trigonometric and nonlinear structure of the
constraints and dynamics, the solver fails because it reaches an infeasible point from where
it is unable to escape. It is important to remark that the other two sources of quaternions
failure, i.e. exceeding the maximum number of iterations and memory issues, are barely
observed in the Euler formulations.

Finally, in the case of natural coordinates, two are the main responsible mechanisms of
failure:

• 60% of the problems are caused by exceeding the maximum number of iterations.
However, unlike quaternions, this issue is due to the large OCP size.

• 35% of the solver miscarriages are due to an infeasible problem from which the solver
is not able to escape. It can be observed that, due the more linear structure, this type
of failure occurs less often than in the other two formulations.

• Finally, memory problems represented 5% of the total failures.

50 Chapter 3. Offline Generation of Optimal Trajectories

Given the above explanations and resolutions, the high success ratio of the Euler angles
formulation can be explained considering that it has no issues with ill-posed OCPs nor
exceeding the maximum number of iterations. In particular, since it has a single source of
failure, it is more likely to succeed.

In a similar fashion, considering that 60% of the natural coordinates failures are due to
an excessive number of iterations, their lower success ratios with respect to Euler angles can
be clarified by the larger problem size of the former formulation.

Finally, in the case of quaternions, besides the two issues that the other formulations
have, their formulation might also become ill-posed; and as a result, it is understandable
why they are the least successful implementation.

3.5 Flight Topologies
In the original formulation, the kite was forced to fly lemniscates for security reasons; in
particular, due to concerns of twisting the tether, lemniscates (eight shapes) were used to
ensure that the angle ψ did not increase unbounded and that stresses on the tether were not
built up [12]. In that particular scenario, a set of topology constraints was used to control
the kite direction and ensure the desired lemniscate shape.

Considering the above facts, this section will explore two different lines of work. On the
one hand, the importance of the topology constraints will be discussed; in particular, their
performance will be study in order to assess if they are indeed required. On the other hand,
a different flight topology will be proposed; specifically, instead of lemniscates, the optimal
trajectory will be modeled by distorted circular shapes (similar to ovals) that keep the angle
ψ bounded.

3.5.1 Topology Constraints
As a part of the dynamical model comparison in Section 3.4, the test scenarios included the
addition or elimination of the topology constraints. The intention behind that option was
to assess whether the topology constraints could indeed improve the OCP performance. In
particular, since the original topology constraints did not impose the lemniscate topology,
but instead, only forced the kite to sequentially fly from the right to the left, the real utility
of these constraints was questioned.

The main theory was that, even without the constraints, the kite should still perform a
similar motion; in particular, in order to extract the largest amount of wind power, the kite
should stay in crosswind motion; as a result, the kite is expected to alternate directions in
a cyclic manner so that the flight topology is symmetric with respect to the wind direction.
Considering these hypothesis, the OCP might obtain a trajectory that replicates lemniscates
by simply maximizing the extracted power.

In order to assess the benefits of the topology constraints, Figure 3.10 illustrates a com-
parison of the success ratios and the computation times between OCPs that include topology
constraints and OCPs that do not.

In general, it can be observed that, in contrast with the assumptions of [12], topology
constraints are not necessary to solve the OCP and obtain the desired fly topology; in partic-
ular, Figure 3.10a shows that the number of solved OCP is independent from the considered
constraints.

Nevertheless, as it can be seen in Figure 3.10b, they do improve the OCP performance
by reducing the computation time; in particular, by imposing in the OCP the optimal fly

3.5. Flight Topologies 51

Quaternions Rotation Euler
0 %

20 %

40 %

60 %

80 %

100 %

15 %
8

26 %
14

56 %
30

15 %
8

24 %
13

57 %
31

Topology Constraint
No Topology Constraint

0

9

18

27

36

N
um

be
r

of
Su

cc
es

sf
ul

T
es

ts

(a) Success ratio.

Quaternions Rotation Euler
0

200

400

600

800

1,000

1,200

126

418

159

604

875

260

t c
[s

]

Topology Constraint
No Topology Constraint

(b) Average computation time.

Figure 3.10: Success ratio and computation time comparison between OCPs that differ on having
topology constraints. Each category, e.g. Euler with topology, comprises 54 test scenarios.

directions, the solver avoids many non-optimal trajectories which would be feasible if no
topology constraints were present.

To further illustrate this effect, Figure 3.11 compares the solver iterations of two OCPs
that only differ in the topology constraints. Specifically, both OCPs model the system with
a natural coordinates formulation, using a multiple shooting approach with RK4 and N=500
discrete points, considering a wind speed vw=10m/s and using the simulated flight data as
initial guess. From the figure, it can be observed that, regardless topology constraints, the
OCPs find the same optimal solution; however, the OCP that includes the constraints has a
faster converge rate.

In behalf of the above results, it can be concluded that, in contrast with the hypothesis
of [12], topology constraints are not required to impose the desired lemniscate topology. In
particular, they might help to achieve faster convergences but they have no influence in the
flight topology.

3.5.2 Circular Trajectories
Unlike lemniscates, in order to fly circles, the kite has to continuously rotate around its ~eyaw;
as a consequence, if the rotation is kept in the same direction, the ψ angle grows without
control and the tether might get twisted.

A possible solution to circumvent this issue is to use a double cycle optimal trajectory.
The fundamental idea is that, since ψ has to be bounded by a reasonable value, the kite can
fly a first periodic cycle rotating clockwise (counterclockwise) around its ~eyaw followed bv a
second periodic cycle where it rotates in the opposite direction; as a result, at the end of the
double periodic cycle, ψ returns to the initial value and twisting is avoided.

In order to generate a trajectory with the described topology, the parameterization of
SO(3) should be first chosen; in particular, considering the outcome of Section 3.4, Euler
angles are the best choice.

52 Chapter 3. Offline Generation of Optimal Trajectories

0
200

−100 0
100

−200

−100

0

x [m]y [m]

z
[m

]

Iteration 0
ηLoyd = 16.4 %

0
200

−100 0
100

−200

−100

0

x [m]y [m]

z
[m

]

Iteration 0
ηLoyd = 16.4 %

0
200

−100 0
100

−200

−100

0

x [m]y [m]

z
[m

]

Iteration 500
ηLoyd = 20.3 %

0
200

−100 0
100

−200

−100

0

x [m]y [m]

z
[m

]

Iteration 500
ηLoyd = 23.7 %

0
200

−100 0
100

−200

−100

0

x [m]y [m]

z
[m

]

Iteration 1000
ηLoyd = 34.7 %

0
200

−100 0
100

−200

−100

0

x [m]y [m]

z
[m

]

Iteration 1500
ηLoyd = 33.3 %

0
200

−100 0
100

−200

−100

0

x [m]y [m]

z
[m

]

Iteration 1290
ηLoyd = 35.3 %

0
200

−100 0
100

−200

−100

0

x [m]y [m]

z
[m

]

Iteration 2610
ηLoyd = 35.3 %

Figure 3.11: Solver iteration comparison for the same OCP with and without topology constraints.
Left: topology constraints are used. Right: topology constraints are not considered.

3.5. Flight Topologies 53

Topology Constraints

In the previous section, it was shown that, using the right initial guess, topology constraints
are not required to obtain lemniscates. In particular, it was proven that, since the topology
constraints only imposed the flight direction, they do not influence the final flight topology.

In contrast with this original scenario, it has been observed that, unless the direction of
rotation around the ~eyaw axis is enforced, the optimal solution does not achieve a circular
topology. As a result, a set of constraints imposing the kite rotational direction has to be
included. In particular, dividing the time period T into a time grid t0 < . . . < t4 of 5
points, where t0 = 0 and t4 = T , a constraint on the kite rotational direction (clockwise or
counterclockwise) should be ideally imposed by:

ωyaw(t) ≥ 0, for t0≤ t ≤ t1
ωyaw(t) ≤ 0, for t2≤ t ≤ t3.

(3.24)

However, since ωyaw is not a system state, an alternative expression must be regarded.
Considering that ωyaw = gkvaδ and that va > 0, the above topology constraint is equivalent
to:

δ(t) ≥ 0, for t0≤ t ≤ t1
δ(t) ≤ 0, for t2≤ t ≤ t3.

(3.25)

To have a graphical illustration, Figure 3.12 depicts the above two constraints.

δ(t) ≥
0

~eyaw

(a) Clockwise rotation for first periodic cycle..

δ(
t)
≤ 0

~eyaw

(b) Counterclockwise rotation for second peri-
odic cycle.

Figure 3.12: Topology constraints for generation of circular trajectories. By enforcing the value
of the control δ the rotational direction of the kite around its ~eyaw axis can be controlled.

It is important to remark that, since the first periodic cycle is defined in the time interval
[t0, t2] and the second cycle in [t2, t4], the above constraints only impose the required rota-
tional orientation in the two power phases of the periodic cycles. In particular, the intervals
[t1, t2] and [t3, t4] represent the retraction phases and they should be topology free.

Periodicity Constraints

As with the original problem, it is important to impose a periodicity constraint so that the
optimal solution is a closed loop:

ψ(0)
ϕ(0)
ϑ(0)
l(0)

 =

ψ(T)
ϕ(T)
ϑ(T)
l(T)

. (3.26)

54 Chapter 3. Offline Generation of Optimal Trajectories

Furthermore, since the circular trajectory is modeled by two periodic cycles, an extra
periodicity constraint in the middle of the trajectory is also required:ϕ(0)

ϑ(0)
l(0)

 =

ϕ(T/2)
ϑ(T/2)
l(T/2)

. (3.27)

It is important to note that (3.26) in couple with (3.27) lead to a dual periodicity condition
on the kite location at the beginning and end of both cycles; however, since ψ increases in the
first cycle and unwinds during the second, the kite orientation is only one time periodical.

Initial Guess

One of the main problems faced when generating the circular trajectories was the lack of
a decent OCP initial guess. In order to elude this problem, a framework for generating
feasible trajectories was created; in particular, by using a kite simulator in couple with
an implementation of the classical target point controller [14], an environment to obtain
acceptable initial guesses was modeled.

The fundamental principle was to use a four target points sequence with the four points
separated by 90 ◦ and representing an elliptical shape. This method was based on the ap-
proach represented by Figure 1.7, where a two target points strategy was used to generate
lemniscates.

In order to provide a graphical representation, Figures 3.13 and 3.14 illustrate the genera-
tion of the two consecutive periodic cycles; in particular, the left subfigures depict the target
point sequence used for the controller and the right ones the resulting simulated trajectory.
It is important to note that, as observed in Figure 3.14, the sequence of target points has to
be inverted at the end of the first period.

TP1

TP3

TP2TP4

(a) Target point structure that the classical
controller uses for trajectory generation.

0
200

400
−100

0
100

−200

0

TP1 TP2

TP3TP4

TP1

x [m]
y [m]

z
[m

]

(b) Resulting trajectory after using the classical con-
troller with a four target points strategy.

Figure 3.13: Generation of the feasible trajectory for the clockwise half period of a full circular
topology.

3.5. Flight Topologies 55

TP1

TP3

TP2 TP4

(a) Target point structure for trajectory
generation.

0
200

400

−100
0

100

−200

0

TP1
TP4TP3

TP2
TP1

x [m]
y [m]

z
[m

]
(b) Resulting generated trajectory.

Figure 3.14: Generation of the feasible trajectory for the counterclockwise period.

Results

After replacing the topology constraint and the initial guess, the OCP was again solved. The
results can be observed in Figure 3.15 representing the optimal trajectory at the end of the
optimization process, and in Figure 3.16, which depicts the kite trajectory during eight solver
iterations. It can be observed how the solver finds a very good solution after 350 iterations;
however, it requires 2700 more iterations to fully optimize the result.

−100
0

100
200

300
400

−200
−100

0

100
200

−200

−100

0

x [m]y [m]

z
[m

]

Iteration 3020
ηLoyd = 35.7 %

Figure 3.15: Fully optimized circular trajectory after 3020 iterations.

56 Chapter 3. Offline Generation of Optimal Trajectories

0
200

400

−200
0

200

−200

0

x [m]y [m]

z
[m

]

Iteration 0
ηLoyd = 26.7 %

0
200

400

−200
0

200

−200

0

x [m]y [m]

z
[m

]

Iteration 220
ηLoyd = 28.1 %

0
200

400

−200
0

200

−200

0

x [m]y [m]

z
[m

]

Iteration 230
ηLoyd = 32.0 %

0
200

400

−200
0

200

−200

0

x [m]y [m]

z
[m

]

Iteration 300
ηLoyd = 34.3 %

0
200

400

−200
0

200

−200

0

x [m]y [m]

z
[m

]

Iteration 350
ηLoyd = 35.3 %

0
200

400

−200
0

200

−200

0

x [m]y [m]

z
[m

]

Iteration 400
ηLoyd = 35.4 %

0
200

400

−200
0

200

−200

0

x [m]y [m]

z
[m

]

Iteration 1000
ηLoyd = 35.5 %

0
200

400

−200
0

200

−200

0

x [m]y [m]

z
[m

]

Iteration 3020
ηLoyd = 35.7 %

Figure 3.16: Solvers trajectory iterations when obtaining circular trajectories.

3.6. Conclusion 57

It is necessary to note that, by flying circular trajectories, the power efficiency achieves
similar values as in lemniscate topologies, and as a result, the ηLoyd is still high enough to
double the original 18% efficiency of the target point controller.

Finally, it is important to make a comment on the flight topology: as observed from the
results, an oval-elliptical topology seems to be more optimal than a flying circles; this result
is completely expectable as the kite will always tend to fly as closer to the ground as possible
to increase the air path speed va and in turn the extracted power.

3.6 Conclusion
As a result of the research conducted, several contributions to the field of AWE and periodic
OCPs were made.

In a first line of work, a new model for safety conditions was proposed; this new equation
was proven to increase the power efficiency by a 3%.

In a second part, the importance of LICQ in periodic OCPs was discussed. In particular,
two different methods to overcome LICQ deficiency were described: the invariant stabilization
method, originally used by [12], and the alternative projection method. After comparing their
performance, three conclusions were drawn:

(i). Within the framework of the AWE kite, the invariant stabilization method is a more
erratic algorithm. In particular, it solves half as many problems as the projection
method.

(ii). Despite the projection method being a better algorithm, the quaternion formulation
seems to be ill-posed. Particularly, using the projection method, the quaternion model
could only solve one out of four OCPs.

(iii). The equations of motion are not stiff and explicit integrators perform better than
implicit ones.

In a third section, different dynamical models were examined: a first model based on
Euler angles, a second based on quaternions, and a third model using natural coordinates.
The target of this research was to assess which model is better for periodic OCPs within the
field of AWE. The conclusions of this experiment can be summarized as follows:

(i). Euler angles seem to be the fastest and most accurate implementation. In particular,
they are able to solve more than half of the proposed OCPs with computation times
that outperform the other two formulations. Their main drawback is that, since their
OCP formulation is highly nonlinear, they find local minima that are not as good as
natural coordinates solutions.

(ii). In contrast with Euler angles, natural coordinates were shown to be a slower and less
successful approach. In particular, they solved one out of four problems but with com-
putation times that were three times as higher as the ones in Euler angles. Nevertheless,
unlike the latter, their formulation is quite linear, and as a result, when they find a
solution, it is in many cases more efficient than the other two formulations.

(iii). Finally, the quaternion formulation did not show any clear advantage; particularly, it
was the most unsuccessful implementation by solving one of 7 cases, with computation
times that were worse than Euler angles, and with power efficiencies that were worse
than natural coordinates.

58 Chapter 3. Offline Generation of Optimal Trajectories

Finally, in a last section, the properties of flight topologies were studied. In particular, in
a first part, it was proved that topology constraints are not a requirement in order to obtain
the desired lemniscates. Moreover, in a second part, it was proved that lemniscates are not
the only feasible flight topology; in particular, it was demonstrated that circular trajectories
can also produce power efficient flights with a high ηLoyd factor while simultaneously avoiding
tether twist.

59

Part II

Nonlinear Model Predictive
Control

61

Chapter 4

Model Predictive Control in a
Nutshell

Feedback control theory encompasses two main branches of research: classical feedback control
and state space control, with NMPC falling within the latter. In the coming sections, it will be
explained the difference between these two approaches, the disadvantages of classical control
theory with respect to NMPC and why the latter is in general a better control strategy.
Finally, the theory of NMPC and its application in real time systems will be described.

Before continuing, I would like to remark that Section 4.2.2-4.2.4 and 4.3 are greatly
based and inspired by [28, Chapters 18-19]. The main reasons behind this decision are two:

(i). [28] is a textbook that is currently being written by my supervisor Prof. Dr. Moritz
Diehl on topics related to my Master’s education. As a result, it has been a valuable
asset for the development and implementation of the NMPC.

(ii). During my thesis research I have also collaborated in this work by collecting and re-
editing nearly all of the exercises of the book, Latex editing of text and formulas
and suggesting and implementing changes in the organization of the chapters. As
a consequence, I became very familiar with the topic and it has been a very useful
resource for learning NMPC.

No implicit reference will be given further on for [28], but the similarity between the
mentioned sections and the cited book should be kept in mind.

4.1 Classical Feedback Control Limitations
Classical feedback control is a set of algorithms, which have a very distinctive working prin-
ciple, used to control dynamical systems. In particular, their key feature is that they use
the Laplace transform to model the system in the frequency domain in order to control it
by means of its transfer function. An area where they are widely used is single input single
output (SISO) linear systems. A famous example of this type of controllers is the well known
PID controller.

The main goal is to control a system output to follow a given reference. To do so, they
observe the specific output, they compute the error e between the output and the reference
and they feed this error to the controller, which then selects the appropriate inputs to bring
the output closer to the reference. Figure 4.1 illustrates a classic control scheme.

Despite being very popular in the past, due to the increase of available computational
power in recent years, the use of these techniques has decayed in favor of the more modern
space state control. This decline is better understood when looking at the set of disadvantages

62 Chapter 4. Model Predictive Control in a Nutshell

Controller System

Disturbances

Input

Measurements

Reference Error Output
−

Figure 4.1: Schematic of a simple feedback.

and limitations that classical feedback control has always faced and which space state control
can easily overcome:

(i). In general, they are not well suited for controlling multiple input multiple output
(MIMO) systems. In particular, to control a MIMO system classical control theory
could use a single controller per output. Nevertheless, if a single input influences sev-
eral outputs (quite common scenario in a regular system), more than one controller
will be trying to change the same input, which in turn leads to a scenario where there
is no clear input control law. By contrast, modern approaches permit the evaluation
of single objective function with the goal of combining different outputs in a single
function.

(ii). Classic techniques use past information, i.e. the events that have already occurred. On
the other hand, new modern algorithms such as NMPC make use of the dynamical
model in order to predict the system behavior and optimize the controls using this
predicted information; as a result, they are able to anticipate future disturbances as
long as they can be modeled.

(iii). Classic control theory is in many cases limited to linear systems, which restraints the
application of classic controller to a very specific set of applications. On the other hand,
state space control models the dynamics of the system and can deal with the nonlinear
case.

(iv). State space approaches provide a full representation of the state and its time evolution,
whereas classic control theory does not. All this extra information removes several
limits of classical control theory, expanding the area of application to a broader field.

(v). Space state control has a very natural way of implementing constraints, allowing the
constraints to be implemented not only in the inputs, but also in the outputs and states.
By contrast, in classic controllers the constraints might be imposed to the inputs by
limiters, but even then, it does not prevent the controller from trying to select infeasible
values in the inputs.

A very simple way of interpreting these differences can be seen with the analogy proposed
by Camacho and Bordons in [18] when comparing PID with NMPC. NMPC can be thought
as the natural way of driving a car looking trough the front window: the driver has a goal for
the car and controls the car to achieve this goal by planning ahead the car behavior. To do
so, he looks trough the front window what it is ahead of him and takes decisions accordingly.

4.2. NMPC Theory 63

The goal can involve several variables, e.g. fuel consumption, safety constraints, traffic rules,
end destination, etc., but the driver knows how to find the balance between them and take
decisions accordingly, e.g. accelerate/decelerate, choose route, etc. By contrast, PID can be
though as driving the car looking through the rear mirror, taking only information from the
past while trying to achieve a single objective, e.g. keep constant velocity.

Considering all these advantages, the aim of this thesis is to substitute the classical
controller of the Skysails AWE kite by a NMPC, and then, test and compare their relative
performance. A second motivation for this substitution is the fact that tracking optimal
trajectories can only be achieved by planning ahead the kite behavior. In order to accomplish
that, predictive controller is required.

4.2 NMPC Theory
As it has been already introduced in the previous sections, NMPC is a feedback predictive
control algorithm which, by means of a system dynamical model, anticipates the future
and selects the optimal control policy to optimize a given cost function. Its basic working
principle is to solve an OCP at each time iteration so that an optimal policy is obtained while
ensuring the validity of the dynamical model as well as some other constraints. In particular,
the controller strategy can be described as follows:

(i). First, the controller receives information regarding the current system state x̄0. This
information can be obtained by means of an observer, e.g. a Kalman filter or a moving
horizon estimation (MHE).

(ii). Then, it solves an OCP in order to obtain the optimal control policy U∗ that optimizes
a given cost function J(U,X), where the decision variables U = (u0, u1, . . . , uN−1) and
X = (x0, x1, . . . , xN) are defined for a predictive time horizon T in a discretized time
grid 0 = t0 <t1 <t2 <. . . < tN = T of N + 1 points.

(iii). The OCP includes dynamical constraints to ensure that the system evolution is feasible.
It also imposes the initial constraint x0 = x̄0 to ensure that the observation of the
current state is taken into account. Finally, path constraints to ensure safety conditions
or some other constraint might be also enforced.

(iv). Once the OCP is solved, the algorithm applies the first optimal control u∗0 to the system,
it moves the optimization horizon a time step forward, observes the new state x̄0 and
repeats the procedure.

The above scheme is illustrated in Algorithm 1:

Algorithm 1 NMPC

1: Input: OCP initial guess X0 = (x0, . . . , xN), U0 = (u0, . . . , uN−1).
2: while stop do
3: x̄0 ← Observer()
4: U∗, X∗ ← Solver(x̄0, U0, X0)
5: Send_to_system(u∗0)
6: U0, X0 ← Next_Initial_Guess(U∗, X∗)
7: end while

64 Chapter 4. Model Predictive Control in a Nutshell

When designing the NMPC, it is important to consider that the controller time step ∆t = T
N

is usually defined for the specific application of the NMPC. As a result, T and N have
to be small enough to ensure that, with the available computational power, the NMPC
computation time per iteration is smaller that ∆t. Since N and T are interrelated, both are
indistinctly referred to as the predictive horizon. A simple example of a NMPC can be seen
in Figure 4.2, where four consecutive iterations of the algorithm are shown.

t0
∆t

5 tN
∆t

15
−2

−1

0

1
N =

T

∆t

x̄0

u∗0

k

Xtrack

X

U

(a) t0 = 0

0 t0
∆t

5 10 tN
∆t

15
−2

−1

0

1
N =

T

∆t

x̄0

u∗0

k

Xtrack

X

U

(b) t0 = ∆t

0 t0
∆t

5 10 tN
∆t

15
−2

−1

0

1
N =

T

∆t

u∗0

x̄0

k

Xtrack

X

U

(c) t0 = 2∆t

0 t0
∆t

5 10 tN
∆t

15
−2

−1

0

1
N =

T

∆t

x̄0

u∗0

k

Xtrack

X

U

(d) t0 = 3∆t

Figure 4.2: NMPC evolution in 4 consecutive time steps

In this particular case, the NMPC solves at each iteration the following OCP:

minimize
X,U

N−1∑
k=0

‖xtrack,k − xk‖2

subject to x0 − x̄0 = 0,

Φk(xk, uk)− xk+1 = 0, k = 0, . . . , N − 1,

umin ≤ uk ≤ umax, k = 0, . . . , N − 1.

4.2. NMPC Theory 65

Since the cost function is the least squares error between the system state X and a tracking
reference trajectory Xtrack = (xtrack,0, . . . , xtrack,N), it can be seen how the time horizon T
moves a time step ahead at each iteration, and while doing so, the system state X converges
towards the tracking trajectory Xtrack.

As stated by [18], NMPC presents a set of advantages over other control methods, among
which, seven of them are really remarkable :

(i). It is relatively easy to understand due to the intuitive nature of the NMPC concepts
making it very attractive to people with limited knowledge on control theory.

(ii). It can be used to control a broad range of systems, those with very simple dynamics
but also others with very complicate equation of motions and constraints.

(iii). Multivariable systems can be easily controlled.

(iv). It includes feedforward control in a natural way to make up for known disturbances
that can be modeled or measured.

(v). It can easily implement system constraints.

(vi). Because of being based on basic principles, it is an open methodology that can be
extended in the future.

4.2.1 Economic Versus Tracking NMPC
As stated in the introduction, NMPC does not refer to a single algorithm, but instead, to a
family of control algorithms with a common structure. As a result, to understand better this
set of algorithms, three very generic NMPC schemes differing in their objective functions will
be explained.

Standard (or classic) NMPC is characterized for using as a cost function the sum of the
least squares errors between the system states along the predictive horizon and a selected
steady state (xs, us). As a result, the OCP that the classic NMPC scheme solves at each
iteration is given by:

minimize
X,U

N−1∑
k=0

(
‖xk − xs‖2Q + ‖uk − us‖2R

)
+ E(xN)

subject to x0 = x̄0,

xk+1 − Φk(xk, uk) = 0, k = 0, . . . , N − 1,

h(xk, uk) ≤ 0, k = 0, . . . , N − 1,

r(xN) = 0.

where Q > 0 and R > 0. Since there is plenty of theory available for the different variations
of classic NMPC [29], this topic will not be examined any further.

A second scheme of NMPC is the so-called tracking NMPC, where an optimal state tra-
jectory Xtrack and/or optimal control policy Utrack are precomputed offline, and then, tracked

66 Chapter 4. Model Predictive Control in a Nutshell

by means of NMPC. In particular, NMPC uses as a cost function the least squares error be-
tween the optimal and the predicted trajectory and the tracking reference trajectories Xtrack

and Utrack, which are usually obtained by means of an offline OCP. Given the trajectories
Xtrack = (xtrack,0, . . . , xtrack,N) and Utrack = (utrack,0, . . . , utrack,N−1), the tracking NMPC
scheme solves at every iteration the following problem:

minimize
X,U

N−1∑
k=0

(
‖xtrack,k − xk‖2Q + ‖utrack,k − uk‖2R

)
+ E (xN)

subject to x0 − x̄0 = 0,

Φk(xk, uk)− xk+1 = 0, k = 0, . . . , N − 1,

h(xk, uk) ≤ 0, k = 0, . . . , N − 1,

r (xN) ≤ 0,

where Q > 0 and R > 0. It is important to remark that standard NMPC is just a version
of tracking NMPC, and as a result, the latter is in many cases used to refer to the former in
the literature.

A third and more generic case is economic NMPC, where the objective function is the
sum of some economic stage cost l(xk, uk). As a result, the OCP that the NMPC solves at
each iteration can be expressed as:

minimize
X,U

N−1∑
i=0

l(xk, uk) + E(xN) (4.1a)

subject to x0 − x̄0 = 0, (4.1b)

Φk(xk, uk)− xk+1 = 0, k = 0, . . . , N − 1, (4.1c)

h(xk, uk) ≤ 0, k = 0, . . . , N − 1, (4.1d)

r (xN) ≤ 0. (4.1e)

Stability theory for economic NMPC is not as developed as for tracking NMPC and as a
result, tracking NMPC is a safer and more stable choice whenever it comes to real system
implementations. Therefore, despite using economic NMPC for maximizing the extracted
energy could be an implementation option, we instead decided to work with tracking NMPC
and offline computed optimal tracking trajectories. We expect that this choice will safeguard
the safety and stability of the system while still producing very good results in the system
efficiency.

4.2.2 Nominal Stability
Stability on the NMPC is a topic that has been studied for years. Diverse mathematical
proofs of stability have been obtained for some specific NMPC schemes. However and in
general, proving stability is a very hard and sometimes even impossible task, and in practice,

4.2. NMPC Theory 67

when NMPC is implemented in a real system, the easiest way to ensure stability is to test the
controller under real life conditions and tune the NMPC parameters to make it robust. This
task is usually realized at the simulation level by means of modeling the disturbances and
mismatches of the real system. This avoids the unnecessary expenses and system breakdowns
while tuning the controller in the real system.

Due to the practical methodology to ensure robustness, this section does not aim at
proving or showing a general stability theory; instead, only a specific result in NMPC stability
will be stated in order to motivate a method for the NMPC initialization of the next section.
For an overview of the NMPC schemes with stability guarantee, [30] can be used as an
excellent reference source.

Theorem 4.1 (Nominal stability of steady state NMPC). Assume that:

• The dynamical system has a steady state (x̂, û), i.e. ẋ(x̂, û) = Φ(x̂, û) = 0, with (x̂, û)
being a feasible point of the problem.

• The NMPC uses as a stage cost the sum of the quadratic deviations from this steady
state, i.e. L(x, u) = (x− x̂)>Q(x− x̂) + (u− û)>R(u− û), with Q > 0 and R > 0.

• There is no end cost, i.e. E(xN) = 0.

• The end state is constrained to the steady state, i.e. xN = x̂.

• There are no model-plant mismatches.

Then, the value of the NMPC cost function is a Lyapunov function that decreases by at least
L(x̄0, u

∗(x̄0)) at each iteration, which in turn ensures the NMPC stability.

Proof. Assume that the NMPC starts at a point x̄0 and that the solution of the first iteration
is (x∗0, u

∗
0, x
∗
1, u
∗
1, . . . , x

∗
N−1, u

∗
N−1, x

∗
N). If u∗0 is applied to the system, the system evolves until

point x∗1 due to the lack of mismatches and disturbances.
Starting at x∗1 in the new iteration, the decision variable vector X defined by shifting the

previous solution one step backwards and adding the steady state at the end:

X0,new = (x∗1, u
∗
1, . . . , x

∗
N−1, u

∗
N−1, x

∗
N , û, x̂)

is not only a feasible point but it also improves the cost function with respect to the previous
iteration. This can be easily proved considering that by removing the first state and control
from the vector, the objective is decreased by an amount L(x̄0, u

∗(x̄0), and that the stage
cost of the added states L(x̂, û) is zero.

Finally, by starting the optimization problem at this value X0,new the objective can only
get better, and as a result, it can be stated that the cost function decreases by at least
L(x̄0, u

∗(x̄0)) in each iteration.

4.2.3 NMPC Initialization
It is important to consider that the optimization problems that NMPC solves at each iteration
are not independent from each other. As a result, a good NMPC implementation would
use information from previous iterations to obtain a better solution. The simplest way
to transfer information is considering that the solution of the previous NMPC iteration,
U∗ = (u∗0, . . . , u

∗
N−1), X∗ = (x∗0, . . . , x

∗
N), is a very good initialization guess X0, U0 of the

next initialization problem.

68 Chapter 4. Model Predictive Control in a Nutshell

An even better way to transfer information is to consider that, since the system moved a
time step into the future, a shifted version of U∗ and X∗ would actually represent a better
solution at the current time. This shifting is performed similarly as it was done for the
nominal stability guarantee, i.e. by removing the first value of U∗ and X∗ and adding a value
to the end:

X0 = (x∗1, . . . , x
∗
N , xnew)

U0 = (u∗1, . . . , u
∗
N−1, unew)

where xnew and unew can be chosen in different ways.
This concept is called shift initialization and it is motivated by the principle of optimality

of subarcs and its application on receding horizon NMPC without disturbances: since the
horizon N (and in turn the size of X and U) decreases by a time step at every iteration, if
the solution at iteration k is given by (x∗0, u

∗
0, x

∗
1, u

∗
1, . . . , x

∗
N−1, u

∗
N−1, x

∗
N), then, the

shifted vector (x∗1, u
∗
1, . . . , x

∗
N−1, u

∗
N−1, x

∗
N) is a solution of the NMPC at iteration k+ 1.

Bear in mind that at iteration k + 1 the system is at x∗1 due to the lack of disturbances.
In the case of moving horizon NMPC, i.e. N is constant, the principle of optimality of

subarcs can not be strictly used and the selection of the appended values at the end plays
an important role. A common policy is to copy the last control value, i.e. uN = uN−1, or to
use û in the case of steady state control, and then simulate the system from x∗N to obtain a
initialization of xN+1.

As proved in [31], shift initialization does not always provide an advantage when com-
pared with directly copying the old solution from the previous iteration. Nevertheless, in
the particular case of periodic tracking NMPC, shift initialization has been proved to have
a significant contribution as showed in [32].

4.2.4 Real-Time Optimization
As it has been already described before, special algorithms and methods are required to cope
with the timing and computational requirements of NMPC. This section will give a brief
overview of some ideas, but it would be in Section 4.3 when some of them will be described
in more detail.

• Offline computations: in order to save online computational resources, some parts of
the optimization problem can be computed offline. In particular, Hessian and Jacobian
matrices, reference trajectories and compiled computer code are among common entities
that are precomputed offline.

• Iterate before convergence: the idea is to start the optimization problem of the next
iteration without fully convergence at the current iteration, and then use the shifted
solution of the current iteration as initialization guess for the next one. More details
will be given in Section 4.3.

• Delay compensation: if the computation time is too long, the NMPC does not use the
current state as initial point but instead a predictive state of where the system will be
after the NMPC computations.

• Phase division: in each iteration, the computations are divided into two phases. In
the preparation phase, the NMPC performs heavy computation while it waits for the
observer to provided an estimate of the current state x0. In a second phase called

4.3. Real Time Iteration Scheme 69

feedback phase, the NMPC computes a quick solution using the precomputations and
the state estimation.

4.3 Real Time Iteration Scheme
When the NMPC initialization was explained in the previous section, it was assumed that
the system would evolve without disturbances. As a result, it was expected that, at the
beginning of each iteration, the system would be located at the point predicted by the
previous iteration when applying the first optimal control u∗0. In reality, disturbances occur
between two iterations and the current initial point x̄0 differs from the predicted one.

In order to model this disturbance, the initial point x0 is included as a problem variable
and the equation x0−x̄0 = 0 is added as a constraint (as in Equation (4.1b)). Then, modeling
x̄0 as a parameter that the observer has to estimate, each NMPC iteration can be seen as a
case of parametric nonlinear program (pNLP) with variables Y = (X,U) and parameter x̄0:

pNLP(x̄0) : minimize
Y

F (Y)

subject to G(x̄0, Y) = 0,

H(Y) ≤ 0.

(4.2)

Initial Value Embedding

Recalling Definition 2.4, the Lagrangian function L(Y, λ, µ) of Problem (4.2) is defined as:

L(Y, λ, µ) = F (Y) +G(x̄0, Y)>λ+H(Y)>µ (4.3)

where λ and µ are the so-called Lagrange multipliers. Furthermore, considering Theorem
2.2, if Y ∗ is the optimal solution of Problem (4.2) it has to satisfy the KKT conditions:

∇Y L(Y ∗, λ∗, µ∗) = 0, (4.4a)
G(x̄0, Y

∗) = 0, (4.4b)
H(Y ∗) ≤ 0, (4.4c)

µ∗ ≥ 0, (4.4d)
Hk(Y ∗) µ∗k = 0, k = 1, . . . , nH . (4.4e)

When looking at Equation (4.1b) it can seen that x̄0 enters G linearly, and that as a
result, neither the Jacobian of G nor any other derivative are x̄0-dependent. The term initial
value embedding refers to this specific linear parameter dependence, and as it will be seen
in the next section, it will be the base of the path-following algorithms and the real time
iteration scheme.

Path-Following Methods

Regard W ∗(x̄0) =
(
Y ∗(x̄0), λ∗(x̄0), µ∗(x̄0)

)
as the solution manifold of Equations (4.4a)-

(4.4e) for different values of x̄0.

70 Chapter 4. Model Predictive Control in a Nutshell

In the case of having only equality constraints, the KKT conditions (4.4a)-(4.4b) can be
summarized as a root finding problem R(x̄0,W) = 0, and as a result, W ∗(x̄0) becomes a
smooth solution map at all the points where the KKT matrix ∂R

∂W is invertible.
In a real time optimization framework the last result means that, if a NMPC iteration

is solved with a parameter x̄0 and a solution W = W ∗(x̄0) is reached, a tangential predictor
W ′ for the new solution W ∗(x̄′0) can be obtained by linearizing R(x̄0,W) = 0 at (x̄0,W).
In that case, x̄′0 and W ′ represent the parameter and solution at the next iteration and the
linearized root finding problem is given by:

R(x̄0,W) +
∂R

∂x̄0
(x̄0,W)(x̄′0 − x̄0) +

∂R

∂W
(x̄0,W)(W ′ −W) = 0.

Rearranging this last equation and considering that due to the initial value embedding:

(i). The dependence on the x̄0 derivatives can be omitted.

(ii). ∂R
∂x̄0

(W)(x̄′0 − x̄0) can be written R(x̄′0,W)−R(x̄0,W).

Then, W ′ is given by:

W ′ = W −
(
∂R

∂W
(W)

)−1

R(x̄0,W).

These algorithms to predict the optimal solution for successive NMPC iterations are
called path-following methods, and whenever the NMPC solves a equality constraint OCP
they represent a fast computation of successive solutions for real time optimization.

In the case of inequality constrained NMPC, Equation (4.4e) is non-smooth and the
previous approach is not that simple. There are two main approaches to this issue: one based
on interior point (IP) methods and a second one based on sequential quadratic programming
(SQP) algorithms.

Interior Point Path-Following Methods

IP methods solve the general KKT conditions by substituting the non-smooth equation (4.4e)
by a smooth approximation:

∇Y L(Y ∗, λ∗, µ∗) = 0,

G(x̄0, Y
∗) = 0,

Hk(Y ∗) µ∗k + τ = 0, k = 1, . . . , nH , τ > 0.

Since for small values of τ the problem above approximates the original one, the general idea
of IP solvers is to iteratively solve the smooth root finding problem for decreasing values of
τ .

In the framework of path following methods, if τ was constant, the above equations would
represent a parametric root finding problem R(x̄0,W) = 0 that would provide the solution
manifold W ∗(x̄′0). As a consequence, the theory from the previous section could be used to
obtain the tangential predictor W ′ at each iteration, and then, by reducing τ at every step,
the solution manifold would be expected to approximate better and better the real NMPC
solution.

The main drawback of this type of methods is that the tangential predictor is a very
bad approximation for small τ values at the points where the active set (set of inequality

4.3. Real Time Iteration Scheme 71

constraints holding with equality) changes. This problem can be seen in Figure 4.3 where
the solution manifold W ∗(x̄0) as a function of x̄0 is represented.

W∗

x̄0

(a) Linearizing at approximate solution

W∗

x̄0

(b) Linearizing at active set change

Figure 4.3: Tangential predictors for interior point method using a small τ [28].

Some approaches have been proposed to avoid this last issue [33, 34], nevertheless, in this
thesis we decided to rely on the methods presented in the next two sections as they have
a specific software environment for their implementation and they ensure a more accurate
tangential predictor.

SQP Path-Following Methods

The main issue with IP methods is that, as they try to solve a smooth root finding problem,
they have to approximate the KKT conditions, and as it has been shown, this approximation
is not good at the points where the active set changes.

A way to avoid the previous problem is to use directional derivatives of the solution
manifold [35, Thm 3.3.4] as tangential predictor. In the NMPC context, they are usually
referred to as generalized tangential predictors, and Figure 4.4b provides an example of them.

W∗

x̄0

(a) Linearizing at approximate solution

W∗

x̄0

(b) Linearizing at active set change

Figure 4.4: Generalized tangential predictors [28].

A practical algorithm using the above concept is proposed in [36]: given the current
solution guessW k for a parameter x̄0, the next solutionW k+1 for a parameter x̄′0 is obtained
as the solution of the following parametric quadratic programming (QP) problem:

pQP(x̄′0,W
k) : minimize

Y
∇F (Y k)>Y +

1

2
(Y − Y k)>∇2

Y L(Y k, λk, µk)(Y − Y k)

subject to G(x̄′0, Y
k) +∇G(Y k)>(Y − Y k) = 0,

H(Y k) +∇H(Y k)>(Y − Y k) ≤ 0.

(4.5)

72 Chapter 4. Model Predictive Control in a Nutshell

Where as proved in [36, Thm. 3.6] and illustrated in Figure 4.4b, when starting at the
solution W k = W ∗(x̄0) the above QP delivers the exact generalized tangential predictor.
Moreover, as shown in Figure 4.4a, when starting close to the solution or using a Hessian or
Jacobian approximation W k+1 is still a good predictor.

Considering the above, the idea behind this type of approaches is to solve a QP problem
at each iteration to obtain the predictor W ′. For the same reason, they are usually referred
to as SQP path-following methods.

Condensing

A specific technique to solve Problem 4.5 would be to use the so-called simultaneous approach
[28, Section 8.1.3] for discrete optimal control. The main idea would be to leave only the
controls U and the initial state x0 in the decision variable Y and substitute the states X
by some integration routine f(U, x0), so that as a result, the resulting parametric QP is a
condensed version of the original problem:

pQPcond(x̄′0,W
k) : minimize

U
fcondQP,k(x̄′0, U)

subject to r̄k + R̄x0

k x̄0 + R̄Uk U ≤ 0.

In real time optimization, the importance of this condensed QP relies on the fact that
if the vector U is not too large, there are dense QP solvers that can exploit this specific
structure and solve the QP very quickly at the same time that keep explicit expressions for
the parameter x0 and the first control u0 (needed for the NMPC feedback).

Real Time Iteration Scheme

The real-time iteration (RTI) scheme is a type of NMPC specifically designed for real time
computing first presented in [36, 37]. Its core features and concepts are based on all the
previously presented ideas and can be summarized as follows:

(i). The NMPC is implemented using a SQP approach with a Gauss-Newton Hessian ap-
proximation where at each iteration a single QP (as given by Equation 4.5) is solved.
As a result, only one system linearization is required per sampling time.

(ii). The NMPC is modeled using multiple shooting with full derivatives and condensing.

(iii). The generalized tangential predictor is used to correct for the mismatch between the
expected x0 and real initial state x̄0.

(iv). The algorithm is divided into a preparation phase, where the system linearization and
condensing are performed (heavy computations), and a feedback phase, where the single
condensed QP is solved. The preparation phase is usually performed while the con-
troller waits for the new initial state x̄0 and it is in general several orders of magnitude
larger than the feedback phase.

Figure 4.5 illustrates these concepts: on the left, the division between preparation and
feedback phase, and on the right, the solution representation for three iterations. From 4.5a

4.3. Real Time Iteration Scheme 73

-
time

preparation

feedback

s
tk−1

preparation

feedback

sx0(tk)

u0 (x0(tk))

tk

s
tk+1

s

(a) Division of one real-time iteration into prepa-
ration and feedback phase.

1

2

3W∗

x̄0

(b) Subsequent solution approximations

Figure 4.5: Real time iteration scheme [28].

it can be observed that thanks to the division in two phases, the control feedback to the
system occurs right after obtaining the new x̄0 value.

Considering the described features of the RTI scheme, the full NMPC algorithm using
this set of ideas can be depcited by the following algorithm:

Algorithm 2 Real Time Iteration NMPC

1: Input: initial guess X0 = (x0
0, . . . , x

0
N), U0 = (u0

0, . . . , u
0
N−1) and i = 0.

2: while stop do
3: Obtain system trajectory sensitivities required for linearization at the grid nodes.
4: Prepare the QP problem and condense it.
5: Wait for new current state x̄0.
6: Solve the QP and send the new control ui0 to the system.
7: Increment i and shift the initial guess Xi, U i for the next iteration.
8: end while

It is important to remark that error bounds and close loop stability of the RTI scheme
have been established for shrinking horizon problems [38] and for NMPC with shifted and
non-shifted initializations [39, 40].

The main drawback of the RTI scheme is that, in order to overcome the issues of the
conventional tangential predictor of IP methods, it has to use a more computationally costly
QP predictor. Due to this high QP cost in fast NMPC applications, a new technique called
online active set strategy was proposed by [41]. The idea is, based on the fact that the QP
solution depends affinely on x̄0 for constant active sets, to create some solution homotopy
that only changes when it crosses an active set boundary. The online active set strategy
is available in the QP solver package qpOASES [42], and will be used for our own NMPC
implementation.

75

Chapter 5

Controller Implementation

As stated in the introduction, one of the main contributions of this thesis is the development
of a kite controller to track optimal trajectories. Moreover, it has been explained that a
tracking NMPC approach using the RTI scheme would be an optimal choice for this particular
application.

As a result, this chapter will aim at providing the derivation of such a controller. In
particular, a software toolbox used for the implementation will be introduced in a first
section; then, in a second section, the different parts of the NMPC will be described; finally,
in the last two sections, a system simulation will be modeled and a small disturbance in the
form of a delay introduced.

It is important to note that this chapter will not cover test simulations, but instead, it
will focus on the NMPC implementation leaving the testing scenarios for the next chapter.

5.1 ACADO Toolbox
ACADO Toolbox is a C++ open-source package that provides a user-friendly environment
to work with different OCP algorithms. In particular, it implements a code generation tool
that helps with the design of RTI NMPC schemes (as given by Algorithm 2), and then, it
exports highly efficient C code for real-time optimal control [43]. Furthermore, it features a
MATLAB interface, highly accurate integrators optimized for real time optimization [44] as
well as the inclusion of qpOASES, the QP solver designed for implementing the active set
strategy. As a result, there is a series of clear advantages that makes ACADO the optimal
environment to perform our NMPC implementation:

• The NMPC algorithm can be designed, implemented and tested in a user-friendly
MATLAB environment.

• A full RTI scheme can be prototyped without having to worry about numerical errors.

• ACADO offers out of the box accurate integrators optimized for real time implemen-
tations.

• Easy interface with qpOASES for implementing the active set strategy.

• The RTI scheme can be exported in optimized C code that can later be used in the
real time controller of the Skysails system.

It is important to remark that the code generation tool might not be flexible enough
for every application; in particular, there are some limitations regarding the type of NMPC
scheme that can be implemented:

76 Chapter 5. Controller Implementation

• The objective function of the NMPC is limited to nonlinear least squares schemes
‖M(x)‖2.

• Since nonlinear constraints are linearized at each iteration and the RTI scheme does not
solve the problem until convergence, nonlinear path constraints do not always ensure
a good NMPC performance.

Nevertheless, since we want to implement tracking NMPC with boundary constraints, ACADO
and its code generation tool are an optimal choice for our application. The resultant NMPC
scheme is defined by:

minimize
X,U

N−1∑
k=0

(
‖xtrack,k − xk‖2Q + ‖utrack,k − uk‖2R

)
+ (xN − xtrack,N)>QN (xN − xtrack,N)

(5.1a)

subject to x0 − x̄0 = 0, (5.1b)

Φk(xk, uk)− xk+1 = 0, k = 0, . . . , N − 1, (5.1c)

xmin ≤ xk ≤ xmax, k = 0, . . . , N, (5.1d)

umin ≤ uk ≤ umax, k = 0, . . . , N − 1. (5.1e)

where:

X=
(
x0, · · · , xN

)
, Xtrack =

(
xtrack,0, · · · , xtrack,N

)
,

U =
(
u0, · · · , uN−1

)
, Utrack =

(
utrack,0, · · · , utrack,N−1

)
,

5.2 Base NMPC Implementation
In order to define a basic NMPC scheme that obeys (5.1), a set of different options have to
be selected and defined:

• The objective function, i.e. the weighting matrices Q, R and QN and the tracking
trajectory Xtrack, Utrack.

• The boundary conditions for the control and states.

• The predictive horizon N , T as well as the controller sampling time ∆t, which will
determine the required computational power.

• Specific algorithms that the NMPC will use: type of integrator, type of Hessian ap-
proximation, etc.

5.2.1 Objective Function
As it has been explained in the previous section, the NMPC has to continuously track periodic
optimal trajectories, Xopt = (xopt,0, . . . , xopt,M) and Uopt = (uopt,0, . . . , uopt,M−1), that are

5.2. Base NMPC Implementation 77

generated as the solution of a periodic OCP maximizing the power per cycle. Considering
that, due to the periodicity condition xopt,0 = xopt,M , the NMPC tracking trajectories at
time t0 = k∆t are defined as:

Xtrack = (xopt,i, . . . , xopt,j),

Utrack = (uopt,i, . . . , uopt,j−1),

with: i = k mod M,

j =
(

(i+N − 1) mod M
)

+ 1,

where i, j can be regarded as the indexes to go through the whole optimal trajectory one
step at a time and in a periodic fashion. The specific results for generating Xopt and Uopt can
be examined in Chapter 3 and no more details about them will be given here. Furthermore,
the selection of the weighting matrices will be explained in Section 5.2.4.

5.2.2 Dynamics
Considering that, in order to ensure safer flight conditions, the original controller imple-
mented a rate-limiter on the control δ, the system dynamics (originally defined by Equation
1.3 and 1.4) have to be extended in order to keep this safety limit in our NMPC approach.
In particular, the control δ has to be defined as a system state and its rate of change δ̇c as
a system control; then, by setting boundaries in δ̇c, the rate limiter of the original controller
can be replicated. As a result, the extended dynamics can be defined as:

ψ̇ = gkvaδ + ϕ̇ cosϑ,

ϕ̇ = − va

l sinϑ
sinψ,

ϑ̇ = −vw

l
sinϑ+

va

l
cosψ,

l̇ = vwinch,

δ̇ = δ̇c,

with: va = vwE cosϑ− l̇E,

(5.2)

where the two system parameters, E and gk, are chosen to be 5 and 0.01 respectively consider-
ing the results of a previous parameter estimation study. Moreover, the above dynamics were
discretized by means of a fourth order implicit Runge-Kutta integrator with four integration
steps.

5.2.3 Constraints
Considering that the NMPC scheme has to comply with the constraint structure given by
(5.1b)-(5.1e), it was decided that the only required path constraints were based on the safety
boundaries of the original controller formulation. In that approach, the controller imple-
mented upper and lower limits on the controls vwinch and δ as well as in the rate of δ.
Therefore, to imitate this behavior, only the following constraints are considered:

78 Chapter 5. Controller Implementation

δmin ≤ δ ≤ δmax,
vwinch,min ≤ vwinch ≤ vwinch,max,

δ̇c,min ≤ δ̇c ≤ δ̇c,max.

Furthermore, in order to select the bound values, we considered that in the original
formulation they were imposed due to hardware limitations and concluded as a result that
they should therefore be respected in our approach. The specific bound values are represented
in Table 5.1

Table 5.1: NMPC control bounds.

Boundary δmin δmax vwinch,min vwinch,max δ̇c,min δ̇c,max

Value −0.7 0.7 −5m/s 3.5m/s −0.6 0.6

It is important to remark that including only control bounds was a decision which was
initially taken in order to achieve a good trade-off between safety and NMPC simplicity.
Nevertheless, during the different tests that were performed, we always checked whether
including state constraints would improve the NMPC stability; however, since no remarkable
difference was ever observed, they were kept out of the algorithm.

Finally, the NMPC also defines the constraints to ensure correct dynamics. In particular,
it discretizes the dynamics by using a function per time step, Φk(t, xk, uk), that models the
state evolution after a time t when starting at xk and applying a constant control uk. As
a consequence, if the controller time step is ∆t, the NMPC dynamical constraints can be
defined as:

xk+1 = Φk(∆t, xk, uk). (5.3)

5.2.4 Numerical Algorithms and Parameters
In order to implement an NMPC controller, there is a set of numerical algorithms and
parameters that have to be selected. A clear example would be the already chosen qpOASES
as the QP solver for each NMPC iteration; however, the rest of them were not yet defined
so they will be described in this section.

Dynamics Discretization

In order to model the continuous dynamics given by (5.2) with an equivalent discrete formu-
lation Φk(t, xk, uk), and then, model the dynamical constraints defined by Equation 5.3, we
decided to use multiple shooting (Section 2.4) and integrate the state at each time interval
by a fourth order implicit Runge-Kutta integrator with four time steps.

The choice of an implicit integrator over an explicit one was done due to concerns on the
system stiffness. It is relevant to point out that, before taking this decision, the viability of
such implementation was studied taking into account the increase in computational power
demand of implicit methods with respect to explicit ones. For a better understanding on
implicit and explicit integrators, stiff dynamics and integration stability, [28, Chapter 11]
provides an excellent reference.

5.2. Base NMPC Implementation 79

Hessian Approximation

As it has been seen in Section 4.3, the solution of a continuous optimization problem is
determined by the KKT conditions. In particular, in order to solve the root finding problem
given by (4.4a)-(4.4e), the Hessian of the Lagrangian ∇2

Y L(Y, λ, µ) has to be computed.
However, Hessian computations suffer from a big drawback: second order derivatives are
very expensive to compute and they can prevent the controller from meeting the real time
requirements.

To overcome this limitation, some techniques to calculate the Hessian based on first order
derivatives have been developed. In particular, since the method to solve the KKT conditions
using the exact Hessian is known as Newton method, this set of approximations was called
quasi-Newton methods [45]. One of these methods, called the Gauss-Newton approximation
(GN), is used when the objective is a least-squares function, i.e. ‖R(Y)‖2W = ‖W 1/2R(Y)‖22,
and approximates the Hessian by:

∇2
Y L(Y, λ, µ) =

(
W 1/2∇YR(Y)

)(
W 1/2∇YR(Y)

)>
.

Since according to Equation (5.4a) the cost function can be written as the least squares
function ‖Y − Ytrack‖2P , the GN approach seems to be a good choice for approximating the
Hessian. In particular, considering GN, the Hessian approximation is described by:

∇2
Y L(Y, λ, µ) =

(
P 1/2∇Y (Y − Ytrack)

)(
P 1/2∇Y (Y − Ytrack)

)>
=
(
P 1/2I

)(
P 1/2I

)>
= P.

Furthermore, in order to obtain a more robust approximation, the Levenberg-Marquardt
approximation [46] was included:

∇2
Y L(Y, λ, µ) = P + αI,

where αI is a regularization term to ensure positive definiteness in case the Hessian is ill
posed. For the NMPC, α was chosen to be 10−6.

Predictive Horizon and Time Step

The most critical parameters to ensure feasibility of a real time implementation are the
predictive horizon N,T and the controller time step ∆t.

Since the current Skysails controller, observer and communication protocols are already
implemented with a time interval of 100ms, the NMPC had to stick to this timing and
make sure that the predictive horizon was short enough to make ∆t = 100ms a feasible
implementation.

Considering that at 10m/s the kite needs about 6 s to perform a half lemniscate cycle,
we decided to use T = 6 s as the predictive horizon; in particular, it was regarded that this
period was long enough to ensure system stability and account for enough future behavior,
but also short enough to achieve a real time implementation. As a result, if T is chosen to
be 6 s and ∆t is required to be 100ms, the number of points of the horizon has to be selected
as N = 60.

Considering the above choice, a first test result was performed and it was observed that
the NMPC computation time per iteration tc was roughly 10-20 times smaller than ∆t.
Therefore, it was concluded that the selected T and N were small enough.

80 Chapter 5. Controller Implementation

Weighting Matrices

A second set of critical parameters are the weighting matrices Q,R and QN . In order to
model them, their two main functionalities have to be considered:

• The weighting matrices have to normalize the different errors. Whenever minimizing
the norm of a vector which has elements with different dimensions and/or units, all the
vector quantities should be normalized.

• Once the values are within the same range, the weights can be modified to increase the
importance of a variable in the tracking problem.

Considering these two weighting matrices purposes, Q and R can be computed in two steps:

Q =

1
σ2(ψ)

1
σ2(ϕ)

1
σ2(ϑ)

1
σ2(l)

1
σ2(δ)

︸ ︷︷ ︸

Q1

wψ

wϕ

wϑ

wl

wδ

︸ ︷︷ ︸

Q2

,

R =

[
1

σ2(vwinch)
1

σ2(δ̇)

]
︸ ︷︷ ︸

R1

[
wvwinch

wδ̇

]
︸ ︷︷ ︸

R2

.

As it can be seen from the above equation, Q1 and R1 are obtained as a first step to
perform the normalization; in particular, they are computed as diagonal matrices with the
diagonal elements equal to the inverse of the variance of each tracking variable; as a result,
since the tracking reference trajectory is constant, they can be set at the beginning and not
be modified. Considering the specific values of the tracking reference trajectory, they are
defined by:

Q1 = diag(0.4650, 1.7972, 2.7055, 0.0004, 14.2066), R1 = diag(0.1169, 9.5951).

On the other hand, Q2 and R2 set the relative weight of each state and control; thus,
they will be the matrices used for tuning the NMPC and we will refer to them whenever the
weighting matrices should be modified. Considering that the state tracking is more important
than following optimal controls, the matrices are initialized as:

Q2 = diag(1, 1, 1, 1, 0.001), R2 = diag(0.001, 0.001).

In contrast with Q and R, selecting the matrix QN might be a more critical step: since it
penalizes the last state xN , using a big enough penalty might ensure that a steady point is
reached at the end of the horizon, convergence is improved and stability increased; however,
on the other hand, too big values on QN might also result in very small penalties on the
other states and controls and lead to a bad NMPC performance. In theory, as shown in [32],
QN (t) should be a time dependent matrix that is computed from a time periodic differential
Riccati equation. In this particular case, this approach would mean linearize the system
dynamics at each of the points (xopt,k, uopt,k) of the periodic optimal trajectory, and then,

5.3. System Simulator 81

use these linearized systems to compute the matrices QN (k∆t) = Pk as the solution of
the periodic differential Riccati equation. Ideally, this approach should increase the system
stability and robustness; however, due to the long horizon N = 60, it was observed that
selecting QN (k∆t) = Pk or selecting QN (k∆t) = QN = Q had no real repercussion in the
performance of the NMPC; as a result and for the sake of simplicity, we opted for the latter
approach QN = Q for defining the NMPC weighting matrix.

5.2.5 Formulation
Considering the algorithms and parameters defined in the previous section, the OCP that
the NMPC solves at each time iteration is represented by:

minimize
Y

‖Y − Ytrack‖2P (5.4a)

subject to Φk(∆t, xk, uk)− xk+1 = 0, k = 0, . . . , N − 1, (5.4b)
vwinch,min ≤ vwinch,k ≤ vwinch,max, k = 0, . . . , N − 1, (5.4c)

δ̇c,min ≤ δ̇c,k ≤ δ̇c,max, k = 0, . . . , N − 1, (5.4d)
δmin ≤ δk ≤ δmax, k = 0, . . . , N, (5.4e)
x0 − x̄0 = 0, (5.4f)

where:

Y =
(
X,U

)
, Ytrack =

(
Xtrack, Utrack

)
X=

(
x0, · · · , xN

)
, Xtrack =

(
xtrack,0, · · · , xtrack,N

)
,

U =
(
u0, · · · , uN−1

)
, Utrack =

(
utrack,0, · · · , utrack,N−1

)
,

xk=
[
ψk, ϕk, ϑk, lk, δk

]>
, uk =

[
δ̇k, vwinch,k

]>
,

P = diag
(
Q, Q, · · ·︸︷︷︸

(N−4)×Q
, Q, QN , R, · · ·︸︷︷︸

(N−3)×R
, R
)
.

5.3 System Simulator
In order to test and tune the NMPC, we implemented a system simulator that at each time
step receives from the NMPC the optimal control u∗0, simulates the system with u∗0 and
finally sends back the new current state x̄0 to the NMPC. Moreover, in order to test the
NMPC against real life conditions, in subsequent sections of Chapter 6 this simulator will be
expanded by including the two main sources of disturbances:

(i). A NMPC model lacking some real life effects.

(ii). An observer that provides an imperfect estimation of the current state.

5.3.1 First Simulation Results
As a first necessary step to test whether the numerical algorithm, the NMPC code and
the interface between simulator and controller were correctly implemented, an experiment
without simulation of disturbances was conducted.

82 Chapter 5. Controller Implementation

In particular, the NMPC was set to track the optimal trajectories obtained for vw =
10m/s using a simulator with the same wind speed. The results of this experiment are de-
picted in Figure 5.1: since the NMPC perfectly tracks the reference trajectories of the four
system states ψ, ϕ, ϑ and l (the difference between the reference and the NMPC trajecto-
ries can not be distinguished), it can be inferred that the implementation of the numerical
algorithms is correct and proceed to the next sections where a robust NMPC will be designed.

0 5 10 15 20 25 30 35 40 45 50
−4

−2
0

2

Time [s]

ψ
[r
ad

] NMPC
Reference

0 5 10 15 20 25 30 35 40 45 50

−1

0

1

Time [s]

ϕ
[r
ad

] NMPC
Reference

0 5 10 15 20 25 30 35 40 45 50
0.2

0.4

0.6

Time [s]

ϑ
[r
ad

] NMPC
Reference

0 5 10 15 20 25 30 35 40 45 50

200

250

300

Time [s]

l
[m

]

NMPC
Reference

Figure 5.1: First NMPC test using a perfect observer.

5.3.2 Evaluation Metrics
Considering that in subsequent sections the NMPC will be simulated against several distur-
bances, it is necessary to define here a set of different metrics that will assess the controller
performance when facing these perturbations; in particular, the R2 will be defined as a
measure of the tracking quality and the Loyd factor ηLoyd as a power efficiency indicator.

R2 Goodness of Fit

Given a predefined trajectory Vpre, the R2-goodness of fit of another trajectory V with respect
to Vpre is defined as:

R2 =

(
1− ‖Y − Ypre‖2

‖Ypre‖2
)
· 100. (5.5)

5.4. Control Delay 83

As its name indicates, this metric is in general used to assess the fitting performance of
some algorithm. In our specific case, we intend to use it in order to measure the tracking
performance of the NMPC by measuring the goodness of fit between the tracking reference
states ψtrack, ϕtrack, ϑtrack and ltrack and the NMPC-driven states ψ, ϕ, ϑ and l. However,
since the trajectories of each of these four states have different ranges of values, all the
trajectory vectors have to be normalized in order to have a meaningful indicator of the fit:

ψ′ =
ψ

µ|ψ|
, ϕ′ =

ϕ

µ|ϕ|
, ϑ′ =

ϑ

µ|ϑ|
, l′ =

l

µ|l|
,

ψ′track =
ψtrack

µ|ψ|
, ϕ′track =

ϕtrack

µ|ϕ|
, ϑ′track =

ϑtrack

µ|ϑ|
, l′track =

ltrack

µ|l|
,

with µ|γ| representing the mean of the absolute value of the trajectory γtrack.
Once the values are normalized, V = (ψ′, ϕ′, ϑ′, l′) and Vpre = (ψ′track, ϕ

′
track, ϑ

′
track, l

′
ref)

can be defined, and then, Equation (5.5) can be directly used to provide a general indicator
of how much the NMPC trajectory differs from the optimal one.

Loyd Factor

The Loyd factor ηLoyd, which was already defined in Equation (1.2), is an indicator of how
much power the system is harvesting compared to an ideal maximum power. In the following
sections, this metric will be used in order to quantify the NMPC efficiency. In particular, in
order to do a meaningful comparison, two previously obtained ηLoyd should be recalled:

(i). The 35.3% efficiency of the optimal tracking trajectory.

(ii). The ηLoyd of the original Skysails controller which was approximately 18%.

It is important to remark that, in order to avoid local effects of a single flight kite period,
these indicators will be computed using a test flight of 10000 time points, which is roughly
equivalent to 8-9 flight periods.

5.4 Control Delay
An assumption done in order to derive the equations of motion given by (5.2) was to assume
that the control δ would modify the system dynamics right after it was selected; nevertheless,
in real life experiments it has been observed that the kite reacts to the control δ with a lag
of approximately 0.5 s.

Since in our NMPC framework half second retardment is equivalent to a delay of 5 control
actions, it is expected that such a delay might have the potential to make the controller
unstable. As a result, in order to test how such a mismatch affects the stability of the
NMPC, the option to delay the controls δ by any delay d was implemented in the simulator.

Figure 5.2 and Table 5.2 depicts the results of testing the NMPC against a 0.5 s delay;
it can be observed that, despite not crashing the kite, the delay has the potential to make
the NMPC unstable and unable to track the optimal trajectories. On top of that, it has
to be considered that, so far, no disturbances were introduced, therefore, in the event of
having some additional real perturbations, it is quite likely that the controller would become
unstable and the kite would crash.

84 Chapter 5. Controller Implementation

0 20 40 60 80 100 120
−4

−2

0

2

4

Time [s]

ψ
[r
ad

]

NMPC
Reference

0 20 40 60 80 100 120

−1

0

1

Time [s]

ϕ
[r
ad

]

NMPC
Reference

0 20 40 60 80 100 120
0

0.5

1

1.5

Time [s]

ϑ
[r
ad

]

NMPC
Reference

0 20 40 60 80 100 120

200

250

300

Time [s]

l
[m

]

NMPC
Reference

Figure 5.2: NMPC tracking performance when facing a 0.5 s delay on δ.

Table 5.2: NMPC metrics considering a δ delay of half second.

R2 ηLoyd

32.88% 30.21%

As a final note, it is important to remark that a dynamic delay is ultimately a type of
real life disturbance; as a result, it could be argued that the best place for its discussion is in
Chapter 6, where all the other known disturbances will be covered. Nevertheless, since the
dynamic delay will be explicitly modeled within the NMPC, it was decided that discussing
it in this chapter, together with the NMPC implementation, was more sensible.

5.4.1 Delay Differential Equation
In order to solve the previous issue, we decided to model the delay as part of the kite dynamics
by using a delay differential equation (DDE) [47, 48].

In a general ODE or partial differential equation (PDE), the rate of change ṡ(t) of any
state s(t) at time t can only depend on variables at the same time point t; by contrast, DDEs
can model systems where the rate of change ṡ(t) depends on the state values at prior times.
A general DDE formulation is given by:

ṡ(t) = Φ(t, s(t), st), with: st = {s(τ) : τ ≤ t}.
The main problem of DDEs is that, like PDEs, some of their variables are infinite dimen-

sional. In order to confront this issue, the dynamics of the infinite dimensional variable st
should be first modeled using a PDE, and then, a PDE specific algorithm should be used
to discretize st at several time nodes in the past and obtain a set of ODEs that model the
dynamics of st at these discretized time nodes.

5.4. Control Delay 85

In particular, in order to model the delay with a PDE, the time delay shall be regarded
as a pipe flow, where the position inside the pipe represents a specific time in the past and
the flow at that location the state at that specific time. Then, in order to model a delay that
varies between [0, d], i.e. (t − τ) ∈ [0, d], a variable z ∈ [0, d] should be used to model the
position inside the pipe (the time in the past) and a second variable v(z, t) to represent the
flow within the pipe (the state at that past time). Then, the desired variable st = s(τ) is
equal to v(t− τ, t) and its dynamics are obtained by solving the following PDE:

∂v

∂t
= −1

d

∂v

∂z
. (5.6)

The variable v(z, t), which represents the state s at a time point in the past (t−z), can be
regarded as the continuous past memory of the state s flowing backwards in the pipe of time;
as a result, the entrance of the pipe would represent the state s at time t, i.e. v(0, t) = s(t),
and the output would be state at some point in past t− d, i.e. v(d, t) = s(t− d), where d is
the maximum time delay.

To include and solve Equation (5.6) within the dynamical equation of motions, the method
of lines (MOL) [49] for PDEs have to be used. The main conceptual idea of MOL is based
on a three steps algorithms:

(i). In a first step, all the continuous states except one are discretized. The standard
convection in PDEs is to discretize the spatial derivatives and keep the time derivatives
as continuous functions.

(ii). Then, in a second step, MOL uses algebraic approximations to model the spatial deriva-
tives of these discretized variables.

(iii). Finally, the result of this procedure is a system of ODEs that approximates the original
PDE at discrete nodes and which can be easily integrated with modern ODE algorithms.

In the specific case of Equation (5.6), the described procedure can be implemented by
first, discretizing the state v(z, t) in a set of m+ 1 nodes, V (t) = [v0(t), . . . , vm(t)]>, equally
separated by a distance d

m ; then, by approximating the spatial derivative v̇k(t) to generate
the system of ODEs. In particular, an algebraic approximation for such derivatives is given
by finite differences as [47]:

v̇k(t) ≈ −vk − vk−1

∆z
= −vk − vk−1

d/m
., k = 1, . . .m,

where, in order to obtain the missing ODE for v̇0(t), the condition ṡ(t) = v̇0(t) can be used
so that:

ṡ(t) = v̇0(t) ≈ Φ(t, s(t), V (t)).

The above equations represent the system of ODEs that model the time evolution of the states
at different time points in the past, and as a consequence, if including them as part of the
NMPC dynamics, delayed values of any state or control become available to the controller.

5.4.2 DDE Implementation
Regard the system dynamics defined by Equation (5.2) but with a delay d on the actuation
δ:

86 Chapter 5. Controller Implementation

ψ̇(t) = gkvaδ(t− d) + ϕ̇(t) cosϑ(t),

ϕ̇(t) = − va(t)

l(t) sinϑ(t)
sinψ(t),

ϑ̇(t) = −vw(t)

l(t)
sinϑ(t) +

va(t)

l(t)
cosψ(t),

l̇(t) = vwinch(t),

δ̇(t) = δ̇c(t),

with: va(t) = vw(t)E cosϑ(t)− l̇(t)E.
Considering the theory of DDEs described above, this system can be easily approximated

by the following system of ODEs:

ψ̇(t) = gkvaδm(t) + ϕ̇(t) cosϑ(t),

ϕ̇(t) = − va(t)

l(t) sinϑ(t)
sinψ(t),

ϑ̇(t) = −vw(t)

l(t)
sinϑ(t) +

va(t)

l(t)
cosψ(t),

l̇(t) = vwinch(t),

δ̇(t) = δ̇c(t),

δ̇1(t) = −δ1(t)− δ(t)
d/m

,

δ̇2(t) = −δ2(t)− δ1(t)

d/m
,

... =
...

δ̇m(t) = −δm(t)− δm−1(t)

d/m
,

with: va(t) = vw(t)E cosϑ(t)− l̇(t)E.
In order to perform a first test, we selected m = 6 to implement the above model, and

then, the controller was tested. The results of such an experiment can be seen in Figure 5.3
and Table 5.3, where as before, the table shows the results of a 9-periods flight and the figure
represents one of these periods.

Table 5.3: Performance of a δ delay using a DDE.

R2 ηLoyd

98.59 33.78

By evaluating the above results a main conclusion can be drawn: modeling the delay
by extending the dynamics with a DDE stabilizes the NMPC and leads to nearly the same
performance as if the delay was non-existent; in particular, this is an excellent result since it
practically removes every delay effects from the controller.

5.4. Control Delay 87

0 10 20 30 40 50 60 70 80 90 100 110 120
−4
−2

0
2
4

Time [s]

ψ
[r
ad

] NMPC
Reference

0 10 20 30 40 50 60 70 80 90 100 110 120

−1

0

1

Time [s]

ϕ
[r
ad

] NMPC
Reference

0 10 20 30 40 50 60 70 80 90 100 110 120
0

0.5
1

1.5
2

Time [s]

ϑ
[r
ad

] NMPC
Reference

0 10 20 30 40 50 60 70 80 90 100 110 120

200

250

300

Time [s]

l
[m

] NMPC
Reference

Figure 5.3: NMPC with 0.5 s delay on δ and with the delay modeled by a DDE.

DDE Complexity

A very critical step when designed the DDE extension is to select the right number m of
states δk: a high number leads to a higher accuracy of the model but at the same time it
can make the NMPC computation very expensive; in order to choose the optimal number of
extra states for our specific application, the NMPC performance was compared for different
m values by means of the R2 goodness of fit and the computation time per iteration tc. From
Figure 5.4 and Table 5.4 it can be observed that the optimal value for m is around 6: higher
values would make tc more expensive without improving the fitting and smaller values would
decrease the fitting performance; as a result, m = 6 was chosen for our application.

Table 5.4: NMPC performance as a function of the number m of extra states δk.

m 2 3 4 5 6 7 8 10

R2 [%] 95.31 97.05 97.97 98.38 98.59 98.69 98.71 98.66

tc[ms] 5.2 5.1 6.2 6.2 6.3 7.5 9.2 11.6

88 Chapter 5. Controller Implementation

2 3 4 5 6 7 8 9 10

5

10

15

Number of states δk

t c
[m

s]

96

98

100

R
2
[%

]

Time per iteration
R2

Figure 5.4: NMPC metrics as a function of m.

5.4.3 Delay Mismatch
When analyzing the delay effect in the previous sections it was assumed to be deterministic
and equal to 0.5 s; however, in a real flight scenario, the nature of the delay and how it might
affect to the total delay duration have to be considered. In particular, it should be regarded
that the delay appears as the combination of two different effects:

(i). Due to hardware limitations, a deterministic communication delay of 0.2 s is present.

(ii). A second delay is produced due to aerodynamics effects; in particular, this lag is not
constant but might achieve a maximum value of 0.3 s and a minimum of 0.1 s.

As a result, since a real delay will oscillate between 0.3 s and 0.5 s, the effects of this variation
must be studied.

Table 5.5 illustrates the results of controlling a system with a 0.3 s delay that is modeled
within the NMPC as 0.5 s; by comparison with Table 5.3 it can be observed that, while the
Loyd efficiency and R2 become slightly worse, the decrease is too small to raise any real
concern regarding controller stability.

Table 5.5: NMPC performance when overestimating the δ delay.

R2 ηLoyd

94.16 33.25

5.4.4 Conclusion
As it has been shown in this section, delays are a very critical effect that has to be modeled
within the controller. Moreover, if perfect estimation can not be done, a delay with the
largest possible value can be assumed to still obtain a close performance to exact estimation.

As a result, in order to have realistic simulations, a 0.5 s delay will be permanently
included in the simulator so that all testing scenarios in the following chapters will model
the most realistic flight condition.

89

Chapter 6

Simulation of Real Conditions

In the previous chapter, the core of the NMPC was designed and its performance tested
assuming ideal conditions. Moreover, a control delay as a first disturbance was included and
then solved by using a DDE.

The aim of this section is to continue this work by modeling the remaining real flight
disturbances and adapting the NMPC to stay stable against them. In order to perform this
task in a consistent manner, the chapter will be divided in several sections where each of
them will cover one of the following effects:

(i). A real wind profile where the wind speed is not constant but includes wind gusts.

(ii). Parameter mismatches to model that in real conditions the glide ratio E and the
steering constant gk are not the ideal estimated parameters.

(iii). A wind direction profile using real wind data.

(iv). A offset error on the control δ.

(v). A realistic observer that makes estimation errors.

Finally, to avoid repeating the same information, it is important to point out that all the
performed tests in the coming sections will use as tracking optimal trajectory the solution of
the offline OCP for vw = 10m/s.

6.1 Wind Gusts
To solve the different OCPs in Chapter 3 as well to perform the first tests in Chapter 5, a
wind profile with constant wind speed was assumed. Nevertheless, in real life, wind is by far
not steady and two main effects should be considered:

(i). Wind gusts: variations of the wind speed in a short time scale (seconds or 1-2 minutes).
Predicting wind gusts is not an easy task: their behavior is stochastic and anticipating
these variations within seconds is almost impossible. However, the average wind speed
in this small time scale is roughly constant.

(ii). Long term variations: in contrast to wind gusts, whenever looking at wind in a long time
scale (several minutes, hours or days) the wind speed average can change dramatically.
However, in contrast to wind gusts, obtaining an estimator of this averaged wind speed
can be easily done by low pass filtering wind measurements.

In this section, the first case will be treated by proving NMPC stability against wind gusts.
The second case will be considered later, in Chapter 7, where a strategy to obtain optimal
trajectories in real time as a function of the wind speed will be proposed.

90 Chapter 6. Simulation of Real Conditions

6.1.1 Wind Profile Generation
A specific strategy to model wind gusts is to consider that the wind speed can be modeled
by a Kaimal power spectrum. In particular, based on the mentioned principle, [50] describes
a specific algorithm to obtain a discrete time series [vw,0, . . . , vw,m]> of wind speed values
with an average v(0)

w .
For the sake of comprehensibility, this section will be confined to prove the validity of

this Kaimal model as well as testing the NMPC against the generated wind data; for further
details, the methodology for generating wind speed is described in Appendix B.

To prove the validity of the model, the frequency spectrum of real wind measurements
obtained for the Skysails kite were compared with the Kaimal spectrum; moreover, the
same wind measurements were plotted in the time domain against simulated values from the
Kaimal model. The results of these two comparisons can be seen in Figure 6.1: it can be
clearly observed that the data generated by this methodology models quite accurately real
wind data.

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01

1e+02

1e+03

 0.0001 0.001 0.01 0.1 1 10

S
p
ec

tr
al

 A
m

p
li

tu
d
e

[m
2
/s

s]

Frequency [Hz]

Data 13-NOV-2013
Kaimal Model

 3

 4

 5

 6

 7

 8

 9

 0 100 200 300 400 500 600

W
in

d
 S

p
ee

d
 [

m
/s

]

Time [s]

Real Data
Simulated Data

Figure 6.1: Left: Kaimal versus measured wind speed spectrum. The deviation for f > 0.3Hz
can be explained due to a low pass filter in the kite sensor. Right: generated versus measured wind
speed for a period of 10 minutes.

6.1.2 NMPC with Real Wind Profile
In order to test the NMPC stability against real wind gusts, realistic wind profiles are gen-
erated with an average wind speed v(0)

w of 10m/s; this particular v(0)
w selection is important

so that it matches the velocity of the optimal reference trajectory. Figure 6.2 depicts an
example of such a wind profile.

0 10 20 30 40 50 60 70 80 90 100 110 120
8

10

12

14

time[s]

v w
[m
/
s] Real

Filtered

Figure 6.2: Wind profile for v(0)
w = 10m/s and a 10% turbulence.

6.1. Wind Gusts 91

Once the generation was done, the NMPC was tested against a wind profile by considering
the worst possible case in the observer. In particular, it was assumed that, since estimation
of the real wind speed is a very hard task, the only information available to the NMPC
was an average value of the wind velocity during the last 60 seconds; this consideration was
done to ensure stability given a poor estimation, i.e. if the NMPC is stable in these extreme
conditions it should also be stable given a real observer. The results of the experiment are
illustrated in Table 6.1 and Figure 6.3, where the table represents the performance metrics
during a 9 cycles flight and the figure illustrates the tracking performance of one of these
cycles.

0 10 20 30 40 50 60 70 80 90 100 110 120
−4

−2

0

2

4

Time [s]

Ψ
[r
ad

] NMPC
Reference

0 10 20 30 40 50 60 70 80 90 100 110 120

−1

0

1

Time [s]

ϕ
[r
ad

] NMPC
Reference

0 10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

1.5

2

Time [s]

ϑ
[r
ad

]

NMPC
Reference

0 10 20 30 40 50 60 70 80 90 100 110 120

200

250

300

Time [s]

l
[m

]

NMPC
Reference

Figure 6.3: NMPC controlling system under the influence of a real wind gust.

Table 6.1: Metrics for wind gusts.

R2 ηLoyd

82.48 33.25

92 Chapter 6. Simulation of Real Conditions

Looking at these result and comparing them with Table 5.3 and Figure 5.3, three conclu-
sion can be drawn :

• Even though the wind speed can not be estimated, provided that the average wind
speed is similar to the velocity of the tracking reference trajectory, the NMPC remains
stable against wind gusts.

• Wind gusts seems to have a small impact on the tracking performance: despite a
decrease in R2, the NMPC still tracks the reference optimal trajectory quite good and
the small error between the NMPC and the mentioned trajectory is remarkable.

• Wind gusts reduce the system efficiency by roughly 1% leading to a controller that
almost doubles the original 18% ηLoyd.

As a result, we can claim that the NMPC shows a great performance against short term
wind speed variations and that they are not a subject of concern. Nevertheless, as it will
be seen in Chapter 7, long term wind speed variations are a very different case that will be
treated differently.

Since these wind profiles are a very accurate representation of real situations, they will
be included as standard wind conditions in all further tests; furthermore, to have a common
ground truth, the same wind profile will be used for every testing scenario. However, in order
to account for the fact that wind speed estimation is not possible, the wind speed will be
always computed as a 60 s average.

6.2 Parameter Mismatch
As it has been previously mentioned, the NMPC implementation assumes that E = 5,
gk = 0.1 and that they remain constant during flight conditions. However, it has been
observed that, since the glide ratio E and the steering constant gk might oscillate in a real
flight environment, this assumption does not hold .

In a perfect scenario this should not be a problem: the parameters would be ideally
estimated online and the NMPC model readapted. Nevertheless, online estimation of the kite
parameters is not currently implemented in the observer; therefore, it has to be considered
that the plant might have some parameter mismatches which are unknown to the NMPC.

In order to study how the previous result affects the NMPC, this section will study the
controller performance considering the different parameter mismatches. In particular, in
order to carry out this study, it is necessary to know the maximum value of the parameter
mismatches; nevertheless, due to a lack of previous data regarding this issue, there are
no mismatches references and we have to make an educated guess about the maximum
parameters variations. Specifically, based on the following two hypotheses, we decided to
assume nominal parameter variations of 10% and a maximum of 20%:

(i). The kite model was validated several times using E = 5 and gk = 0.1. If the varia-
tions of the parameters were larger, they should have influenced these validations in
a stronger manner and the assumption of having constant parameters would not have
hold.

(ii). If higher variations would occur, the current observer would not be able to perform
good and the estimation of the system states would be wrong. Since from past flight
tests it has been observed that state estimation is pretty accurate, high parameters
mismatches are not likely.

6.2. Parameter Mismatch 93

As a result, in order to carry out the NMPC analysis in an organized and consistent
manner, the following steps will be executed:

(i). Model the NMPC with the expected values E = 5 and gk = 0.01.

(ii). Study the NMPC performance considering a nominal 10% parameter mismatch in the
system simulator.

(iii). Select the worst scenarios out of the nominal cases and repeat the experiments with
the maximum 20% mismatch.

It is important to remark that, considering the independence of the equation l̇ = vwinch

with respect to E and gk, it is reasonable to assume that parameter mismatches will not have a
direct and big effect on the tether length l; as a result, when displaying tracking performance,
the trajectory of l will be substituted by a 2D projection of the flight trajectory.

Finally, before starting the analysis and in order to interpret the specific results, three
concepts shall be first defined:

• We define nominal dynamics as a system of equations of motions used for reference
purposes. In the NMPC case, they will refer to the kite dynamics with the system
parameters E = 5 and gk = 0.1.

• We define faster dynamics if, by changing the system parameters, using the same
actuation input the dynamics lead to a larger state displacement compared to the
nominal dynamics.

• By contrast, we will refer to slower dynamics when the opposite behavior appears:
for the same actuation input, the dynamics displace the state in a smaller amount
compared to the nominal ones.

6.2.1 Nominal Mismatch of 10%
In order to test the NMPC against the four 10% mismatch worst case scenarios, the following
possible values of E and gk should be considered:

{[E, gk]> | E ∈ {4.5, 5.5}, gk ∈ {0.09, 0.11}}.

First Nominal Test: E = 4.5, gk = 0.09

The results of this test case are shown in Figure 6.4 and Table 6.2; by looking especially at
the ψ angle and the retraction phase on θ, it can be seen that these parameters lead to slower
dynamics when compared to the nominal dynamics. The result is a controller that struggles
to track the optimal trajectory because the controls that it chooses are never big enough to
follow this tracking trajectory; nevertheless, it can also be observed that if the dynamics are
slower than expected, the efficiency decreases because the NMPC can not perform the full
lemniscates cycle but the controller remains stable.

Table 6.2: NMPC performance considering E = 4.5 and gk = 0.09.

R2 ηLoyd

67.96% 30.95%

94 Chapter 6. Simulation of Real Conditions

0 20 40 60 80 100 120
−4

−2

0

2

4

Time [s]

ψ
[r
ad

]

NMPC
Reference

0 20 40 60 80 100 120

−1

0

1

Time [s]

ϕ
[r
ad

]

NMPC
Reference

0 20 40 60 80 100 120
0

0.5

1

1.5

2

Time [s]

ϑ
[r
ad

]

NMPC
Reference

−1 0 1
0

0.5

1

1.5

2

ϕ [rad]

ϑ
[r
ad

]

NMPC
Reference

Figure 6.4: NMPC tracking with E = 4.5 and gk = 0.09.

Second Nominal Test: E = 4.5, gk = 0.11

As in the previous testing scenario, this parameter mismatch creates slower dynamics and
lead to a NMPC that struggles to follow the tracking trajectory. Therefore, to avoid plot
redundancy, in this section the standard plots will be omitted.

By looking at the results in Table 6.3 and comparing them with Table 6.2 it can be
observed that: the lower the values of E and gk the slower the dynamics become and that
the importance of E in this phenomena is larger than gk.

Table 6.3: NMPC performance considering E = 4.5 and gk = 0.11.

R2 ηLoyd

77.52% 32.20%

Third Nominal Test: E = 5.5, gk = 0.11

As before, the results are illustrated in Figure 6.5 and Table 6.4; in this particular case,
the opposite behavior of the first and second scenarios can be observed: the dynamics have
become faster and the NMPC performs larger motions that it intends.

The result of this situation is a controller that tends to overshoot and that as a conse-
quence has to continuously correct its trajectory. By looking at Figure 6.5 and comparing
with Figure 6.4, it can be seen that, despite not being unstable, the controller seems to
struggles more whenever the parameters are underestimated.

6.2. Parameter Mismatch 95

0 20 40 60 80 100 120

−4

−2

0

2

4

Time [s]

ψ
[r
ad

]

NMPC
Reference

0 20 40 60 80 100 120
−2

−1

0

1

Time [s]

ϕ
[r
ad

]

NMPC
Reference

0 20 40 60 80 100 120
0

0.5

1

1.5

2

Time [s]

ϑ
[r
ad

]

NMPC
Reference

−2 −1 0 1
0

0.5

1

1.5

2

ϕ [rad]

ϑ
[r
ad

]

NMPC
Reference

Figure 6.5: NMPC tracking with E = 5.5 and gk = 0.11.

Table 6.4: NMPC performance considering E = 5.5 and gk = 0.11.

R2 ηLoyd

60.14% 34.99%

Fourth Nominal Test: E = 5.5, gk = 0.09

Since the result of this test scenario are again very akin to the third case, only the NMPC
metrics will be depicted to avoid plot redundancy.

As expected, the results in Table 6.5 confirm the assumed hypothesis: the importance of
a mismatch in E is relatively larger than in gk and that the higher the values of E and gk

the faster the dynamics become.

Table 6.5: NMPC performance considering E = 5.5 and gk = 0.09.

R2 ηLoyd

82.5% 33.99%

Nominal Mismatch Analysis

By analyzing nominal mismatches, the following patterns can be clearly observed:

(i). The higher E or gk are, the faster the real dynamics become with respect to the NMPC
model; as a consequence, the controller assumes a dynamical model that is slower than

96 Chapter 6. Simulation of Real Conditions

the real one causing the NMPC to select too high inputs, overshoot, and struggle quite
significantly to follow the tracking reference trajectory.

(ii). By contrast, the lower the real E and gk are, the slower the real dynamics become; as
a result,the NMPC assumes dynamics that are faster than the real ones resulting in
a kite performing movements that are smaller than expected. Surprisingly, this effect
does not seem to make the system unstable; instead, it just leads to smaller lemniscates
and a loss in the power efficiency.

(iii). Mismatches in E seems to be more critical than in gk.

6.2.2 Maximum Mismatch of 20%
In order to study the two worst case scenarios under maximal mismatches, it has to be
considered that, whenever E and gk are minimal the dynamics become as slow as possible
and, on the contrary, if they are maximized the fastest dynamics are obtained.

First Maximal Test: E = 4, gk = 0.08

In Figure 6.6 and Table 6.6 it can be observed that, as already concluded in the previous
section, if the NMPC overestimates the parameters (even if it is by a 20%) the kite flies
shorter lemniscates and the system efficiency decreases but the system remains unstable.

0 20 40 60 80 100 120
−4

−2

0

2

4

Time [s]

ψ
[r
ad

]

NMPC
Reference

0 20 40 60 80 100 120

−1

0

1

Time [s]

ϕ
[r
ad

]

NMPC
Reference

0 20 40 60 80 100 120
0

0.5

1

1.5

2

Time [s]

ϑ
[r
ad

]

NMPC
Reference

−1 0 1
0

0.5

1

1.5

2

ϕ [rad]

ϑ
[r
ad

]

NMPC
Reference

Figure 6.6: NMPC tracking with E = 4 and gk = 0.08.

6.2. Parameter Mismatch 97

Table 6.6: NMPC performance considering a 20% parameter mismatch E = 4 and gk = 0.08.

R2 ηLoyd

45.2% 25.58%

Second Maximal Test: E = 6, gk = 0.12

As with the nominal mismatch, dealing with underestimated parameters is a critical issue;
in particular, for the particular case of a 20% underestimated mismatch, it can be observed
in Figure 6.7 and Table 6.7 how the system dynamic become that fast that the NMPC can
no longer control the trajectory and the system become unstable.

0 20 40 60 80 100 120

−20

0

20

40

Time [s]

ψ
[r
ad

]

NMPC
Reference

0 20 40 60 80 100 120

−5

0

5

10

Time [s]

ϕ
[r
ad

]
NMPC
Reference

0 20 40 60 80 100 120
0

0.5

1

1.5

2

Time [s]

ϑ
[r
ad

]

NMPC
Reference

−5 0 5 10
0

0.5

1

1.5

2

ϕ [rad]

ϑ
[r
ad

]

NMPC
Reference

Figure 6.7: NMPC with E = 6 and gk = 0.12.

Table 6.7: NMPC performance considering a 20% parameter mismatch with E = 6 and gk = 0.12.

R2 ηLoyd

-294.5% 18.21%

Maximal Mismatch Analysis

From analyzing the previous test studies a main conclusion can be drawn: whereas underes-
timating parameters is a very critical and unstable situation that should always be avoided,
overestimation creates quite stable flight conditions and provide a security measure to avoid
kite crashes. In view of the previous facts and in order to ensure controller stability and

98 Chapter 6. Simulation of Real Conditions

safety conditions, it might be reasonable to slightly overestimate the parameters E and gk

so that, despite decreasing the efficiency, unstable situations are avoided and a kite that fly
smaller but safer lemniscates is obtained.

As a result, we propose a methodology to avoid controller failures in the case of having
parameter mismatches; specifically, we consider that, since overestimating is an easier task
than obtaining an accurate estimation, any decent observer should be always able to provide
a parameter overestimation with a 20% margin; then, it would be just necessary to use the
NMPC with this overestimation to make the system stable.

In order to add an extra value to the previous methodology, the following add-on result
is provided: even if the observer assumption was incorrect, i.e the system observer was not
able to provide a parameter overestimation, by simply using the maximum parameter values
E = 6 and gk = 0.12 the controller would remain stable; this can be easily proven by testing
the described NMPC against a system with the minimum parameter values E = 4 and
gk = 0.08. As seen in Figure 6.8 and Table 6.8, even for a 50% overestimation mismatch
and despite having a very poor efficiency, the controller remains stable.

0 20 40 60 80 100 120
−4

−2

0

2

4

Time [s]

ψ
[r
ad

]

NMPC
Reference

0 20 40 60 80 100 120

−1

0

1

Time [s]

ϕ
[r
ad

]

NMPC
Reference

0 20 40 60 80 100 120
0

0.5

1

1.5

2

Time [s]

ϑ
[r
ad

]

NMPC
Reference

−1 0 1
0

0.5

1

1.5

2

ϕ [rad]

ϑ
[r
ad

]

NMPC
Reference

Figure 6.8: System with E = 4 and gk = 0.08 and NMPC overestimating parameters with E = 6
and gk = 0.12.

Table 6.8: NMPC performance considering a 50% overestimated parameter mismatch.

R2 ηLoyd

23.53% 15.39%

6.2. Parameter Mismatch 99

6.2.3 Online Parameter Estimation
In the previous two sections, the effects of parameter mismatches between the NMPC and
the real system have been analyzed and explained; particularly, it was shown that this type of
disturbances make the system dynamics faster or slower depending on whether the NMPC is
under or overestimating the parameters; moreover, it was also proposed that overestimation
was a safe procedure to ensure controller stability but with the drawback of leading to low
power efficiencies.

In this section, we will aim at system efficiency while keeping stability; in particular,
an algorithm to do online parameter estimation will be proposed and implemented so that
the NMPC can always rely on accurate parameters and target stability while maintaining
efficiency.

Moving Horizon Estimation

After becoming familiar with the NMPC concepts described in Chapter 4 and so far in
Chapter 5, it is easy to understand the idea behind moving horizon estimation (MHE) [29].

Using the same foundations as MPC, MHE solves an OCP problem per time step in order
to obtain an accurate estimation of the system parameters p and/or the current system state
x̄0. In particular, by using a set of functions yk = mk(xk, uk, p) that map the control uk,
system state xk and parameters p into the system output yk, MHE computes the optimal
states X = (x1, . . . , xN), controls U = (u0, . . . , uN−1), and parameters p that, while ensuring
dynamic and path constraints, lead to the most accurate map with respect to a given set of
past system measurements Y = (y0, y1, y2, . . . , yN). As a result, the OCP per time step of
the MHE can be defined as:

minimize
X,U, p

N−1∑
k=0

‖mk(xk, uk, p)− yk‖2Q + ‖(mN (xN)− ȳN)‖2QN

subject to Φk(xk, uk, p)− xk+1 = 0, k = 0, . . . , N − 1,

hk(xk, uk, p) ≤ 0, k = 0, . . . , N − 1,

umin ≤ uk ≤ umax, k = 0, . . . , N − 1,

xmin ≤ xk ≤ xmax, k = 0, . . . , N,

where, by considering in the above scheme that ȳN is the last received measurement, x̄0

can be directly obtained as x̄0 = x∗N and the system parameters directly as p∗.
Finally, considering a fixed horizon N , MHE could also perform the switching strategy

described for NMPC; in particular, it could use the RTI scheme to shift the solution from
the previous iteration and use it as initial guess for the new iteration.

100 Chapter 6. Simulation of Real Conditions

Implementation

As done with the NMPC, the MHE was implemented using the ACADO code generation
toolbox in order to, first, have generated C-code ready to be used in an embedded platform,
and second, to obtain all the benefits of algorithms specifically designed for embedded opti-
mization and the RTI scheme. In particular, the following MHE scheme was implemented:

minimize
X,U,

Ē, ḡk, vw

N−1∑
k=0

∥∥∥(xk, uk)− yk
∥∥∥2

Q
+
∥∥∥xN − yN∥∥∥2

QN

+
∥∥∥[EN , gk,N]> − [Eprev, gk,prev]>

∥∥∥2

P

subject to Φk(xk, uk, Ek, gk,k)− xk+1 = 0, k = 0, . . . , N − 1,

vw,min ≤ vw,k ≤ vw,max, k = 0, . . . , N − 1,

∆vw,min ≤ vw,k − vw,k−1 ≤ ∆vw,max, k = 1, . . . , N − 1,

gk,min ≤ gk,k ≤ gk,max, k = 0, . . . , N,

Emin ≤ Ek ≤ Emax, k = 0, . . . , N,

Ek = Ek+1, k = 0, . . . , N − 1,

gk,k = gk,k+1, k = 0, . . . , N − 1,

where:

X=
(
x0, · · · , xN

)
, U =

(
u0, · · · , uN−1

)
,

Ē=
[
E0, · · · , EN

]>
, ḡk =

[
gk,0, · · · , gk,N

]>
,

xk=
[
ψk, ϕk, ϑk, lk

]>
, uk =

[
δk, vwinch,k

]>
,

yk=
[
ψk,m, ϕk,m, ϑk,m, lk,m, vwinch,k,m, δk,m

]>
,

yN =
[
ψN,m, ϕN,m, ϑN,m, lN,m

]>
,

vw = [vw,0, . . . , vw,N−1]>.

and where the following features and conventions have been used:

(i). To avoid destroying the sparse structure of the problem, E and gk were modeled as
system states with no dynamics, i.e. Ė = ġk = 0; in particular, the vectors Ē =[
E0, · · · , EN

]> and ḡk =
[
gk,0, · · · , gk,N

]> were used to represent the parameters at
each time node.

(ii). The initial constraint x0 − x̄0 = 0 was removed since the information on the first state
x0 is similar as the information for any other state xk.

(iii). The wind speed vw was included as an OCP variable in order to obtain a more accurate
parameter estimation. Furthermore, the upper and lower value as well as the time
derivative of vw was limited to obtain a smooth wind speed distribution.

(iv). Eprev and gk,prev represent the optimal parameters of the previous iterations. The last
term of the objective function including these two values has to be added to avoid big
variations of parameters between consecutive iterations.

6.2. Parameter Mismatch 101

(v). γk,m represents the measurement of the state/control γ at the time point k.

(vi). Q, QN and P were obtained by tuning the MHE and their values are represented by:

Q = diag(0.4645, 1.7972, 2.7057, 0.0042, 141.9234, 14.1923),

QN = diag(0.4645, 1.7972, 2.7057, 0.0042),

P = diag(0.25, 50).

First MHE Test: E = 4, gk = 0.08

To test the performance of the MHE, it was first run against the easier case where the pa-
rameters are minimal, i.e. without estimation the NMPC would overestimate the parameters.
Considering Figure 6.9 illustrating the estimation of the parameters during a nine periods
flight, it seems that the MHE can estimate parameters with a decent performance.

0 200 400 600 800 1,000
0.06

0.08

0.1

0.12

0.14

Time [s]

g k

Estimated gk

Real gk

0 200 400 600 800 1,000
3

4

5

6

7

Time [s]

E

Estimated E
Real E

Figure 6.9: Parameter estimation using MHE with E = 4 and gk = 0.08.

Figure 6.10 depicts the state trajectories for the usual case; by comparing them with
Figure 6.6 representing the trajectories without MHE, it can be rapidly appreciated the
algorithm improvement.

Furthermore, it can be observed in Table 6.9 that, by using these estimated parameters
instead of the fixed E = 5 and gk = 0.01, the NMPC improves its tracking performance
as well as the system efficiency. In order to have a glance at the system performance,
Figure 6.10 depicts the state trajectories for the usual case; by comparing them with Figure
6.6 representing the trajectories without MHE, it can be rapidly appreciated the algorithm
improvement.

Table 6.9: NMPC performance with & without MHE with E = 4 and gk = 0.08.

R2 [%] ηLoyd [%]
Without MHE 45.2% 25.58%
With MHE 69.51% 28.71%

102 Chapter 6. Simulation of Real Conditions

0 20 40 60 80 100 120
−4

−2

0

2

4

Time [s]

ψ
[r
ad

]

NMPC
Reference

0 20 40 60 80 100 120

−1

0

1

Time [s]

ϕ
[r
ad

]

NMPC
Reference

0 20 40 60 80 100 120
0

0.5

1

1.5

2

Time [s]

ϑ
[r
ad

]

NMPC
Reference

−1 0 1
0

0.5

1

1.5

2

ϕ [rad]

ϑ
[r
ad

]

NMPC
Reference

Figure 6.10: NMPC using MHE and a system with E = 4 and gk = 0.08.

Second MHE Test: E = 6, gk = 0.12

After observing the stability and efficiency enhancement obtained by using the MHE against
minimal parameters, the performance of the NMPC-MHE should be tested against the more
critical situation of having maximal parameters. By considering Figure 6.11 representing the
estimated parameters during a nine-periods flight, it can be again concluded that the MHE
can also accurately estimate the system parameter when their value is maximum.

0 200 400 600 800 1,000
0.08

0.1

0.12

0.14

0.16

Time [s]

g k

Estimated gk

0 200 400 600 800 1,000
3

4

5

6

7

Time [s]

E

Estimated E

Figure 6.11: Parameter estimation using MHE with E = 6 and gk = 0.12.

Regarding the NMPC performance, in Figure 6.12 it can be observed how, by using
more accurate parameters, the controller becomes stable and the performance of tracking
the optimal trajectory is no longer a problem; specifically, by comparing Figures 6.12 and

6.2. Parameter Mismatch 103

6.7, the tremendous difference of using versus not using MHE as well as the importance of
MHE to bring stability to the system can be seen.

0 20 40 60 80 100 120
−4

−2

0

2

4

Time [s]

ψ
[r
ad

]

NMPC
Reference

0 20 40 60 80 100 120

−1

0

1

Time [s]

ϕ
[r
ad

]

NMPC
Reference

0 20 40 60 80 100 120
0

0.5

1

1.5

2

Time [s]

ϑ
[r
ad

]

NMPC
Reference

−1 0 1
0

0.5

1

1.5

2

ϕ [rad]

ϑ
[r
ad

]
Real trajectory
Optimized Trajectory

Figure 6.12: NMPC tracking performance in a system with E = 6 and gk = 0.12.

Finally, in order to observe the controller improvements by means of numerical indicators,
Table 6.10 compares the NMPC performance with and without MHE.

Table 6.10: NMPC performance with & without MHE considering a system with E = 6 and
gk = 0.12.

R2 [%] ηLoyd [%]
Without MHE -294.5% 18.21%
With MHE 86.75% 34.22%

Estimated Wind Speed

A remarkable result is that, while implementing the MHE for parameter estimation, excellent
results on the wind speed estimation were observed; in particular, Figure 6.13 represents the
online wind speed using the MHE; it can be clearly observed that, despite not being a perfect
fit, the wind speed estimation seems to be a more accurate representation of the real wind
speed than the currently used wind speed filter.

Nevertheless, despite obtaining this excellent outcome, we believe that, since real wind
conditions might involve further effects, a further study on the topic must be carried before
any real implementation; therefore, the results are illustrated here but the wind estimation

104 Chapter 6. Simulation of Real Conditions

0 100 200 300 400 500 600 700 800 900 1,000

6

8

10

12

14

time[s]

v w
[m
/
s]

Real Filtered MHE

Figure 6.13: Wind speed estimation using MHE.

will not be used for the NMPC implementation. In particular, the average wind speed will
be kept as the observed value in order to remain in the worst case scenario.

6.2.4 Conclusion and Remark
Parameter mismatches are a critical phenomenon that has to be considered in order to obtain
a stable controller. In general, by overestimating the real parameters a stable system with
lower efficiency can be obtained; however, if high efficiency is targeted, overestimating is no
longer a solution and online parameter estimation is required. Table 6.11 summarizes the
results of the previous experiments.

Table 6.11: NMPC performance summary for parameter mismatches.

Without MHE With MHE
Real value
of E, gk

Larger Lower Larger Lower.
10% 20% 10% 20% 40% 20%

R2 [%] 60.14 -294.5 67.96 45.2 23.53 69.51 86.75
ηLoyd [%] 34.99 18.21 30.95 25.58 15.39 28.71 34.22

It is important to point out that the online parameter estimation algorithm uses system
states that were already estimated by the real observer; this algorithm by no means tries to
replace the current observer and it should be only used as a tool to improve the controller
stability by providing some knowledge regarding the system parameters.

As a final note, it is important to remark the better performance of using MHE with
the parameter mismatches E = 6 and gk = 0.12 versus not having parameter mismatches
at all; particularly, it is remarkable that the former, despite having extra mismatches, is
able to perform better. However, this effect is actually expected: for the case of having
higher system parameters, the system dynamics are faster and, due to MHE estimation, the
NMPC is aware of it; as a result, the NMPC can exploit the faster dynamics and choose
more convenient and smoother controls so that the tracking efficiency is improved.

6.3 Wind Direction
One of the assumptions done to obtain the system dynamics was that the wind direction φw

is always constant and aligned with respect to the ~ex axis. In real life, the average of the

6.3. Wind Direction 105

wind direction has indeed very low dynamics and the resulting variable of low pass filtering
φw varies only a couple of degrees per hour. Nevertheless, gusts in real-world wind fields may
come along with changes in wind direction for several seconds (usually up to several degrees
depending on environmental conditions).

As a result, the average of φw can be used as part of the reference system, and indeed, the
current system observer dynamically detects the slow motions of φw, realigns the reference
system and updates the estimated values according to the new reference; nevertheless, the
real wind direction is not always aligned with the ~ex axis and the controller has to deal with
it. For consistency reasons, φw will be kept as the average wind direction and, as illustrated
in Figure 6.14, the real direction will be modeled as an offset ∆φw with respect to the ~ex.

~ey

~ex

∆φw

Wind Top View

Figure 6.14: Reference system considering wind direction.

It is important to consider that, from a controller perspective, the system observer can
not provide any estimation of ∆φw; as a result, the controller has no means to obtain ∆φw

and the best thing that can be done is to make the NMPC robust and stable against the fast
motions of φw. In this section, NMPC stability against wind directions will be proven first,
by modeling extended dynamics that include ∆φw, second, by generating some ∆φw profile,
and third, by using these dynamics and profile in the simulator and running the NMPC
against it.

6.3.1 Extended Dynamics
In order to extend the system dynamics, the derivation of the equations of motion of [15]
can be repeated but now considering the real wind speed vector. In particular, assum-
ing that, as illustrated in Figure 6.14, ∆φw is defined in the ~ex-~ey plane, the wind vector
is [vw cos ∆φw, vw sin ∆φw, 0]> instead of [vw, 0, 0]>; then, by repeating the derivation, the
equations of motion for ϕ, ϑ can be rewritten as:

ϕ̇ = − va

l sinϑ
sinψ +

vw

l sinϑ
cosϕ sin ∆φw, (6.1a)

ϑ̇ =
va

l
cosψ − vw

l
sinϑ cos ∆φw +

vw

l
sinϕ cosϑ sin ∆φw, (6.1b)

where the air path velocity is also updated as:

va = vwE cosϑ cos ∆φw − l̇E + vwE sinϕ sinϑ sin ∆φw. (6.1c)

106 Chapter 6. Simulation of Real Conditions

6.3.2 Wind Direction Profile
In order to test the NMPC with the most accurate wind direction profile, real wind direc-
tion measurements, which were obtained by Skysails during a flight test, will be used. In
particular, Figure 6.15 represents the distribution of real ∆φw data during a time window
of two hours. From the figure, it can be clearly observed that the ∆φw distribution can be
roughly approximated with a Gaussian distribution N (0, σφ), where, from the real data, it
was inferred that σφ ≈ 7.25◦.

−30 −20 −10 0 10 20 30
0

2

4

6
·10−2

∆φw [◦]

Histogram of ∆φw

measurements
N (0, 7.25◦)

Figure 6.15: Wind direction distribution in a time window of two hours.

To have a better picture of how this wind direction profile looks like, Figure 6.16 represents
the same ∆φw measurements in a time window of 10 minutes.

0 50 100 150 200 250 300 350 400 450 500 550 600

−20

0

20

Time [s]

∆
φ

w
[◦

]

Figure 6.16: Wind direction∆φw measurements as a function of time.

6.3.3 Implementation
By extending the simulator dynamics with Equations (6.1a)-(6.1c) and using the real mea-
surements for the wind direction profile, the stability and robustness of the NMPC against
∆φw can be easily tested; moreover, to be consistent and always test the controller against the

6.4. Control Bias 107

worse case scenario, the real wind speed profile, the system delay, and the worst parameter
mismatch with the MHE estimation will be all added to the system simulator.

Figure 6.17 and Table 6.12 illustrate the system performance under the above described
conditions; by comparing them with Figure 6.12 and Table 6.10 representing the same testing
conditions but without the ∆φw disturbances, it can be immediately observed that wind angle
variations have an insignificant effect on the NMPC performance.

0 20 40 60 80 100 120
−4

−2

0

2

4

Time [s]

ψ
[r
ad

]

NMPC
Reference

0 20 40 60 80 100 120

−1

0

1

Time [s]

ϕ
[r
ad

]

NMPC
Reference

0 20 40 60 80 100 120
0

0.5

1

1.5

2

Time [s]

ϑ
[r
ad

]

NMPC
Reference

−1 0 1
0

0.5

1

1.5

2

ϕ [rad]

ϑ
[r
ad

]

Real trajectory
Optimized Trajectory

Figure 6.17: NMPC tracking performance with a real wind gusts (speed and direction), parameter
mismatches and a control delay.

Table 6.12: NMPC efficiency with for real wind gusts (direction and speed), maximum parameter
mismatches and a control delay.

R2 ηLoyd

86.61% 34.22%

6.4 Control Bias
Recalling from Section 1.2, the kite uses a control pod at the end of the towing line to apply
deflections and obtain a curved flight; this device was named the steering actuator and its
behavior within the dynamics was modeled by a control δ.

Nevertheless, in the real system setup, modeling the kite aerodynamic effect of the control
pod by a control δ is an idealization; in particular, it has been observed that, due to an
asymmetry in the setup of the control pod, there is a mismatch between the model and the
reality and the control δ suffers from an unknown bias error ∆δ. In theory, this mismatch

108 Chapter 6. Simulation of Real Conditions

could be estimated and then included it in the controller by simply extending the ψ̇ equation
of motion as:

ψ̇ = gkva(δ + ∆δ) + ϕ̇ cosϑ.

In reality, it has been observed that online estimation of the offset ∆δ is very hard; in
particular, the effect is complicated to quantify and, as with the wind direction, the best
a controller can do is tune itself to remain stable. As a consequence, in this section the
NMPC stability and performance will be tested by including the bias error in the system
simulator; moreover, like in the previous sections, all the previously defined disturbances will
be included in order to keep consistency.

In order to model the bias error it has to be considered that, despite ∆δ being hard to
estimate online, it is known that its maximum value will never be larger than 10% the value
of δ and that, for the considered NMPC time horizon, it is roughly constant.

Positive Constant Bias

The results of continuously perturbing δ with a positive 10% disturbance are shown in Figure
6.18 and Table 6.13; by comparing them with Figure 6.17 and Table 6.12 we can immediately
conclude that, as wind direction, a maximum positive bias on δ does barely influence the
tracking performance and system efficiency.

0 20 40 60 80 100 120
−4

−2

0

2

4

Time [s]

ψ
[r
ad

]

NMPC
Reference

0 20 40 60 80 100 120

−1

0

1

Time [s]

ϕ
[r
ad

]

NMPC
Reference

0 20 40 60 80 100 120
0

0.5

1

1.5

2

Time [s]

ϑ
[r
ad

]

NMPC
Reference

−1 0 1
0

0.5

1

1.5

2

ϕ [rad]

ϑ
[r
ad

]

Real trajectory
Optimized Trajectory

Figure 6.18: NMPC tracking performance under the influence of a bias ∆δ = 0.1δ.

6.5. Real Observer 109

Table 6.13: NMPC efficiency with a bias error ∆δ = 0.1δ.

R2 ηLoyd

85.76% 34.25%

Negative Constant Bias

The results of continuously perturbing δ with a negative 10% disturbance are almost equal to
using the positive counterpart; as a result, for the sake of simplicity and to avoid repetition,
the standard figure with the four states trajectories will not be depicted; instead, only the
performance metrics as given in Table 6.14 will be shown. Looking at them it can be seen that,
as with the positive bias, the system efficiency and performance remain almost unaffected.

Table 6.14: NMPC efficiency with a bias error ∆δ = −0.1δ.

R2 ηLoyd

86.5% 34.23%

6.5 Real Observer
In all the previous sections, it has always been considered that the observer could provide the
NMPC an accurate representation of the current state x̄0 = [ψ̄0, ϕ̄0, ϑ̄0, l̄0]>; in particular,
all sort of different real disturbances and mismatches between NMPC and simulator were
modeled, but the system observer was assumed to provide the perfect estimation of the
current state x̄0 after simulation.

However, in real life there is no such a thing as a perfect observer, i.e. any type of
estimation will always incur in some errors and the current state x̄0 will never be an exact
representation of the reality. As a result, in this section realistic estimation errors will be
modeled and the NMPC performance regarding them will be measured.

6.5.1 Estimation Error Models
In order to perform an assessment of the errors that the real observer undergoes, we had a
talk with the Skysails team and discussed the different influences of real flight conditions on
each of the four estimated states; in the following sections, we will first discuss and explain
the outcome of this talk, i.e. how to model the estimation errors, and then, we will model a
realistic observer to test the NMPC. It is important to keep in mind that, in order to avoid
an overwhelming amount of figures, only the R2 and ηLoyd indicators will be used for most
part of the study and, only at the end of the section, a figure will be used to graphically
illustrate the NMPC tracking performance considering all sources of error.

Tether Length l

When looking at a real tether there are three main physical effects affecting the estimation
error:

(i). The first effect is due to the inaccuracy of the sensor itself; in particular, length mea-
surements are obtained by counting the revolutions of the ground generator/motor that

110 Chapter 6. Simulation of Real Conditions

reels in/out the tether and then inferring the tether length based on the radius of the
generator; since the radius can not be accurately measured, an unknown permanent
offset ∆l builds up.

(ii). A second effect is a tether deformation due to pulling forces; in particular, it has
been observed that, after several hours of continuous flight and high pulling forces, the
tether suffers from creep deformation and the tether length changes. The result of these
phenomenon is second unknown and permanent offset ∆l. According to the Skysails
team, whenever the two offsets act together, they can achieve a maximum value of
±0.5m.

(iii). A third effect is related to a catenary shape on the tether: one of the assumptions done
by the estimation model is that the tether is always completely straight; however, as
depicted in Figure 6.19, under the influence of gravity in combination with low wind
speed the tether deforms creating some sort of catenary so that the model assumption
does not hold. The result is an extra estimation error on the tether length that,
according to the Skysails team, can be modeled as a zero mean Gaussian noise with a
standard deviation σl = 0.5m.

e
→

roll

e
→

pitch

e
→

yaw

e
→

roll

e
→

pitch

e
→

yaw

Figure 6.19: Left: estimation model assumption. Right: catenary effect under low wind forces.

Therefore, in order to model a realistic estimator l of the tether length, the described
error sources should be added to the simulation output l̄:

l = l̄ + ∆l + ωl, where |∆l| ≤ 0.5 m and ωl ∼ N (0, 0.5 m).

Angle ψ

In order to estimate the angle ψ, the Skysails observer has to heavily rely on gyroscope
measurements; as a result, it is forced to tackle the standard issue of gyroscopes: since they
provide turn rate measurements with a bias error, when these measurements are integrated,
a drift error on the estimated angles builds up.

As it is expected, the kite observer estimates and compensates the error; nevertheless,
due to the fast dynamics of the drift, the observer estimation has a small lag with respect
to the real error and the drift estimation is not accurate. According to the Skysails team,
the latter means that the estimated angle differs from the real angle by some offset ∆ψ; in
particular, they consider that this offset error can be modeled as a random walk with very
low dynamics (1% variation per hour), and in our case, since simulations last only some
minutes, they believed that a realistic observed ψ should be modeled by adding a constant

6.5. Real Observer 111

offset to the simulated state ψ̄:

ψ = ψ̄ + ∆ψ, with |∆ψ| ≤ 0.2 rad.

Angle ϑ

Since the estimation of ϑ, in contrast with ψ, is done based on angular sensors located at
the ground station, the estimation of ϑ does not need to perform the standard drift error
estimation. Nevertheless, the Skysails team has observed that, in some cases, an offset error
∆ϑ is also built up.

The general agreement regarding this error is that it is created by the tether catenary
effect depicted in Figure 6.19; in particular, due to the shape of the catenary, the estimator
observes an apparent angle ϑ that is lower than the real elevation angle, i.e. due to the
curvature of the tether the offset ∆ϑ is expected to be negative; this particular effect can be
observed in Figure 6.20.

e
→

roll

e
→

pitch

e
→

yaw

e
→

roll

e
→

pitch

e
→

yaw

�
�
�
�
��

...........
..........
.........
..........
...........
............Rea
l ϑ

��
���

�
........
...........
................. Apparent ϑ

Figure 6.20: Left: ideal situation for ϑ estimation. Right: wrong ϑ estimation due to the catenary
effect.

As with the angle ψ, the Skysails team estimates that, first, this offset error can achieve
a minimum value of -0.1 rad, and second, that due the horizon lengths used for the NMPC,
∆ϑ can be assumed to be constant. As a result, the model for a real ϑ estimation can be
given by:

ϑ = ϑ̄+ ∆ϑ, with − 0.1 rad ≤ ∆ϑ ≤ 0 rad.

Angle ϕ

Similar to ϑ, the angle ϕ uses an angular sensor at the ground estimation to perform the
estimation; as a result, it has also been reported that an offset error ∆ϕ appears in the
estimation procedure. Nevertheless, the key difference with respect to ϑ is that, due to the
flight symmetry in ϕ, the offset error might be positive or negative. In particular, the Skysails
team estimates that the maximum offset is bounded to 0.1 rad and that, as before, ∆ϕ can
be modeled as a constant offset. As a consequence, the real estimation of ϕ can be modeled
by:

ϕ = ϕ̄+ ∆ϕ, with |∆ϕ| ≤ 0.1 rad.

112 Chapter 6. Simulation of Real Conditions

6.5.2 Simulation Results
In order to fully test the NMPC performance against estimation errors, two different ap-
proaches will be implemented. First, the individual estimation errors will be tested so that
their specific effect on the controller performance can be characterized; then, in order to test
whether the NMPC is robust in every possible situation, the controller will be tested against
each worst case scenario.

Individual Errors

Considering the described models above, it is clear that a total of seven test scenarios shall be
performed in order to study the particular effect of positive and negative offsets in l, ψ, and
ϕ and a negative offset in ϑ. For the sake of consistency, these seven scenarios will consider
the same Gaussian noise profile in the l estimation. The outcome of these particular tests is
depicted in Table 6.15.

Table 6.15: NMPC performance considering individual estimation errors.

∆ϑ [rad] ∆ϕ [rad] ∆ψ [rad] ∆l [m] R2 [%] ηLoyd [%]

0

0

0
-0.5 86.08 34.22

0.5 85.94 34.21

-0.2

0

82.41 33.89

0.2 82.93 34.08

-0.1

0

85.97 34.22

0.1 85.84 34.21

-0.1 0 84.22 33.03

By looking at the data and comparing it with Table 6.14 (illustrating the results when
estimation errors are not present) several conclusions can be drawn:

(i). The NMPC seems to be quite robust and efficient against every estimation error when
they act individually.

(ii). In particular, the offsets ∆l and ∆ϕ seem to have barely no effect.

(iii). The negative offset ∆ϑ appears to perform slightly worse than ∆l and ∆ϕ; however,
the effect is too small to be even noticed.

(iv). Finally, the offset ∆ψ seems to influence the controller the most; nevertheless, it can
also be observed that the loss in performance it is quite small compared with the case
of having no estimation errors at all.

Multiple Errors

Considering that l, ψ and ϕ have two different offset scenarios whereas ϑ a single one, a total
of 2 × 2 × 2 × 1 = 8 test simulations should be performed in order to evaluate every worst
possible case. The results of these specific experiments are depicted in Table 6.16.

From analyzing the data, the following conclusions can be drawn:

6.5. Real Observer 113

Table 6.16: NMPC performance considering the eight possible worst case scenarios of real estima-
tion errors.

∆ϑ [rad] ∆ϕ [rad] ∆ψ [rad] ∆l [m] R2 [%] ηLoyd [%]

-0.1

-0.2
-0.5 81.07 31.87

0.5 81.10 31.93

0.2
-0.5 80.76 32.88

0.5 80.68 32.83

0.1

-0.2
-0.5 81.33 31.87

0.5 81.18 31.93

0.2
-0.5 80.02 32.97

-0.1

0.5 80.04 32.77

(i). The NMPC seems once again to be robust and efficient against every possible estimation
disturbance.

(ii). All scenarios show very similar behavior: the efficiency ηLoyd seems to experience a
drop between 1.5-2.5% and the goodness of fitting R2 a decrease of 5%.

(iii). The offset in the angle ψ seems to be once again the most determinant factor; in partic-
ular, positive offsets appear to have better efficiency but worse tracking performance.

(iv). An interesting characteristic to point out is the symmetric behavior of positive and
negative ∆ϕ offsets: since the trajectory of the angle ϕ is quite symmetrical, it can be
observed that tests that only differ in the sign of ∆ϕ seem to have very alike indicators.

(v). Despite being all the results quite similar, it can be detected that the worst scenario
occurs when all the offsets are negative; in particular, this test displays the worst ηLoyd

factor while having a R2 goodness of fit that is just 0.07% better than the worst result.

In order to provide a graphical illustration of the NMPC performance under estimation
errors, Figures 6.21, 6.22 and 6.23 represent the system trajectories when the NMPC tackles
the previously described worst case scenario. In particular, Figure 6.21 represents the tra-
jectory of the four system states, 6.22 the 3D trajectory representation, and finally, 6.23 the
system controls vwinch and δ.

From analyzing the NMPC graphical results in Figure 6.21 and 6.23, further statements
and remarks can be made:

(i). The good NMPC performance observed by the metrics ηLoyd and R2 are corroborated
by the graphical results.

(ii). The estimation offsets do not seem to affect the controller stability much.

(iii). The depicted controls are quite smooth, i.e. the controller does not need to perform
big control changes to keep the kite stable, at the same time that they are kept within
the safety boundaries.

114 Chapter 6. Simulation of Real Conditions

0 10 20 30 40 50 60 70 80 90 100 110 120
−4

−2

0

2

4

Time [s]

ψ
[r
ad

]

Observed
Reference
Real

0 10 20 30 40 50 60 70 80 90 100 110 120

−1

0

1

Time [s]

ϕ
[r
ad

]

Observed
Reference
Real

0 10 20 30 40 50 60 70 80 90 100 110 120

0.5

1

1.5

2

Time [s]

ϑ
[r
ad

]

Observed
Reference
Real

0 10 20 30 40 50 60 70 80 90 100 110 120
150

200

250

300

Time [s]

l
[m

]

Observed
Reference
Real

Figure 6.21: NMPC performance on the four system states considering the worst possible scenarios
for estimation errors, system disturbances and model mismatches.

(iv). The good NMPC performance can be especially appreciated when looking at the 2D
projection: despite the real trajectory differing with respect to the reference one, the
former tracks the latter with a high degree of accuracy.

6.5. Real Observer 115

−100

0
100

200
300

400
−300

−200
−100

0
100

200

−150

−100

−50

0

x [m] y [m]

z
[m

]

Real trajectory
Reference Trajectory

Figure 6.22: 3D trajectory when the NMPC performs against the worst possible scenarios for
estimation errors, system disturbances and model mismatches.

0 10 20 30 40 50 60 70 80 90 100 110 120

−0.5

0

0.5

Time [s]

δ

NMPC
Reference
Limits

(a) Steering command δ.

0 10 20 30 40 50 60 70 80 90 100 110 120
−6

−4

−2

0

2

4

Time [s]

v w
in

c
h
[m

/s
]

NMPC
Reference
Limits

(b) Winch speed vwinch.

Figure 6.23: 2D trajectory projection and system controls when the NMPC addresses the worst
possible scenarios in estimation errors, system disturbances and model parameter mismatches.

116 Chapter 6. Simulation of Real Conditions

Result’s implications

It is very important to reflect how outstanding the previous results are: the controller has
been tested considering the three main sources of errors: real life disturbances, mismatches
between the controller and the real model, and finally, a system observer with realistic obser-
vation errors; in all these test scenarios the controller was quite robust, keeping the system
stable while accurately tracking the offline precomputed optimal trajectory and achieving a
high power efficiency ηLoyd.

6.5.3 Analysis of a Positive ϑ Offset
According to the Skysails team, a positive offset in the angle ϑ is not possible. Nevertheless,
for the sake of security, we decided to study its implications.

The first performed test was to include the positive offset as the only error in the estima-
tion. Surprisingly, compared with the other seven individual errors, a positive ∆ϑ increases
the ηLoyd factor more than any other individual estimator error and decreases the tracking
performance as any other does. To illustrate this effect, Table 6.17 depicts the performance
of a positive ∆ϑ offset equal to 0.1 rad compared with the best (∆l = −0.5m) and worst
(∆ψ = −0.2 rad) results from the previous individual tests.

Table 6.17: Comparison of positive ∆ϕ offset with respect to the best and worst individual esti-
mator errors.

∆ϑ [rad] ∆ϕ [rad] ∆ψ [rad] ∆l [m] R2 [%] ηLoyd [%]

0 0 0 -0.5 86.08 34.22

0 0 -0.2 0 82.41 33.89

0.1 0 0 0 78.48 35.84

In order to further investigate the implications of the previous result, the NMPC was
tested considering the positive ∆ϑ offset in couple with all the other plausible estimation
errors. The results, which are depicted in Table 6.18, are really interesting. When comparing
similar test scenarios which only differ by the sign of the offset ∆ϑ, it can be observed how
positive offsets, despite increasing the system efficiency, lead to a worse tracking performance.
Furthermore, it can also be seen that, if the positive ∆ϑ acts in couple with ∆ϕ = −0.1 rad,
∆ψ = 0.2 rad, and ∆ϕ = 0.5m the kite even becomes unstable and crashes.

Despite positive offsets in ϑ are not a thing to worry about in the current estimator, they
might occur in future implementations of the system observer. Therefore, it is important
to explain and understand why they are so critical in order to avoid future failure of the
controller.

Whenever a positive offset in ϑ occurs, the NMPC regards an observed state ϑobs that
is higher than the real ϑ; as a result, while the NMPC thinks that is bringing the observed
trajectory to meet the reference, in reality it is moving the kite to a lower angular position.
The outcome of this effect is that the kite tends to fly at lower altitudes (lower angles), which
leads in turn to a higher apparent wind speed va, which is then responsible for the larger
harvested energy and the higher power efficiency ηLoyd.

Nevertheless, despite the increase in efficiency, a major risk appears as the controller
becomes unstable; in particular, by analyzing in detail the system dynamics, it can be clearly

6.5. Real Observer 117

Table 6.18: Comparison of performance between positive and negative ∆ϕ.

∆ϑ [rad] ∆ϕ [rad] ∆ψ [rad] ∆l [m] R2 [%] ηLoyd [%]

-0.1

-0.2
-0.5 81.07 31.87

0.5 81.10 31.93

0.2
-0.5 80.76 32.88

0.5 80.68 32.83

0.1

-0.2
-0.5 81.33 31.87

0.5 81.18 31.93

0.2
-0.5 80.02 32.97

-0.1

0.5 80.04 32.77

-0.1

-0.2
-0.5 75.67 35.85

0.5 75.70 35.88

0.2
-0.5 75.87 35.92

0.5 -86.66 7.66

0.1

-0.2
-0.5 76.02 35.85

0.5 76.37 35.94

0.2
-0.5 73.58 35.40

0.1

0.5 74.37 35.74

observed how flying at low altitudes can bring the system to unstable situations. Regarding
once again the kite equations of motion:

ψ̇ = gkvaδ + ϕ̇ cosϑ,

ϕ̇ = − va

l sinϑ
sinψ,

ϑ̇ = −vw

l
sinϑ+

va

l
cosψ,

l̇ = vwinch,

with: va = vwE cosϑ− l̇E,
it can be perceived that, if the real angle ϑ is lower than presumed, the cosϑ is higher than
what the NMPC infers and va becomes higher than expected. As a result, the derivate ψ̇
becomes larger than the NMPC consideration, which in turn leads to a kite that starts to
steer without much control and which eventually might crash. For illustration purposes,
Figure 6.24 illustrates a kite crash due to positive offsets in ϑ.

Considering the analysis done regarding the dynamics and the positive ∆ϑ, the exact
process leading to the kite crash in Figure 6.24 can be explained as follows:

• After approximately 5 s, the NMPC considers that ϑ is higher than in reality and as a
result pushes down the angle lower than necessary.

118 Chapter 6. Simulation of Real Conditions

0 5 10 15 20

0

5

Time [s]

ψ
[r
ad

]

Observed
Reference
Real

(a) Angle ψ

0 5 10 15 20
−2

0

2

4

Time [s]

ϕ
[r
ad

]

Observed
Reference
Real

(b) Angle ϕ

0 5 10 15 20
0

0.2

0.4

0.6

0.8

Time [s]

ϑ
[r
ad

]

Observed
Reference
Real

(c) Angle ϑ

0 5 10 15 20

160

180

200

220

Time [s]

l
[m

]

Observed
Reference
Real

(d) Tether length l

0 5 10 15 20

−5

0

5

Time [s]

v w
in

c
h
[m

/s
]

NMPC
Reference
Limits

(e) Winch speed vwinch

0 5 10 15 20

20

40

60

80

100

Time [s]

v a
[m

/s
]

(f) Air path speed va

Figure 6.24: NMPC crashing due to positive offset in the estimation of ϑ.

• As immediate result, the angles ψ, the angle ϕ and the air path speed va start to
increase.

• To correct for this disturbance, the NMPC tries to lower the length l so that the
derivative ϕ̇ becomes negative and the ϑ̇ positive.

• Due to the correction in the length, the winch speed is set to its lowest value and va

increases even more.

6.6. Conclusion and Remarks 119

• This last effect creates a loop that initiates a fast and unstoppable increase in ψ and ϕ:
the kite starts to steer without control and eventually ϕ reaches the 90◦ representing
the ground floor and the kite crashes.

It is really important to remark once again that this issue is not something to be worried
about or concern with the current controller. The Skysails team has assured us that, in our
implementation using the current observer, this event is extremely unlikely. Nevertheless, we
decided to study and document it so that it serves as a reference in the case of any future
modification in the controller or the observer. As a simple suggestion, if the positive offset
is ever present, a very plain solution would be to add an artificial offset of -0.1 rad to the ϑ
estimation so that the estimated values are always above the real ϑ; the main drawback of
such an approach would be that a negative offset of -0.2 rad might build up; nevertheless,
considering the little effect on the NMPC performance of negative ∆ϑ offset, we believe that
this disadvantage would have small implications.

6.6 Conclusion and Remarks
Through the last two chapters, a real NMPC controller has been modeled in order to track
optimal trajectories that maximizes the extracted energy; in particular, a robust and stable
controller was obtained which is able to follow optimal trajectories under real life conditions.
In addition, the controller was designed using a software that generates C-code so that,
despite designing the controller in MATLAB, the algorithm can be directly implemented in
the real embedded platform.

Furthermore, in order to ensure that the NMPC was being tested in a realistic framework,
we hold several meetings with the Skysails team where the full range of possible influences
was determined, and then, a system simulator regarding them all was implemented. By
tuning the controller and adding different features, a robust NMPC against the following
real issues was achieved:

(i). Realistic wind gusts: the NMPC was designed to be stable against fast changes in wind
speed as well as wind direction.

(ii). Delay perturbations and offset bias in the control δ.

(iii). Realistic mismatches between the controller model and the real system.

(iv). Pragmatical estimation errors that appear in the real observer.

Nonetheless, in spite of apparently having a very accurate controller that has achieved
the initial goal, an extra issue is yet to be addressed: the controller has been shown to be
robust against wind gusts which had a constant average wind speed similar to the one used
for generating the optimal trajectory. While this analysis is important and was required, the
NMPC should also be tested against longer time horizons where the average wind speed is
not constant but changes with slow dynamics. As a result, it is critical to understand and
address the following questions:

• Is the system still robust/efficient when the average wind speed differs too much from
the wind speed used for computing the optimal trajectory?

• If a single reference trajectory can not be used for the total range of wind speeds, how
can online feasible and optimal trajectories be generated so that stability and efficiency
is always ensured?

120 Chapter 6. Simulation of Real Conditions

To solve the previous inquiries, the next chapter will examine the consequences of long
term wind speed profiles as well as propose a general theoretical result to cope with them:
Time Warpable Dynamical Systems.

121

Chapter 7

Time Warping

7.1 Motivation
Regard a tracking NMPC using a real time iteration scheme [37], where the tracking tra-
jectory Ytrack is updated by a shifting strategy to increase the controller stability (at each
iteration only the last value of the trajectory is updated whereas the others are shifted
one time point forward). Consider as well that the equations of motion depend on a term
p(t) ∈ R, where p(t) can represent a time variable parameter or an uncontrolled input.

Since the controller needs to track feasible trajectories in order to ensure stability, the
NMPC requires a way of obtaining feasible tracking trajectories as a function of the possible
values of p(t). Moreover, if the tracking trajectories are also required to be optimal with
respect to some cost function, the algorithm to generate trajectories online should also enforce
optimality.

A simple solution would be to forget about p(t) and treat it as a disturbance, relying on
the performance of the NMPC to keep the system stable. However, this solution is not only
too risky but in many cases also practically infeasible. The disturbances can achieve too
large values and make the system unstable. Furthermore, even if the controller was stable
enough, this solution could not guarantee any sort of optimality since the tracking trajectory
would be unique and independent of p(t).

A more complicated solution would be to precompute in a first step a discrete set of
feasible and optimal trajectories ΩY = {Yrefp1

, Yrefp2
, . . . , Yrefpm

} as a function of a discrete
set of p-values Ωp = {p1, p2, . . ., pm}. Then, in a second step, make the NMPC switch
between tracking trajectories in a discrete manner according to the relative value of p(t) and
the discrete values in Ωp. This solution has three main drawbacks:

(i). A discrete change of trajectories is never optimal since the trajectories are discrete
and the disturbance p(t) varies in a continuous manner. On the one hand, this forces
the NMPC to track infeasible trajectories when p(t) is not exactly one of the discrete
values, creating in turn difficulties to ensure stability. On the other hand, even though
stability could be ensured, if the NMPC is tracking optimal trajectories but p(t) is not
exactly one of the discrete values in Ωp, the NMPC will work in a regime where the
tracking trajectories are no longer optimal and the system efficiency decreases.

(ii). A second disadvantage is the complexity of precomputing the discrete set of feasible
trajectories. Specially, if the trajectories are generated via an Optimal Control Problem
to achieve performance maximization, the time required to solve each individual OCP
can become extremely long.

(iii). Finally, whenever the NMPC has to switch between two tracking trajectories of the
discrete sets, the NMPC has also to find the two points in the trajectories that, when

122 Chapter 7. Time Warping

switching from one to the other, guarantee a clean switch without incurring unsta-
ble situations. In practice, finding such points is not a trivial task and guaranteeing
stability is even harder.

A much better approach would be to use the novel concepts proposed and developed in
this thesis. We define this set of new ideas as Time Warping Theory, and they will be used
to generate optimal and feasible trajectories as a continuous function of p(t) and with very
little computational effort. This innovative approach overcomes the disadvantages of the
previously mentioned methods and leads to a fully optimal and stable system.

As a drawback, it is important to remark that the developed theory and algorithms will
not apply to every dynamical system, but, only to those with a specific structure in the
equations of motion. Nevertheless, we still believe that many systems can benefit from this
algorithm, and in particular, its application and large benefits will be illustrated in the kite
system of the Skysails company, where time warping will be the solution to obtain optimal
and feasible online trajectories as a function of the wind speed vw.

7.2 Warping Theory

7.2.1 Theoretical Idea
Definition 7.1 (Warped Time Frame τ). Consider a real time frame t which is used to
describe any motion of a dynamical system. A warped time frame τ with respect to t can be
defined by formulating the relation between the time variations dt and dτ in both frames.
This relation is called warping factor ẇ(t) and is defined as:

dτ

dt
= ẇ(t),

with ẇ(t) > 0, dt > 0 and dτ > 0. Looking at the above equation, it is easy to see that given
an analytical expression for ẇ(t), τ can be easily computed as a function of t by integrating
w(t) =

∫ t
0
ẇ(t)dt.

Figure 7.1 illustrates the time motion differences between t and τ for different warping
factors. In particular, the blue line represents the case where ẇ(t) is constant and bigger
than one leading to a motion in the time frame τ relatively faster than in t. In contrast, the
red line represents the opposite behavior: ẇ(t) is still constant but the motion in t is now
faster than in τ . Finally, the yellow line illustrates a general case where the warping factor
varies as a function of time and the time variation in t with respect to τ is not constant.

It is important to remark that the warping operation is bidirectional, i.e. any real time
frame t can be warped to obtain the time frame τ , but τ could simply be warped back to
obtain t by using dt

dτ = 1
ẇ(t) . Moreover, it is also important to note that, according to our

definition, time is a strictly positive monotonic function, i.e. t and τ = w(t) must be strictly
positive monotone.

Definition 7.2 (Warpable Dynamical System). Let’s regard a general dynamical system
defined by the equations of motion ẋ(t) = Φ(x(t), u(t), p(t), t) = Θ(t), where t represents the
time variable defining the time frame, x ∈ Rnx is the state of the system, u ∈ Rnu the inputs
of the system and where p ∈ Rnp represents time dependent parameters. A different but
equally valid interpretation of p could be the uncontrolled inputs or system disturbances.

7.2. Warping Theory 123

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

Motion in real time
frame t slower than in
warped time frame τ

Motion in real time
frame t faster than in
warped time frame τ

General case:
w(t) =

∫ t
0 ẇ(t′)dt′

t [s]

τ
[s
]

Figure 7.1: Warping factor and time variation in time frames τ, t

If there exist a decomposition of the equations of motion such as:

ẋ(t) = p(t) · f
(
x(t), u2(t)

)
+ C · u1(t) · l

(
x(t), u2(t)

)
= p(t) · g(t) + C · u1(t) · s(t),

with :

p(t) ∈ R,

u(t) =

[
u1(t)

u2(t)

]
,

u1(t) ∈ Rm and C ∈ Rnxx(nu−m) as a selection matrix,

(7.1)

then we define the system as a Warpable Dynamic System.

Theorem 7.3 (Time warped dynamical system). Given a warpable dynamical system as
defined by Equation(7.1), then:

(i). The system dynamics can be defined in a different and warped time frame τ as:

ẋref(τ) =
dx

dτ
= pref · f

(
xref(τ), uref2(τ)

)
+ C · uref1(τ) · l

(
xref(τ), uref2(τ)

)
= pref · gref(τ) + C · uref1(τ) · sref(τ),

(7.2)

with linear dependent controls:

uref1(τ) =
u1(t)

ẇ(t)
, (7.3)

124 Chapter 7. Time Warping

where the warping factor between t and τ is defined as:

ẇ(t) =
dτ

dt
=
p(t)

pref
, (7.4)

w(t) =

∫
t

0

p(t′)
pref

dt′ = τ, (7.5)

and where the time dependency of the parameter p(t) is removed and substituted by a
constant parameter pref > 0.

(ii). g(t) = gref

(
w(t)

)
, s(t) = sref

(
w(t)

)
, i.e. the state derivative with respect to t of the

system in the real time frame is equivalent to the the state derivate with respect to τ in
the warped time frame.

(iii). x(t) = xref

(
w(t)

)
, i.e. the state of the system at time t in the real time frame is

equivalent to the state at a time w(t) in the warped time frame.

(iv). u2(t) = uref2

(
w(t)

)
if f is injective, otherwise u2(t) = uref2

(
w(t)

)
provides one of the

possible solutions to achieve x(t) = xref

(
w(t)

)
.

Proof - (ii). Considering that τ can be expressed as a function of t by τ = w(t):

dx

dτ
= pref · gref

(
w(t)

)
+ C · uref1

(
w(t)

)
· sref

(
w(t)

)
dx

dτ
=

dx

dt

dt

dτ
= ẋ

1

ẇ(t)
=

1

ẇ(t)

(
p(t) · g(t) + C · u1(t) · s(t)

)
(7.4)
=

pref

p(t)
p(t) · g(t) + C · u1(t)

ẇ(t)
· s(t)

(7.3)
= pref · g(t) + C · uref1(τ) · s(t)

=⇒ pref ·
(
g(t)− gref

(
w(t)

))
+ C · uref1

(
w(t)

)
·
(
s(t)− sref

(
w(t)

))
= 0. (7.6)

Then, since uref1

(
w(t)

)
is a system control and can take any value (positive, negative or zero),

and since the dynamics g(t), s(t), gref

(
w(t)

)
and sref

(
w(t)

)
are not a function of uref1

(
w(t)

)
:{

uref1

(
w(t)

)
can be = 0

pref > 0

(7.6)
=⇒ g(t) = gref

(
(w(t)

)
.{

uref1

(
w(t)

)
can be 6= 0

g(t) = gref

(
(w(t)

) =⇒ s(t) = sref

(
w(t)

)
.

(7.7)

7.2. Warping Theory 125

Proof - (i). Using the previous result:

ẋref(τ) =
dx

dτ
=

dx

dt

dt

dτ
= ẋ

1

ẇ(t)
(7.4)
=

pref

p(t)
p(t) · g(t) + C · u1(t)

ẇ(t)
· s(t)

(7.3)
= pref · g(t) + C · uref1(τ) · s(t)

(7.7)
= pref · gref(τ) + C · uref1(τ) · sref(τ).

Proof - (iii). By definition:

x(t) =

∫
t

0

(
p(t′) · g(t′) + u1(t′) · s(t′)

)
dt′,

xref(τ) =

∫
τ

0

(
pref · gref(τ

′) + C · uref1(τ ′) · sref(τ
′)
)
dτ ′.

Therefore:

xref(w(t)) =

∫
w(t)=

∫
t

0

p(t′)
pref

dt′

w(0)=0

(
pref · gref(τ

′) + C · uref1(τ ′) · sref(τ
′)
)
dτ ′

=

∫
t

0

(
pref · gref

(
w(t′)

)
+ C · uref1

(
w(t′)

)
· sref

(
w(t′)

))
ẇ(t′)dt′

=

∫
t

0

(
pref · gref

(
w(t′)

)
· p(t

′)
pref

+ C · uref1

(
w(t′)

)
· ẇ(t′) · sref

(
w(t′)

))
dt′

=

∫
t

0

(
p(t′) · gref

(
w(t′)

)
+ C · u1(t′) · sref

(
w(t′)

))
dt′

(7.7)
=

∫
t

0

(
p(t′) · g(t′) + C · u1(t′) · s(t′)

)
dt′

= x(t).

(7.8)

126 Chapter 7. Time Warping

Proof - (iv). By considering (ii):

g(t) = gref

(
w(t)

) (7.1)⇐⇒ f
(
x(t), u2(t)

)
= f

(
xref

(
w(t)

)
, uref2

(
w(t)

))
(7.8)⇐⇒ f

(
x(t), u2(t)

)
= f

(
x(t), uref2

(
w(t)

))
f injective

=⇒ u2(t) = uref2

(
w(t)

)
.

s(t) = sref

(
w(t)

) (7.1)⇐⇒ l
(
x(t), u2(t)

)
= l
(
xref

(
w(t)

)
, uref2

(
w(t)

))
(7.8)⇐⇒ l

(
x(t), u2(t)

)
= l
(
x(t), uref2

(
w(t)

))
h injective

=⇒ u2(t) = uref2

(
w(t)

)
.

Thus, if f or h are injective, u2(t) = uref2

(
w(t)

)
. If not, it is still true that:

u2(t) = uref2

(
w(t)

)
=⇒

f
(
x(t), u2(t)

)
= f

(
x(t), uref2

(
w(t)

))
l
(
x(t), u2(t)

)
= l
(
x(t), uref2

(
w(t)

))
(7.8),(7.1)⇐⇒

{
g(t) = gref

(
w(t)

)
s(t) = rref

(
w(t)

) (7.7)
=⇒ xref(w(t)) = x(t),

(7.9)

thus, u2(t) = uref2

(
w(t)

)
is one of the possible solutions to obtain the desired result xref(w(t)) =

x(t).

7.2.2 Warped Time Frame Interpretation
When looking at the system defined by Equation (7.2) three main questions arise:

(i). What does it mean to warp a time frame?

(ii). What do τ = w(t) and pref represent?

(iii). What is the meaning of uref1

(
w(t)

)
?

A time warping is a distortion on any given time frame. Another interpretation would be
a change on the time velocity of the time frame. In this new time frame τ = w(t), dτ would
be the new time velocity, so that the ratio ẇ(t) between p(t) and pref (ratio between dτ and
dt) would characterize the ratio of the time velocities of the two time frames. An example of
a motion in two different time frames warped with respect to each other is given in Figure
7.2. In that particular example, the ratio ẇ(t) is constant leading to a linear time distortion.

uref1

(
w(t)

)
= u1(t)

ẇ(t) = u1(t) prefp(t) could be interpreted as the set of inputs in the warped
time frame, which not only have to be warped on time, but also have to be amplified or
attenuated with respect to the inputs u1(t) to account for the fact that the second term of
Equation (7.1) is independent from the parameter p(t). Figure 7.3 illustrates the difference
between u1(t) and uref1

(
w(t)

)
.

7.2. Warping Theory 127

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

t [s]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

τ = w(t) [s]

sin(t): time frame t
sin(τ): time frame τ

Figure 7.2: Linear warping of a sin function between two time frames τ, t, where ẇ(t) = dτ
dt

= 1
2
.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

t [s]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

τ = w(t) [s]

u1(t): time frame t
uref1(τ): time frame τ

Figure 7.3: Comparison of controls u1 in two time frames with a warp ratio with ẇ(t) = p(t)
pref

= 1
2
.

It is important to notice that, the integral over time of these specific controls is constant
and independent of warping effects:∫

w(t)=τ

w(0)=0

uref1

(
τ ′
)
dτ ′ =

∫
t

0

uref1

(
w(t′)

)
ẇ(t′)dt′ =

∫
t

0

u1(t′)dt′.

128 Chapter 7. Time Warping

7.2.3 Optimality of Warped Trajectories
Definition 7.4 (Warpable Optimal Control Problem (WOCP)). Regard a general OCP
defined in a time frame t and in continuous time:

minimize
y(·)

J
(
y(t)

)
=

∫ T

0

L
(
x(t), u(t), p(t)

)
dt+ E

(
x(T)

)
subject to ẋ(t)− Φ

(
x(t), u(t), p(t)

)
= 0, t ∈ [0, T], (dynamical model),

h
(
x(t), u(t)

)
≤ 0, t ∈ [0, T], (path constraints),

r
(
x(0), x(T)

)
≤ 0, (boundary constraints)

with x ∈ Rnx , u ∈ Rnu , y(t) =
(
x(t), u(t)

)
∈ Rny , Φ : Rny+1 → Rnx , h : Rny → Rnh ,

r : Rnx → Rnr and p ∈ Rnp representing a time varying parameter or an uncontrolled input.
If it holds that:

(i). The dynamical system of the OCP is warpable, i.e.

Φ
(
x(t), u(t), p(t)

)
= p(t) · f

(
x(t), u2(t)

)
+ C · u1(t) · l

(
x(t), u2(t)

)
.

(ii). The linear parameter p(t) has very slow dynamics, i.e. p can be considered constant or
independent of time.

(iii). The OCP path constraints are independent of u1(t), i.e.

h
(
x(t), u(t)

)
= h

(
x(t), u2(t)

)
.

(iv). The Lagrange cost of the OCP can be written as:

L
(
x(t), u(t), p(t)

)
=

1

T

N∑
m=0

pjm · u1(t)
K−jm · fm

(
x(t), u2(t)

)
,

with : K constant warping exponent,

jm ∈ R exponent coefficient of each m-sum term.

Then, we define the OCP to be a Warpable Optimal Control Problem (WOCP). For the
sake of completeness the entire WOCP optimization problem is stated below:

minimize
x(·), u(·)

1

T

∫
T

0

N∑
m=0

p1
jm · u1(t)

K−jm · fm
(
x(t), u(t)

)
dt+ E

(
x(T)

)
(7.10a)

subject to ẋ(t)− p · g(t) + C · u1(t) · s(t) = 0, t ∈ [0, T], (7.10b)

h
(
x(t), u2(t)

)
≤ 0, t ∈ [0, T], (7.10c)

r
(
x(0), x(T)

)
≤ 0, (7.10d)

with g(t) = f
(
x(t), u2(t)

)
and s(t) = l

(
x(t), u2(t)

)

7.2. Warping Theory 129

Definition 7.5 (Semi-Warpable Optimal Control Problem (SWOCP)). Consider a general
WOCP as given by Equation (7.10). The resultant OCP of adding u1(t)-dependent path
constraints,

h2

(
x(t), u1(t), u2(t)

)
≤ 0, t ∈ [0, T],

to the original WOCP is defined as Semi-Warpable Optimal Control Problem (SWOCP).
A full description of the general SWOCP scheme is depicted by the following optimization
problem:

minimize
x(·), u(·)

1

T

∫
T

0

N∑
m=0

p1
jm · u1(t)

K−jm · fm
(
x(t), u(t)

)
dt+ E

(
x(T)

)
(7.11a)

subject to ẋ(t)− p · g(t) + C · u1(t) · s(t) = 0, t ∈ [0, T], (7.11b)

h
(
x(t), u2(t)

)
≤ 0, t ∈ [0, T], (7.11c)

h2

(
x(t), u1(t), u2(t)

)
≤ 0, t ∈ [0, T], (7.11d)

r
(
x(0), x(T

)
≤ 0, (7.11e)

with g(t) = f
(
x(t), u2(t)

)
and s(t) = l

(
x(t), u2(t)

)
.

Theorem 7.6 (Optimality of time warping dynamical systems). Consider the solution of a
general WOCP in a time frame t to be defined by:

y∗(t) =

x
∗(t)

u∗1(t)

u∗2(t)

.
Regard also a warped trajectory of y∗(t) with a warping factor ẇ(t) = dτ

dt = p
pref

defined
in a time frame τ :

y∗ref(τ) = y∗ref

(
w(t)

)
=

x
∗
ref

(
w(t)

)
u∗ref1

(
w(t)

)
u∗ref2

(
w(t)

)
,

It holds that y∗ref(τ) is an optimal solution of the same WOCP but defined in a warped
time frame τ and with a time horizon τ̄ = w(T):

y∗ref(τ) = arg min
yref(·)

1

τ̄

∫
τ̄

0

N∑
m=0

pref
jm · uref1(τ)

K−jm · fm
(
xref(τ), uref2(τ)

)
dτ + E

(
xref(τ̄)

)
subject to ẋref(τ)− pref · gref(τ) + C · uref1(τ) · sref(τ) = 0, τ ∈ [0, τ̄],

h
(
xref(τ), uref2(τ)

)
≤ 0, τ ∈ [0, τ̄],

r
(
xref(0), xref(τ̄)

)
≤ 0,

with: yref(τ) =
(
x(τ), u(τ)

)
, gref(τ) = f

(
xref(τ), uref2(τ)

)
and sref(τ) = l

(
xref(τ), uref2(τ)

)
.

For clarity purposes and from now on, this modified WOCP will be defined as τ -WOCP and
the original one as t-WOCP.

130 Chapter 7. Time Warping

Proof. Since p is constant, the warping factor also has to be:

ẇ(t) =
p

pref
= ẇ, (7.12)

and because of that, the warping operation becomes a linear transformation:

τ =

∫ t

0

p

pref
t′dt′ =

p

pref
t =⇒ τ̄ = w(T) =

p

pref
T. (7.13)

As a result, the cost function of the τ -WOCP can be expressed as:

J
(
yref(τ)

)

=
1

τ̄

∫ τ̄=w(T)

0

N∑
m=0

pref
jm · uref1(τ)

K−jm · fm
(
xref(τ), uref2(τ)

)
dτ + E

(
xref(τ̄)

)

=
1

τ̄

∫
T

0

N∑
m=0

pref
jm · uref1

(
w(t)

)K−jm · fm(xref

(
w(t)

)
, uref2

(
w(t)

))
ẇ(t)dt+ E

(
xref(τ̄)

)

(7.12)
(7.13)

=
1

T

∫
T

0

N∑
m=0

pref
jm · uref1

(
w(t)

)K−jm · fm(xref

(
w(t)

)
, uref2

(
w(t)

))
dt+ E

(
xref(τ̄)

)

(7.8)
(7.9)
=

1

T

∫
T

0

N∑
m=0

pref
jm · uref1

(
w(t)

)K−jm · fm(x(t), u2(t)
)
dt+ E

(
x(T)

)

(7.3)
(7.12)

=
1

T

∫
T

0

N∑
m=0

(p
ẇ

)jm
·
(
u1(t)

ẇ

)K−jm
· fm

(
x(t), u2(t)

)
dt+ E

(
x(T)

)

=
1

T · ẇK

∫
T

0

N∑
m=0

pjm · u1(t)
K−jm · fm

(
x(t), u2(t)

)
dt+ E

(
x(T)

)

=
1

ẇK
· J
(
y(t)

)
.

(7.14)

In other words, the cost function, J
(
y(t)

)
, of a general WOCP and the cost function,

J
(
yref(τ)

)
, of its warped version τ -WOCP just differ in a constant factor 1

ẇK . As a re-
sult, given y∗(t) such that:

7.2. Warping Theory 131

y∗(t) = arg min
y(·)

J
(
y(t)

)
,

then, y∗(t) also minimizes J(yref

(
w(t)

)
), where yref(w(t)) = yref(τ):

y∗(t) = arg min
y(·)

J
(
y(t)

)
= arg min

y(·)
J
(
y(t)

)
ẇK

= arg min
yref(·)

J
(
yref(w(t))

)
= y∗ref(w(t)).

This means that, if an unconstrained minimization problem was being solved, the solution
that minimizes J

(
y(t)

)
should be the same as the solution that minimizes J

(
yref(τ)

)
. This

specific solution can be either represented by y∗(t) or by y∗ref

(
w(t)

)
= y∗ref(τ), and where

whether using one or the other will depend on the time frame (t or τ) used, i.e. it will
depend on whether the cost function of the t-WOCP or the τ -WOCP is being solved.

Nevertheless, since an OCP is not an unconstrained minimization problem (dynamics,
path, and boundary constraints are also enforced), optimality does not follow directly from
Equation (7.14). However, if the constraints of both WOCPs were proven to be equivalent,
together with (7.14), these two facts would lead to both WOCPs sharing the same optimal
solution.

Boundary constraints:

r
(
xref(0), xref(τ̄)

)
≤ 0

(7.5)
(7.13)
= r

(
xref

(
w(0)

)
, xref

(
w(T)

))
≤ 0

(7.8)
= r

(
x(0), x(T)

)
≤ 0.

(7.15)

Path constraints:

h
(
xref(τ), uref2(τ)

)
≤ 0, τ ∈ [0, τ̄]

(7.8)
(7.9)
=

(7.13)
h
(
x(t), u2(t)

)
≤ 0,

p

pref
t ∈ [0,

p

pref
T]

= h
(
x(t), u2(t)

)
≤ 0, t ∈ [0, T].

(7.16)

132 Chapter 7. Time Warping

Dynamic constraints:

ẋref(τ) − pref · gref(τ) +C · uref1(τ) · sref(τ) = 0, τ ∈ [0, τ̄]

(7.7)
(7.12)
=
(7.13)
(7.3)

dx

dτ
− p

ẇ
· g(t) + C · u1(t)

ẇ
· s(t) = 0,

p

pref
t ∈ [0,

p

pref
T]

=
(7.4)

ẇ · dx

dτ
− p · g(t) + C · u1(t) · s(t) = 0, t ∈ [0, T]

= dτ

dt
· dx

dτ
− p · g(t) + C · u1(t) · s(t) = 0, t ∈ [0, T]

= ẋ(t) − p · g(t) + C · u1(t) · s(t) = 0, t ∈ [0, T].

(7.17)

As it can be seen from Equations (7.15-7.17), the constraints in both WOCPs represent
the exact same information: both sets of constraints are fully equivalent with the difference
of being defined in different time frames. Considering also Equation (7.14), it can be seen
that solving:

minimize
xref(·), uref(·)

1

τ̄

∫
τ̄

0

N∑
m=0

pref
jm · uref1(τ)

K−jm · fm
(
xref(τ), uref2(τ)

)
dτ + E

(
xref(τ̄)

)
subject to ẋref(τ)− pref · gref(τ) + C · uref1(τ) · sref(τ) = 0, τ ∈ [0, τ̄],

h
(
xref(τ), uref2(τ)

)
≤ 0, τ ∈ [0, τ̄],

r
(
xref(0), xref(τ̄)

)
≤ 0,

in a time frame τ , is equivalent to solving:

minimize
x(·), u(·)

1

Tẇ

∫
T

0

N∑
m=0

p1
jm · u1(t)

K−jm · fm
(
x(t), u(t)

)
dt+ E

(
x(T)

)
subject to ẋ(t)− p · g(t) + C · u1(t) · s(t) = 0, t ∈ [0, T],

h
(
x(t), u2(t)

)
≤ 0, t ∈ [0, T],

r
(
x(0), x(T

)
≤ 0,

in a time frame t, which in turn is identical to solving:

7.2. Warping Theory 133

minimize
x(·), u(·)

1

T

∫
T

0

N∑
m=0

p1
jm · u1(t)

K−jm · fm
(
x(t), u(t)

)
dt+ E

(
x(T)

)
subject to ẋ(t)− p · g(t) + C · u1(t) · s(t) = 0, t ∈ [0, T],

h
(
x(t), u2(t)

)
≤ 0, t ∈ [0, T],

r
(
x(0), x(T

)
≤ 0.

As a result, it can be seen that the t-WOCP and the τ -WOCP solve the exact same
problem, with the minor differences of being defined in different time frames and having cost
functions that differ in a constant parameter. Nevertheless, these variations do not change
the solution of the optimization problem, and thus, they share the same optimal solution:

y∗(t) = y∗ref

(
w(t)

)
= y∗ref(τ).

As before, using y∗(t) or y∗ref(τ) will depend on the time frame used, or equivalently, on which
WOCP (t-WOCP or τ -WOCP) is being solved.

Corollary 7.7 (Optimality extension to Semi-Warpable Optimal Control Problems). Re-
calling the notation of the above sections, t-SWOCP will be used for referring to the original
SWOCP, and τ -SWOCP for the same SWOCP but defined in a time frame τ and with a
time horizon τ̄ = w(T).

If the u1-dependent path constraints of the t-SWOCP hold with strict inequality at the
optimal solution y∗(t), i.e.

h2

(
x∗(t), u∗1(t), u∗2(t)

)
< 0, t ∈ [0, T],

and at the warped version of y∗(t), y∗ref(τ), the u1-dependent path constraints of the τ -SWOCP
also hold with strict inequality, i.e.

h2

(
x∗ref(τ), u∗ref1(τ), u∗ref2(τ)

)
< 0, τ ∈ [0, τ̄],

then, y∗ref(τ) is also an optimal solution of τ -SWOCP.
In general and in contrast with the above result, if the controls u1(t) appear in the path

constraints of a WOCP, i.e. if a SWOCP is being solved, the corollary does not hold: if
y∗(t) is the optimal solution of a t-SWOCP, y∗ref(τ) is not necessarily an optimal solution for
the τ -SWOCP. This can be easily proven considering that, whenever the controls u1(t) are
warped to a time frame τ , they are not only warped but also amplified or attenuated by the
factor 1

ẇ , and as a result, the new controls uref1(τ) might lead to infeasible path constraints
or suboptimal solutions in the original SWOCP.

Proof. The proof holds directly from the fact that, in any NLP, if an inequality constraint
is inactive at the optimal solution, i.e. it holds with strict inequality, this constraint can be
removed from the original NLP without modifying the optimal solution.

As a result, since the u1-dependent path constraints hold with strict inequality at the
optimal solution, they can be removed without modifying the problem solution, transforming
the original SWOCPs into WOCPs. Then, having two WOCPs, Corollary 7.7 holds directly
due to Theorem 7.6.

134 Chapter 7. Time Warping

Due to Corollary 7.7, treating WOCPs and SWOCPs with the u1 inequalities inactive is
exactly the same. As a result, we will not distinguish between both cases and they will be
referred to as WOCP.

7.3 Warping NMPC
In the field of tracking NMPC, Theorem 7.3 and 7.6 have a very important implication on the
controller stability and efficiency. In particular, consider a tracking NMPC using a Real Time
Iteration scheme [37] in order to control a warpable dynamical system. In this context, since
the system equations of motions can be formulated as (7.1) and thus are linearly influenced
by a parameter p(t), the NMPC requires a way of obtaining feasible and optimal tracking
trajectories as a function of the different p(t) values.

In the motivation section, a couple of known methods to tackle this problem were stated.
In this section, we introduce and develop a novel algorithm called Warping NMPC as an
alternative solution to generate fully optimal and stable tracking trajectories online for the
specific set of warpable dynamical systems.

7.3.1 Theoretical Foundations
Warping NMPC foundations are built up using the theoretical results of Section 7.2. In
particular, Theorem 7.3 is applied to generate feasible trajectories, and then, Theorem 7.6
is exploited to show that, under some conditions, these trajectories are also optimal. As
a consequence, its use is limited to warpable dynamical systems; and if feasibility is not
enough and optimality has to be ensured, the range of applications is narrowed to tracking
trajectories that are obtained via (S)WOCPs.

Feasible Trajectories Generation

Corollary 7.8 (Feasible trajectory transformation between warpable systems). Regard a
dynamical system St defined by Equation (7.1), i.e. linearly dependent on p(t) and in the time
frame t. Consider also a second dynamical system Sτ defined by Equation (7.2), i.e. linearly
dependent on pref and in the time frame τ . Regard as well that the controls u1(t) and uref,1(τ)
are limited by the following general constraint equations:

hu1

(
u1(t)

)
≤ 0, huref

(
uref,1(τ)

)
≤ 0.

Then:

(i). Given that:

huref

(
u1(t) · pref

p(t)

)
≤ 0, t ∈ [0, T].

Then, any feasible trajectory yp(t) =
(
x(t), u1(t), u2(t)

)
of St, with t ∈ [0, T], can be

warped to obtain a feasible trajectory yref(τ) =
(
xref(τ), uref,1(τ), uref,2(τ)

)
in Sτ , with

τ ∈ [0, w(T)]. In this case, the warping factor is ẇ(t) = p(t)
pref

.

7.3. Warping NMPC 135

(ii). Given that:

hu1

(
uref,1(τ) · p(t)

pref

)
≤ 0, τ ∈ [0, τ̄] and t = w−1(τ).

Any feasible trajectory yref(τ) =
(
xref(τ), uref,1(τ), uref,2(τ)

)
of Sτ , with τ ∈ [0, τ̄],

can be warped to obtain a feasible trajectory yp(t) =
(
x(t), u1(t), u2(t)

)
in St, with

t ∈ [0, w−1(τ̄)]. In this scenario, the warping factor is simply given by ẇ−1(t) = 1
ẇ(t) =

pref
p(t) .

Proof.

(i). Part (i) holds directly as a direct result of Theorem 7.3, where yp(t) =
(
x(t), u1(t),

u2(t)
)
and yref(τ) =

(
xref(τ), uref,1(τ), uref,2(τ)

)
.

(ii). Part (ii) holds by the bidirectional property of time warping, i.e if time is warped from
t to τ with a warping factor ẇ(t) = p(t)

pref
, time can also be warped back from τ to t

using a warping factor 1
ẇ(t) = pref

p(t) .

In order to generate feasible trajectories as a continuous function of p(t), the result (ii)
of Corollary 7.8 could be exploited. In particular, regarding t as the real time frame where
the controller time grid is defined and τ as a warped version of t, a reference trajectory
yref(τ), obtained in a dynamical system proportional to the constant pref , could be warped
to obtain a feasible trajectory yp(t) for any given p(t) value. In particular, to avoid infeasible
solutions due to the attenuations and amplifications of uref,1(τ) when warping, the reference
trajectory yref(τ) is generated using the parameter pref that models the worst case scenario
for the constraint:

huref

(
uref,1(τ)

)
≤ 0. (7.18)

That way, if the controls uref,1(τ) of the reference trajectory validate Equation (7.18), then,
any warped control u1(t) = uref,1(τ) · p(t)pref

should also validate it and, as a result, the warped
trajectories yp(t) are always feasible.

It is important to remark that, in the warping NMPC algorithm as well as in the Corollary
7.8, only the limitations in u1(t) and uref,1(τ) have to be considered since they are the only
quantities that are attenuated or amplified while warping. By contrast, x(t), xref(τ), u2(t)
and uref,2(τ) are warped but their amplitudes do not change.

An interesting concept to look at is the relation between the time velocities and the
parameters in t and τ . In the time frame t, the time velocity dt is constant and the parameter
p(t) changes with time, leading to a time dependent feasible tracking trajectory yp(t). By
contrast, in time frame τ , yref(τ) is constant because pref is also so, and to account for this
time independence, the time velocity dτ has to vary so that at every moment dτ = ẇ(t)dt
and the two systems can be equivalent.

Figure 7.4 illustrates the warping concept between a reference and a feasible trajectory:
on the one hand, the blue line represents the reference trajectory, yref , which is feasible for
the constant pref value and in the warped system τ . On the other hand, the red line would
show the warped trajectory, yp(t), which is a feasible trajectory for the real parameter p(t)
and which is obtained by time warping yref with a ratio ẇ(t) = p(t)

pref
= 0.5.

So far, only the warping concept in continuous trajectories has been illustrated. Never-
theless, the equivalent algorithm for discrete trajectories is exactly the same and Figure 7.4

136 Chapter 7. Time Warping

depicts it as well. Considering that the NMPC uses N = 14 points, then, the discrete real
trajectory that the NMPC should track at the current time is given by Ytrack = (ytrack,0,
ytrack,1, . . . , ytrack,13) and is represented by the circles. This trajectory is obtained by warp-
ing the discrete precomputed tracking trajectory Ypre = (ypre,0, . . . , ypre,13) that the NMPC
would use if the real parameter p(t) was exactly pref but with an NMPC horizon Tref = T p(t)

pref
.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

← ypre,N

← x0

← ytrack,N

Horizon length
T = 4.8 [s], N = 13

t

Y

yref - Trajectory for pref

yp - Warped trajectory for p1(t)

Ypre - NMPC reference trajectory
Ytrack - NMPC tracking trajectory

Figure 7.4: Warped trajectory for NMPC with a time horizon of 4.8 [s], 14 points and with a warp
ratio p(t)

pref
= 1

2
.

Optimal Trajectories Generation

Feasibility is in many cases a requirement that is strong enough to ensure stability of the
tracking NMPC scheme. Therefore, the previous result on its own can be used to generate
a variant of warping NMPC that is stable but does not ensure optimality. Nevertheless, if
optimality of the warped trajectories has to be ensured, the following corollaries should be
regarded:

Corollary 7.9 (Optimal trajectory transformation in WOCP). Regard a trajectory y∗p(t) =(
x∗(t), u∗1(t), u∗2(t)

)
which optimizes a certain t-WOCP, which in turn considers a warpable

dynamical system with a variable parameter p(t). Consider as well the trajectory y∗ref(τ) =(
x∗ref(τ), u∗ref,1(τ), u∗ref,2(τ)

)
which optimizes the equivalent warped τ -WOCP, which regards a

dynamical system with a constant parameter pref . Then, the optimal and constant trajectory
y∗ref(τ) can be warped to obtain the optimal trajectory y∗p(t).

Proof. This result is an immediate consequence of Theorem 7.6 and Corollary 7.8, where no
constraints of u1(t) and uref,1(τ) have to be considered due to the WOCP definition.

Corollary 7.10 (Optimal trajectory transformation in SWOCP). Regard the general u1-path
constraint of a SWOCP which is given by Equation (7.11d). If the reference trajectory y∗ref(τ)

7.3. Warping NMPC 137

is generated using the parameter pref that models the worst case scenario of this u1-constraint,
and in this scenario the constraint is still inactive, i.e.

l2
(
x∗ref(τ), u∗ref,1(τ), u∗ref,2(τ)

)
< 0,

then, y∗ref(τ) can again be warped to obtain the optimal trajectory y∗p(t) for any value of p(t).

Proof. This result is an immediate consequence of Corollary 7.9, Corollary 7.7 and the fact
that if pref models the worst case scenario for the constraints, the attenuations or amplifica-
tions on u∗ref,1(τ) should still make Equation (7.11d) inactive.

Corollary 7.9 establishes that, in order to ensure that the warped feasible solutions yp(t)
are also optimal, the base trajectory yref(τ), which is used to generate these feasible trajec-
tories, has to be obtained as the solution of a τ -WOCP.

Corollary 7.10 establishes that the previous result can also be extended to SWOCP-
generated trajectories as long as two conditions are met:

(i). The reference parameter pref creates the worst case scenario of the u1-path constraint.

(ii). The u1-path constraint remains inactive at the reference solution y∗ref(τ).

Despite the second condition being violated, it is important to note that if the first
condition is met, the warped trajectories y∗p(t) can not represent a worse u1-path constraint
value than y∗ref(τ), and as a result, y∗p(t) has to be feasible. In this case, y∗p(t) would be
a suboptimal solution, which despite not being fully optimal, it would still be a better
approximation of the true solution than a random feasible trajectory.

7.3.2 Algorithm Implementation
In a tracking NMPC where the time frame is invariant, i.e. where the time steps on the horizon
are constant, the update of the tracking trajectory is usually done by shifting backwards the
previous trajectory one time step and adding a new point at the end of the trajectory. The
following equations illustrate that:

At time tk : Ytrack,k = (y0, y1, . . . , yN−1, yN)

At time tk+1: Ytrack,k+1 = (y1, y2, . . . , yN , ynew)
(7.19)

The selection of ynew can be done in different ways, but the main idea is to just update the
last value and shift the others so that big changes on the optimization problem are avoided
and stability is not compromised.

In order to preserve that in the proposed NMPC approach, it was decided to update the
trajectory by just warping the last time interval to obtain the value ynew and shift the rest.
The limitation of this approach is that the adaptability to the changes on p(t) has a delay
equal to the NMPC horizon length which in principle could arise concerns over the NMPC
stability due to the late reaction. Nevertheless, this reaction delay is a common problem to
the classic shift represented by Equation (7.19); and in practice, due to the short length of
the horizon times on NMPC, this is rarely a real problem.

In order the explain the specific update of the last value ynew, let’s first define several
things:

(i). The continuous reference trajectory yref is obtained from solving an OCP and therefore
is approximated by its discrete version Yref = (yref,0, yref,1, . . . , yref,M).

138 Chapter 7. Time Warping

(ii). The full discrete reference trajectory Yref = (yref,0, yref,1, . . . , yref,M) is defined in a time
grid tref = {tref,0, tref,1, . . . , tref,M}, where tref,0 < tref,1 < . . . < tref,M.

(iii). The time step of the NMPC controller is constant and defined by ∆t.

(iv). If ∆t is small enough:
|p(t)− p(t+ ∆t)| << p(t)

and therefore, p(t) can be assumed to be constant between two NMPC time steps.

Lemma 7.11. Consider a random point y0 ∈ yp. Then:

(i). y0 ∈ yref ⇐⇒ y0 ∈ yp
(ii). A time displacement of ∆t on yp starting at yref,0 would bring the system to the same

point yref,1 as a time displacement ∆tw = ∆t p
pref

also starting at yref,0 on yref .

Proof.
(i) is proved directly because yp and yref are warped versions of each other.
(ii) is proved considering that p(t) = p is constant on ∆t, i.e. w(∆t) = p

pref
∆t, and by

using the result (iii) of Theorem 7.3 with t = ∆t:

yp(∆t) = x(∆t) = xref (w(∆t)) = xref

(
p

pref
∆t

)
= yref

(
p

pref
∆t

)
.

Considering Lemma 7.11, the algorithm to update ynew can be explained as a set of several
steps/concepts:

(i). Regarding ytrack,N as the last point of the real tracking trajectory Ytrack, the algorithm
uses a continuous time variable tc as a continuous time index to track the equivalent
point of ytrack,N within the reference trajectory yref . We define this point by yref(tc) =
ytc .

(ii). tc is updated at each iteration by increasing its value the warped time step ∆tw.

(iii). Then, the algorithm finds in Yref the upper yup and lower ylow closest points to ytc+∆tw ,
and then, it approximates the new value of ytc by linear interpolation between these
two points.

(iv). To find yup and ylow, the algorithm searches in tref for the upper tup and lower tlow

time points that are closest to tc , and then, it uses their indices, kup, klow, to obtain
Yref(kup) = yup and Yref(klow) = ylow.

(v). Finally, the new value ytc+∆tw can be easily approximated by:

ytc+∆tw = ylow +
yup − ylow

tup − tlow
(tc − tlow)

Due to result (ii) of Lemma 7.11, ytc+∆tw represents the same point as the point obtained
in the real time frame t by advancing a time step ∆t in the continuous tracking trajectory yp
starting at ytrack,N , i.e. ytc+∆tw = ynew = ytrack,N+1. Algorithm 3 illustrates this procedure
and table 7.1 summarizes all the variables used to do this computation.

7.3. Warping NMPC 139

yref Continuous reference trajectory obtained for a certain parameter pref .

yp
Continuous feasible trajectory obtained by warping yref using a warping
factor ẇ(t) = p(t)

pref
.

Yref Discretized version of yref .

Ytrack Tracking NMPC trajectory obtained by Algorithm 3.

ytrack,k k point of the real tracking trajectory Ytrack.

tc
Continuous index of yref to track the relative time position of ytrack,N within
the reference system yref .

ytc Approximated value of yref at time tc.

ytc+∆tw
Approximated value of yref at time tc + ∆tw obtained by linearly interpo-
lating yup, ylow and tup, tlow.

tup(tlow) Closest upper (lower) time point in tref to tc.

yup(ylow) Yref value at time tup (tlow).

∆t Time grid interval for the NMPC controller.

∆tw Warped version of ∆t with a warping factor ẇ(t) = p
pref

.

ynew
Point added to the tracking trajectory Ytrack at every iteration. ynew =
ytc+∆tw

Table 7.1: Parameters and concepts for updating the last values of the tracking trajectory using
the warping theory.

Algorithm 3 Trajectory update on Warping NMPC

1: p← Update_Disturbance()
2: ∆tw ← ∆tprefp
3: tc ← tc + ∆tw
4: ynew ← Interpolating_Y(tc, Yref , tref)
5: return ynew

6:
7: Function Interpolating_Y(tc, Yref , tref):
8: tlow ← arg min

t
|t− tc|, s.t. t ≤ tc, t ∈ tref

9: tup ← arg min
t

|t− tc|, s.t. t > tc, t ∈ tref

10: ylow ← Yref(tlow), yup ← Yref(tup)

11: return ylow +
yup−ylow
tup−tlow (tc − tlow)

Figure 7.5 illustrates the algorithm in a graphical manner: at a random time tk, the
tracking trajectory is represented by the red dots. At this time, the algorithm uses tc and
the point ytc to keep track of the equivalent position of the last tracking point, ytrack,N ,
within the reference trajectory Yref . Then, the algorithm computes the point ytc+∆tw , which
is ahead of yref,tc by an interval ∆tw. Finally, it adds this point to the new tracking trajectory.
This point is represented in the Figure by ynew and the tracking trajectory at time tk+1 is
represented by the pentagons.

140 Chapter 7. Time Warping

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

x0

ytc

ytc+∆tw = ynew

ylow

ytop

ytrack,N

∆t
∆tw

tc tc + ∆tw

t

Ytrack,k - tracking trajectory at time tk
Yref - discrete reference trajectory
ytc - interpolated reference trajectory
ynew - point added to the tracking trajectory
Ytrack,k+1 - tracking trajectory at time tk+1

Figure 7.5: NMPC shifting strategy: at time tk Ytrack,k is tracked. In parallel, tc and ytc are used
to follow the last tracking point within the reference trajectory Yref . Then, ytc+∆tw is computed by
interpolation using Yref , and finally, it is added to the new tracking trajectory Ytrack,k+1.

As a result, Algorithm 3 establishes a way to update the tracking NMPC trajectories
Ytrack so that they remain feasible independently of the parameter value p(t). Furthermore,
it also establishes that if Yref is obtained using a WOCP (or via a SWOCP but validating
the conditions of Corollary 7.10), then Ytrack is not only feasible but optimal with respect to
p(t).

7.4 Warping Kite
The previously developed theory is of special importance when considering that, as we will
prove in the coming sections, the Skysails kite is a system with warpable dynamics, and the
reference trajectories of the implemented NMPC are the solutions of a SWOCP. In particular,
considering the theory and algorithms developed in the previous sections, warping NMPC
can be implemented in order to improve the stability and robustness of the kite controller
against long term variations of wind speed.

7.4.1 Theory
In order to implement warping NMPC, a first step is to prove that the kite is indeed a
warpable system and that the tracking trajectories are obtained as solutions of a SWOCP.

7.4. Warping Kite 141

Warpable Kite Dynamics

Let’s recall the equation of motions of the Skysails kite system:

ψ̇ = gkvaδ + ϕ̇ cosϑ, (7.20a)

ϕ̇ = − va

l sinϑ
sinψ, (7.20b)

ϑ̇ = −vw

l
sinϑ+

va

l
cosψ, (7.20c)

l̇ = vwinch, (7.20d)
with :

va = vwE cosϑ− l̇E. (7.20e)

By substituting Equation (7.20e) into Equations (7.20a),(7.20b) and (7.20c), (7.20b) into
(7.20a) and (7.20d) into (7.20e), the following equivalent equations of motion are obtained:

ψ̇ = vw

(
cosϑEgkδ −

E sinψ

l tanϑ
cosϑ

)
+ vwinch

(E

l tanϑ
− Egkδ

)
(7.21a)

ϕ̇ = −vw
E sinψ

l tanϑ
+ vwinch

E

l sinϑ
, (7.21b)

ϑ̇ = vw

(
− sinϑ

l
+
E cosϑ cosψ

l

)
− vwinch

E cosψ

l
, (7.21c)

l̇ = vwinch. (7.21d)

Looking at the structure of Equations (7.21a)-(7.21d), it is obvious that the Skysails kite is
a warpable dynamic system; in particular, defining the state of the system as x = [ψ,ϕ, ϑ, l]>,
the controls as u = [vwinch, δ]

> and the disturbance as p = vw, the equation:

ẋ =

ψ̇
ϕ̇

ϑ̇

l̇

 = vwg1(x, δ) + vwinchg2(x, δ), (7.22)

with:

g1(x, δ) =

cosϑEgkδ −
E sinψ

l tanϑ
cosϑ

−E sinψ

l tanϑ

− sinϑ

l
+
E cosϑ cosψ

l

0

, g2(x, δ) =

E

l tanϑ
− Egkδ

E

l sinϑ

−E cosψ

l

1

,

has the same structure as Equation (7.1), where u1 = vwinch, u2 = δ and p = vw.
It is important to remark that, for the sake of clarity and simplicity, in the above deriva-

tions the time dependence was omitted; however, it is necessary to keep in mind that any of

142 Chapter 7. Time Warping

the system states, controls, and parameters are time dependent, i.e. x = x(t), u = u(t) and
p = p(t).

Tracking Trajectories as SWOCP Solution

Let’s regard now the OCP defined by (3.11) which was used to obtain the tracking trajecto-
ries for the NMPC. A clearer representation of (3.11) is given by considering the following
simplifications:

(i). The control δ̇ was only used to obtain a smooth trajectory on the real control δ. As
a result, without loss of generality, it should be possible to use δ instead of δ̇ as the
system control.

(ii). The regularization term of the objective function did not aim at maximizing the ex-
tracted energy, but instead, at obtaining a smooth control δ. As a result, without loss
of generality, the term could be removed from the OCP and the extracted energy would
still be maximized.

Considering the above simplifications, (3.11) can be reformulated as:

minimize
x(·), u(·)

− 1

T

∫ T

0

va(t)
2
l̇(t)dt (7.23a)

subject to ẋ(t)−
(
vw(t)f1(t) + vwinch(t)f2(t)

)
= 0, t ∈ [0, T], , (7.23b)

h
(
x(t)

)
≤ 0, t ∈ [0, T], (7.23c)

δmin ≤ δ(t) ≤ δmax, t ∈ [0, T], (7.23d)
vmin ≤ vwinch(t) ≤ vmax, t ∈ [0, T], (7.23e)

r
(
x(T), x(0)

)
≤ 0 (7.23f)

where for notation simplicity we defined f1(t) = g1

(
x(t), δ(t)

)
and f2(t) = g2

(
x(t), δ(t)

)
.

Then, by expanding the cost function as:

− 1

T

∫ T

0

va(t)
2
l̇(t)dt

= − 1

T

∫ T

0

(
vw(t)E cosϑ(t)− l̇(t)E

)2
l̇(t)dt

= − 1

T

∫ T

0

(
vw(t)F1

(
x(t)

)
− l̇(t)E

)2
l̇(t)dt

= − 1

T

∫ T

0

(
vw(t)

2
F2(x(t)) + l̇(t)

2
E2 − vw(t)l̇(t)F3

(
x(t)

)
l̇(t)dt

= − 1

T

∫ T

0

(
vw(t)

2

l̇(t)F2

(
x(t)

)
+ l̇(t)

3
E2 − vw(t)l̇(t)

2
F3

(
x(t)

)
dt, (7.24)

with:

F2

(
x(t)

)
= F1

(
x(t)

)2 and F3

(
x(t)

)
= F2

(
x(t)

)
E,

7.4. Warping Kite 143

it can be observed that, defining u1(t) = vwinch(t), p(t) = vw(t) and K=3, the expanded cost
function (7.24) has the same structure as Equation (7.10a) representing the cost function of
a WOCP. Therefore, considering the vwinch path constraint given by (7.23e), the OCP that
obtains the tracking reference trajectory is proven to be a SWOCP.

In view of the above results, given a reference trajectory Yref for a constant reference
wind speed vw,ref , warping NMPC can be used to obtain a continuous spectrum of feasible
and maybe optimal tracking trajectories Yvw for any vw value.

Warping Illustration

In order to illustrate this concept better, the offline OCP solutions for 3 different wind speed
values are depicted in Figure 7.6 and 7.7; in particular, Figure 7.6 illustrates the 3D view of
these optimal trajectories and 7.7 the individual solution of the four system states. Looking
at them, the conclusion is clear: in a 3D space, the three trajectories make the kite fly
through the same physical location; however, since the wind speed is different in the three
scenarios, the kite dynamics have different velocities and the state trajectories are warped
versions of each other.

−100

0

100

200

300

400

−300
−200

−100
0

100
200

−150

−100

−50

0

x [m]
y [m]

z
[m

]

vw = 6m/s
vw = 8m/s
vw = 10m/s

Figure 7.6: OCP 3D trajectory solutions for vw equal to 6, 8 and 10 m/s.

To further comprehend the warping theory, Figure 7.8 represents the control inputs for the
trajectories depicted in Figure 7.6 and 7.7. As previously explained, since vwinch represents
the linear input u1 of a warpable dynamic system, it is expected that, between warped
trajectories, vwinch would not just warp but also be attenuated or amplified. In contrast with
vwinch, the second control δ should only be warped. Figure 7.8 confirms and illustrates the
previous hypothesis and, together with Figure 7.6 and 7.7, exemplifies the warping theory
applied to the Skysails AWE system.

144 Chapter 7. Time Warping

0 20 40 60 80 100 120 140 160 180 200
−4

−2

0

2

4

Time [s]

ψ
[r
ad

]

vw = 6m/s
vw = 8m/s
vw = 10m/s

0 20 40 60 80 100 120 140 160 180 200

−1

0

1

Time [s]

ϕ
[r
ad

]

vw = 6m/s
vw = 8m/s
vw = 10m/s

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

Time [s]

ϑ
[r
ad

]

vw = 6m/s
vw = 8m/s
vw = 10m/s

0 20 40 60 80 100 120 140 160 180 200

200

250

300

Time [s]

l
[m

]

vw = 6m/s
vw = 8m/s
vw = 10m/s

Figure 7.7: OCP optimal solutions for vw equal to 6, 8 and 10 m/s. All of them are warped
versions of each other.

7.4. Warping Kite 145

0 20 40 60 80 100 120 140 160 180 200

−0.5

0

0.5

Time [s]

δ

vw = 6m/s
vw = 8m/s
vw = 10m/s

0 20 40 60 80 100 120 140 160 180 200
−6

−4

−2

0

2

Time [s]

v w
in

c
h
[m

/s
]

vw = 6m/s
vw = 8m/s
vw = 10m/s

Figure 7.8: OCP system controls for vw equal to 6, 8 and 10 m/s.

7.4.2 Optimality of Warped Trajectories
If the path constraint vmin ≤ vwinch(t) ≤ vmax did not exist, the SWOCP would become a
WOCP and warping NMPC would generate reference trajectories that are not only feasible
but also optimal. In the case of having a path constraint and considering Corollary 7.10,
optimality can only be obtained if this path constraint is inactive in its worst case scenario.

Looking at Figure 7.8, it can be observed that the control vwinch reaches a bound for
vw = 10m/s; as a consequence, the path constraint becomes active and optimality of the
warped trajectories can not be guaranteed. Nevertheless, the warped trajectories might still
represent suboptimal solutions; therefore, in order to evaluate if they are worthy to be used
in the NMPC framework, their quality should be assessed in the following sections.

Warped Versus Optimal Offline Trajectories

The first required study to assess the quality of the suboptimal trajectories is to compare their
efficiency with respect to their optimal counterpart. Particularly, to perform this evaluation,
the following steps must be conducted:

(i). Compute the optimal trajectory Y ∗worst considering the worst vwinch constraint scenario.
In particular, it has been observed that the higher the wind speed the closer the con-
straint (7.23e) is to become active; therefore, Y ∗worst should be computed considering
the highest expected wind speed (15m/s in this case).

(ii). Warp this trajectory Y ∗worst to obtain different trajectories Y warp
vw,k

at different wind
speeds vw,k.

(iii). Compare the efficiency of the Y warp
vw,k

trajectories with respect to Y ∗vw,k, with Y
∗
vw,k

being
obtained by solving the SWOCP at constant wind speed vw,k.

146 Chapter 7. Time Warping

Therefore, to perform the evaluation, the optimal trajectories at vw = 6, 8, 10, 12, 14 and
15m/s were computed; then, the last one was warped to obtain feasible trajectories at 6, 8,
10, 12 and 14m/s and their efficiencies were compared. Table 7.2 illustrates this efficiency
comparison.

Table 7.2: Efficiency comparison between trajectories obtained for a fixed vw by solving the OCP,
and trajectories obtained by warping a reference trajectory obtained at vw = 15m/s.

vw 6m/s 8m/s 10m/s 12m/s 14m/s 15m/s
ηLoyd

OCP
35.4% 35.4% 35.3% 34.9% 34.2% 33.7%

ηLoyd

warping
33.7%

Considering that the warped trajectories have a maximum efficiency decrease of less than
2%, it seems that they represent a very good approximation of their optimal counterpart
and warping NMPC should, in theory, bring several advantages to the controller. However,
to have a full assessment, an evaluation of their online performance will be conducted in the
next section.

Warped Versus Optimal NMPC Trajectories

Despite having already compared warped and optimal trajectories, their specific performance
in a NMPC framework still remains unknown. Therefore, using the simulation scenario of
Section 6.5, the NMPC performance of tracking an optimal trajectory at vw = 10m/s should
be compared against the controller performance of tracking the warped counterpart obtained
from an optimal trajectory at vw = 15m/s.

As depicted in Table 7.3, the decrease in the tracking performance and power efficiency
is again smaller than 2%. As a result, we can claim that warped trajectories are a very good
approximation of optimal trajectories and that, as a consequence, warping NMPC can be
used to model a controller that tracks nearly optimal feasible trajectories.

Table 7.3: NMPC performance comparison between tracking an offline trajectory obtained at
vw = 10m/s and tracking a trajectory warped from vw = 15m/s to vw = 10m/s.

R2 ηLoyd

Optimal Trajectory 81.07% 31.87%

Warped Trajectory 79.82% 30.32%

7.4.3 Warping NMPC on Skysails Kite
After proving the exceptional quality of warped trajectories in the NMPC context, warping
NMPC, as described in Algorithm 3, can be finally implemented.

Before doing so, it is important to make the following remark: in an ideal scenario, it
would be desirable to have a NMPC that always tracks feasible trajectories; moreover, in
order to achieve that, an accurate estimation of wind gusts to warp and adjust the tracking

7.4. Warping Kite 147

trajectory is required. Nonetheless, as already explained in Section 6.1, the current observer
is unable to estimate wind speed variations in short time intervals and the wind speed is given
as a minute average. Although the former could be a problem, in Section 6.1 it was also
proved that, as long as the vw average is similar to the wind speed of the tracking trajectory,
the NMPC remains stable.

In behalf of the above consideration, warping NMPC will be tested and implemented
using the average vw to continuously generate tracking trajectories. It is important to point
out that this assumption sets the controller in the worst case scenario; as a result, in a future
observer where the wind speed might be estimated in shorter time horizons, warping NMPC
will produce even better results.

To illustrate the benefits of warping NMPC, long term variations of the wind speed should
be considered. In particular, it is important to test the NMPC performance considering wind
speed profiles for which the standard NMPC can no longer track the trajectory, so that it can
be evaluated whether warping NMPC is able to adapt the tracking reference and stay stable.
As a result, the following two controllers will be compared in two different test scenarios:

• A normal NMPC as defined in Section 6.5, i.e this controller will track a trajectory
that is feasible and optimal at 10m/s.

• A warping NMPC where the trajectories are warped and re-adapted using the optimal
trajectory at 15m/s.

Parameters and MHE Influence

Before explaining the specific results, it is necessary to disclose an important effect. In
Section 6.2, the consequences of parameter mismatches were explained by showing that
larger parameter values made the system dynamics faster and smaller parameters slower.
Moreover, to cope with these parameter mismatches, an MHE was implemented.

When performing the different tests on warping NMPC, it was observed that the MHE
could estimate wrong system parameters in order to improve the NMPC performance. In
particular, the following two effects were observed:

(i). Independently of the real parameters values, when the real wind speed was lower than
the wind speed of the reference trajectory, the MHE estimated smaller parameter values
to slow down the NMPC dynamics and in turn reduce the mismatch between the real
dynamics and the model used for obtaining the reference trajectory.

(ii). By contrast, when the real wind speed was higher, the MHE estimated higher param-
eters to make the dynamics of the NMPC faster.

In view of the previous effect, it is necessary to compare the warping NMPC performance
considering two different test setups:

(i). A simulator that does not implement MHE and that considers all the disturbance
except parameter mismatches so that, as a result, a fair evaluation of the warping
NMPC performance without external influences can be obtained.

(ii). A simulator that considers parameter mismatches and a MHE so that, despite not
having a lonely evaluation of the warping effects, the NMPC performance is studied in
a more realistic scenario.

148 Chapter 7. Time Warping

Nominal Wind Velocity Increase

A first test to analyze warping NMPC is to consider an increase of wind speed where a normal
NMPC might fail due to infeasible tracking trajectories; as a consequence, a test scenario was
modeled where the wind velocity increased in a time horizon of 25 minutes from a nominal
10m/s to the maximum 15m/s. The resulting wind profile is depicted in Figure 7.9.

0 5 10 15 20 25
5

10

15

Time [min]

v w
[m

/s
]

Real
Filtered

Figure 7.9: Wind profile considering a nominal increase from 10m/s to 15m/s.

The results of this experiment can be seen in Table 7.4; by analyzing them, it can be
concluded that, in the case of having a NMPC facing wind speeds that steadily increase with
respect to the reference value:

(i). Warping NMPC seems to be quite beneficial for power efficiency. In particular, it
can be observed that, regardless of MHE and parameter mismatches, by warping the
tracking trajectories an efficiency increase of 3-4% is obtained.

(ii). Warping NMPC does not seem to really improve the tracking performance.

(iii). By using MHE an extra increase on the NMPC performance is obtained as a result of
parameter tuning and of balancing the dynamics.

Table 7.4: Warping NMPC comparison considering a nominal wind speed profile increase from
10m/s to 15m/s.

Without MHE With MHE

NMPC Normal Warping Normal Warping

ηLoyd [%] 24.95 27.88 25.67 30.09

R2 [%] 75.59 73.99 77.5 76.63

To provide a graphical illustration, Figures 7.10 and 7.11 depict a comparison in the
two states, ϑ and ψ, where the performance difference was the largest; moreover, to observe
the real benefits of warping NMPC, the comparison is done for the last 100 seconds of the
experiment, the moment where the wind speed is at the highest level.

By analyzing Figure 7.10 illustrating the ϑ tracking performance, the efficiency improve-
ment of warping NMPC can be explained:

7.4. Warping Kite 149

1,400 1,425 1,450 1,475 1,500

0.5

1

1.5

Time [s]

ϑ
[r
ad

]

Reference
NMPC

1,400 1,425 1,450 1,475 1,500

0.5

1

1.5

Time [s]

ϑ
[r
ad

]

Reference
NMPC

Figure 7.10: ϑ performance considering wind speed increases. Left: normal NMPC. Right: warping
NMPC.

1,400 1,425 1,450 1,475 1,500

−4

0

4

Time [s]

ψ
[r
ad

]

Reference
NMPC

1,400 1,425 1,450 1,475 1,500

−4

0

4

Time [s]

ψ
[r
ad

]

Reference
NMPC

Figure 7.11: ψ performance considering nominal wind speed increase. Left: normal NMPC. Right:
warping NMPC.

• Due to the wind speed increase, the real ϑ dynamics become faster.

• In the case of warping NMPC, since the controller warps and adapts the trajectory to
the new dynamics, this is not a problem and the tracking and efficiency performance
is quite good.

• However, in the standard NMPC, the tracking trajectory is too slow for the real wind
speed, resulting in a controller that overshoots and struggles to follow the reference.

• As a result, due to the overshoots, the normal controller flies the kite at higher altitudes
(higher ϑ) than expected, decreasing in turn the air path speed va and the extracted
power.

Figure 7.11 illustrates a similar behavior in the angle ψ; in particular, it can be seen
how, whereas standard NMPC leads to overshooting, warping NMPC solves the problem by
warping and accommodating the tracking reference.

Nominal Wind Velocity Decrease

Similarly to the previous test scenario, warping NMPC should now be tested against a
decreasing wind profile; in particular, a wind speed profile that drops in a time horizon of

150 Chapter 7. Time Warping

25 minutes from the nominal 10m/s to the minimum of 6m/s is considered. The resulting
profile is depicted in Figure 7.12.

0 5 10 15 20 25

5

10

15

time[s]

v w
[m

/s
]

Real
Filtered

Figure 7.12: Wind profile considering a nominal decrease from 10m/s to 6m/s.

As before, the results are first illustrated by comparing the two standard metrics; in
particular, considering the results depicted in Table 7.5, the following conclusions can be
made:

(i). In the case of lower wind speeds than the reference, the benefits of warping NMPC
seem to be larger.

(ii). In particular, as before, there is an improvement in the power efficiency; however,
instead of the previous 2-3% increase, ηLoyd improves by 5-8%.

(iii). Moreover, unlike the previous scenario, warping NMPC is proven to be of extreme
utility for tracking performance. This effect can be seen when comparing the 10-20%
difference in R2 between normal and warping NMPC.

(iv). By using MHE, the controller performance can again be improved.

Table 7.5: Warping NMPC comparison considering a nominal wind speed profile decrease from
10m/s to 6m/s.

Without MHE With MHE

NMPC Normal Warping Normal Warping

ηLoyd [%] 25.10 30.47 25.77 33.6

R2 [%] 61.31 72.99 63.98 80.75

Finally, the graphical tracking performance is illustrated and compared in Figures 7.13-
7.15. In particular, in order to show the real benefits of warping NMPC, the comparison is
made at the end of the simulation horizon, time when the wind speed is at the lowest level.
By observing the tremendous difference of performance in the three angles ϑ, ϕ and ψ, it
seems clear why using warping NMPC is critical.

Related with this experiment, it is important to point out that, despite showing a terrible
performance, normal NMPC still seemed to be stable. Nevertheless, it is important to explain

7.4. Warping Kite 151

1,240 1,280 1,320 1,360 1,400 1,440

0.5

1

1.5

2

Time [s]

ϑ
[r
ad

]

NMPC
Reference

1,240 1,280 1,320 1,360 1,400 1,440

0.5

1

1.5

2

Time [s]

ϑ
[r
ad

]

NMPC
Reference

Figure 7.13: ϑ performance considering a nominal wind speed decrease. Left: normal NMPC.
Right: warping NMPC.

1,240 1,280 1,320 1,360 1,400 1,440

−1

0

1

Time [s]

ϕ
[r
ad

]

NMPC
Reference

1,240 1,280 1,320 1,360 1,400 1,440

−1

0

1

Time [s]

ϕ
[r
ad

]

NMPC
Reference

Figure 7.14: ϕ performance considering a nominal wind speed decrease. Left: normal NMPC.
Right: warping NMPC.

1,240 1,280 1,320 1,360 1,400 1,440
−4

−2

0

2

Time [s]

ψ
[r
ad

]

NMPC
Reference

1,240 1,280 1,320 1,360 1,400 1,440
−4

−2

0

2

Time [s]

ψ
[r
ad

]

NMPC
Reference

Figure 7.15: ψ performance considering a nominal wind speed decrease. Left: normal NMPC.
Right: warping NMPC.

that it does so at the expenses of extracting a very small amount of power and performing

152 Chapter 7. Time Warping

extremely tiny periodic flight cycles. Figure 7.16 illustrates and compares the 3D trajectory of
normal NMPC versus warping NMPC; in particular, it can observed how, whereas warping
NMPC is able to track the trajectory quite decently, normal NMPC just stays at a high
altitude and performs very slow motions.

0

200

400
−300

−200
−100

0
100

200

−100

0

x [m]
y [m]

z
[m

]

Real NMPC trajectory
Optimized reference trajectory

0

200

400
−400

−200
0

200

−100

0

x [m]
y [m]

z
[m

]

Real NMPC trajectory
Optimized reference trajectory

Figure 7.16: 3D trajectory comparison when the NMPC faces a nominal wind speed decrement.
Top: normal NMPC. Bottom: warping NMPC.

7.5 Conclusion
Warpable dynamics systems have been introduced as a manifold of systems whose equations
of motion are represented by (7.1). In particular, they were shown to be of special interest
in the field of tracking NMPC, where they form the basis for warping NMPC, a proposed
new algorithm that was proved to be useful for online generation of feasible trajectories.

Of tracking NMPC interest was also the described OCP class of warpable optimal control
problems (WOCP); in particular, it was proven that, if the NMPC trajectories are optimal
with respect to an WOCP, warping NMPC generates not only feasible but also optimal
trajectories.

7.5. Conclusion 153

Based on WOCP, a broader OCP class called semi-warpable optimal control problems
(SWOCP) was also introduced. In particular, for this type of problem it was demonstrated
that, while the previous theory of tracking NMPC also applies, the online generated trajec-
tories might be suboptimal in some cases.

As a last step, considering that the main motivation for developing the theory was over-
coming long term wind disturbances, a warping NMPC scheme was implemented in the kite
system in order to fly optimal and feasible trajectories independently of the wind speed.

Finally, the standard NMPC was tested against warping NMPC considering long term
wind profiles. In the view of the experimental results, three aspects can be concluded:

(i). Warping NMPC is required to fly power efficient trajectories as well as to bring stability
and robustness to the controller.

(ii). The tracking and efficiency improvements of warping NMPC seem to be more important
for decreasing wind speeds. In particular, if the wind speed steadily decreases and
warping is not present, the tracking ability of the controller is seriously compromised.

(iii). Wind speed, system parameters, and the velocity of the dynamics are strongly related.
As a result, the implemented observer might estimate wrong system parameters in
order to balance wind speed effects.

155

Chapter 8

Towards Real Life Experiments

In the past three chapters, a NMPC scheme was designed with the intention of substituting
the current Skysails controller by a more efficient implementation. Fortunately, at the sim-
ulation level, the result of this design was a controller that could approximately achieve two
times the efficiency rates of the current controller. Furthermore, the NMPC was not only
efficient, but also proven to be robust and stable against the expected real life perturbations:

(i). A delay on the control δ that was solved by DDE modeling.

(ii). Real wind gusts considering short term variations of wind speed and direction.

(iii). Model parameter mismatches which were tackled by online estimation using MHE.

(iv). An offset error on the control δ.

(v). A real observer that produced estimation errors.

(vi). Long term variations of the wind speed for which a special theory was developed.

In behalf of the above results, the designed NMPC controller is expected to be a good
candidate for replacing the classical approach; however, to have a final assessment of the
possibilities that it offers, real life experiment using the Skysails prototype must be conducted.

8.1 Flight Permissions
Performing real life experiments in the field of AWE is rather complicated. A common
problem that many researches have to face is the bureaucratic procedure of obtaining flight
permissions; in particular, since AWE systems fly at high altitudes, any experimental setup
must comply with a series of legal requirements so that accidents are avoided.

During the last years, Skysails has been obtaining periodic flight permissions that entitled
them to perform some tests for short periods of time. As a result, in order to assess the work of
this thesis, flight permissions also had to been requested. Unfortunately, despite a permission
was approved in recent weeks for a first flight test in the middle of August of 2016, the six
month time window of this Master’s thesis was not enough to include these results as a part
of this work.

Nevertheless, to prove and ensure that the system is ready to run in the real Skysails
hardware, the NMPC will perform a last experiment in the Skysails official simulator.

156 Chapter 8. Towards Real Life Experiments

8.2 Skysails Simulation Framework
Skysails has a simulation framework to simulate and visualize kite flights in 3D which im-
plements the same communication protocol as the real kite does; as a result, by successfully
testing the NMPC using this software, it is expected that the new controller will not face
communication and hardware issues the day of the real experiment.

In particular, the hardware on the kite prototype employs a TCP communication protocol
using an Ethernet cable to send and receive a predefined set of packages. Specifically, the
system sends a data package every 100ms including all the relevant information regarding
the system state; furthermore, the data package contains 33 fields which are modeled as a
floating-point number of 4 bytes. Finally, after sending the data, it waits for an incoming
2-fields package including the control values δ and vwinch.

As stated before, in order to create a realistic simulation environment, the simulator uses
the same Ethernet-TCP connection and the same data structure. Therefore, in order to test
the NMPC in a real communication framework, the simulator and the visualizer were set in
a second computer, then, a TCP instance was added within the NMPC, and finally, both
computers were connected with an Ethernet cable and the TCP communication performed
the data exchange. Figure 8.1 depicts the TCP communication schematic between the NMPC
and the kite systems (simulator and prototype).

MATLAB
NMPC 3D Simulator

MATLAB
NMPC

Prototype

Ethernet
TCP

8 bytes

132 bytes

Ethernet
TCP

8 bytes

132 bytes

Figure 8.1: Schematic of the TCP connection between NMPC and the kite. Top: communication
between the NMPC and the 3D simulator. Bottom: real connection with the kite prototype.

The outcome of this experimental test was excellent: the NMPC was connected without
difficulties and the controller performed stable pumping cycles. To have a graphical repre-
sentation of the test scenario, Figure 8.2 shows the real experimental setup and Figure 8.3
depicts the 3D visualizer with the kite being controlled by the NMPC.

It is important to remark that the NMPC was not implemented on the embedded hard-
ware due to timing considerations; in particular, since the current NMPC computation time
is approximately 10 times lower than the time step of the real hardware, it was decided that
the computer was a good platform for running the NMPC in a first experimental test.

Before concluding this chapter, it is important to note that, given the performance showed
in the simulation framework, we have high expectations that the NMPC will successfully
control the AWE kite system.

8.2. Skysails Simulation Framework 157

Figure 8.2: Experimental setup to test the NMPC using a TCP connection with the official Skysails
simulator.

Figure 8.3: Official Skysails simulator controlled by the NMPC.

159

Chapter 9

Conclusion and Future Work

This thesis examined two different research areas in the context of optimal control and
airborne wind energy. On the one hand, it aimed at modeling and analyzing diverse optimal
control problems with the motivation of obtaining a robust framework to generate power
efficient trajectories for a tethered kite. On the other hand, it targeted the design and
implementation of a nonlinear model predictive controller intended to regulate a tethered
kite to track the optimal trajectories resulting from the OCP framework.

9.1 Conclusion
In order to achieve the described objectives, a two-part approach was adopted. In particular,
an independent Chapter 1 introduced and motivated the two research contributions by de-
scribing the theoretical foundations of AWE, discussing the stability and efficiency of AWE
systems, and presenting the different features of a tethered kite prototype.

Part 1: Offline Optimal Control

Then, in a first part, Chapter 2 introduced a brief theoretical analysis in numerical optimiza-
tion methods and optimal control.

Chapter 3 focused on the OCP framework implementation; in particular, as the basis of
the research, it introduced the previous work [12] based on a quaternion formulation. Then,
as a first contribution, it reformulated the flight safety conditions to improve the power
efficiency by 2%.

Within the same chapter and as a second contribution, LICQ deficiency due to model
invariants was studied; particularly, the projection method was proposed as an alternative
to the original invariant stabilization; then, the new method was shown to be more robust to
overcome LICQ issues. Furthermore, it was also displayed that, due to the bad conditioning
of the quaternion formulation, both methods are in general quite erratic and some alternative
parameterization might perform better.

As a third contribution, two better alternatives that outperform the quaternion perfor-
mance were proposed: a first parameterization based on Euler angles, which was shown to
be more robust and stable; and a second model based on rotation matrices, which achieved
larger power efficiencies. In particular, the following characteristics were proved:

• Euler angles are the most robust and efficient implementation solving more than half
of the proposed OCPs while simultaneously requiring the lowest computational effort.

160 Chapter 9. Conclusion and Future Work

• In contrast with Euler angles, natural coordinates are slower and have lower success
ratios. However, unlike the former, their formulation is quite linear, which, as a result,
leads to more power efficient trajectories.

• The quaternion formulation was shown to be the most erratic implementation with no
clear advantages over the other two.

Finally, as for the fourth contribution of Chapter 3, a study on flight topologies was
conducted. In particular, it was proved that, unlike the original hypothesis of [12], topology
constraints are not a requirement to derive optimal flight trajectories based on lemniscates.
Moreover, an alternative flight topology was proposed; specifically, it was demonstrated that,
besides lemniscates, circular trajectories are also a power efficient and safe implementation
for tethered kites.

Part 2: Nonlinear Model Predictive Control

In a second part, Chapter 4 described and introduced the required theory of a real time
implementation of NMPC; particularly, tracking NMPC using a real time iteration scheme
was described.

Chapter 5 introduced the controller implementation using the ACADO framework; specif-
ically, it derived the required objective function, constraints, and numerical algorithms in
order to obtain a real time controller. Moreover, the dynamical model was extended to in-
cluded control delays; in particular, controller stability was ensured by modeling steering
command delays by a DDE.

Chapter 6 proved and tested the stability and robustness of the implemented NMPC
given real life disturbances. Particularly, the controller was modeled to be robust against the
following real life disturbances:

(i). Real wind gusts: fast changes in the wind speed and direction.

(ii). An offset bias in couple with a time delay in the control δ.

(iii). Parameter mismatches between the controller and the real system. A MHE was imple-
mented to reduce the effect of this type of perturbation.

(iv). Realistic estimation errors that are created by the real system observer.

Chapter 7 introduced and derived time warping, a series of theorems and concepts that
were used to tackle the ultimate and most important type of disturbances: long term wind
speed variations. In particular, warpable systems and warpable OCPs were respectively de-
fined as types of dynamical systems and optimal control problems with a very specific struc-
ture. In this context, warping NMPC was proposed as a successful and robust algorithm for
online generation of optimal trajectories regardless of parameter disturbances. Specifically,
the algorithm was used to generate optimal tracking trajectories as a function of the wind
speed, resulting in a NMPC controller that was proved to be stable against long term wind
speed variations.

Finally, Chapter 8 introduced the possibilities for real life experiments. Furthermore,
it illustrated the controller performance in a real AWE simulation framework, a software
environment where the NMPC displayed an excellent performance.

9.2. Future Work 161

9.2 Future Work
The main contribution of any future work is to perform real flight tests. In particular, a first
test date was set in the middle of August 2016 to conduct a first experimental setup with a
real tethered kite.

Furthermore, warpable systems were shown to have very interesting properties in the field
of state space control. Therefore, a deeper research must be conducted to fully explore all
their features and applications. In particular, we believe that the implementation of warping
NMPC can be extended to other fields such as chemical processes, areas where tracking
NMPC on linearly disturbed systems might require online generation of optimal trajectories.

Finally, a more extensive research on the offline OCP properties shall be conducted; in
particular, considering the frequency of appearance of SO(3) parameterizations in periodic
OCPs, a more detailed analysis on the three dynamical models might be highly beneficial.

163

Appendices

165

Appendix A

Derivation of Alternative SO(3)
Parameterizations

A.1 Angular Velocities in Natural Coordinates
To have an organized and consistent derivation, this appendix will be divided into three parts:
first, some auxiliary relations will be defined, then, the linear velocities of the reference frame
will be obtained, and finally, the angular speeds will be derived. As a first step, let’s define
the explicit relation between the moving frame axis and the rotational matrix elements:

~eyaw = −

R11

R21

R31

, ~epitch = −

R12

R22

R32

, ~eroll = −

R13

R23

R33

.
Then, regarding the reference frames defined in Figure 3.5, the position of the kite is

given by:

r = −l~eyaw (A.1)

Furthermore, the air path speed vector ~va can be calculated as the sum of the ambient
wind vector vw~ex and the reversed kinematic velocity vector −ṙ. In particular, regarding the
time derivative of A.1 and introducing the speeds vroll and vpitch:

~va = vw~ex − vpitch~epitch − vroll~eroll + l̇~eyaw. (A.2)

Model Assumptions

In oder to derive the aerodynamic model, two assumptions have to be done [12]:

(i). The aerodynamic forces are typically larger that the masses, and as a result, accelera-
tions can be neglected.

(ii). The kite is assumed to always be in its aerodynamic equilibrium.

Given the above two assumptions, the aerodynamics of the system are reduced to the two
conditions depicted in Figure A.1 and stated in the following:

(i). As depicted by the top view illustration of Figure A.1, the kite experiences no transver-
sal wind flow:

〈~epitch, ~va〉 = 0.

166 Appendix A. Derivation of Alternative SO(3) Parameterizations

As a result, inserting the above expression into A.2 results in:

〈~epitch, vw~ex〉 − vpitch + l̇ 〈~epitch, ~eyaw〉︸ ︷︷ ︸
=0

= 0,

which in turn leads to:

vpitch = vw〈~epitch, ~ex〉 = −vwR12

(ii). The lift-to-drag ratio (given by E) is constant; consequently, the kite is always assumed
to fly at the same angle of attack. Considering the geometry of the side view in Figure
A.1:

〈~eroll, ~va〉 = E〈~eyaw, ~va〉.
Inserting A.2 into the above expression results in:

vroll = vw〈R(E~ex − ~ez), ~ex〉 − El̇ = vwER11 − vwR13 − El̇

~eroll

~epitch

~eyaw

~va ~va

~eroll

top view side view

drag

lift
Ftot

Figure A.1: The kite in the aerodynamic equilibrium state. The kite top view represents the
absence of transversal air flow and the side view the constant lift-to-drag-ratio [12].

Angular Velocities

Considering that any steering actuation δ leads to a turn rate around the ~eyaw axis, the
angular velocity around the ~eyaw axis can be described by the following relation:

ωyaw = gkvaδ

where va is defined as the component of ~va in the −~eroll direction:

va = 〈−~eroll, ~va〉 = −〈~eroll, vw~ex〉+ vroll = vwER11 − El̇.
It is important to note that the validity of this turn-rate law has been experimentally shown
for different kites [13, 51, 52].

Finally, due to the nature of kite motion in a sphere, a motion in the tangent plane, as
depicted in Figure A.2, can be considered; as a result, the following relations for the angular
velocities of the roll and pitch axis can be established:

A.2. Relation between Euler Angles, Quaternions and Natural Coordinates 167

ωroll =
vpitch

l
= −vwR12

ωpitch = −vroll

l
=
El̇

l
− vwE

l
R11 +

vw

l
R13 = −va

l
+
vw

l
R13

tether l

vpitch

ωpitch

ωroll

vroll

Figure A.2: Kite motion in the tangent plane [12].

As a final remark it is important to state that, as in Section 3.4 and due to simplicity
reasons, the explicit time dependency has been omitted in the above derivations; however, it
should be kept in mind that it is still present.

A.2 Relation between Euler Angles, Quaternions and Nat-
ural Coordinates

To derive the relation between natural coordinates and Euler angles, the rotations that ψ, ϕ
and ϑ represented in Section 1.2.2 should be recalled:

R = Rx(ϕ)Ry(ϑ)Rx(−ψ).

Then, expanding the above definition:

R =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

cosϑ 0 sinϑ
0 1 0

sinϑ 0 cosϑ

1 0 0
0 cosψ sinψ
0 − sinψ cosψ

=

 cosϑ − sinϑ sinψ sinϑ cosψ

sinϕ sinϑ cosϕ cosψ + sinϕ cosϑ sinψ cosϕ sinψ − sinϕ cosϑ cosψ

− sinϑ cosϕ sinϕ cosψ − cosϕ cosϑ sinψ sinϕ sinψ + cosϕ cosϑ cosψ

 .
To obtain the relation between the above expressions and the quaternion formulation,

the derivations of [12] can be used to state:

168 Appendix A. Derivation of Alternative SO(3) Parameterizations

R11 = cosϑ = q2
0 + q2

1 − q2
2 − q2

3 ,
R21 = sinϕ sinϑ = 2(q1q2 + q0q3),
R31 = − sinϑ cosϕ = 2(q1q3 − q0q2),
R12 = − sinϑ sinψ = 2(q1q2 − q0q3),
R22 = cosϕ cosψ + sinϕ cosϑ sinψ = = q2

0 − q2
1 + q2

2 − q2
3 ,

R32 = sinϕ cosψ − cosϕ cosϑ sinψ = 2(q2q3 + q0q1),
R13 = sinϑ cosψ = 2(q1q3 + q0q2),
R23 = cosϕ sinψ − sinϕ cosϑ cosψ = 2(q2q3 − q0q1),
R33 = sinϕ sinψ + cosϕ cosϑ cosψ = q2

0 − q2
1 − q2

2 + q2
3 .

(A.3)

Moreover, by inverting the above relations, the Euler angle formulation can be derived
as a function of the natural coordinates and quaternions:

ϑ = arccos (R11) = arccos (q2
0 + q2

1 − q2
2 − q2

3),
ϕ = arctan2 (R21,−R31) = arctan2 (q0q3 + q1q2, q0q2 − q1q3),
ψ = arctan2 (−R12, R13) = arctan2 (q0q3 − q1q2, q0q2 + q1q3).

(A.4)

Finally, to be consistent and self contained, the quaternion formulation can be derived as
a function of the other two parameterization. In particular, consider first that:

R11 +R22 +R33 = 3q2
0 − q2

1 − q2
2 − q2

3 .

By the quaternion invariant q2
0 + q2

1 + q2
2 + q2

3 = 1, the above expression is equivalent to:

R11 +R22 +R33 + 1 = 4q2
0 .

Therefore, an expression for q0 is given by:

q0 =
1

2

√
R11 +R22 +R33 + 1. (A.5)

As a result, the other three relations follow directly as:

q1 =
R32 −R23

4q0

q2 =
R13 −R31

4q0

q3 =
R21 −R12

4q0

(A.6)

Finally, considering Equations A.5 and A.6 in couple with [12, Equation (38)] expressing
the quaternion formulation in Euler angles, the full set of quaternion relations is given by:

q0 =
1

2

√
R11 +R22 +R33 + 1 = cos

ϕ

2
cos

ϑ

2
cos

ψ

2
+ sin

ϕ

2
cos

ϑ

2
sin

ψ

2

q1 =
R32 −R23

2
√
R11 +R22 +R33 + 1

= sin
ϕ

2
cos

ϑ

2
cos

ψ

2
− cos

ϕ

2
cos

ϑ

2
sin

ψ

2

q2 =
R13 −R31

2
√
R11 +R22 +R33 + 1

= − sin
ϕ

2
sin

ϑ

2
sin

ψ

2
+ cos

ϕ

2
sin

ϑ

2
cos

ψ

2

q3 =
R21 −R12

2
√
R11 +R22 +R33 + 1

= sin
ϕ

2
sin

ϑ

2
cos

ψ

2
+ cos

ϕ

2
sin

ϑ

2
sin

ψ

2

(A.7)

169

Appendix B

Wind Speed Profile Generation

As stated in Section 6.1, [50] describes a specific methodology to obtain a discrete time series
[vw,0, . . . , vw,m] of wind speed values which follow a Kaimal power spectrum. The specific
algorithm can be implemented as a series of different steps:

(i). In a first step, white noise using a uniform distribution U [0, 1] is generated and then
averaged so that discretization effects are removed; the result of this step is a times
series of values [x0, . . . , xm], where each time value xk is computed by the following
equation:

xk =

∑N
i=1 ri −N/2
0.29
√
N∆t

,

where ri represent the random values equally distributed in [0, 1], N=100 the number
of averaged values and ∆t the time step.

(ii). This data is then filtered using a Kaimal filter so that the time series has a Kaimal
power spectrum. In order to understand the filter design, the Kaimal power spectrum
definition by the standard IEC61400-1 [53] has to be considered:

fSk(f)

σ2
w

=
4fLt/v

(0)
w

(1 + 6fLt/v
(0)
w)

5
3

,

where v(0)
w represents the wind gusts average speed, Lt the turbulence length of the wind

gusts and σw the standard deviation of the turbulences. Based on the above equation,
the filter is then modeled in the frequency domain by the following continuous transfer
function [50]:

Hkaimal(s) = K
0.0182c2s2 + 1.3653cs+ 0.9846

1.3463c2s2 + 3.7593cs+ 1.0
,

where K = 2.0313

√
Ltσ2

w/v
(0)
w and c = Lt/v

(0)
w . Finally, the filter is transformed to

the time domain (without the filter gain K) by using the following discrete IIR filter:

yk =
b0xk + b1xk−1 + b2xk−2 − a1yk−1 − a2yk−2

b0
,

170 Appendix B. Wind Speed Profile Generation

with:

b2 = B0∆t2 − B1∆t+ B2, b1 = B1∆t− 2B2, b0 = B2,

B2 = 0.0182c2, B1 = 1.3653c, B0 = 0.9846,

a2 = A0∆t2 −A1∆t+ A2, a1 = A1∆t− 2A2, a0 = A2,

A2 = 1.3463c2, A1 = 3.7593c, B0 = 1.

(iii). The output data of the Kaimal filter is filtered again by the following two cascade low
pass filters:

y
(LP1)
k = e−ω∆ty

(LP1)
k−1 + (1− e−ω∆t)yk,

y
(LP2)
k = e−ω∆ty

(LP2)
k−1 + (1− e−ω∆t)y

(LP1)
k ,

with ω = 3.6 rad/sec.

(iv). Finally the factor K of the continuous filter is applied and the average wind speed
summed to obtain the wind speed time series:

vw,k = v(0)
w + y

(LP2)
k .

In order to generate wind speed values for the kite simulator, the algorithm was modeled
with a turbulence length Lt = 100m and a σw = 0.1v

(0)
w m/s; this selection leads to realistic

wind gusts with turbulence’s levels of roughly 10%.

171

Bibliography

[1] EEA. En01 energy related greenhouse gas emissions. Technical report, European Envi-
ronment Agency, 2008.

[2] Kahn Ribeiro, S. Kobayashi, M. Beuthe, J. Gasca, D. Greene, D. S. Lee, Y. Muromachi,
P. J. Newton, S. Plotkin, D. Sperling, R. Wit, and P. J. Zhou. Transport and its
infrastructure. in climate change 2007: Mitigation. Technical report, Contribution of
Working Group III to the Fourth Assessment Report of the Intergovernmental Panel
on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)],
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.,
2007.

[3] Cristina L. Archer and Mark Z. Jacobson. Evaluation of global wind power. J. Geophys
Res., 110(D12110), 2005.

[4] U. Ahrens, M. Diehl, and R. Schmehl, editors. Airborne Wind Energy. Springer-Verlag
Berlin Heidelberg, 2013.

[5] M. Canale, L. Fagiano, and M. Milanese. High Altitude Wind Energy Generation Using
Controlled Power Kites. IEEE Transactons On Control Systems Technology, 18:168 –
180, 2010.

[6] M.L. Loyd. Crosswind Kite Power. Journal of Energy, 4(3):106–111, July 1980.

[7] L. Fagiano, M. Milanese, and D. Piga. Optimization of Airborne Wind Energy Gener-
ators. International Jounal of Robust and Nonlinear Control, 2011.

[8] B. Houska and M. Diehl. Optimal control of towing kites. In Proceedings of the IEEE
Conference on Decision and Control (CDC), pages 2693–2697, San Diego, USA, 2006.

[9] Makani Power. Makani Power Website. http://www.google.com/makani/.

[10] Skysails. Skysails Power Website. http://www.skysails.info/english/power/.

[11] Enerkite. Enerkite - Airborne Wind Energy. http://www.enerkite.de/en/.

[12] M. Erhard, G. Horn, and M. Diehl. A quaternion-based model for optimal control of the
SkySails airborne wind energy system. Angewandte Mathematik und Mechanik, 2015.

[13] Michael Erhard and Hans Strauch. Control of towing kites for seagoing vessels. arXiv
http://arxiv.org/abs/1202.3641.

[14] Michael Erhard and Hans Strauch. Flight control of tethered kites in autonomous
pumping cycles for airborne wind energy. Control Engin, (40):13–26, 2015.

[15] M. Erhard and H. Strauch. Theory and experimental validation of a simple compre-
hensible model of tethered kite dynamics used for controller design. In Airborne Wind
Energy, chapter 8, pages 141–165. Springer, 2013.

http://www.google.com/makani/
http://www.skysails.info/english/power/
http://www.enerkite.de/en/

172 BIBLIOGRAPHY

[16] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in Operations
Research and Financial Engineering. Springer, 2 edition, 2006.

[17] H. G. Bock and K. J. Plitt. A multiple shooting algorithm for direct solution of optimal
control problems. In Proceedings of the IFAC World Congress, pages 242–247. Pergamon
Press, 1984.

[18] E.F. Camacho and C. Bordons. Model Predictive Control. Springer, 2nd edition, 2007.

[19] J. Sternberg, S. Gros, B. Houska, and M. Diehl. Approximate robust optimal control
of periodic systems with invariants and high-index differential algebraic systems. In
Proceedings of the 7th IFAC Symposium on Robust Control Design, pages 678–683, 2012.

[20] J. C. Butcher. Numerical Methods for Ordinary Differential Equations. 2003.

[21] J. Andersson. A General-Purpose Software Framework for Dynamic Optimization. PhD
thesis, K.U. Leuven, October 2013.

[22] J. Andersson, J. Åkesson, and M. Diehl. CasADi – a symbolic package for automatic
differentiation and optimal control. In S. Forth, P. Hovland, E. Phipps, J. Utke, and
A. Walther, editors, Recent Advances in Algorithmic Differentiation, Lecture Notes in
Computational Science and Engineering, pages 297–307, Berlin, 2012. Springer.

[23] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical Pro-
gramming, 106(1):25–57, 2006.

[24] S. Gros and M. Diehl. Numerical optimal control with differential algebraic equations -
lecture notes. 2016.

[25] U. Ascher. Stabilization of invariants of discretized differential systems. Numerical
Algorithms, 14, 1997.

[26] S. Gros and M. Diehl. Modeling of airborne wind energy systems in natural coordinates.
In Airborne Wind Energy. Springer-Verlag Berlin Heidelberg, 2013.

[27] G. Horn, S. Gros, and M. Diehl. Numerical trajectory optimization for airborne wind
energy systems described by high fidelity aircraft models. In Airborne Wind Energy.
Springer-Verlag Berlin Heidelberg, 2013.

[28] Moritz Diehl and Sebastien Gros. Numerical Optimal Control. Cambridge University
Press, expected to be published in 2017.

[29] J.B. Rawlings and D.Q. Mayne. Model Predictive Control: Theory and Design. Nob
Hill, 2009.

[30] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Constrained model
predictive control: Stability and optimality. Automatica, 26(6):789–814, 2000.

[31] H. G. Bock, M. Diehl, D. B. Leineweber, and J.P. Schlöder. Efficient direct multiple
shooting in nonlinear model predictive control. In F. Keil, W. Mackens, H. Voß, and
J. Werther, editors, Scientific Computing in Chemical Engineering II, volume 2, pages
218–227. Springer, 1999.

BIBLIOGRAPHY 173

[32] Moritz Diehl, Lalo Magni, and Giuseppe De Nicolao. Efficient NMPC of unstable peri-
odic systems using approximate infinite horizon closed loop costing. Annual Reviews in
Control, 28(1):37 – 45, 2004.

[33] Toshiyuki Ohtsuka. A continuation/GMRES method for fast computation of nonlinear
receding horizon control. Automatica, 40(4):563–574, 2004.

[34] V. M. Zavala and L.T. Biegler. The Advanced Step NMPC Controller: Optimality,
Stability and Robustness. Automatica, 45:86–93, 2009.

[35] J. Guddat, F. Guerra Vasquez, and H.T. Jongen. Parametric Optimization: Singulari-
ties, Pathfollowing and Jumps. Teubner, Stuttgart, 1990.

[36] M. Diehl. Real-Time Optimization for Large Scale Nonlinear Processes, volume 920 of
Fortschritt-Berichte VDI Reihe 8, Meß-, Steuerungs- und Regelungstechnik. VDI Verlag,
Düsseldorf, 2002. PhD Thesis.

[37] M. Diehl, H. G. Bock, J.P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer. Real-time
optimization and nonlinear model predictive control of processes governed by differential-
algebraic equations. Journal of Process Control, 12(4):577–585, 2002.

[38] M. Diehl, H. G. Bock, and J. P. Schlöder. A real-time iteration scheme for nonlinear
optimization in optimal feedback control. SIAM Journal on Control and Optimization,
43(5):1714–1736, 2005.

[39] M. Diehl, R. Findeisen, F. Allgöwer, H. G. Bock, and J. P. Schlöder. Nominal stability of
the real-time iteration scheme for nonlinear model predictive control. IEE Proc.-Control
Theory Appl., 152(3):296–308, 2005.

[40] M. Diehl, R. Findeisen, and F. Allgöwer. A stabilizing real-time implementation of non-
linear model predictive control. In L. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes,
and B. van Bloemen Waanders, editors, Real-Time and Online PDE-Constrained Opti-
mization, pages 23–52. SIAM, 2007.

[41] H. J. Ferreau, H. G. Bock, and M. Diehl. An online active set strategy to overcome the
limitations of explicit MPC. International Journal of Robust and Nonlinear Control,
18(8):816–830, 2008.

[42] H.J. Ferreau. qpOASES User’s Manual, 2007–2011. http://www.qpOASES.org/.

[43] B. Houska, H. J. Ferreau, and M. Diehl. ACADO toolkit – an open source framework
for automatic control and dynamic optimization. Optimal Control Applications and
Methods, 32(3):298–312, 2011.

[44] R. Quirynen, S. Gros, and M. Diehl. Fast auto generated ACADO integrators and
application to MHE with multi-rate measurements. In Proceedings of the European
Control Conference (ECC), pages 3077–3082, 2013.

[45] C. G. Broyden. Quasi-Newton methods and their application to function minimization.
Maths. Comp., 21:368–381, 1967.

[46] Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear parame-
ters. Society for Industrial and Applied Mathematics, 11(2):431–441, 1963.

174 BIBLIOGRAPHY

[47] Moritz Diehl. Modelling and System Identification Lecture Script. University of Freiburg,
2015.

[48] Rodney D. Driver. Ordinary and Delay Differential Equations. Springer, 1977.

[49] William E. Schiesser. The Numerical Method of Lines: Integration of Partial Differential
Equations. Academic Press, 1991.

[50] C. Gavriluta, S. Spataru, I. Mosincat, C. Citro, I. Candela, and P. Rodriguez. Complete
methodology on generating realistic wind speed profiles based on measurements. 2012.

[51] L. Fagiano, A. Zgraggen, M. Morari, and M. Khammash. Automatic crosswind flight
of tethered wings for airborne wind energy: Modeling, control design, and experimental
results. Control Systems Technology, 2013.

[52] C. Jehle. Automatic flight control of tethered kites for power generation. Master’s thesis,
Technical Univeristy of Munich, 2012.

[53] International Electrotechnical Commission. IEC 61400-1: Wind turbines design require-
ments, 2005.

	Acknowledgements
	Abstract
	Acronyms
	Nomenclature
	Contents
	Introduction and Motivation
	Airborne Wind Energy Foundations
	Crosswind Power
	Working Principles
	Comparison with Other Sources of Energy

	Skysails System Description
	Power Generation
	System Model
	System Controller

	Goal
	Mathematical Notation

	I Offline Optimal Control
	Optimal Control in a Nutshell
	Continuous Optimization
	Discrete Optimal Control
	Continuous Time Optimal Control
	Direct Methods
	Single Shooting
	Multiple Shooting
	Direct Collocation

	Online Optimal Control

	Offline Generation of Optimal Trajectories
	Original Problem
	Optimal Control Problem Formulation
	Numerical Results

	Modified Safety Conditions
	Invariants and LICQ Deficiency
	Invariants in Periodic OCP
	The Projection Method for Invariants
	Stabilization of Invariants
	The Quaternion Case
	Projection Method Implementation
	Results

	Dynamical Model Variations
	Rotation Matrices Model
	Euler Angles
	Linearity Comparison
	Results

	Flight Topologies
	Topology Constraints
	Circular Trajectories

	Conclusion

	II Nonlinear Model Predictive Control
	Model Predictive Control in a Nutshell
	Classical Feedback Control Limitations
	NMPC Theory
	Economic Versus Tracking NMPC
	Nominal Stability
	NMPC Initialization
	Real-Time Optimization

	Real Time Iteration Scheme

	Controller Implementation
	ACADO Toolbox
	Base NMPC Implementation
	Objective Function
	Dynamics
	Constraints
	Numerical Algorithms and Parameters
	Formulation

	System Simulator
	First Simulation Results
	Evaluation Metrics

	Control Delay
	Delay Differential Equation
	DDE Implementation
	Delay Mismatch
	Conclusion

	Simulation of Real Conditions
	Wind Gusts
	Wind Profile Generation
	NMPC with Real Wind Profile

	Parameter Mismatch
	Nominal Mismatch of 10%
	Maximum Mismatch of 20%
	Online Parameter Estimation
	Conclusion and Remark

	Wind Direction
	Extended Dynamics
	Wind Direction Profile
	Implementation

	Control Bias
	Real Observer
	Estimation Error Models
	Simulation Results
	Analysis of a Positive Offset

	Conclusion and Remarks

	Time Warping
	Motivation
	Warping Theory
	Theoretical Idea
	Warped Time Frame Interpretation
	Optimality of Warped Trajectories

	Warping NMPC
	Theoretical Foundations
	Algorithm Implementation

	Warping Kite
	Theory
	Optimality of Warped Trajectories
	Warping NMPC on Skysails Kite

	Conclusion

	Towards Real Life Experiments
	Flight Permissions
	Skysails Simulation Framework

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendices
	Derivation of Alternative SO(3) Parameterizations
	Angular Velocities in Natural Coordinates
	Relation between Euler Angles, Quaternions and Natural Coordinates

	Wind Speed Profile Generation

	Bibliography

