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Abstract
Over the past decades, the advantages of optimization-based control techniques over
conventional controllers inspired developments that enabled the use of model predictive
control (MPC) in applications with very high sampling rates. Since at the heart of most
linear and nonlinear MPC controllers resides a quadratic programming (QP) solver, the
implementation of efficient algorithms that exploit the underlying problem structure drew
the attention of many researchers and the progress in the field has been remarkable. The
aim of this paper is to summarize the main algorithmic advances in the field and to pro-
vide a consistent benchmark between a selection of software tools that have been recently
developed. The code that was used for the simulations is publicly available for readers that
wish to reproduce the results or test the benchmarked solvers on their own nonlinear MPC
applications.
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1 Introduction

Model predictive control (MPC) is an advanced control strategy that can naturally handle
constrained systems with multiple inputs and outputs [57, 69]. However, the computa-
tional cost associated with an MPC controller is typically much higher than in conventional
control techniques, since a new optimization problem needs to be solved at each sam-
pling time. This limitation was one of the reasons why most early applications of MPC
involved systems with slow dynamics, such as chemical processes [54, 65]. Motivated by
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the improved control performance and the convenience in formulating the control objec-
tive and constraints, researchers in the field aimed at applying MPC on faster dynamical
systems.

One popular approach to reduce the computational cost associated with an MPC con-
troller is to use linear MPC, where typically the objective function is quadratic, while the
system dynamics and the constraints on states and controls are linear [69]. Under these
assumptions, the underlying optimization problems are quadratic programs (QP), paramet-
ric in the initial state. The control law is piecewise affine, defined on so-called critical
regions, inside which the active set of the optimal solution is constant. The affine depen-
dence of the control on the parameter allows one to precompute the feedback law for every
point in the feasible parameter space, reducing the computational cost of the controller to
a search in a lookup table for the right critical region [6]. However, this explicit approach
becomes quickly intractable as the problem size, or more precisely the number of active
set combinations, increases and iterative schemes are necessary to solve higher dimensional
problems. A popular example is the online active set strategy qpOASES, which introduces
a homotopy to traverse the critical regions, moving between QP solutions for different
parameter values [20, 21]. First-order methods are also widely used schemes in linear MPC
applications, due to the simplicity of their algorithmic schemes and the existence of practical
complexity bounds when only input constraints are present [58, 71]. For input- and state-
constrained problems, dual formulations have been proposed in the literature [61, 70], often
exploiting the fact that the QP matrices remain constant, such that preconditioning can be
applied to improve convergence [35]. The simplicity of first-order methods also motivated
the development of several code generation tools [4, 79, 90].

In contrast to linear MPC, nonlinear MPC (NMPC) can directly handle any nonlin-
ear (e.g., economic [13]) objective functions, nonlinear system dynamics, and general path
constraints at the cost of more computationally expensive optimization problems. These
attractive properties inspired a great progress in the field which led to a continuously shrink-
ing gap in computational effort between linear and nonlinear MPC algorithms [16, 38,
47]. Since most dynamical systems are represented by ordinary differential equations or
differential-algebraic equations, it is rather common in NMPC to have problem formulations
in continuous time. A continuous time optimal control problem (OCP) lives in an infinite
dimensional space and typically a parametrization is used to convert it into a nonlinear pro-
gram (NLP). Methods that first discretize the OCP and then solve the finite dimensional
NLP are called direct methods [8, 11]. Two popular families of algorithms to solve an NLP
are interior point (IP) methods and sequential quadratic programming (SQP) [59, 64, 86]. In
order to bring NMPC closer to applications involving fast dynamical processes, several real-
time variants of SQP and IP methods have been proposed in the literature, aiming at finding
only approximate solutions to the NLP [15, 55, 60]. For instance, the real-time iteration
(RTI) scheme performs merely one SQP iteration per time step and divides the calculations
into a preparation and a feedback phase, in order to apply the control input as quickly as
possible after the state measurement is taken. If the sampling time is short enough, this
approach is shown to closely approximate the optimal closed loop performance of a fully
converged NMPC scheme [14, 15].

Considering that in most linear and many nonlinear MPC controllers, structured QP sub-
problems need to be solved at each time step, tailored algorithms and efficient software
implementations become crucial for bridging the gap in computational overhead between
optimization-based and conventional controllers. Over the past years, a great progress
has been made in the field of embedded quadratic programming, revealing various ways
to exploit the underlying problem structure in tailored interior point or active set-based
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methods. Some of the major contributions known to the authors are listed in chronological
order in Table 1. The ones relevant to this paper are further discussed in Sections 2 and 3.

Summary and Contributions The aim of this paper is on the one hand to summarize
many major theoretical and practical contributions in the field of quadratic programming
for NMPC and on the other hand, to provide a consistent benchmark between some of the
most popular embedded QP solvers. The code of this benchmark has been made publicly
available and interested readers can either conduct further experiments using the existing,
scalable example or compare the performance of the solvers on their own applications.
Section 2 summarizes some of the most important algorithmic developments in the field
of NMPC, focusing on the numerical schemes that are relevant to this paper. Section 3
discusses the different approaches that have been proposed for solving the quadratic sub-
problems. Section 4 presents the benchmark example that is used in Section 5 to compare
the selected QP solvers. Section 6 concludes the paper and outlines future directions.

2 Algorithms for Nonlinear Model Predictive Control

In this section, we discuss some important developments in numerical methods for NMPC,
focusing on direct approaches and especially on direct multiple shooting, which has drawn
significant attention over the past decades [11, 76].

In direct multiple shooting, the control inputs at each discretization interval are
parametrized by a finite set of parameters, usually piecewise constant values, and the state
variables are represented by the solutions to initial value problems with timespan typi-
cally equal to one sampling time. Continuity constraints ensure that the states at the end
of one interval are equal to the states at the beginning of the next, when the optimization
algorithm has converged. The discrete time OCP arising from a direct multiple shooting
parametrization has the form:

minimize
x,u

N−1∑

k=0

L(xk, uk) + E(xN) (1a)

subject to x0 = x̂0 (1b)

xk+1 = f (xk, uk), k = 0, . . . , N − 1, (1c)

h(xk, uk) ≤ 0, k = 0, . . . , N − 1, (1d)

hN(xN) ≤ 0, (1e)

where x ∈ R
(N+1)nx and u ∈ R

Nnu denote the states and controls over the prediction
horizon N . The nonlinear functions L(·) : Rnx × R

nu → R and E(·) : Rnx → R represent
stage and terminal cost respectively, while h(·) : Rnx × R

nu → R
nc and hN(·) : Rnx →

R
nc̃ are the nonlinear path constraints. Finally, the functions f (·) : R

nx × R
nu → R

nx

represent the numerical simulation of the system dynamics, i.e., the solution to an initial
value problem.

Two of the most common families of methods to solve (1) are IP and SQP algorithms.
In an interior point framework, the non-smooth complementarity condition in the Karush–
Kuhn–Tucker (KKT) system of (1) is replaced by a smooth nonlinear approximation.
Following a different approach, SQP methods linearize the inequality constraints (1d)–(1e)
such that finding a point that satisfies the KKT optimality conditions becomes equivalent
to solving a QP. In both cases, the special optimal control structure of the problem ought
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Table 1 Selected publications in the field of quadratic programming for optimal control

Year Authors Citations Contribution

1984 Bock et al. [11] Multiple shooting algorithm withO(N3) condensing,
implemented in MUSCOD.

1984 Glad et al. [36] Active set method using a Riccati recursion for the
factorization of the KKT matrix.

1991 Wright [85] Primal-dual interior point method exploiting the fixed
bandwidth of the KKT matrix.

1991 Wright [84] Parallelizable factorization of banded matrices.

1994 Steinbach [76] Primal-dual interior point method with block sparse
structure exploitation.

1994 Schmid et al. [74] QPKWIK: A dual active set method tailored to
reduced Hessian SQP.

1998 Rao et al. [68] Interior point method using a Riccati recursion for the
solution of the KKT system.

1999 Leineweber [51–53] MUSCOD-II with O(N3) condensing.

2006 Bartlett et al. [5] QPSchur: A dual active set, Schur complement
method for large scale quadratic programming.

2008 Ferreau et al. [20, 21] qpOASES: An online active set strategy.

2010 Wang et al. [81] Implementation of a primal interior point method
tailored to MPC.

2011 Houska et al. [40] ACADO Toolkit with O(N3) condensing and
qpOASES.

2011 Ullmann [79] FiOrdOs: Code generation of primal and dual fast
gradient methods.

2011 Patrinos et al. [63] A piecewise smooth Newton method for large-scale
MPC.

2012 Kirches et al. [45] Complementary condensing.

2012 Mattingley et al. [56] CVXGEN: Interior point-based code generator for
embedded convex optimization.

2012 Domahidi et al. [19] FORCES: Code generation of primal-dual interior
point methods for optimal control.

2012 Frison [25] Condensing algorithm with O(N2) complexity.

2012 Axehill et al. [3] O(N2) condensing scheme based on Riccati recur-
sion for direct calculation of factorized dense Hes-
sian.

2012 Patrinos et al. [61, 62] Accelerated dual gradient-projection algorithm.

2013 Di Cairano et al. [12] Projection-free parallel quadratic programming for
linear MPC.

2014 Frasch et al. [23] qpDUNES: A dual Newton strategy.

2014 Frison et al. [30] HPMPC: A high-performance interior point method.

2014 Giselsson [35] Preconditioned dual fast gradient methods.

2015 Axehill [2] Partial condensing.

2016 Frison et al. [28] O(N2) condensing algorithm tailored to moving
horizon estimation and partial condensing.

2017 Stellato et al. [4, 78] OSQP: Operator splitting solver with code generation
functionality.

2017 Frison et al. [29] BLASFEO: High-performance linear algebra library.
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to be exploited in an efficient implementation. For an SQP method, this implies that tai-
lored algorithms to solve QP subproblems with block-banded structure are essential. An
overview of such algorithms is given in Section 3. One advantage of SQP over IP meth-
ods is warm-starting, i.e., their ability to use a good initial guess of the optimal solution
to accelerate convergence. Such an initial guess is readily available in an MPC framework
from the solution of the previous problem. IP methods on the other hand typically need to
follow the so-called central path, which makes the impact of warm-starting less effective.
Some remedies to this problem can be found in [37, 75, 88].

Bock and Plitt in [11] propose to solve (1) with an SQP method, using line search to
ensure global convergence and partitioned, high rank updates of the Hessian approximation
to preserve the problem structure. The sparse QPs are first transformed into dense ones using
condensing, an algorithm that eliminates the state variables from the optimization problem,
and then solved with a dense QP solver. The first implementation of this scheme was part
of the proprietary package MUSCOD, which was later succeeded by MUSCOD-II [50, 52,
53]. Among the used QP solvers were QPSOL and its successor QPOPT [34]. In order to
reduce the feedback delay in NMPC, Diehl et al. in [15] propose to solve the NLP (1) only
approximately. Based on the observation that the state of the system is continuously chang-
ing while the controller is calculating the next optimal input, the real-time iteration (RTI)
scheme minimizes the time between state measurement and control feedback by performing
only one SQP iteration per time step and splitting the calculations into a preparation and a
feedback phase. All operations that are independent of the state measurement belong to the
preparation step. The feedback step comprises the initial value embedding and the solution
of the QP, which are typically performed faster. One way to interpret this numerical scheme
is iterating while the problem changes and if implemented with care, it does not compromise
closed loop performance [14]. No globalization strategy is used in this context, under the
assumption that full steps are sufficient to guarantee local convergence if the sampling time
is short enough and the problems are initialized properly. Convergence and stability guaran-
tees for the simplified setup with only equality constraints are provided in [17]. To reduce
the computational load even further, the multi-level RTI scheme divides the operations into
levels that are executed with different frequencies [10, 24, 82]. A first implementation of the
RTI scheme was part of MUSCOD-II. Later on, it was reimplemented in the open-source
software package ACADO Toolkit [40]. Upon its release, ACADO provided both direct
single and multiple shooting as parametrization schemes, several SQP-based algorithms and
condensing in combination with qpOASES for the solution of the dense QPs. Targeting
embedded applications with sampling times in the microsecond range, a code generation
framework became part of ACADO soon after its release [41, 66]. It consisted of an RTI
scheme with the absolute minimum necessary components to solve a nonlinear OCP with
a least squares objective using the Gauss–Newton Hessian approximation [9]. Code gen-
eration was used, among other places, in differentiation routines, in numerical simulation,
and in the condensing algorithm, yielding a significant performance improvement over the
original C++ implementation.

Other real-time algorithms for NMPC are—among many—the Newton-type controller
by Li and Biegler [55], also performing one SQP iteration with a Gauss–Newton Hessian
per time step but using line search and a single shooting formulation [73]; the advanced step
controller by Zavala and Biegler [89], which performs IP iterations until convergence but
compensates for the delay by using a predicted initial condition and applying a tangential
predictor to correct for the difference from the actual state measurement; and the continu-
ation/GMRES method by Ohtsuka [60], performing one Newton-type iteration with exact
Hessian on the single shooting formulation and treating inequalities in an IP-like fashion
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with a fixed barrier parameter. Several approaches have also appeared in the literature that
solve the arising NLPs in a distributed manner, such as the augmented Lagrangian-based
method of [42] and the decomposition algorithm in [39]. In NMPC with only input con-
straints, simpler numerical schemes such as the the projected gradient method in [44], the
proximal method of [77] and the projected Newton methods in [7, 32] are also possible
alternatives.

3 Solving the Quadratic Subproblems

The linear-quadratic subproblems arising in an NMPC scheme based on sequential quadratic
programming can be written in the form:

minimize
x,u

N−1∑

k=0

1

2

⎡

⎣
xk

uk

1

⎤

⎦
� ⎡

⎣
Qk Sk qk

S�
k Rk rk

q�
k r�

k 0

⎤

⎦

⎡

⎣
xk

uk

1

⎤

⎦ +
[

xN

1

]� [
QN qN

q�
N 0

] [
xN

1

]
(2a)

subject to x0 = x̂0, (2b)

xk+1 = Akxk + Bkuk + bk, k = 0, . . . , N − 1, (2c)

dk ≤ Ckxk + Dkuk ≤ d̄k, k = 0, . . . , N − 1, (2d)

dN ≤ DNxN ≤ d̄N , (2e)

which is a sparse, structured QP with the dynamic constraints in (2c) imposing the only
coupling between variables of consecutive stages. General purpose sparse QP solvers such
as OOQP [33] can be used to solve (2) and they typically perform significantly better than
dense solvers that assume that all entries in the problem are non-zero. However, the spe-
cific sparsity pattern of optimal control problems (2a)–(2e) should be exploited in order to
maximize performance. Three schemes have been proposed in the literature to solve block-
banded optimization problems in the form of (2), combining structure exploitation with
operations on small-scale, dense matrices. This is the topic of the following sections.

Remark 1 (Banded structure exploitation in single shooting) The band structure-exploiting
methods described in this section can also be used within a single shooting framework by
simply overwriting the states of the QP solution with a nonlinear forward simulation [69].

3.1 The Condensing Approach

A closer look at the equality constraints (2b)–(2c) reveals that the state variables x are
uniquely determined by the input variables u and the initial state x̂0. Therefore, one solution
approach is to eliminate the states x from the optimization problem and use a dense solver,
such as qpOASES, to solve the smaller scale QP that has the form:

minimize
y

1

2
y�Hd y + y�gd, (3a)

subject to dd ≤ Cd y ≤ d̄d. (3b)

The elimination scheme that transforms (2) into (3) is often referred to as condensing
algorithm [11].

Within an NMPC framework, the condensing algorithm needs to be executed at each time
step. This implies that, in particular for large N , the operation consumes a significant part
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of the overall execution time. For a long period of time, the complexity of the condensing
algorithm was thought to be cubic in the prediction horizon N [41, 80]. However, carefully
exploiting the problem structure during the elimination of the state variables can lead to
algorithms that scale quadratically in N , as independently discovered by the authors in [1,
25]. This improvement can significantly reduce the computation time of the NMPC scheme,
as shown in the results of Section 5. However, the asymptotic complexity of the complete
solution approach (i.e., condensing and a prescribed number of iterations for the dense QP)
remains cubic in N if an active set or interior point method is used, due to the factorization
of the dense Hessian matrix. This fact can be overcome with the condensing algorithms pro-
posed in [3, 27] that directly construct the Cholesky factor ofHd without building the matrix
itself. If these condensing algorithms are combined with an active set method that performs
updates of the KKT matrix factor at each iteration (with complexity that is quadratic in the
number of variables), the resulting scheme to solve (2) will have an asymptotic complexity
that scales only quadratically in N . Yet another condensing algorithm that outperforms its
competitors when the initial state is free, i.e., when constraint (2b) is not present, has been
recently proposed in [28]. For a detailed comparison of condensing algorithms, the reader
is referred to [31].

Remark 2 (Complementary condensing) In optimization problems where the number of
controls is much larger than the number of states, such as in convexification approaches for
mixed-integer OCPs [46, 72], the reduction in problem size that the conventional condens-
ing algorithm achieves is marginal. To alleviate this problem, a complementary condensing
approach that is essentially a structure-exploiting factorization of the block sparse KKT
system of (2) has been proposed in [45].

3.2 Exploiting the Block-Banded Structure

Although condensing is a competitive approach for relatively small N , it is less suitable
for problems with long horizons. This drawback motivated the development of solution
algorithms that exploit the optimal control structure of the QP in a different way.

When no inequalities are present in (2), the optimal solution can be calculated using a
Riccati recursion, which is related to dynamic programming and has a computational cost
that scales only linearly in N . This approach had undoubtedly a major influence also in
constrained optimization. In the early work by Glad and Johnson [36], an active set method
is proposed that uses a Riccati recursion to efficiently solve the KKT system associated
with (2) for different guesses of the optimal active set. Similar results followed in the field
of interior point methods. Wright in [85] carefully restructures the KKT matrix into a block-
banded form and factorizes it efficiently using a banded factorization with fixed bandwidth.
The parallelization of this procedure can be achieved by means of a cyclic reduction tech-
nique proposed by the same author in [84]. It requires more floating point operations in
total, but spread over different processors. Later work that fully exploits the block-banded
structure of the problem by means of Schur complements or Riccati recursions followed by
Steinbach and Rao et al. in [68, 76].

The performance and robustness of interior point methods motivated also the develop-
ment of several software tools, with some representative examples discussed in Section 5.
An efficient implementation of an interior point algorithm that follows the Riccati recur-
sion approach of Rao et al. [68] was proposed by Frison et al. in [30]. Wang et al. in [81]
and Domahidi et al. in [19] use instead a Schur complement method within an interior point
algorithm to form and factorize the KKTmatrix in the so-called normal equations form. The
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factorization step is based on a banded Cholesky factorization procedure. The same block
tridiagonal matrix appears in the active set-based method by Frasch et al. in [22], as the
Hessian of a dual problem formulation. The authors therein propose a reverse Cholesky fac-
torization with the same complexity in order to maximize reuse of results between iterations,
as discussed in Section 5.

If the matrices Ak and Bk in (2c) are assumed to be dense, using direct sparse solvers,
treating the block sparse matrices as banded matrices or fully exploiting the special block
structure yields algorithms with the same asymptotic complexity, namely linear in N and
cubic in the number of stage variables. However, in practice, the performance gap between
such methods can be more than one order of magnitude, as for instance reported in [26].

3.3 Partial Condensing

A natural extension of the previous two approaches is to combine them in one by applying
the condensing algorithm on consecutive blocks of size M ≤ N . This method, called partial
(or block) condensing, allows one to form optimization problems with different levels of
sparsity [2]. The resulting QP, with a fictitious horizon Ñ < N and a larger number of
control variables per stage, can be solved using the algorithms of the previous section.

As an example, consider a QP (2) with horizon length N = 6 and let us divide the state
and input vectors such that the variables of M = 3 consecutive stages are grouped together.
Eliminating all but the first state on each block yields:

ũ =

⎡

⎢⎢⎢⎢⎢⎢⎣

u0
u1
u2
u3
u4
u5

⎤

⎥⎥⎥⎥⎥⎥⎦
=̇

[
ũ0
ũ1

]
, x̃ =

⎡

⎣
x0
x3
x6

⎤

⎦ =̇
⎡

⎣
x̃0
x̃1
x̃2

⎤

⎦ ,

with x̃k ∈ R
nx and ũk ∈ R

Mnu . These vectors can be seen as the state and controls of a new
block-banded QP (2) with horizon length Ñ = N/M = 2. The matrices and vectors of the
QP are replaced by their bar quantities, calculated by a partial condensing algorithm. Note
that the condensing of each block can be performed in parallel. Moreover, if the QP solver
supports varying dimensions of states and controls per time stage, the block size M does
not have to be a proper divisor of N , allowing more freedom in the tuning process.

Initially, the main motivation behind partial condensing was the reduction of floating
point operations inside the QP solver by changing the problem dimensions [2]. However,
additional advantages include the improved efficiency of linear algebra routines (the partial
condensing reformulation replaces many linear algebra operations on small matrices with
fewer linear algebra operations on larger matrices [28]) and the acceleration of convergence
for some algorithmic schemes [49].

As in standard condensing, partial condensing needs to be performed at each sampling
time for NMPC. However, in partial condensing, the initial state of each but the first block
is a free optimization variable. This is a key difference with respect to the full condens-
ing approach of Section 3.1, where the initial state constraint (2b) can be used to eliminate
x0 from the optimization variables, in order to reduce the computational complexity of
the algorithm. In this context, the best-performing condensing algorithm is the one pro-
posed in [28]. An efficient implementation of this scheme can be found in the open-source
project HPIPM [94].
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4 The Nonlinear Hanging Chain Problem

In this section, we present the benchmark problem that will be used to compare the com-
putational performance of recently developed software in the field of embedded quadratic
programming. The chosen problem is scalable in the number of states, which allows one to
conveniently investigate the behavior of the solvers in problems with different dimensions.

The controlled system is a chain of nm masses connected by springs, as already used
in [20, 80, 83]. The mass at the one end of the chain is fixed, while the mass on the other
end is actuated. The model has nx = 6(nm − 2) + 3 states, corresponding to the three-
dimensional positions and velocities of the intermediate masses and the position of the free
mass at the one end, and nu = 3 controls for the velocities of the actuated mass at that end.

Initially, the chain rests in an equilibrium position with the y and z coordinates of the
two ends coinciding, as shown in Fig. 1. A wall near this equilibrium position, introduced
in [20], imposes state bounds on the y position of each free mass. The control scenario starts
with a strong perturbation to the chain by moving its actuated end with a fixed velocity of
[−1, 1, 1] for five sampling periods. After this time, the NMPC controller is taking over
with the task to return the chain to its initial position. Control values are bounded between
−1 and 1.

The continuous time OCP is parametrized using direct multiple shooting with piecewise
constant controls on intervals of Ts = 0.2 s. For the integration and linearization of the sys-
tem dynamics, two steps of the 2nd-order Gauss collocation-based integrator with tailored
sensitivity propagation are used [67]. The same integration scheme is used for the simulation
model in the closed loop experiments. The objective function is quadratic, with diagonal
weights, penalizing the distance of states and controls from their initial values. This setup
allows the use of a Gauss–Newton Hessian approximation, which is applicable to objective
functions in nonlinear least squares form [9]. The NMPC controller is based on the RTI
scheme, as implemented in the ACADO Code Generation tool [41].

A series of closed loop simulations for different values of the prediction horizonN is exe-
cuted for the considered QP solvers and the worst case computation time of each simulation
appears in the plots. The timings refer to condensing or partial condensing, if applicable,
and QP solution. The returned primal optimal solution of every subproblem is validated
against qpOASES with condensing, ensuring that the infinity norm of the absolute differ-
ence is smaller than 10−5. All simulations run on a Dell XPS 13 9360 equipped with an
Intel i7-7560U CPU running at 2.30 GHz and with the Turbo Boost feature disabled to avoid
clock frequency fluctuations. The code used to produce the results of the following section
is publicly available on Github [93] (version 0.1).

Fig. 1 The hanging chain in equilibrium position (left) and after the perturbation (right)
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5 Benchmark of Recent Software Developments

The aim of this section is to summarize and benchmark several software developments of
the past decade in the field of embedded quadratic programming for NMPC. Note that this
overview is far from complete, as it is based on QP solvers with an interface to the ACADO
Code Generation tool.

5.1 The Online Active Set Strategy qpOASES with Condensing

The open-source software qpOASES implements an active set method to solve the dense
QP (3), with attractive properties for MPC applications [20, 21]. It is written in C++ and
was one of the first QP solvers coupled to the ACADO Code Generation tool.

The online active set strategy exploits the fact that a parametric QP can be solved for
any feasible value of its parameter starting from the solution with respect to another value
and following a homotopy path on the parameter space. In the context of linear MPC, the
matrices of the QPs remain constant and the vectors depend only on the initial state mea-
surement. Therefore, the parameter space is defined by all values of x̂0 for which QP (3)
has a non-empty feasible set. If the sampling time is short enough, few active set iterations
are typically required to recover the solution to the new problem. Moreover, matrix factor-
izations can be reused not only within the active set iterations, but also across successive QP
instances, reducing the computational cost significantly. Another advantage of the online
active set strategy over standard primal or dual active set methods is the clear interpreta-
tion of its solution, if the algorithm is stopped prematurely. More precisely, all intermediate
iterates retain primal and dual feasibility with respect to their corresponding parameter
value [20]. In an NMPC framework, where the matrices in (3) are no longer constant, the
algorithm requires a factorization step for every new problem followed by the construction
of an auxiliary QP with modified vectors in order to follow the same homotopy strategy.
Both the factorization of the condensed Hessian in qpOASES and the first code-generated
condensing algorithm in ACADO had a cubic complexity in the horizon length. The devel-
opment of more efficient condensing algorithms with quadratic complexity in N improved
the performance of this solution scheme significantly, despite of the fact that the asymptotic
complexity remained cubic in N . This is demonstrated in Fig. 2, where a comparison of the
computation time for the two schemes as a function of N is shown both in linear and log-
arithmic scale, for a chain of 3, 4, and 5 masses respectively. The reported timings refer to
worst case computation time in closed loop, as discussed in Section 4.

Remark 3 (A sparse variant of qpOASES) For the simulations of this paper, the dense
variant of qpOASES is used from ACADO in combination with code-generated condensing
algorithms. For a sparse variant of the online active set strategy, whose complexity per
iteration is between linear and quadratic in N , the reader is referred to [43].

5.2 The Code-Generated Interior Point Solvers of FORCES

One year after the RTI scheme based on condensing and qpOASES was published, the code
generation framework FORCES appeared [19], implementing primal-dual interior point
methods tailored to the block-banded QP (2). Upon its release, the code generator could
be used free of charge. Nowadays, FORCES Pro is a commercial software developed and
supported by the company embotech AG [18]. The convex QP solver is extended to support
more algorithms and an NLP solver for optimal control is also available [87].
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Fig. 2 Performance of qpOASES with the two different condensing algorithms for a hanging chain of
3 (nx = 9), 4 (nx = 15), and 5 (nx = 21) masses respectively in linear (left) and logarithmic (right) scale

An advantage of interior point over active set methods is that they typically exhibit lower
fluctuation in the number of iterations required to solve different QP instances. The most
computationally intensive operation in an interior point algorithm is the computation of the
search direction, which can be seen as a Newton step on the nonlinear root finding problem
defined by the relaxed KKT conditions [59]. Slack variables and Lagrange multipliers of
inequality constraints are usually eliminated by properly updating Hessian and gradient. The
resulting symmetric, indefinite system of equations is equivalent to the KKT conditions of
an equality constrained QP, often referred to as the augmented system. FORCES implements
a Schur complement method to solve the augmented system. As a first algorithmic step,
the Schur complement is applied independently at each stage of the QP and a system of
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linear equations with a symmetric, positive definite block tridiagonal matrix is formed. This
system of linear equations is then solved using a block-wise Cholesky factorization, with a
computational complexity that is linear in N and cubic in the number of stage variables.

In order to use FORCES, the optimization problem is formed in MATLAB or Python and
a request is sent to a server to generate ANSI C code and download the compiled binaries of
the QP solver. Problem data can be fixed at code generation time or left as a parameter to be
provided at run time. Level 3 BLAS- and LAPACK-like routines are coded using triple loops,
where the size of loops is fixed in the code, giving the compiler the chance to perform opti-
mizations like loop unrolling. Due to the fact that disclosing the computational performance
of FORCES in this example would violate the terms of the academic license agreement, the
interested readers can either reproduce the results using the publicly available code in [93]
and their own FORCES Pro license or look into [80] for an almost identical comparison
on a different computer architecture.

5.3 The Dual Newton Strategy qpDUNES

Another active set method tailored to block-banded QPs in the form of (2) is the so-called
dual Newton strategy, as implemented in the open-source software qpDUNES [22].

The main idea of the algorithm is to introduce Lagrange multipliers for the coupling
constraints in (2c) and solve the resulting dual problem with Newton’s method. The dual
function is concave, piecewise quadratic and once continuously differentiable if the Hessian
blocks are positive definite. Line search is used to ensure global convergence. The con-
struction of the Newton system at each iteration requires the solution of N + 1 small-scale
QPs (since the variables of each stage are now decoupled) and the calculation of the dual
gradient and Hessian. These operations can be performed in parallel to a large extent and
typically reuse computations from the previous iteration. More precisely, parts of the dual
system that correspond to a stage QP without an active set change remain constant. The Hes-
sian of the dual problem has a block tridiagonal structure, which is exploited by means of
a banded Cholesky factorization, similarly to FORCES. Since the factorization only needs
to start from the Hessian block where the first active set change occurs, a reverse Cholesky
factorization is used, based on the assumption that most active set changes appear at the
beginning of the prediction horizon.

If the inequality constraints in (2d)–(2e) contain only bounds on the stage variables and
the Hessian of the QP is diagonal, the variables of the stage QPs are completely decoupled
and their solution can be calculated analytically, with a simple clipping operation. In any
other case, the QPs are solved numerically using qpOASES, which has several benefits over
other QP solvers in this context. For instance, the Hessian matrix of the stage QPs needs to
be factorized only once and the null space of the active constraints which is calculated inside
qpOASES can be reused when building the dual Hessian. qpDUNES is written in C, includ-
ing a C++ layer to communicate with qpOASES. Similarly to qpOASES, the performance
of qpDUNES typically improves with warm-starting. A main advantage of qpDUNES is its
ability to perform multiple active set changes simultaneously. On the other hand, if the algo-
rithm is stopped prematurely, its solution is not feasible nor optimal for a neighboring MPC
problem.

The computation time of qpDUNES with clipping is shown in Fig. 3. As expected, there
is a crossover point after which the sparse solution approach becomes more efficient than
the combination of condensing with a dense QP solver. This crossover point also depends
on the number of states. The more states are eliminated, the more prominent the benefits of
condensing are.
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Fig. 3 Performance of the banded structure-exploiting solvers qpDUNES and HPMPC for a hanging chain of
3 (nx = 9), 4 (nx = 15), and 5 (nx = 21) masses respectively in linear (left) and logarithmic (right) scale

5.4 The High-Performance Interior Point Method HPMPC

The open-source software HPMPC [30, 95] implements a primal-dual interior point method
also tailored to optimal control structured QPs. The main feature that distinguishes it from
other solvers is the use of efficient basic linear algebra routines, which are optimized for
small- to medium-scale matrices.
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The search direction in HPMPC is computed using a backward Riccati recursion. This
recursion has the same asymptotic complexity as the Schur complement method imple-
mented in FORCES. However, the Riccati recursion has a lower flop count in practice,
especially if the Hessian is not diagonal or there exist general affine constraints in the QP.
HPMPC does not employ code generation and it comes in the form of a C library. It com-
prises a set of linear algebra kernels implemented using intrinsics in order to leverage the
vectorization capabilities of modern CPUs. Their aim is to provide a set of basic linear alge-
bra routines optimized for small matrix sizes that are common in embedded optimization,
similarly to what BLAS and LAPACK do for large matrix sizes that are common in high
performance computing.

Figure 3 demonstrates that the high-performance linear algebra routines implemented in
HPMPC yield a significant improvement over previously presented software. This enhanced
performance inspired the development of the open-source library BLASFEO [29, 92], which
makes the linear algebra routines of HPMPC accessible to other software developments in
the field (see, e.g., treeQP [48, 96]).

5.5 Partial Condensing with qpDUNES and HPMPC

The performance of any banded structure-exploiting QP solver can be potentially improved
when combined with the partial condensing approach of Section 3.3.

In the work of [49], qpDUNES was combined with a code-generated partial condens-
ing algorithm provided by ACADO. A significant speedup in performance was achieved,
mainly due to the fewer Newton iterations required for the algorithm to converge. The effect
of partial condensing for qpDUNES in the current benchmark example is shown in Fig. 4
for N = 60. The reported speedup with respect to M = 1 refers to worst case compu-
tation time in closed loop, similarly to the previous section. When no partial condensing
is applied, qpDUNES is used in combination with clipping. For M > 1, the stage QPs
are solved with qpOASES, since the Hessian blocks are no longer diagonal and the state
bounds are transformed into general constraints. This explains why the performance dete-
riorates in the transition from M = 1 to M = 2. Moreover, since qpDUNES only supports
fixed state and control dimensions per stage, the block size can only be a proper divisor
of N .

Fig. 4 Speedup of qpDUNES and HPMPC using partial condensing
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The effect of partial condensing on HPMPC is mainly related to the flop reduction inside
the interior point algorithm and the increase in dimensions of the dense sub-matrices that are
passed to BLASFEO routines [28, 29]. Partial condensing achieves for this example a maxi-
mum speedup of about 2. Note that HPMPC uses its own partial condensing algorithm, based

Fig. 5 Performance of banded structure-exploiting solvers qpDUNES and HPMPC with partial condensing
(M = 10) for a hanging chain of 3 (nx = 9), 4 (nx = 15), and 5 (nx = 21) masses respectively in linear
(left) and logarithmic (right) scale
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on BLASFEO. Moreover, since HPMPC supports varying number of variables per stage,
the search for the optimal block size is made on a finer grid. A comparison of qpDUNES
and HPMPC with partial condensing of block size 101 against the solvers of the previous
sections is finally provided in Fig. 5.

6 Conclusion and Outlook

In this paper, we provided an overview on the latest algorithmic and software develop-
ments in the field of embedded QP solvers for NMPC, together with a consistent benchmark
of selected software in the field. The numerical results indicate that the progress over the
past few years brought improvements in computational performance of up to an order of
magnitude.

Efficient dense linear algebra routines seem to be a powerful alternative to code gen-
eration techniques while at the same time they lead to cleaner and more maintainable
software. With high performance, code maintainability, and modularity in mind, a succes-
sor of the ACADO Code Generation tool is currently being developed, under the name
acados [91]. It replaces code-generated linear algebra routines with calls to BLASFEO
functions and uses HPIPM [94] (a modular reimplementation and extension of HPMPC) to
solve QPs or transform them, using condensing and partial condensing. Interfaces to third
party software, such as the open-source QP solvers of Section 5, are also provided. The
default algorithmic differentiation software is CasADi [1], but it can be replaced with
any other tool that has the same functionality. In fact, the user can also directly provide
self-written C code that evaluates the nonlinear functions and the necessary derivatives.
acados is written in C and comes with interfaces to C++, Python, and MATLAB. A
detailed comparison to its predecessor is subject of ongoing research.
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(2005)

73. Sargent, R.W.H., Sullivan, G.R.: The development of an efficient optimal control package. In: Stoer,
J. (ed.) Optimization Techniques: Proceedings of the 8th IFIP Conference on Optimization Techniques
Würzburg, September 5–9, 1977, pp. 158–168. Springer-Verlag (1978)

74. Schmid, C., Biegler, L.T.: Quadratic programming methods for reduced Hessian SQP. Comput. Chem.
Eng. 18, 817–832 (1994)

75. Shahzad, A., Goulart, P.J.: A new hot-start interior-point method for model predictive control. In:
Proceedings of the IFAC World Congress (2011)

76. Steinbach, M.C.: A structured interior point SQP method for nonlinear optimal control problems.
In: Bulirsch, R., Kraft, D. (eds.) Control, Computation Optimal, pp. 213–222. Birkhäuser, Boston
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