
An Efficient SQP Algorithm for Moving Horizon Estimation with
Huber Penalties and Multi-Rate Measurements

Dimitris Kouzoupis1, Rien Quirynen1,2, Fabian Girrbach1,3 and Moritz Diehl1

Abstract— Moving Horizon Estimation (MHE) is a pow-
erful, yet computationally expensive approach for state and
parameter estimation that is based on online optimization. In
applications with multi-rate measurements that may include
outliers, the Huber penalty is often a better candidate for
the MHE objective than the commonly used Euclidean norm.
Treating this non-smooth objective in Newton-type optimization
typically requires the use of slack variables that would in
turn increase the problem size significantly. As an alterna-
tive, we propose a novel algorithm that combines Sequen-
tial Convex Programming (SCP) and Sequential Quadratic
Programming (SQP) techniques in an effort to reduce the
computational complexity. The proposed implementation is
tailored to embedded applications, as it combines state-of-the-
art numerical tools and efficient C code. We demonstrate the
performance of the algorithm on a real-world state estimation
problem where the position and orientation of a single propeller
aircraft are estimated using GPS and IMU measurement data.

I. INTRODUCTION

Moving Horizon Estimation (MHE) is a popular state and
parameter estimation approach due to its intrinsic ability to
handle constraints and nonlinear dynamics [1]. It requires
the online solution of an Optimal Control Problem (OCP)
that can be a major challenge for real-time implementations.
However, recent algorithmic advancements in the field of op-
timal control have made the use of nonlinear MHE possible
for systems with very fast dynamics [2], [3].

In many applications, measurements are provided from
various sensors with different sampling rates and thus sensor
fusion is necessary [4]. An efficient approach to implement
real-time MHE with high-rate measurements was proposed
by [5], where direct multiple shooting [6] was used in
combination with collocation based integration schemes to
treat the arising OCPs. The presented implementation relies
on the auto generated integrators of the ACADO Toolkit [7]
that use the continuous output feature to evaluate output
functions at an arbitrary grid of the integration interval.
The MHE problem formulation in [5] uses the Euclidean
distance of the simulated values from the measurements in
the objective which is a common choice in practice since the
result can be interpreted as a maximum likelihood estimator
for measurements with additive Gaussian noise [8]. However,
measurements with outliers are better treated with different
penalties that yield more robust estimators, e.g., the one

1Department of Microsystems Engineering (IMTEK), University of
Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany.

2Department ESAT-STADIUS, KU Leuven University, Kasteelpark Aren-
berg 10, 3001 Leuven, Belgium.

3Xsens Technologies B.V., P.O. Box 559, 7500 AN Enschede, the
Netherlands, www.xsens.com.

norm or the Huber penalty function [9]. Such non-smooth
objective functions are often reformulated with the use of
slack variables [2]. The number of those variables is related
to the total number of measurements which can be very large
and therefore jeopardize the performance of the solver.

In this paper, we present a novel algorithm to solve
a certain class of Nonlinear Programs (NLPs) that arise
in MHE with Huber penalties. The method relies on sev-
eral algorithmic components including multiple shooting for
the discretization of the continuous time OCP, collocation
based integrators with continuous output, Sequential Con-
vex Programming (SCP) and finally Sequential Quadratic
Programming (SQP) for the convex subproblems. Given an
upper bound on the curvature of the convex function, we
form a fixed Hessian approximation for the QP subproblems
and prove that the resulting scheme is equivalent to a
preconditioned proximal gradient method. Special focus has
been given on the suitability of the algorithm for embedded
applications by designing a prototype implementation whose
time-critical components are based on efficient numerical
tools and plain C code. Preliminary results on a real-world
state estimation problem show that the proposed scheme can
outperform general purpose sparse NLP solvers by an order
of magnitude.

Section II introduces the general problem formulation
that we wish to address and presents the SCP method.
Section III proposes an SQP algorithm for the subproblems
and proves its convergence properties. Section IV applies
the derived algorithm to MHE with Huber penalties and
multi-rate measurements. Section V discusses the software
implementation while Section VI compares the performance
of the proposed scheme to other approaches on a real-world
state estimation example. Section VII concludes the paper.

II. PROBLEM STATEMENT

In this section we introduce the problem formulation of
interest and discuss how SCP can be used to find locally
optimal solutions.

A. The Nonlinear Program

We are interested in solving NLPs of the form:

min
w

Ψ (w) (1a)

s.t. h(w) ≤ 0, (1b)

where Ψ : Rnf → R is a convex function, piecewise twice
continuously differentiable and h : Rnw → Rnh twice
continuously differentiable but not necessarily convex. Note

2016 IEEE Conference on Control Applications (CCA)
Part of 2016 IEEE Multi-Conference on Systems and Control
September 19-22, 2016. Buenos Aires, Argentina

978-1-5090-0754-7/16/$31.00 ©2016 IEEE 1482

that equality constraints can be also expressed by (1b) with
a suitable definition of h(·).

Assumption 1: The curvature of the convex function Ψ(·)
is bounded from above, i.e.,

Ĥ � ∇2
wΨ(w) (2)

for all w in the feasible set Ω := {w | h(w) ≤ 0}.
One approach for solving (1) is to use a general purpose

NLP solver. Alternatively, one can apply SCP in order to
exploit the existing convexity in the problem. This is the
subject of the next section.

B. Sequential Convex Programming

An SCP method solves a series of convex subproblems in
order to find a locally optimal solution of (1). It has locally
linear convergence, as proven in [10]. In order to apply SCP
on (1), we need to linearize at each iteration i the nonlinear
function h(·) around the current iterate w[i] := w̄. This yields
the following convex subproblem:

min
w

Ψ(w) (3a)

s.t. Bw + b ≤ 0, (3b)

with B = ∂h
∂w (w̄) the Jacobian of the constraints and b =

h(w̄)−Bw̄ the constant term.

III. SOLVING THE CONVEX SUBPROBLEMS

Our aim is to solve instances of (3) efficiently for any
convex function with a known upper bound on its curvature.
A generic approach that does not require further knowledge
on the nature of Ψ(·) is to apply SQP and solve a series of
QP subproblems. At each iteration with iterate w[i,j] := ¯̄w,
a Newton-type SQP method calculates a step direction by
solving the QP:

min
∆w

1

2
∆w>H(¯̄w) ∆w + ∆w>∇Ψ(¯̄w) (4a)

s.t. B∆w +B ¯̄w + b ≤ 0, (4b)

where ∆w = w − ¯̄w and H(¯̄w) ≈ ∇2
wΨ(w) denotes an

approximation of the Hessian of the Lagrangian of (3). We
chose here to express (3) in absolute and (4) in relative terms
for notational convenience. Note also that the inequality
constraints (3b) are affine and therefore identical to (4b).

A. A Fixed-Hessian SQP Method

Newton-type methods approximate the exact Hessian in
various ways. Since each subproblem (3) is convex with
affine constraints and an upper bound on the curvature of
Ψ(·) is available, we can use this upper bound Ĥ to form
a constant Hessian approximation. The following theorem
proves the convergence properties of this scheme.

Theorem 2: Assume (3) has a global minimum w? that
satisfies the Linear Independence Constraint Qualification
(LICQ) as defined in [11]. A full-step SQP method with
fixed Hessian approximation H � 1

2 Ĥ converges globally
to w?.

Proof: An SQP algorithm with fixed Hessian approx-
imation is equivalent to a preconditioned proximal gradient

method with fixed step size, as proved in Lemma 3 be-
low [12], [13]. Moreover, this Hessian approximation yields
a precondition matrix that satisfies the assumptions for global
convergence guarantees [12].

In contrast to other SQP methods, Theorem 2 shows
that the proposed scheme based on the curvature bound
Ĥ does not require line search or any other globalization
strategy [11] to solve (3) from an arbitrary initial point.

B. Connection to First Order Methods

Let us define the generalized norm operator as ||w||L =
〈Lw,w〉1/2 with 〈·, ·〉 the inner product of two vectors. The
projection of a point ŵ onto the feasible set W with the
aforementioned norm operator is defined by the optimization
problem:

min
w

1

2
‖w − ŵ‖2L (5a)

s.t. w ∈ W, (5b)

which we call a generalized projection with precondition
matrix L [13]. The generalized proximal gradient method,
as presented in [13], involves two steps at each iteration.
Namely, a preconditioned gradient step followed by a gener-
alized projection on the feasible set with the same precondi-
tion matrix. The equivalence between this first order scheme
and the proposed fixed-Hessian SQP method is established
by the following lemma.

Lemma 3: A fixed Hessian SQP method with full steps to
solve (3) is equivalent to a preconditioned (or generalized)
proximal gradient method with constant step size.

Proof: Problem (4) with a fixed Hessian approxima-
tion H is equivalent to:

min
w

1

2
||w − w+||2H (6a)

s.t. Bw + b ≤ 0, (6b)

with ∆w = w − ¯̄w, w+ := ¯̄w − H−1∇Ψ(w) and a
difference in the constant term that does not affect the
optimal solution. Therefore, the intermediate iterate w+ can
be seen as the preconditioned gradient step and (6) as the
generalized projection of this iterate on the feasible set, as
in (5).

Note that the equivalence of Lemma 3 implies that ac-
celerated variants of the presented algorithm can also be
implemented, which differ only by basic arithmetic opera-
tions [12].

Remark 4: In the field of first order methods, having an
expensive projection operator is typically avoided since one
iteration of the algorithm becomes almost as expensive as the
original problem. However, in our context, we can show that
the overall cost of the SQP method is mainly determined by
the first QP solution, while all subsequent iterations introduce
a negligible overhead. More details on the computational
complexity can be found in Section V.

1483

C. Local Contraction of the Method

We have presented in the previous section a sufficient
condition for the proposed Hessian approximation to be
globally contractive, namely H � 1

2Ĥ . If no prior knowledge
on the accuracy of the maximum curvature is available,
H should be chosen equal to Ĥ . On the other hand, if
there exists an estimate on how much we overestimate this
curvature, one could try to closer approximate the exact
Hessian at the solution by choosing 1

2Ĥ ≺ H ≺ Ĥ . This
intuition is confirmed experimentally in Section VI.

IV. APPLICATION TO MHE
The algorithm of the previous section finds direct appli-

cation in Moving Horizon Estimation (MHE) with Huber
penalties. We demonstrate how to take into account the
special structure of the problem when building the QP sub-
problems and discuss an alternative Hessian approximation.

A. MHE Problem Formulation

The Huber penalty for a scalar α is given by the function:

φρ(α) =


1

2
α2 |α| ≤ ρ

ρ

(
|α| − 1

2
ρ

)
|α| > ρ,

(7)

where the parameter ρ ∈ R defines the width of the quadratic
region. For the multidimensional case, with α, ρ ∈ RM , we
define equivalently the vector:

Φρ(α) = [φρ0(α0), . . . , φρM−1
(αM−1)]>, (8)

that will be used to penalize the deviations from the mea-
surements in the objective function.

A multiple shooting formulation of the MHE problem with
multi-rate measurements and Huber penalties reads as:

min
x,u

N−1∑
k=0

ω>k Φρk(Rk(xk, uk)) (9a)

s.t. xk+1 = Fk(xk, uk), k = 0, . . . , N − 1. (9b)

Here N is the horizon length, xk ∈ Rnx the differ-
ential states and uk ∈ Rnu the inputs. The functions
Fk : Rnx × Rnu → Rnx denote the numerical simulation
of the continuous-time dynamics. The M measurements of
each shooting interval enter the objective via the nonlinear
residual functions Rk : Rnx ×Rnu → RM and are weighted
with the corresponding element of ωk ∈ RM+ . Nonlinear
stage constraints are omitted in (9) to simplify notation, as
their presence would not affect the described algorithm. The
same holds for the arrival cost that is typically added to the
objective (9a) [1].

Applying SCP and linearizing the nonlinear functions
Rk(·) and Fk(·) around the current iterate x̄, ū yields the
convex subproblem:

min
x,u

N−1∑
k=0

ω>k Φρk (Ckxk +Dkuk + ek) (10a)

s.t. xk+1 =Ak xk +Bk uk + ck, k = 0, . . . , N − 1, (10b)

with Ck = ∂Rk

∂xk
(x̄k, ūk), Dk = ∂Rk

∂uk
(x̄k, ūk) the sensitivities

of the residual function with respect to states and inputs,
ek = Rk(x̄k, ūk)−Ck x̄k−Dk ūk the corresponding constant
term and the quantities Ak, Bk, ck defined similarly for the
continuity constraint in (9b). For later reference, we define
the stage variables z>k = [x>k , u

>
k] and the concatenated

sensitivities Ek = [Ck, Dk].
Problem (10) can be converted into a QP using a smooth-

reformulation of the Huber function [2]. However, this refor-
mulation would introduce a large number of slack variables
and the dimension of this QP would grow fast with the
number of measurements. As a remedy, we suggest to apply
the proposed fixed-Hessian SQP method and therefore we
need to derive explicit expressions for the Hessian and
gradient of the QP subproblems. This is the topic of the
following section.

Remark 5: The Huber penalty as defined in (7) satisfies
the assumptions of bounded curvature and piecewise twice
differentiability, as introduced in Section II. For a discussion
on convergence guarantees of the resulting semi-smooth
Newton type scheme see, e.g., [14].

B. The Fixed-Hessian SQP Method for MHE

The proposed Hessian approximation can be evaluated
cheaply using the linearization of the residuals and their
corresponding weights. Since each term in the summation
over N in (10a) depends only on the stage variables zk, the
Hessian matrix has a block diagonal structure. This implies
that these blocks, as well as the corresponding parts of the
gradient vector, can be calculated in parallel.

Taking into account the unit maximum curvature of the
scalar Huber penalty as defined in (7), each Hessian block
is formed as:

Ĥk = Ek
>diag(ωk)Ek, (11)

where diag(ωk) ∈ RM×M is a symmetric matrix with the
weights ωk on the diagonal and zero elsewhere. Recall the
earlier definition Ek := [Ck Dk] with Ck, Dk the partial
derivatives of the residual function. For each Hessian block
Ĥk, the corresponding gradient vector gk is calculated by
the following sum of contributions:

gk =

M∑
m=1

ωmρm sat

[
1

ρm
(Em,: ¯̄z + em)

]
Em,:

>, (12a)

where we dropped the stage index k on the right-hand
side for notational convenience and defined the saturation
function as:

sat[α] =


1 if α > 1

− 1 if α < −1

α otherwise.

(12b)

The subscript m refers to the corresponding element of a
vector while the double subscript (m, :) denotes the mth

row of the respective matrix.

1484

C. Online Improvement of the Hessian Approximation

An alternative approach for the Hessian approximation is
to consider in (11) only the contributions from the resid-
uals that belong to the quadratic region in the first SQP
iteration (by setting the weights of outliers to zero). If this
estimate happens to be optimal for the convex subproblem,
our algorithm converges in one step as we identify the
exact Hessian of a QP “in disguise”. In any other case the
algorithm may or may not perform better depending on how
accurate this initial estimation is. Special care needs to be
taken however, as an estimation of many outliers may lead to
a Hessian approximation that does not respect the condition
H � 1

2 Ĥ . The performance of this approach is investigated
in Section VI.

Remark 6: Updating the Hessian approximation at each
SQP iteration to remove the contributions of current outliers
would result in an exact Hessian SQP scheme. However,
we will show in the next section that keeping the Hessian
approximation fixed is a major advantage from a computa-
tional point of view, since subsequent QPs can be solved
significantly faster.

V. SOFTWARE IMPLEMENTATION

The purpose of this section is to discuss some algorithmic
details that make the presented algorithm suitable for embed-
ded applications. Our implementation combines state-of-the-
art optimization tools and efficient C code with deterministic
runtime.

A. Integrators with Continuous Output

In order to evaluate and compute the derivatives of the
nonlinear functions in (9b) we need tools for numerical
integration and sensitivity propagation [7]. Given that the
length of the shooting intervals in the NLP typically cor-
responds to the rate of the slow measurements, collocation
based integrators that can evaluate additional outputs on a
different grid are suitable to handle the available high-rate
measurements. This motivates our choice to use the code
generated ACADO integrators presented in [5] and freely
available as part of the ACADO Toolkit [7].

B. Condensing

The equality constraints in (10b) uniquely determine the
state trajectory as a function of the inputs and initial state.
Therefore, one solution approach is to eliminate all state
variables except for the first one and solve a smaller, dense
QP instead. This procedure is also known as condensing and
in combination with a dense QP solver it can outperform
sparse or structure-exploiting solvers for certain problem
dimensions. The most computationally expensive part in
forming the condensed problem is the computation of the
Hessian matrix which can be performed efficiently with the
algorithm presented in [15].

Algorithm 1 The embedded SCP-SQP scheme
1: Input: (x[0], u[0]), imax, jmax, σtol, εtol
2: Output: Approximate solution (x[i], u[i]) of (9)
3: for i = 1 : imax do
4: x[i] ← x[i−1], u[i] ← u[i−1]

5: for k = 0 : N − 1 do in parallel
6: Use integrator to get Ck, Dk, ek and Ak, Bk, ck
7: Calculate Hessian block Ĥk (11)
8: end for
9: Calculate condensed Hessian

10: for j = 1 : jmax do
11: Calculate gradient (12)
12: Calculate condensed gradient
13: Solve dense QP and expand solution to get (∆x,∆u)

14: Update x[i] ← x[i] + ∆x, u[i] ← u[i] + ∆u

15: if ‖[∆x>, ∆u>]‖∞ ≤ εtol then
16: j = jmax

17: end if
18: end for
19: if ‖[(x[i] − x[i−1])>, (u[i] − u[i−1])>]‖∞ ≤ σtol then
20: Return (x[i], u[i])

21: end if
22: end for

C. Embedded QP solution

To solve the condensed QP efficiently we use the embed-
ded QP solver qpOASES [16]. This open-source software
tool is based on an online active-set strategy and it has been
successfully used in many real-world applications [17]. The
main motivation for using qpOASES comes from the fact
that we can efficiently initialize the solver in consecutive
QP subproblems. For that purpose, two initialization options
are available. The first option is called warm-starting and it
initializes the next QP with the solution of the previous prob-
lem. For active set solvers this guess can reduce the number
of iterations significantly. The second option is called hot-
starting and it additionally preserves all matrix factorizations.
In the context of the presented scheme, the first QP of each
SCP iteration is warm-started and all subsequent QPs are
hot-started, leading to significantly faster execution times.
This effect is also observed experimentally in Section VI.

D. The SCP-SQP Scheme for MHE

The complete algorithm is summarized in Algorithm 1.
In each outer SCP iteration, numerical integrators are used
(possibly in parallel) to linearize residual functions and
dynamics. When the sparse QP is formed, the condensing
algorithm calculates the condensed Hessian, which remains
constant for the convex subproblem. In each inner SQP
iteration, the exact gradient of the dense problem is formed,
the QP is solved and the solution is expanded to the full space
of state and input deviations. Both inner and outer loops
stop when the step on the primal variables is below a certain
tolerance or the maximum number of iterations is reached.
Note here that for simplicity of notation and implementation,
the inner iterates z[i,j] := z[i,j−1] +∆z overwrite the current
outer iterate z[i].

1485

VI. EXPERIMENTAL RESULTS

To assess the performance of the presented MHE scheme,
we consider the pose estimation of a single propeller aircraft
during a take-off manoeuvre using both GPS and IMU
measurements. The measurement data were acquired by the
XSENS sensor MTi-G-700 at the rates of 4 Hz and 400 Hz
respectively.

A. Model Equations

To describe the motion of the system, we use a rigid body
model comprising 13 states and 6 inputs, namely:

x(t) =


pL(t)
ṗL(t)
ω(t)SLS
q(t)LS

 , u(t) =

[
FS(t)
τS(t)

]
, (13)

where pL ∈ R3 and ṗL ∈ R3 denote the position and velocity
with respect to the local frame, i.e., a frame fixed at the initial
position of the body with unit vectors pointing east, north,
up. The angular velocity from the sensor frame S to the local
frame L is expressed in the sensor frame S and it is denoted
by ωSLS ∈ R3. It affects the orientation from frame S to L,
expressed by the unit quaternion qLS ∈ R4. The inputs to
the system are the force FS ∈ R3 and torque τS ∈ R3, both
expressed in the sensor frame S. The Ordinary Differential
Equations (ODEs) that describe the trajectory of the rigid
body read as:

p̈L(t) =
RLS(t)FS(t)

m
(14a)

ω̇SLS(t) =
(
IS
)−1 (

τS(t)− ωSLS(t)×
(
ISωSLS(t)

))
(14b)

q̇LS(t) =
1

2
qLS(t)� ωSLS(t), (14c)

with RLS ∈ R3×3 denoting the rotation matrix from S to
L, IS ∈ R3×3 the constant inertia tensor of the rigid body
in the S frame and m the mass of the rigid body. The
operators × in (14b) and � in (14c) denote the cross product
and quaternion product respectively.

For the experiments that follow, we consider a multiple
shooting discretization of the MHE problem similar to (9),
with sampling time Ts = 0.25 s and horizon length N = 30.
Given the two frequencies of the sensors, each shooting
interval comprises nGPS = 1 GPS and nIMU = 100 IMU
measurements. To form the residuals that penalize the de-
viations from the measurements, the following two output
functions are used, evaluated at the corresponding rate of
each sensor:

yGPS(x(t), u(t)) =

[
pL(t)
ṗL(t)

]
(15a)

yIMU(x(t), u(t)) =

[
RSL(t)

(
p̈L(t)− gL

)
ωSLS(t)

]
. (15b)

In (15b), gL denotes the gravity vector with respect to L. An
additional equality constraint is required in (9) to impose
the unit norm of the quaternion at the beginning of the
horizon. The dynamics of the system will then ensure that

0

-5

Xsens reference pose

x

-10
-10

-5

y

0

0

4

2z

-4

x

MHE without outliers

-8
-12-10

-5

y

0

2

4

0

z

-4

MHE with outliers and 2-norm

x

-8

-12
-8

-6
-4

y

-2
0

4

2

0

z

MHE with outliers and Huber penalty

-4

x

-8
-12-10

-5

y

0

2

4

0

z

Fig. 1. Effect of outliers on the pose estimation.

this constraint is satisfied for the whole trajectory at the
optimal solution.

B. Numerical Experiments

Let us first motivate the use of Huber penalties in MHE
by means of an experiment. Figure 1 shows four different
pose estimations for the same set of measurements. On the
upper left part is the pose of the body as estimated by the
on-board system of the sensor while on the right we plot the
optimal trajectory as calculated by solving one MHE problem
instance. The same set of measurements is then polluted
with nO = 500 artificial outliers and two different MHE
problem formulations are compared. Namely, a formulation
with quadratic penalties on the lower left and one with Huber
penalties on the right. It is clear from the results that the
Huber objective leads to a more robust pose estimation.

The main goal of the experiments is to illustrate the
performance of our SCP-SQP scheme in Algorithm 1 and
to compare it with alternative algorithmic approaches. As
a first approach, we apply direct collocation and use the
sparse NLP solver Ipopt [18], within casadi [19]. The Huber
penalties are formulated as semi-smooth casadi functions
avoiding the need of slack variables. The second approach
is to apply SCP on the multiple shooting formulation (9)
and solve the subproblems by converting (10) into a QP
with the use of slack variables. Since each scalar Huber
penalty function introduces two slacks as well as polyhedral
inequality constraints and bounds, the size of these QPs
grows rapidly with the number of measurements. MATLAB’s
native QP solver, quadprog, is used here to solve the sub-
problems. The remaining two approaches use the presented
SCP-SQP scheme with fixed Hessian approximation. More
precisely, we first use the same QP solver, quadprog, for
the QP subproblems and then replace it with qpOASES. A
comparison of all methods is summarized in Table I for
different rates of IMU measurements (via downsampling).
All simulations were performed on a 2,5 GHz Intel i7
processor with 16 GB of RAM, running OS X 10.11 and
MATLAB R2015b.

The timings of Table I indicate that even with a general
purpose tool like quadprog, we can improve the perfor-
mance of the MHE estimator significantly by employing

1486

TABLE I
TIME [s] UNTIL CONVERGENCE FOR DIFFERENT SCHEMES.

Method fIMU
100 Hz 200 Hz 400 Hz

casadi with Ipopt 0.84 1.35 3.07
SCP with quadprog 31.9 41.5 89.9
SCP-SQP with quadprog 0.43 0.29 0.31
SCP-SQP with qpOASES 0.11 0.10 0.14

TABLE II
DETAILED TIMINGS [ms] OF FIRST SCP ITERATION.

Operation SQP + quadprog SQP + qpOASES
Integration 19.61 19.54
Full condensing - 1.38
First QP solution 10.58 1.18
Gradient condensing - 0.07
Subsequent 4 QPs 42.83 0.69

the proposed SCP-SQP scheme. The performance of the
latter remains almost unaffected by the number of IMU
measurements per interval.

The improved performance of the tailored scheme is due
to the fact that the total cost of the SQP iterations is mainly
affected by the cost of the first QP solution. This is depicted
in Table II where detailed timings of the first SCP iteration
are reported for the two SCP-SQP schemes. The table is
split in two parts. The first part comprises operations that
are executed only once per convex subproblem while the
operations of the second part are called as many times as the
required number of SQP iterations. For the latter, the sum
of all timings is reported. The condensing timings refer to a
plain C implementation of the algorithm presented in [15].

To conclude the experiments, we compare the performance
of the SCP-SQP method for the two proposed Hessian ap-
proximations of Section IV. Namely, the maximum curvature
and the exact Hessian guess, as introduced in Section IV-C.
Figure 2 shows that the second variant performs poorly in the
first MHE iteration where the initialization of the solution is
inaccurate while for the remaining optimization problems it
converges consistently faster.

VII. CONCLUSIONS

We have proposed an efficient algorithmic scheme to
solve MHE problems with Huber penalties and multi-rate
measurements. Instead of using a general purpose NLP solver
on the original problem or solving high dimensional QPs
within an SCP framework, our approach uses a nested SCP-
SQP algorithm that solves the low-level QPs very efficiently.
The performance of the scheme is demonstrated on a real-
world state estimation problem.

ACKNOWLEDGMENTS

This research was supported by EU: FP7-TEMPO (MC ITN-607957),
H2020-ITN AWESCO (642682), ERC HIGHWIND (259 166). R. Quirynen
holds a PhD fellowship of the Research Foundation – Flanders (FWO).

REFERENCES

[1] C. V. Rao and J. B. Rawlings, “Nonlinear moving horizon state
estimation,” in Nonlinear Predictive Control, (Basel Boston Berlin),
pp. 45–69, Birkhäuser, 2000.

5 10 15 20 25 30

Accumulated SCP iterations

0

2

4

6

8

10

12

14

S
Q

P
 i
te

ra
ti
o

n
s

Number of SQP iterations for the convex subproblems

SCP-SQP + Maximum curvature
SCP-SQP + Exact Hessian guess
New MHE problem

Fig. 2. SCP-SQP iterations for the two Hessian approximations.

[2] K. Geebelen, A. Wagner, S. Gros, J. Swevers, and M. Diehl, “Moving
horizon estimation with a Huber penalty function for robust pose
estimation of tethered airplanes,” in Proceedings of the American
Control Conference (ACC), 2013.

[3] M. Vukov, S. Gros, G. Horn, G. Frison, K. Geebelen, J. B. Jørgensen,
J. Swevers, and M. Diehl, “Real-time nonlinear MPC and MHE for
a large-scale mechatronic application,” Control Engineering Practice,
2015.

[4] R. López-Negrete and L. T. Biegler, “A moving horizon estimator for
processes with multi-rate measurements: A nonlinear programming
sensitivity approach,” Journal of Process Control, vol. 22, no. 4,
pp. 677–688, 2012.

[5] R. Quirynen, S. Gros, and M. Diehl, “Fast auto generated ACADO
integrators and application to MHE with multi-rate measurements,” in
Proceedings of the European Control Conference (ECC), pp. 3077–
3082, 2013.

[6] H. G. Bock and K. J. Plitt, “A multiple shooting algorithm for direct
solution of optimal control problems,” in Proceedings of the IFAC
World Congress, pp. 242–247, Pergamon Press, 1984.

[7] R. Quirynen, M. Vukov, M. Zanon, and M. Diehl, “Autogenerating
microsecond solvers for nonlinear MPC: a tutorial using ACADO
integrators,” Optimal Control Applications and Methods, vol. 36,
pp. 685–704, 2014.

[8] A. Charnes, E. L. Frome, and P. L. Yu, “The equivalence of generalized
least squares and maximum likelihood estimates in the exponential
family,” Journal of the American Statistical Association, vol. 71,
no. 353, pp. 169–171, 1976.

[9] P. J. Huber, Robust Statistics. Wiley, 1981.
[10] Q. Tran-Dinh and M. Diehl, “Local convergence of sequential convex

programming for nonconvex optimization,” in Recent advances in
optimization and its application in engineering, pp. 93–103, Springer-
Verlag, 2010.

[11] J. Nocedal and S. J. Wright, Numerical Optimization. Springer Series
in Operations Research and Financial Engineering, Springer, 2 ed.,
2006.

[12] Y. Nesterov, Introductory lectures on convex optimization: a basic
course, vol. 87 of Applied Optimization. Kluwer Academic Publishers,
2004.

[13] W. Zuo and Z. Lin, “A generalized accelerated proximal gradient ap-
proach for total-variation-based image restoration,” IEEE Transactions
on Image Processing, vol. 20, pp. 2748–2759, October 2011.

[14] L. Qi and J. Sun, “A nonsmooth version of Newton’s method,”
Mathematical Programming, vol. 58, pp. 353–367, 1993.

[15] G. Frison and J. B. Jørgensen, “A fast condensing method for solution
of linear-quadratic control problems,” in Proceedings of the IEEE
Conference on Decision and Control (CDC), 2013.

[16] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,
“qpOASES: a parametric active-set algorithm for quadratic pro-
gramming,” Mathematical Programming Computation, vol. 6, no. 4,
pp. 327–363, 2014.

[17] T. J. Besselmann, S. V. de moortel, S. Almér, P. Jörg, and H. J.
Ferreau, “Model predictive control in the multi-megawatt range,” IEEE
Transactions on Industrial Electronics, 2015.

[18] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006.

[19] J. Andersson, A General-Purpose Software Framework for Dynamic
Optimization. PhD thesis, K.U. Leuven, October 2013.

1487

