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Abstract: Autonomous takeoff and landing is a big challenge in the field of airborne wind
energy. We propose numerical methods in order to optimize flight trajectories of a tethered
aircraft. These flight trajectories yield a baseline for analyzing takeoff or landing performance.
In this paper, we optimize for a landing strategy that uses the winch to decelerate the aircraft
after touchdown. A complete optimal control formulation with differential algebraic equations
for the system dynamics is derived. For avoiding tether collision with the ground, we employ a
quasi-static tether model that treats both the tether sag and elasticity. It is a novelty in airborne
wind energy trajectory optimization to solve for the tether shape as part of the optimization

problem.
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1. INTRODUCTION

Airborne wind energy (AWE) is a new technology that
aims on harvesting wind energy in higher altitudes than
conventional wind turbines while reducing the required
amount of material to build the plant. The AWE book by
Ahrens et al. (2013) comprises the state-of-the-art of the
technology. Ampyx Power B.V. is developing an airborne
wind energy system consisting of a rigid wing PowerPlane
that is connected to a winch on the ground by a tether. The
winch is driven by a motor that also serves as a generator
during power generation.

Besides being able to generate power, it is desirable that
the system is capable of full autonomous operations which
includes autonomous landing in unfavorable wind condi-
tions, and autonomous re-launching when wind conditions
improve. There are many concepts that can be consid-
ered for launching and landing the PowerPlane. The most
promising require as little real-estate on the ground as
possible. A key ingredient for achieving this is landing in
a short distance to the winch. Landing far from the winch
also makes the automation of the re-launching process
difficult because the aircraft needs to be pulled back into
takeoff position.

Short winch landing is the concept of flying the aircraft
over the winch during the approach and using the winch
to quickly decelerate the aircraft during touchdown and
roll-out. The aircraft will land upwind but close to the
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winch, and could be pulled back into takeoff position by
the winch and a secondary mechanism. However, the short
winch landing maneuver might impose high requirements
on the winch because the winch has to quickly switch
between reeling in and reeling out during the flyover.

Trajectory optimization is a powerful tool for the anal-
ysis of dynamic systems and can be used to study the
capabilities of the system, and the feasibility of flight
maneuvers given a set of boundary conditions. A model
of the underlying system is required in the optimal control
formulation. In airborne wind energy, the model of the
system consists of an aircraft model, tether model, and a
winch model. Flight models are usually developed using
polar coordinates to represent the aircraft or kite position
(Williams et al., 2007; Fagiano et al., 2012), or using
a Cartesian coordinate representation (Gros and Diehl,
2013).

In the field of AWE, numerical optimization of flight
trajectories has been presented in several publications.
Williams et al. (2008) present models and numerical meth-
ods to study the optimal trajectories of cross-wind towing
and cross-wind power generation for different wind speeds.
Horn et al. (2013) and Licitra et al. (2016) used numerical
optimization in order to optimize for periodic power gen-
eration cycles. 6-DOF aircraft dynamics were coupled to
a straight line tether model in a differential algebraic for-
mulation. The tether is represented by algebraic equations
that constrain the distance between the winch and aircraft.
They show that with holding patterns, the aircraft can be
kept airborne when in low wind conditions, and transition
between patterns is possible. Erhard et al. (2016) opti-
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mized the power orbits of the Skysails kite system and
represent the kite position by polar coordinates and the
kite orientation by quaternions. Zanon et al. (2014) use an
optimal control approach to estimate and control a dual-
kite system, and Houska and Diehl (2010) use a robust
optimization approach to find control trajectories that are
open loop stable.

In the literature, optimal trajectories for AWE systems
have employed simple models of the tether which ignore
cable sag effects. During the primary phases of operation,
this approximation is very good due to the high tension
to mass ratio. However, in phases such as launch and land
where the tension is significantly smaller, the tether sag
becomes important. In practical systems where the tether
life must be considered, it is important to maintain the
tether from dragging over the ground. Therefore, we seek
to go beyond the simplified tether models that have been
used in previous work. We present a quasi-static tether
model adopted from Williams (2016) which allows to
seamlessly integrate the tether model into the optimization
problem as algebraic constraint equations.

The structure of the paper is as follows. We first describe a
simple flight model and present the proposed tether model
in detail which together form the dynamic system model
(Section 2). Then, we present the optimal control problem
formulation in Section 3 and explain briefly how to solve
the optimal control problem with direct transcription
methods. We apply the formulation to the problem of short
winch landing, stating objective function and constraints,
and present the optimized flight trajectories in Section 4.

2. DYNAMIC SYSTEM MODEL

In this section, we describe the mathematical system
model that we implemented for optimizing the flight
trajectories.

The model describes the dynamical behavior of the system,
i.e. the forces and moments acting on the system, as well as
the kinematic properties of the system that are expressed
by algebraic equations. We therefore use differential al-
gebraic equations (DAE) to formulate the system model.
DAEs comprise differential and algebraic equations and
have the following implicit form:

FP 2, 2, 0) = 0 (1)

where x are the differential variables (states), z the alge-
braic variables, and u the control variables of the system.
Every DAE can be transformed into a semi-explicit form
with the following structure:

z = f(z,z,u)
0= g(CE,Z,U)

(2a)
(2b)

where f are the differential equations and ¢ the algebraic
equations stated explicitly.

The models should be simple, but yet represent the be-
havior of the system for the specific application. For our
analysis, which is landing in a non-crosswind scenario,
a planar two-dimensional model for the aircraft and the
tether is sufficient. However, all models in this paper can
be adopted to be used in a three-dimensional scenario.
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symbol value unit description

g 9.81 m/s2 gravitational acceleration

p 1.225 kg/m3  air density

S 3.0 m? wing surface area

m 36.6 kg aircraft’s mass

Cpo 0.0372 constant drag coefficient
Cp1 0.1572  1/rad linear drag coefficient

Cpa 0.6176 1/rad? quadratic drag coefficient
Cro 0.5383 constant lift coefficient

Cr1 3.9143 1/rad linear lift coefficient

E 1011 elastic modulus of the tether
A 4.91 mm? cross section are of the tether
AT 0.0046  kg/m linear density of the tether
d 2.5 mm diameter of the tether

Table 1. Parameters for the environmental,
aircraft, and tether model.

The system in this work consists of aircraft and the tether.
Each part of the system is modeled and described in the
following sections, followed by a section that describes how
to transform the system equations into the form of (2).

2.1 Aircraft flight model

The aircraft dynamics are driven by the sum of forces
and moments that are acting on system. In this work, we
neglect the pitching moment and assume that the angle of
attack can be controlled directly instead of using control
surfaces. By limiting the rate of change of the angle of
attack we make sure that this a reasonable assumption.

We model the aircraft in flight-path coordinates. The
dynamics of the aircraft are expressed in terms of the
aircraft’s two-dimensional position in north and down
direction p = [p",pP]T, the airspeed V, the flight path
angle v, and the angle of attack «.. From these terms we can

retrieve the ground velocity of the aircraft v = [vV,vP] T
by
v =V cos(y) +w (3)
and
vP = —Vsin(y) 4)

where w is the wind speed which is assumed to be constant
with altitude in this work.

The forces acting on the aircraft are aerodynamic lift and
drag forces, gravity, and the tension force from the tether.
The tension force of the tether acting on the body of the
aircraft is given by 7' = [TV, TP]" and will be determined
in the next section.

The forces in the direction of flight are given by:
. 1
mV = —ipVQSCD(a)—i—TN cos(y) —TP sin(y) —mgsin(y)
(5)

where Cp(a) is the aerodynamic drag coefficient function.
The aircraft and environmental parameters are summa-
rized in Table 1.

The orthogonal forces to the flight direction are given by:
1

mV4 = ipV2SCL () =TV sin(vy) — TP cos(y) —mg cos(v)

(6)

where Cr, (o) is the aerodynamic lift coefficient function.

The aerodynamic coefficient functions Cp(«) and Cf(«)
are aircraft dependent and usually retrieved from CFD
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simulations or system identification flights. We use the
parameters of the PowerPlane AP2 with 5.5m wingspan
that are given in form of lookup tables. In order to
ensure a smooth and at least twice differential model, we
approximate the lookup tables by first and second order
polynomials below the stalling angle of attack. With the
parameters from Table 1, the coefficients are given by

OD(Oé) = CD() + CD10é + ODl(XQ (7)

and
Cr(a) =Cro+ Cria (8)

2.2 Tether model

The most popular flexible tether models in the litera-
ture are lumped mass models where the mass points are
connected by springs and dampers (Fechner et al., 2015;
Williams and Trivailo, 2007). These models have been used
for simulating the dynamics system, however they are not
suitable in an optimization context because of the high
stiffness of the tether. Due to the stiffness, high frequency
oscillations will be introduced and therefore a very small
time-grid in the discrete optimization problem is required.
Furthermore, the state of the system will grow largely with
number of mass points, and the initialization of the newton
type solver is not trivial. Williams (2010) used a lumped
mass model to optimize the orbit of a circularly-towed
aircraft-tether system, but neglected the effect of tether
elasticity.

Other models are described by differential algebraic equa-
tions where the tension forces between the mass points
are determined by solving a system of algebraic equations
(Zanon et al., 2014). Problems with these model are drift-
ing of the constraint equations, proper initialization of the
solver, and how reeling in and out is realized.

For the reason that the presented tether models have diffi-
cult dynamic properties in the context of optimization, we
instead adopt a quasi-static tether approximation that was
presented by Williams (2016). This tether model neglects
tether vibrations, but still is capable of representing the
tether shape. In the original paper, the quasi-static tether
model was used to initialize a dynamic tether model in
order to simulate a kite system. We found that this model
is very suitable to be used in the optimization context,
as the tether is represented only by a few variables and
algebraic equations.

The static tether model is represented by K + 1 nodes
with positions p, for k € [0, K| where the first node is at
the position of the winch py which is at the origin in this
work. Tension forces act along the K links that connect
two nodes each (see Fig.1). With a shooting approach, we
can calculate the positions of the nodes iteratively starting
with the first node with position pg:

EA K| Tk

Prr1 = Pk + ( 9)
where T}, is the tension in the k-th link, F the elasticity
coefficient of the tether, A the cross section area of the
tether, and [ the total length of the tether.

The tension forces in the links are calculated iteratively
as well. The tension force Ty4; in link k + 1 depends
on the sum of forces that are acting on node k. These
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Fig. 1. Representation of the static tether showing the
tether nodes (filled circles), links (solid lines), velocity
and forces vectors. The dashed lines represent the
tether with arbitrary nodes in between, and the thin
dashed lines are for a better representation only.
The forces acting on the k-th node are the tension
force Ty, the gravity force F9, the drag force F}P,
and the centripetal force F}. Centripetal and drag
forces depend on the node velocity vy and the aircraft
velocity v. The node positions p; and tension force
T}, are calculated iteratively starting from the winch
position pg and tension at the winch Tj.

forces are the tension force of the previous link, the
centripetal force Ff, gravity, and the drag force FP.
Figure 1 illustrates the forces on the tether. With these
forces we can iteratively calculate the tension force for all
links k =1... K — 1 starting with the tension force at the
winch Ty = [TV, TP]T

Tir = T + Ff — [0,mg] " — FY (10)
and where m = %)\T is the mass of one link with the linear

density of the tether A7, The centripetal and drag forces
are derived in the following.

Velocity model — The tether is approximated as a rigid
body while the tip of the tether has to match the velocity
of the aircraft v. The aircraft’s velocity can be decomposed
into an angular component w and tangential component vl
(see Fig. 1). With the tangential direction of the aircraft
with respect to the winch given by

N pP—Po

p=i— (11)
lp = pol
we can get the tangential velocity by
ol = (p,0)p (12)

where (-, -) designates the dot product.

The angular component of the aircraft’s velocity is given
by:

Jlo =l
w =

= =pl (13)

For the tether nodes, we decompose the velocities into
a orthogonal and tangential part. Using the rigid-body
assumption, the orthogonal velocity is known to be

v =w [(1) _01} (k= Po) (14)

while the tangential part is assumed to be equal to the
aircraft’s tangential velocity, so vlll =l

Centripetal force and drag model ~ With these quantities
we can now calculate the centripetal force:
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Ff = mw?(pr — po) (15)
It is left to describe the drag model of the tether. Drag
is acting on each link of the tether and depends on
the relative velocity of the link in the airflow. From the
components of the node velocity, we can get the relative
velocity to the wind speed w by

vf = v +v) — [w,0]" (16)

We employ a cross-flow model of tether drag. The tangen-
tial direction is given by the direction of the tension force
T, = H;—’;”, so we get the part of the cross-flow velocity by:

ve = v — (o}, Ti) T (17)
Finally, the drag force is determined by:
1 l
D c
By = *icngPH’U/: oy (18)

where the tether is assumed cylindric with a drag coefli-
cient of U3, = 1.2, and the aerodynamic area of the link
is determined by the length of the tether [, the number of
links K, and the tether diameter d.

To summarize the tether model, with (9) and (10) we can
calculate the tether shape represented by the positions of
the K + 1 nodes, and the tension forces in the K links.
The position of the last node of the tether px = [p¥, p2] T
only depends on the tension force in the first link Ty =
[TV, TP]T and the tether length I. The tension acting on
the aircraft is given by the tension in the last link, but in
the other direction, so TV = —T}}Cl and TP = —T£71.

We can solve the tether shape by an root finding problem
with two variables for the tension in the first link 73V
and T, and two equations. The solver will determine
the required tension force to satisfy the equations. This
optimization problem can be seamlessly solved together
with the system model in a DAE formulation described in
the next section.

In this work we use the parameters of the 2.5mm Dyneema
tether of the PowerPlane AP2. All tether parameter values
are listed in Table 1.

2.8 System equations

In this section we collect the model equations from the
previous section and bring it in the form of the semi-
explicit DAE of (2). The state of the system consisting
of the aircraft and tether model described in Sections
2.1 and 2.2 can be described by the state variables for
north position py, down position pp, airspeed V, flight
path angle v, angle of attack «, and tether length [. The
algebraic variables that appear in the tether model and
that need to be solved for are the tension on the winch in
north- and down-direction 73V, T{.

However, we introduce additional variables for the system
for two main reasons. If a DAE solver is used, one can
easily introduce meaningful additional algebraic variables
determined by algebraic equations. Here, we introduce a
tension variable T that represents the magnitude of the
tension in the tether. Furthermore, we want to ensure the
generated solutions maintain smooth, realistic variations
in the controlled outputs. Therefore, a second set of
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variables is introduced in order to use derivatives of
variables in the problem formulation. These variables
are determined by simple differential equations. Here, we
introduce variables for the tether length rate [, the tether
length acceleration I, the tension rate T', and the tension
acceleration 7.

The complete state of the system is given by

T = [pN’pD7V7’Y7a7l7Z’T7T}T (19)
while the algebraic variables are
=1, 1P, 17 (20)

and the control variables are
(21)

The differential equations as in (2a) relate the state
variables, control variables, and the algebraic variables to
the derivatives of the state variables:
'V cos(y) + w
—Vsin(y)
from (5)
from (6)

@ (22)

w=[a,0]7

T
T

The algebraic equation in form of (2b) is given by
pN - p%(l’, u, Té\f’ TOD)
0= pD _plg(xauvT({vaOD)
T, T = 17
where the first two rows determine the tension forces

acting on the winch in north and down direction T{¥, TP,
and the third row determines the tension magnitude 7.

(23)

3. OPTIMAL CONTROL PROBLEM FORMULATION

An optimal control problem is an optimization problem
to minimize a cost function defined on the state, control,
and algebraic variables of the system integrated over a
finite time horizon. The system dynamics have to be
satisfied and appear as constraint equations in the optimal
control problem formulation. We use a continuous time
formulation that will be discretized in time using direct
transcription methods.

3.1 Continuous time optimal control problem

The general continuous time formulation of the optimal
control problem used in this work is the following:

-
/0 c(z(t), z(t),u(t)) dt

minimize
X, Z,U,T
subject to () = f(x(t), 2(t),u(t)) dynamic equations
0= g(x(t), z(t), u(t)) algebraic equations
h(x(t), z(t),u(t)) <0 path constraints
ho(z(0)) <0 initial constraints

terminal constraints
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where X, Z,U are the state, algebraic, and control vari-
ables along the flight trajectory, and c(z,z,u) the cost
function. In the continuous time formulation, the optimiza-
tion variables are actually functions that define the system
variables z, z,u for the whole interval ¢ € [0,7]. This is
indicated by the capitalized symbols. We also define the
final time 7 as an optimization variable so that the optimal
flight time is determined by the optimizer.

3.2 Direct transcription method

We use direct methods in order to transcribe the contin-
uous time formulation into a discrete time formulation.
The resulting non-linear program can then be solved by
standard state-of-the art non-linear programming solvers.
The advantage of the direct collocation method is that it
is particularly suitable for solving very non-linear, long-
horizon problems. It has been successfully used by Horn
et al. (2013) in order to solve long-horizon power gener-
ation cycles. For an overview of trajectory optimization
methods we refer to Betts (2010).

In order to integrate the system dynamics, we use a Radau
collocation scheme which is an implicit integration method
suitable for optimal control problems with a DAE system
model (Biegler, 2007). The dynamic equations are directly
integrated into the optimization problem and are solved
by the non-linear programming solver together with the
boundary conditions as in the formulation of Horn et al.
(2013). We choose the order of the collocation scheme to be
two, and the number of intervals for the time-discretization
of the problem to be 30.

After transcribing the optimal control problem to a non-
linear program, we use the symbolic framework CasADi to
implement the optimization problem (Andersson, 2013).
CasADi provides a MATLAB interface to model and for-
mulate the non-linear optimization problem (MATLAB,
2014). Using the symbolic implementation, it can auto-
matically generate necessary derivatives like the Jacobian
of the constraints function and the Hessian of the Lagrange
function that are needed in the newton iteration. Deriva-
tives are calculated with algorithmic differentiation. In this
work we use the interface of CasADi to Ipopt by Wachter
and Biegler (2006), a software package for solving large-
scale non-linear optimization problems with the interior
point method. We keep all options of the solver at default
settings.

4. OPTIMAL CONTROL OF A SHORT WINCH
LANDING

As the aircraft is connected to the winch by the tether,
the winch can be used to quickly decelerate the aircraft,
and a landing within a short distance to the winch can
be achieved. The landing starts downwind of the winch
with the approach of the aircraft. The aircraft will fly over
the winch and touches down upwind of the winch, while
tension force in the tether brakes the aircraft. In this work,
we optimize the flight trajectory from the moment when
the aircraft is downwind of the winch and has 20 meters
altitude, until the moment when the aircraft is upwind,
close to the ground, and the tension force in the tether is
high.
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In the following subsections, we will propose a formulation
for the cost function (Section 4.1) and boundary condi-
tions (Section 4.2). This formulation is for one flight sce-
nario only but can easily be adapted to consider different
flight criteria. We will briefly explain how the solver was
initialized (Section 4.3) and present the resulting flight
trajectory in Section 4.4.

4.1 Cost function

The cost function in the optimal control problem is to
minimize the total squared accelerations on the aircraft
along the flight trajectory. Minimizing the total acceler-
ations generally leads to a smooth flight trajectory. The
total forces on the aircraft are described in (5) and (6). In
the cost function however, we leave out the forces from the
tether tension because we want to decelerate the aircraft
using the tether during landing, and therefore not penalize
tension forces too much.

We add small regularization terms to penalize control in-
puts, algebraic variables, and tension forces. The complete
cost function is given by

el ) = (3 pV2SCp(a) — mgsin(2)*+

(5V?SCL(a) — mg cos(1))+

1078(u"u) +1078(2T2) + 107372 (24)

4.2 Boundary conditions

When optimizing flight trajectories, the system has to sat-
isfy a couple of constraints so that the resulting trajectory
is feasible, i.e. the requirements on aircraft and winch can
be met. We also have to make sure that the solution is
valid for our model assumptions, e.g. the approximation
of the aerodynamic coefficients is only valid for a specific
range of angle of attack. Because all quantities that we
want to constrain are actually variables in our problem
formulation, we can easily implement path constraints as
bounds on the variables. In this work we use the following
constraints:

Angle of attack: —5.7° < a < 17.2°

Rate of angle of attack: —11.5°s7! < & < 11.5°s7!
Airspeed: 137 <V <4072

Tether length: 1m <[ < 200m

Tether length rate: —25% <[ < 251

Tether length acceleration: —50?2 < [ < 50?2
Tension magnitude: 8N < 7" < 1000N

e Tension rate: —1000% <T< 1000%

e Tension acceleration: —?)OOOSE2 <T< ?)OOOSE2

e Tether is not touching the ground: —200N < T” <0

Note that the constraint forcing the tether not to touch
the ground is realized by constraining the tension on the
winch to be in upward direction. We limit tether rate and
acceleration to comply with winch specifications, and we
limit the tension rate and acceleration to get a smooth
transition from low to high tension.

We further implement initial and terminal constraints to
define the beginning and the end of the flight trajectory.
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Fig. 2. Optimal flight trajectory for the short winch landing. The position of the aircraft and the pitch angle are
indicated by the black bars. The tether shown as the dotted lines does not collide with the ground. The trajectory
of the aircraft starts at 94m downwind position. A landing at 20m upwind position with a nearly constant flight

path angle is achieved.
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Fig. 3. Evolution of tension, airspeed, tether speed, and
tether acceleration during the flight trajectory. While
the aircraft is flying over the winch, the winch
switches from reeling in to reeling out, and the tension
in the tether increases until the desired tension and
airspeed for landing is achieved.

Here, the start of the optimized trajectory begins when the
aircraft has 20m altitude and is at least 20m downwind of
the winch, implemented as the bounds on initial state:

e initial altitude 20m: p”(0) = —20m
e Initial north position —oo < p™(0) < —20m

The flight should end at 20m up wind position and meet
the following terminal constraints:

Final altitude 1m: pP(7) = —1m

Final north position p™ (7) = 20m

Final tension: T'(T) > T9¢s

Final tension rate: T(7) = 0Y

Final sink rate: 0 < =V/(T) sin(y(7)) < 2%
Final positive pitch angle: a(T) +~v(7T) > 0°

where 79 is a parameter to specify the desired tension
at the end of the trajectory. For the solution of the
short winch landing problem we set 79 = 600N but
for initialization purposes this parameter is varied (see
Section 4.3). The trajectory should end with no change
in tension force so that we can assume a constant tension
after touchdown. In a practical implementation, one has
to design a winch controller that keeps the tether tension
constant during the roll-out and drops off the tension
shortly before full-stop.

We end the flight at 1m altitude of the center of mass
because the aircraft might have an undercarriage. Ending
the trajectory at Om would make the formulation infeasible
because infinite tension forces would be required to have
no tether sag.

4.8 Initialization

As the optimization problem is non-linear, we need to
provide a reasonable initial guess in order to to prevent
excessive computation time and convergence to local min-
ima. We observed that high tensions on the tether at the
end of the flight trajectory pose difficulties for the solver.
For that reason we solve a simpler problem first, with a low
for the final tension 79°. Then we use the solution of the
simpler problem to initialize the more difficult problem.
Using this homotopy strategy, we gradually increase the
final tension force until the high desired tension force is
reached.

The low tension problem can be solved with simple initial
guesses for the variables. We use a linear assignment of the
position variables between the first and the last position,
a linear assignment for the tether length, and constant
values for all other variables.

4.4 Short winch landing solution

The optimized flight trajectory for the short winch landing
problem is shown in Fig. 2. The optimization was per-
formed with a wind-speed of 107 constant with altitude.
The aircraft starts with an altitude of 20m at about 94m
downwind and passes the winch at a height of 7m, so the
inertial glide-slope during the approach is about —4.5°. We
can see that the tether has more slack in the beginning of
the trajectory and less slack in the last part, but the tether
is not in contact with the ground.

The plots in Fig. 3 show the airspeed, magnitude of the
tension force, tether speed, and tether acceleration during
the flight. The tether tension is minimal during the first
part of the trajectory but increases after the aircraft passed
the winch. The airspeed is relatively constant until the
aircraft is decelerated from the tether tension.

The winch switches from reeling in to reeling out just when
the aircraft passes the winch. The reeling speed is well
within the specified limits of 25%. However, the tether
acceleration limit of 50 is getting hit when the winch
switches from reeling in to reeling out. This should be
considered in a winch design.

5. CONCLUSION

We showed that optimal control can be used to optimize
complex flight trajectories of a tethered aircraft, even if
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an advanced tether model representing elasticity and sag
is used. We found a flight trajectory for the short winch
landing maneuver that satisfies all boundary conditions
and can be flown with a real aircraft. While this is an ex-
ample trajectory, with the presented problem formulation,
important design parameters for the aircraft and the winch
can be determined by varying limits on the variables. The
landing performance can be tested for different landing
distances, final tension force, or wind speeds. Because
of the high requirements on the winch during the short
winch landing maneuver, further modeling of the winch
mechanics and electronics could be considered in future
work.
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