
Chapter 11
Numerical Trajectory Optimization for
Airborne Wind Energy Systems Described by
High Fidelity Aircraft Models

Greg Horn, Sébastien Gros, Moritz Diehl

Abstract In order to study design tradeoffs in the development of an AWE system,
it is useful to develop a code to optimiz e a trajectory for arbitrary objective function
and constraints. We present a procedure for using direct collocation to optimiz e such
a trajectory where a model is specifi ed as a set of differential-algebraic equations.
The six degree of freedom single-kite, pumping-mode AWE model developed in
Chap. 10 is summariz ed, and two typical periodic optimal control problems are for-
mulated and solved: maximum power and number of cycles per retraction. Finally,
a procedure for optimally transitioning between two fi xed trajectories is presented.

11.1 Introduction and Problem Statement

In the development of AWE systems, there arise design decisions which cannot eas-
ily be quantifi ed with analytical methods. Numerical optimal control techniques are
often used to study maximum power generation [2, 4, 8, 9, 16], and there are many
other useful applications such as comparing circular and fi gure eight trajectories,
deciding how many loops to fl y before retraction in a pumping system, or studying
the effect on average power of varying things like minimum altitude or power out-
put variation. In these studies, simplifi ed models are often used where for instance,
a lift coeffi cient C L and some form of “ tether roll angle” are controlled directly. It
is possible to obtain more accurate results by optimiz ing trajectories using a full
six degree of freedom aircraft model, but the optimiz ation problem becomes larger
and more diffi cult to solve. This chapter describes one numerical approach that is
well-suited to solving optimal control problems with these larger models.

In Sect. 11.1 the Optimal Control Problem (OCP) is motivated and a general
form is stated for continuous time. In Sect. 11.2 the direct collocation technique for
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discretizing and numerically solving the OCP is described. Section 11.3 describes a
homotopy procedure for automatically generating initial guesses for the numerical
solver. Section 11.4 summarizes the model equations developed in Chap. 10 and
then solves two periodic optimal control problems for a small scale AWE system.
Section 11.5 describes a procedure for transitioning from one trajectory to another.

11.1.1 Statement of Optimal Control Problem

An AWE system can be modeled generally as a set of implicit differential-algebraic
equations (DAE):

0 = f(ẋ(t),x(t),z(t),u(t),q , t) (11.1)

with differential states x, algebraic variables z, control inputs u, parameters q , and
time t. To ensure these implicit equations are well-posed it is necessary that ∂ f

∂ (ẋ,z)
be non-singular, an assumption referred to as index 1.

A common goal for an AWE system is to maximize average power output. The
average power P over a trajectory can be written either as an integral over the tra-
jectory or as a function of the state at final time T :

P =

1
T

Z T

0
P(t)dt =

E(T )
T

(11.2)

where the energy harvested by the system E would be a differential state of the sys-
tem satisfying Ė = P. A quantity often penalized in an optimization problem is the
integral of squared control action, which can also be written either as an integral
term or as a final term. Finally, a number of constraints must be respected including
bounds on variables such as actuator limits or minimum altitude, nonlinear inequal-
ities h such as minimum airspeed or allowed range in angle of attack, and boundary
conditions c which may be static or periodic.

An OCP can be written as:

minimize
x(.),z(.),u(.),q ,T

JM(x(T ),q ,T )+
Z T

0
JL(x(t),z(t),u(t),q , t,T )dt

subject to 0 = f(ẋ(t),x(t),z(t),u(t),q , t), t 2 [0,T ]
0 � h(x(t),z(t),u(t),q , t), t 2 [0,T ]
xmin  x(t)  xmax, t 2 [0,T ]
zmin  z(t)  zmax, t 2 [0,T ]
umin  u(t)  umax, t 2 [0,T ]
q min  q  q max

Tmin  T  Tmax

c(x(0),x(T )) = 0

(11.3)
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where JM and JL are the so called Mayer and Lagrange terms of the cost function.

11.2 Discretization by Direct Collocation

There are many techniques available to numerically solve OCPs of the form of Eq.
(11.3). In this work we use the direct collocation method. The system is first approx-
imated by discretization, and then solved with a general-purpose Nonlinear Program
(NLP) solver.

Fig. 11.1 Trajectory Dis-
cretization
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In direct collocation, a trajectory is broken into N intervals Ii = [ti,0, ti+1,0], i =
0, . . .N � 1 (Fig. 11.1). It is convenient to scale time on interval Ii according to
t = ti,0 + t

T
N with t 2 [0,1]. The differential state on interval Ii is approximated as

a Lagrange interpolating polynomial xD
i of degree D, with D+1 control points xi, j

placed respectively at t j:

xD
i (t) =

D

Â
j=0

x j(t)xi, j (11.4)

where

x j(t) =
D

’
k=0,k 6= j

tk � t

tk � t j
. (11.5)

The time derivative of this polynomial on an intermediate point is given by

ẋD
i (ti,0 + t

T
N
) =

D

Â
j=0

N
T

dx j(t)

dt

xi, j =
D

Â
j=0

N
T

x

0
j(t)xi, j. (11.6)

Given an initial value xi,0, the model equations can be satisfied by enforcing Eq.
(11.1) at the collocation nodes t1, . . . ,tD. This results in the collocation equations:
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0 = f

 
D

Â
k=0

N
T

x

0
k(t j)xi,k, xi, j, zi, j, ui, q , ti, j

!
, j = 1, . . . ,D. (11.7)

When Eq. (11.7) is satisfied, the final value xi+1,0 can be recovered by evaluating
Eq. (11.4) at t = 1:

xi+1,0 = xD
i (ti+1,0) =

D

Â
j=0

x j(1)xi, j. (11.8)

The collocation points t j must be chosen as the roots of shifted Gauss-Jacobi
polynomials so that Eq. (11.8) is an accurate Gauss quadrature integration [3].The
special Gauss-Jacobi polynomials Gauss-Legendre or Gauss-Radau are often used
for their A-stability and for their high-order accuracy. Numerical values for these
roots can be found in [3], though it is convenient to use the SciPy function
scipy.special.js roots [10].

We summarize Eqns. (11.7) and (11.8) with Xi =(xi,1, . . . ,xi,D), Zi =(zi,1, . . . ,zi,D),
i = 0, . . . ,N �1, xi = xi,0, i = 0, . . . ,N, as

0 = G(Xi,Zi,ui,q ,T )
xi+1 = f(xi,Xi).

(11.9)

11.2.1 Quadrature States

In Sect. 11.1.1 it was stated that some integral terms such as Eq. (11.2) can be
evaluated by adding a differential state to the problem and evaluating it at T . If this
integral term is used only in the cost function, it can be beneficial to evaluate it
without adding an additional state to the system.

Consider the problem where some derivative q̇ is known at the collocation nodes,
and q(t = 1) should be computed by assuming that q(t = 0) = 0 and integrating
over one collocation interval. Writing out Eq. (11.6) at the collocation nodes:

2

64
q̇(t1)

...
q̇(tD)

3

75=

N
T

2

64
x

0
1(t1) · · · x

0
D(t1)

...
. . .

...
x

0
1(tD) · · · x

0
D(tD)

3

75

2

64
q(t1)

...
q(tD)

3

75 , (11.10)

and solving for q(t j) yields:

2

64
q(t1)

...
q(tD)

3

75=

T
N

2

64
x

0
1(t1) · · · x

0
D(t1)

...
. . .

...
x

0
1(tD) · · · x

0
D(tD)

3

75

�12

64
q̇(t1)

...
q̇(tD)

3

75 . (11.11)

Combining this with Eq. (11.8) yields:
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q(t = 1) =
⇥

x1(1) · · · xD(1)
⇤ T

N

2

64
x

0
1(t1) · · · x

0
D(t1)

...
. . .

...
x

0
1(tD) · · · x

0
D(tD)

3

75

�12

64
q̇(t1)

...
q̇(tD)

3

75

=

T
N

L

T

2

64
q̇(t1)

...
q̇(tD)

3

75 ,

(11.12)

where L is a constant vector since both x j(tk) and x

0
j(tk) are constant. Integrating

over all collocation intervals yields the value at T :

q(T ) =
T
N

L

T
N�1

Â
i=0

2

64
q̇(ti,1)

...
q̇(ti,D)

3

75 (11.13)

so the integral term of the cost function from Eq. (11.3) can be computed as:

Z T

0
JL(x(t),z(t),u(t),q , t,T )dt =

T
N

L

T
N�1

Â
i=0

2

64
JL(xi,1,zi,1,ui,q , ti,1,T )

...
JL(xi,D,zi,D,ui,q , ti,D,T )

3

75 .

(11.14)

11.2.2 NLP Statement

The full NLP can then be written as

minimize
x,X ,Z,u,q ,T

JM(xN ,q ,T )+
T
N

D

Â
j=1

L j

N�1

Â
i=0

JL(xi, j,zi, j,ui,q , ti, j,T )

subject to xi+1 = f(xi,Xi), i = 0, . . . ,N �1
0 = G(Xi,Zi,ui,q ,T ), i = 0, . . . ,N �1
0 � h(Xi,Zi,ui,q ,T ), i = 0, . . . ,N �1
xmin  xi  xmax, i = 0, . . . ,N
Xmin  Xi  Xmax, i = 0, . . . ,N �1
Zmin  Zi  Zmax, i = 0, . . . ,N �1
umin  ui  umax, i = 0, . . . ,N �1
q min  q  q max

Tmin  T  Tmax

c(x0,xN) = 0

(11.15)

This problem can be solved with a general-purpose NLP solver.
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11.3 Initial Guess by Homotopy Using Pseudo-Forces

Since the NLP is in general non-convex due to the nonlinear dynamics constraints,
the NLP solver will only find a local solution. Which local solution is found depends
greatly on the initial guess, and a bad initial guess can even cause the solver to di-
verge and be unable to find any feasible trajectory. A good initial guess is therefore
essential in solving the problem. An initial trajectory could be generated by numer-
ical simulation with an automatic feedback controller or a human in the loop, but
this can take continuing effort to maintain. A homotopy strategy such as [6] can be
implemented to automatically generate a reasonable initial guess.

Much of the nonlinearity in the dynamic equations arises from the forces F and
moments M of the AWE system. A new system can be made which is identical
except that the forces and moments are augmented by the addition of fictitious forces
F̃, M̃: ✓

F̂
M̂

◆
= g

✓
F
M

◆
+(1� g)

✓
F̃
M̃

◆
(11.16)

A parameter g is stepped from 0 to 1 and a simple tracking problem with cost func-
tion

J =

N�1

Â
i=0

D

Â
j=1

⇣
||ri, j � r̄i, j||22 + F̃T

i, jS
�1
F F̃i, j +M̃T

i, jS
�1
M M̃i, j

⌘
(11.17)

is solved at each g , using each solution as the initial guess for the next problem. Here
r is the aircraft’s position in Cartesian coordinates [x,y,z]. The tracked trajectory r̄
is usually a simple circle or figure-eight, and the initial guess is given simply as the
tracked trajectory itself, with attitude such that the aircraft nose is tangent to the
velocity, the aircraft belly is pointing to the origin, and the wing is perpendicular to
both.

Treating F̃i, j, M̃i, j as design variables in the NLP allows the optimizer to freely
choose forces and moments to ensure that the trajectory remains feasible at each
g . When g is small, the trajectory is unrealistic as fictitious forces dominate. As g

approaches 1, the penalization SF and SM drive the fictitious forces to zero and the
trajectory converges such that model equations are satisfied.

11.4 Two Periodic Optimal Control Problems

Using the model equations developed in Chap. 10, we have implemented the NLP as
stated by Eq. (11.15) for a 0.6kg, 0.1m2 kite described in [5]. We have used degree 4
interpolating polynomials with Radau polynomial roots as collocation points. In this
work we use the solver IPOPT [15] with an interface provided by the optimization
environment CasADi [1] which also delivers efficient model function derivatives.
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11.4.1 A Six Degree of Freedom Tethered Aircraft Model

The system has differential states x = [r, ṙ, l, l̇, l̈,R,w,fail,felev], where r is again
the position in Cartesian coordinates [x,y,z], algebraic variable l is associated with
the constraint x2

+ y2
+ z2 � l2

= 0, w is the aircraft angular velocity in the body
frame, R is the direction cosine matrix, and f are aileron and elevator angles. The
control inputs are u = [

...
l , ḟail, ḟelev]. Using derivatives of control surface angles in-

stead of the angles themselves will allow penalization and thus suppression of high
frequency control inputs as explained in Sect. 11.4.2.

The model dynamics are:
2

4
mI3 0 r
0 J 0
rT 0 0

3

5

2

4
d
dt ṙ
d
dt w

l

3

5
=

2

4
Fa(x)�mg13

Ma(x)�w ⇥ Jw

�ṙT ṙ+ l̇2
+ ll̈

3

5
. (11.18)

where Fa, Ma are the aerodynamic forces and moments on the kite, 13 is the identity
matrix, and J is the moment of inertia dyadic of the aircraft. The rotational kinematic
equation is:

Ṙ = RW (11.19)

where W is the skew matrix of w . Combining Eqns. (11.18) and (11.19) with the
trivial kinematics

d
dt

2

6666664

r
l
l̇
l̈

fail
felev

3

7777775
=

2

6666664

ṙ
l̇
l̈...
l

ḟail
ḟelev

3

7777775
(11.20)

yields the full model equations compatible with the form of Eq. (11.1), with ∂ f
∂ (ẋ,z)

non-singular. The tether tension is l l, so the power harvested is l ll̇. A full deriva-
tion of these equations and modifications to include tether mass and bridling can be
found in Chap. 10.

Because the model equations use non-minimal coordinates (i.e., there are more
generalized coordinates than degrees of freedom), the constraint associated with l

and its derivative must be enforced as initial conditions:

0 = x(0)2
+ y(0)2

+ z(0)2 � l(0)2
,

0 = x(0)ẋ(0)+ y(0)ẏ(0)+ z(0)ż(0)� l(0)l̇(0).
(11.21)

Likewise, the initial rotation matrix R(0) must be orthonormal. This can be accom-
plished by enforcing the six upper or lower triangular components of:

0 = R(0)T R(0)� I. (11.22)
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We use aerodynamic coefficients fit from wind tunnel data, and a simple log wind
profile:

w(z) = w0

log
⇣

z+zt
zt

⌘

log
⇣

z0
zt

⌘ (11.23)

with w0 = 10 m
s , z0 = 100 and zt = 0.1.

11.4.2 Maximum Power Crosswind Orbit

A trajectory which generates maximum power will want to maximize Eq. (11.2).
The average power is computed using the approach from Sect. 11.2.1 with JL =

P/T = l ll̇/T . Regularization on the control actions Su is added, and the cost func-
tion is:

J =

N�1

Â
i=0

uT
i S

�1
u ui �

1
N

D

Â
j=1

L j

N�1

Â
i=0

li, jli, j l̇i, j. (11.24)

The regularization Su is positive-definite and often diagonal, and has the effect of
penalizing high bandwidth in the control surfaces, discouraging overly aggressive
maneuvers. Regularization in the controls also keeps the optimization problem well-
posed and improves convergence[11].

Because of the non-minimal coordinates, simply enforcing x0 = xN to make the
trajectory periodic results in an overconstrained NLP which will cause problems
in the NLP solution. Our periodic conditions are [l0,y0,z0, l̇0, ẏ0, ż0, l̈0,w0,f0] =

[lN ,yN ,zN , l̇N , ẏN , żN , l̈N ,wN ,fN ], and the three upper off-diagonal components of
RT

0 RN = I. These combined with Eqns. (11.21) and (11.22) are the boundary condi-
tions.

Since the tether is modeled as a rigid constraint, tether tension must be con-
strained to be positive (l l � 0). Angle of attack a is constrained to be less than the
value at which stall is expected. Aerodynamic control surfaces f were also bound to
within reasonable values, and altitude was constrained to be positive. Simply con-
straining altitude positive permits the kite to fly at exactly ground level which would
be disastrous in real life, but in this case wind shear causes the minimum altitude
to be greater than zero. Solving for optimal trajectories which robustly respect safe
minimum altitudes is a difficult problem outside the scope of this chapter, but a
treatment can be found in [13, 14].

This NLP takes around 30 seconds to a minute to solve on a modern desktop
computer for a grid of around N = 100. The optimized trajectory (Fig. 11.2) is the
well-known one [7] where the kite reels out at around one-third the wind speed at
high CL for most of the trajectory, and then reels in as quickly as possible with low
CL (Fig. 11.3). In Fig. 11.4 the optimized trajectory is compared to the local steady
state theoretical limit, known as Loyd’s limit [12]. Power roughly tracks Loyd’s
limit but as the kite traverses the cycle, power first undershoots and then exceeds
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Fig. 11.2 Power optimal
crosswind trajectory

Fig. 11.3 Reel-out profile, local wind, and lift/drag coefficients in a power optimal crosswind
trajectory.

Loyd’s limit due to the assistance and hindrance of gravity. The average power does
not exceed Loyd’s limit.
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11.4.3 Number of Loops Per Pumping Cycle

Fig. 11.5 Pumping trajectory
with five loops per cycle

In a pumping system, the aircraft reels out for a number of loops before quickly
reeling in (Fig. 11.5). An interesting question which is well suited to numerical
optimization is how many loops to fly per cycle.

Because of the non-convexity of the problem, solving the same NLP as in Sect.
11.4.2 with different initial conditions can result in different locally power optimal
trajectories. Simply concatenating the single-loop initial conditions n times as an
initial guess usually results in a locally optimal n-loop trajectory, though it is possi-
ble to fall into another local optimum along the way.

A sweep was performed over initial number of loops n and average power was
observed (Table 11.1). The solver converged as desired for up to seven loops per

Fig. 11.4 Actual trajectory power compared to steady-state theoretical limit
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Table 11.1 Effect of number of loops per reel out on average power

# loops 1 2 3 4 5 6 7
power (W) 328.9 344.6 350.2 353.0 354.5 355.1 355.3

cycle, but for eight loops the solver converged to a trajectory where four loops were
flown per cycle, repeating twice per trajectory. This only indicates that the problem
is indeed non-convex, and concatenating the optimal single loop trajectory eight
times is not a good enough initial guess. Nonetheless, Table 11.1 shows that it is
more efficient to fly multiple loops per reel-in, but there is insignificant gain after
about four loops per cycle.

11.5 Startup Trajectory as Transition Between Two Periodic
Orbits

An AWE system using a carousel for rotational startup must transition to crosswind
flight. Assuming that an initial and final trajectory are known, the connecting trajec-
tory must be found.

11.5.1 Rotational Holding Trajectory

The final crosswind trajectory was solved for in Sect. 11.4.2, but an initial peri-
odic trajectory is needed which is easy and safe to fly. We use minimum weighed
quadratic control actions for the cost function:

J =

N�1

Â
i=0

uT
i S

�1
u ui. (11.25)

A typical holding trajectory is shown in Fig. 11.6.

11.5.2 Transition

The transition NLP has new boundary conditions and cost function, and two new
parameters. The known initial and final trajectory are each fit with a Fourier expan-
sion so that their differential states x become closed form functions y(q) of one
phase parameter:
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Fig. 11.6 Startup holding trajectory

y(q) = a0 + Â
k=1

✓
ak cos

✓
2pk
T

q

◆
+bk sin

✓
2pk
T

q

◆◆
(11.26)

where the coefficients ak, bk are chosen to minimize

Â
i, j

||y(qi, j)�xi, j||22 (11.27)

for a chosen grid of qi, j.
As in Sect. 11.4.2, enforcing x0 = y0(q0), xN = yF(qF) as boundary conditions

would result in an overdetermined NLP. Like before, our conditions are

[l0,y0,z0 . . . ] =

⇥
y0,l(q0),y0,y(q0),y0,z(q0) . . .

⇤

[lN ,yN ,zN . . . ] =

⇥
yF,l(qF),yF,y(qF),yF,z(qF) . . .

⇤ (11.28)

and the three upper off-diagonal components of

RT
0 y0,R(q0) = I

RT
NyF,R(qF) = I.

(11.29)

These combined with Eqns. (11.21) and (11.22) are the full boundary conditions.
The new parameters q0 and qF allow the transition to begin and end at arbi-

trary points on the initial and crosswind trajectories respectively. The choice of cost
function here is subjective – transition should be made quickly but safely. One cost
function which reflects this is a minimum time with a quadratic penalty on control
inputs:

J = T +

1
N

N�1

Â
i=0

uT
i S

�1
u ui (11.30)

The transition problem has a longer time scale than a periodic problem, so the
number of collocation intervals must be higher. A typical transition is shown in Fig.
11.7.
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Fig. 11.7 Transition trajec-
tory

11.6 Conclusions

This chapter has summarized the direct collocation technique for numerically solv-
ing optimal control problems. We summarized the model developed in Chap. 10 and
showed how it can be used with collocation. A power maximization problem was
solved, and the variation of optimal average power with number of loops per retrac-
tion was investigated. It was shown that for a small scale AWE system, efficiency
could be improved by flying multiple loops but there was insignificant gain in more
than about four loops per cycle. Finally, we presented a technique for solving for an
optimal transition between two fixed trajectories.
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