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Abstract: Precise estimation of position, velocity, and orientation is crucial for robust control
in airborne applications such as the fast maneuvering power kites for airborne wind energy
generators. In this paper we present a sensor fusion approach for the measurements of a global
navigation satellite system receiver and an inertial measurement unit, using methods from
direct optimal control. The resulting optimization problem is based on the minimization of
the weighted squared residuals between model predictions and measurements and solved using
a direct collocation discretization strategy. The framework allows the formulation of a batch and
filter estimator which include beside the estimation of the navigational states the identification of
sensor parameters such as biases of the inertial measurement unit. The results of the algorithms
are evaluated against a reference trajectory of a maneuvering single propeller aircraft and achieve
root mean squared errors below 1 m in position, 0.4 ms−1 in velocity, and 0.5 deg in orientation
for the batch estimator. The contribution in this paper is a first step towards the required
robustness of state estimation for airborne applications.
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1. INTRODUCTION

Over the last years, the number of airborne applica-
tions has drastically increased. The extensive research in
the field of unmanned aerial vehicles (uavs) for tasks
like transportation of goods (Iwata, 2013) and surveil-
lance (Perez et al., 2013) already impacts daily processes
in agriculture, surveillance of public events, fast delivery of
goods and military operations. Furthermore airborne wind
energy (awe) systems are on the edge of commercializa-
tion. Awe overcomes the major difficulties posed by the
exponentially growing size and mass of conventional wind
turbine generators (Laks et al., 2009). Its paradigm shift
proposes to remove the structural elements not directly
involved in power generation, which results in tethered
flying turbines (see Ahrens et al. (2013) for an overview).
For the commercialization of airborne systems a robust
and failure tolerant operation is a crucial factor to gain
acceptance by the public.

The requirements regarding safety and robustness in air-
borne applications impose challenges for the estimation
and control algorithms in the presence of high system
dynamics and sensor outages. Advanced control strategies
such as nonlinear model predictive control (nmpc) are
investigated (Gros et al., 2012) to cope with the dynamics
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and allow for a stable control. The impact of measurement
errors on the estimation of the system state can be re-
duced by information fusion of various sensors. Several ap-
proaches combining different sets of sensors such as inertial
measurement units (imus), global navigation satellite sys-
tem (gnss) receivers (Grewal et al., 2007), ultra-wideband
(uwb) sensors (Hol et al., 2009) and cameras (Grabe et al.,
2015) have been proposed, using mostly a Kalman filter
based estimation algorithm. Further research has shown
the potential of an in-run sensor calibration to improve
accuracy and robustness (Vandersteen et al., 2013). For
a precise identification of sensor parameters their observ-
ability has a crucial impact. Naturally, a batch estimator
which uses measurements over a large time window offers
increased observability and has therefore the potential to
outperform filter based estimation algorithms besides the
obvious removal of startup effects.

In this paper we propose an optimization based sensor
fusion approach for the estimation of position, velocity,
and orientation using onboard measurements. The exclu-
sive usage of gnss and imu sensors allows this approach
to be applied to a wide range of airborne applications
including awe generators. In comparison to Polóni et al.
(2015) the magnetometer is not considered in this paper
since magnetic distortions can quickly lead to undesired
behavior which may decrease the robustness of the es-
timator. An optimization framework is proposed which



comprises a system model to encode the continuous-time
dynamics of the system and additionally defines sensor
models to account for typical measurement errors such as
biases. According to the model equations, sensor measure-
ments are predicted which lead to a residual minimization
problem. By applying methods from the field of direct
optimal control to sensor fusion, we solve the optimization
problem efficiently with an interior point solver using a
direct collocation strategy which embeds the integration of
the system dynamics inside the optimization problem. The
proposed estimation framework enables the formulation
and implementation of a batch and filter estimator. In
an evaluation against an accurate reference trajectory of
a maneuvering single propeller aircraft, we compare the
performance of both approaches.

This paper is organized as follows. After introducing the
relevant models in Section 2, we formulate the optimiza-
tion problems for batch and filter estimator in Section 3
and describe the discretization of the problem using direct
collocation. In Section 4 we will discuss the experimental
results, focusing on the comparison between batch and
filter solutions.

2. MODEL

The sensor fusion problem contains measured and esti-
mated quantities expressed in several coordinate frames,
see Fig. 1. The position and velocity measurements are ob-
tained by the gnss sensor in the earth-centered, earth-fixed
(ecef) frame and often expressed in latitude, longitude,
altitude (lla). The measurements are transformed to a
locally-fixed and non-moving frame L following the east,
north, up (enu) convention with its origin located at a
reference location. Since the transformation between the
global and local frame is constant over time, the measure-
ments are converted to the local frame L in a preprocessing
step. The measurements of the imu are obtained in the
sensor coordinate frame S which is moving w.r.t the local
frame L. The notation ·L or ·S will be used to indicate
measured or estimated variables w.r.t. to the local or
sensor frame. The quantities subject to the sensor fusion
problem are summarized as the state of the system over
time x(t). The state of the system is propagated according
to the dynamics of the model ẋ(t) = f(x(t),u(t)) driven
by the control input u(t). Further output functions are
defined which predict measurements using the states and
controls and allow the formulation of squared weighted
residuals between measured and estimated quantities.

2.1 Dynamics

A piecewise-constant linear acceleration and angular veloc-
ity model is used to model the translational and rotational
motion,

ṗL(t) = vL(t), (1a)

v̇L(t) = aL(t), (1b)

q̇LS(t) = 1
2q
LS(t)� ωSLS(t). (1c)

The position pL(t) ∈ R3 and velocity vL(t) ∈ R3 are
obtained by integration of the acceleration aL(t) ∈ R3.
The angular velocity ωSLS ∈ R3 from the S-frame to
the L-frame expressed in the S-frame drives the ordinary
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Fig. 1. The various navigation frames. Showing the fixed
frames (ecef and L) and the free moving S-frame.

differential equation (ode) of the orientation, which is
parametrized by a unit quaternion qLS(t) ∈ R4,∀t :
‖qLS(t)‖2 = 1 describing the orientation between the S
and L-frame. The � operator is introduced for the product
of a quaternion q = (q0, qv) ∈ R4 and a vector r ∈ R3

q � r := [−qv · r, q0r + qv × r] . (2)

2.2 Measurements

The gnss sensor measures position pL and velocity vL with
a sampling time TGNSS. We define output functions

yLp (x,u, tk) = pL(tk), (3a)

yLv (x,u, tk) = vL(tk), (3b)

which relate the gnss measurements directly to the state
x(t) and define a concatenated gnss measurement

yLGNSS(x,u, tk) =
[
yLp (x,u, tk)T , yLv (x,u, tk)T

]T
, (4)

to predict the measurement based on the state x(tk) for
tk = TGNSSk, k = 1, . . . , N .

The inertial quantities acceleration aS ∈ R3 and angular
velocity ωSLS are acquired by the imu at discrete sampling
times TIMU, where TGNSS � TIMU. The higher sampled
imu data is integrated between two consecutive gnss mea-
surements and expressed as motion increments (Savage,
1998). The increments are converted to an average iner-
tial measurement over the interval [tk, tk+1] and can be
predicted using

ySa (x,u, tk) = R(qLS(tk)
−1
, aL(tk)− gL) + δSa (tk), (5a)

y
S

ω(x,u, tk) = ωSLS(tk) + δSω(tk), (5b)

where gL stands for the constant gravity vector in the L
frame and R(q, r) denotes the rotation of a vector r by an
unit quaternion q. The micro-machined electromechanical
system (mems) accelerometer and gyroscope are modeled
using an additive bias term δS for the compensation of
measurement offsets (Titterton and Weston, 2004). These
biases δSa ∈ R3 and δSω ∈ R3 are modeled as constants

δ̇Sa (t) = [0, 0, 0]
T
, (6a)

δ̇Sω(t) = [0, 0, 0]
T
. (6b)

For notational convenience we define again a concatenated
imu measurement

ySIMU(x,u, tk) =
[
ySa (x,u, tk)T , ySω(x,u, tk)T

]T
. (7)

The system dynamics and the sensor models as described
above lead to the definition of the state vector and control
vector



x(t) =
[
pL(t)T , vL(t)T , qLS(t)T , δSa (t)T , δSω(t)T

]T
(8)

u(t) =
[
aL(t)T , ωSLS(t)T

]T
(9)

with dimensions x(t) ∈ RNx , Nx = 16 and u(t) ∈
RNu , Nu = 6.

3. OPTIMIZATION PROBLEM

In this paper a batch and filter approach is presented
enabling optimization based sensor fusion and estimation.
We will first define common parts before stating the
individual optimization problems.

3.1 Measurement residuals

The cost function of the optimal estimation problem is
defined by the squared weighted sum of residuals between
the estimated output variables yk and the measurements
ȳk at sampling times tk. The residuals are defined by

rGNSS(x,u) = yLGNSS(x,u, tk)− ȳLGNSS,k, (10a)

rIMU(x,u) = ySIMU(x,u, tk)− ȳSIMU,k, (10b)

and evaluate the continuous output functions (4), (7) for
the state x(t) and controls u(t) at time tk. The residuals
are weighted using matrices Wk and Qk which contain the
inverse of the measurement noise variances.

3.2 Direct collocation

We discretize the continuous functions of states x(t) and
controls u(t) using the time grid t0:N defined by the
sampling time TGNSS. This leads to the discrete sets of
states X = {x0 . . .xN} and controls U = {u0 . . .uN−1}.
Whereas the the control input uk is piecewise constant for
the interval [tk, tk+1], we approximate the state trajectory
between the discretized states by a collocation polyno-
mial Ck(t) which is defined by the weighted sum of M
orthogonal Lagrange polynomials, where M > 1 defines
the degree of the resulting polynomial approximation for
each variable in x.

x(tk + T ) ≈ C(xk, ck, τ) (11)

=
∑M

m=0

∑Nx

n=0
ck,mnenPm(τ), ck,0 = xk

The collocation points τ1:M ∈ [0, 1] are chosen according to
the Radau scheme as in Kameswaran and Biegler (2008)
for which τM = 1. The numerical integration enters the
optimization problem over the collocation states C =
{c0 . . . cN−1}, where c0:N−1 ∈ RNx×M .

The discretization of state trajectory x0:N and the numeri-
cal integration using collocation variables c0:N−1 increases
the number of optimization variables or so called decision
variables. To retrieve a physically meaningful trajectory of
the state, the collocation variables need to be constrained.
To enforce that the polynomial Ck corresponds to the inte-
gration of the system dynamics, we constrain the deriva-
tive of the scaled polynomials at the collocation points
τ1:M to the ode of the system f(x(t),u(t)) evaluated at
the same point using equality constraints. We obtain M
equality constraints for each time interval [tk, tk+1] defined
by

∂

∂τ
Ck(xk, ck, τ)|τmT−1

GNSS =f(x(tk + τmTGNSS),uk),

m = 1 . . .M, k = 0 . . . N.
(12)

An additional continuity constraints defined by

xk+1 = C(xk, ck, τM ), k = 0, . . . , N − 1, (13)

is required to obtain a closed state trajectory after the
discretization.

3.3 Batch problem

Considering all available measurements over a large time
horizon [t0, tN ] for finding a optimal solution to the sensor
fusion problem is considered a batch approach. After defin-
ing the set of decision variables and constraints induced
by the direct collocation approach, we can state the batch
estimation problem over a estimation horizon N as one
optimization problem defined by

minimize
X , C,U

1

2

∑N

k=0
‖rGNSS(xk,uk)‖2Wk

(14a)

+
1

2

∑N−1

k=0
‖rIMU(xk,uk)‖2Qk

subject to

Zqx0(Zqx0)T = 1, (14b)

xk+1 = C(xk, ck, τ), k = 0, . . . , N − 1, (14c)

gj(xk, ck, τ1:M ) = 0, j = 1, . . . ,M, k = 0, . . . , N − 1
(14d)

Since the quaternion is an over-parametrization of a rota-
tion, we have to guarantee that the estimated quaternions
satisfy the unit norm condition. The ode of a quater-
nion (1c) preserves the unit norm, which allows to add
a single unit norm constraint for the estimation hori-
zon (14b). The constraint is expressed using the selection
matrix Zq ∈ R4×Nx for the quaternion entries of the state
vector xk. The collocation constraint (14d) represents a
shorthand formulation for the equality defined in (12).

3.4 Initialization

Crucial for every kind of nonlinear optimization is the
initialization of the decision variables. To initialize the
state X and control vectors U , we first compute the initial
orientation qLS0 using the velocity vector of the first gnss
measurement ȳLv,0 assuming the system obeys nonholo-
nomic constraints and has sufficient speed. The gyroscope
measurements of the imu are used to dead-reckon the
orientation trajectory qLS1:N , which can be further used to
initialize aL0:N−1 using the accelerometer measurements.

The biases δSa,0:N and δSω,0:N are assumed to be small and
therefore initialized to 0. Finally the available sensor mea-
surements ȳLp,0:N , ȳLv,0:N and ȳSω,0:N are used to assign the
not yet initialized variables in state and control vectors.
After the full initialization of the state trajectory x0:N , we
interpolate linearly to initialize the collocation states ck for
k = 0, . . . , N in between two sequential states [xk,xk+1].

3.5 Filter problem

Instead of optimizing using the whole set of measurements,
we add recursively measurements to the problem while



keeping the window length at N = 1. The past information
is taken into account using an additional arrival cost term

1

2
‖xk − xk,0‖2Σ−1

k,0

(15)

where xk is the current state and xk,0 the prediction of
state xk before optimizing. In other words, (15) penalizes
during the optimization deviations from the initial predic-
tion xk,0 which is constant for each single optimization
problem. The arrival cost is weighted by the inverse of
the covariance Σ−1

k,0, which is the predicted covariance of
the state xk calculated in the previous filter iteration.
This way, the predicted mean and covariance of xk+1 are
used in the arrival cost of the next filter iteration which
compares to the prediction step in traditional Kalman
filtering.

minimize
xk,ck,uk,

xk+1

1

2
‖rGNSS(xk,uk)‖2Wk

(16a)

+
1

2
‖rIMU(xk,uk)‖2Qk

+

subject to

Zqxk(Zqxk)T = 1, (16b)

xk+1 = C(xk, ck, τ), (16c)

gj(xk, ck, τ1:M ) = 0, j = 1, . . . ,M (16d)

For the filter it is required to initialize the covariance of the
state Σ̂0,0. Under the assumption that initialization errors
are independent, we can initialize using a diagonal matrix
of reasonable standard deviations for the initial state x0.

3.6 Implementation

The optimization problem was formulated using the
Python interface for the symbolic framework for numeric
optimization CasADi (Andersson, 2013) and solved using
the interior point solver IPOPT (Wächter and Biegler,
2006). The symbolic framework allows for algorithmic dif-
ferentiation of the defined equations and the exact Hessian
of the Lagrangian is used in the derivative based interior
point solver.

4. EXPERIMENTAL RESULTS

4.1 Measurement setup

The presented algorithm is evaluated using measurement
data from a single propeller aircraft. The data was col-
lected using a Xsens MTi-G-700 1 tracker which combines
an imu and gnss sensor in a single package. The device
was rigidly attached to a small single propeller aircraft
shown in Fig. 2. The sensor frame S was aligned with the
body frame which implies that no further transformations
were required to retrieve physically meaningful output.
The gnss data ȳGNSS,k was acquired at the maximum rate
of 4 Hz and the imu data ȳIMU,k was streaming motion
increments, as described in Section 2, with an output
frequency of 4 Hz. In addition, a tactical grade imu and a
differential multi-gnss sensor were mounted. The tactical
grade imu uses a fiber optic gyroscope with a small drift
and solid state accelerometer of high accuracy. For the
computation of an accurate trajectory, the gnss data of

1 https://www.xsens.com/products/mti-g-700/

Fig. 2. The Socata single propeller aircraft used for data
collection. A Xsens MTi-G-700 tracker and reference
sensors (tactical grade imu, differential gnss) are
rigidly mounted in the space behind the cockpit.
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Fig. 3. Trajectory of aircraft used for analysis.

the reference sensor was post-processed, time-aligned and
fused with the data of the tactical grade imu in a batch
optimization problem (Vydhyanathan et al., 2015). The
entire dataset contains several minutes of data, including
take-off, different flight maneuvers, and landing. For our
analysis we extracted a 360 s long fragment which includes
three sharp turns, see Fig. 3.

4.2 Discussion

Fig. 4, and 5 show the estimated trajectories of the batch
and the filter estimator for velocity vL, and orientation
qLS . To allow a straight forward interpretation of the
orientation, the estimated quaternions qLS0:N are expressed
in the Euler angles roll φ, pitch θ and yaw ψ. Due to high
velocities, a plot of the positions pL does not add valuable
information for the comparison. Characteristic for fixed-
wing flight dynamics we directly observe a correlation
between the roll and yaw angles. The root mean square
errors (rmses) for batch and filter estimator in Table 1
reveal smaller errors for the batch estimator. This behavior
is expected since initialization errors do not affect directly
the final result. For the first 50 s, the aircraft travels on
a horizontal flightpath with constant speed. Under these
conditions the sensor biases as well as the yaw angle are
not observable which results for the filter in non-decreasing
standard deviations (see Fig. 8). As the turn is initiated,
the variables become observable and the corresponding
standard deviation converges.

The estimated orientation results for the yaw angle reveal
a four times higher error than for the roll angle and
further we notice by inspection of Fig. 5 a small drift
in yaw between 100 s and 200 s. During this drift, we
observe an expected slowly increasing uncertainty of the
yaw estimate in Fig. 8, whereas the other uncertainties
converge asymptotically to their final value. The reason
for this drift can be well observed in Fig. 6 and Fig. 7 of
the accelerometer and gyroscope bias. The biases δa,y and
δω,z, estimated by the filter, show big offsets compared to



Table 1. Rmses for batch and filter estimator

Batch Filter

pLx [m] 0.7178 1.6687

pLy [m] 0.9931 1.6563

pLz [m] 0.9498 0.8261

vLx [ms−1] 0.2254 0.3300

vLy [ms−1] 0.3281 0.3533

vLz [ms−1] 0.2697 0.3012

φ [deg] 0.1279 0.5471

θ [deg] 0.4393 0.4440

ψ [deg] 0.4845 2.3014
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Fig. 4. Estimated batch (—) and filter (—) results for
velocity compared reference (—) trajectory.

the batch results. Even though the standard deviations of
the biases in Fig. 8 converged after the first turn to their
final values further sensor errors and inconsistencies lead
to these offsets in the bias estimates and finally to the drift
in yaw.

Comparing the plotted standard deviations over time in
Fig. 8 for the batch and filter estimator shows lower
average standard deviations for the batch estimator than
the filter. However in all cases the filter converges to
an in magnitude similar standard deviation as for the
batch solution, which is a desired behavior for the filter.
A comparison between the standard deviations of both
estimators and the calculated rmses in Table 1 unveils
uncertainties several times lower than the error. The low
estimated standard deviations are explained by the simple
models chosen for dynamics and sensors in this paper.
Unmodeled characteristics e.g. the time varying bias of
the gyroscope δSω , which is assumed to be constant in this
paper or time delays in obtaining the gnss sensor mea-
surements influence the estimated uncertainty significantly
and lead for both estimators to an overconfident estimate.

5. CONCLUSION & FUTURE WORK

We proposed an estimation framework for sensor fusion
of gnss amd imu based on methods from direct optimal
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Fig. 5. Estimation results of orientation for batch (—) and
filter (—) in Euler angles roll φ, pitch θ and yaw ψ
compared to the reference (—) trajectory.
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Fig. 6. Estimation results of accelerometer bias for
batch (—) and filter (—) estimator.

control with a versatile structure that allows a batch
and filter implementation. The developed estimators were
evaluated against an accurate reference for a strongly
maneuvering aircraft and yield low rmses. The filter
approach suffers from limited observability resulting in
erratic identification of sensor parameters and causing
drifting state estimates.

We plan to improve the accuracy and robustness of the ap-
proach by extending the set of estimated sensor parameters
to include scale factors of the imu and considering more
detailed dynamic models. This will allow for the inference
of aerodynamic parameters and a complete in-run sensor
calibration. Further work will also focus on improving the
computational efficiency of the approach to yield a real-
time compliant implementation for embedded systems. To
allow for such without compromising on the robustness
of the batch estimator, we are considering to extend the
proposed framework to include moving horizon estimation
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Fig. 7. Estimation results of gyroscope bias for batch (—)
and filter (—) estimator.
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(mhe) as promising further step towards robust sensor
fusion.
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