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Basic Linear Algebra Subroutines for Embedded Optimization (BLASFEO) is a dense linear algebra library

providing high-performance implementations of BLAS- and LAPACK-like routines for use in embedded opti-

mization and small-scale high-performance computing, in general. A key difference with respect to existing

high-performance implementations of BLAS is that the computational performance is optimized for small-

to medium-scale matrices, i.e., for sizes up to a few hundred. BLASFEO comes with three different imple-

mentations: a high-performance implementation aimed at providing the highest performance for matrices

fitting in cache, a reference implementation providing portability and embeddability and optimized for very

small matrices, and a wrapper to standard BLAS and LAPACK providing high performance on large matrices.

The three implementations of BLASFEO together provide high-performance dense linear algebra routines

for matrices ranging from very small to large. Compared to both open-source and proprietary highly tuned

BLAS libraries, for matrices of size up to about 100, the high-performance implementation of BLASFEO is

about 20–30% faster than the corresponding level 3 BLAS routines and two to three times faster than the

corresponding LAPACK routines.
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1 INTRODUCTION

This article introduces Basic Linear Algebra Subroutines for Embedded Optimization (BLAS-
FEO), a dense linear algebra (DLA) library aiming at providing high-performance implementations
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of BLAS- and LAPACK-like routines for use in embedded optimization and small-scale high-
performance computing, in general. BLASFEO is an open-source software [1], released under the
GPL+CE (GPL with classpath exception) license.

The first part of the name, Basic Linear Algebra Subroutines, echoes BLAS, which stands for Ba-
sic Linear Algebra Subprograms [15]. The new word, “Subroutines,” indicates a key implementa-
tion feature of BLASFEO: the use of a modular design, based on assembly subroutines (as explained
in detail in Section 4.4). The second part of the name, for Embedded Optimization, is chosen to in-
dicate the intended application area of the software. The assumptions behind the term embedded
optimization are explained in detail in Section 2, and they affect many specific implementation
choices, such as the focus on small-scale performance and the use of a non-conventional matrix
format (referred to as panel-major in Section 4.3). This matrix format resembles the packed format
of the internal memory buffers used in many BLAS implementations [7, 21].

The acronym, BLASFEO, reminds one of the word blasphemous, and in that it jokes about the
choice of not using the canonical BLAS and LAPACK application programming interface (API)
based on the column-major matrix format. This choice is necessary to avoid the on-line conversion
between the standard column-major matrix format and the panel-major matrix format, whose
quadratic cost can not be well amortized in the case of small matrices. For this reason, BLASFEO
is not another BLAS implementation.

The primary aim of BLASFEO is to provide a DLA library to close the performance gap left
by optimized BLAS and LAPACK implementations in the case of relatively small matrices, of size
up to a few hundred. The primary design goal of optimized BLAS and LAPACK implementations
is to maximize throughput for large matrices. This often comes at the cost of neglecting or even
sacrificing small-scale performance. To the best of our knowledge, there is no existing DLA library
that aims at enhancing as much as possible the performance of DLA routines for relatively small
matrices. Alternative approaches for small-scale DLA are in the direction of code generation [10,
12], C++ templates [2], or specialized compilers [19].

BLASFEO comes with three implementations, introduced in Section 3: a high-performance im-
plementation (BLASFEO HP, aiming at providing the highest performance for matrices fitting
in cache and employing hand-crafted assembly-coded DLA kernels), a reference implementation
(BLASFEO RF, with portability and embeddability as main design goals, entirely coded in ANSI C
and optimized for very small matrices), and a wrapper to standard BLAS and LAPACK (BLAS-
FEO WR, which ensures that BLASFEO performs no worse than optimized BLAS and LAPACK
libraries and allows its performance to scale to large matrices). The BLASFEO HP and RF versions
currently provide only single-threaded routines; the BLASFEO WR version can be linked to multi-
threaded BLAS and LAPACK implementations. To provide a unified framework that encompasses
both the panel-major matrix format used in BLASFEO HP as well as the column-major format used
in standard BLAS and LAPACK libraries, BLASFEO abstracts matrix and vector types by means
of C structures (Section A.1 in the Electronic Appendices). Hence, the use of a different API than
BLAS and LAPACK (Section A.2 in the Electronic Appendices).

The main contribution of BLASFEO to the state-of-the-art in DLA is the level of performance
reached by the BLASFEO HP implementation with respect to the corresponding BLAS (Figure 1(a))
and especially LAPACK routines (Figure 1(b)), in the case of matrix sizes up to a few hundred. This
performance level is due to the fact that the panel-major matrix format is exposed to the user, as
well as to the careful choice and balance between many implementation techniques commonly
employed in high-performance DLA routines, tailored to enhance small-scale performance.

At its core, BLASFEO HP employs hand-crafted assembly coded DLA kernels with an API similar
to the micro-kernel of BLIS [21]. These kernels consist of the single innermost loop and employ
register blocking (Section 4.1) and vector instructions (Section 4.2). However, BLIS implements
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Fig. 1. Performance of BLASFEO HP, OpenBLAS 0.2.19, MKL 2017.2.174, ATLAS 3.10.3, and BLIS 0.1.6 on one
core of an Intel Core i7 4800MQ (Haswell architecture).

a single micro-kernel (the nontransposed-transposed version of the matrix-matrix multiplication
gemm_nt) and employs portable C-coded packing routines to handle the edge cases of other level
3 BLAS by means of properly padding and copying/transposing matrices while packing them into
the internal optimized format. This approach, which reduces the amount of assembly code and
the object code size, has proven to be effective for large matrices, but it gives particularly poor
performance for small ones (as it can be seen in Figure 1(a), the performance ramps up much more
slowly for matrices up to about 50), especially in the case of LAPACK routines (Figure 1(b)).

BLASFEO HP does not pack any data on-line (meaning every time a DLA routine is called; see
Section 2 for a generic definition of on-line and off-line in the context of embedded optimization),
since it makes use of the panel-major matrix format (Section 4.3), which gives nearly optimal per-
formance for matrices fitting in cache. Note that MKL supports off-line packing for gemm (with the
routines gemm_alloc, gemm_pack, gemm_compute and gemm_free). However, this functionality is
provided only for gemm and the data layout of the packed matrices is opaque, so it can not be em-
ployed as the native matrix format for optimization algorithms. Furthermore, BLASFEO HP does
not employ cache blocking, but the use of the panel-major matrix format together with a proper
ordering of the two loops around the micro-kernel (Section 4.5) gives nearly optimal performance
for matrices of size up to a few hundred (e.g., in Figure 1(a), the performance is steadily close to
the peak for matrix sizes up to 256). Edge cases are handled explicitly by specialized DLA kernels.
Assembly code bloat is avoided by exploiting the modularity that can be achieved using assem-
bly subroutines (Section 4.4). A tailored calling convention allows to split DLA kernels into small
subroutines that perform elementary operations like loading/storing a sub-matrix to/from regis-
ters, or factorizing a register-resident sub-matrix. DLA kernels are simply coded by combining
subroutines like building blocks, and taking care of the specific function calling convention of the
operating system (OS). In this framework, the BLIS micro-kernel itself is reduced to an assembly
subroutine, which is called by both level 3 BLAS and LAPACK DLA kernels (Section 4.6). There-
fore, LAPACK-like routines are not built on top of BLAS-like ones, but as if they were BLAS-like
routines themselves. This is a key difference with respect to the standard LAPACK implementa-
tion, greatly enhancing small-scale performance, as clearly visible in Figure 1(b). Finally, the use of
custom DLA routines can further enhance performance in the implementation of some algorithms
(Section 4.7).

The implementation approach employed in BLASFEO HP builds on the experience gained in the
development of the DLA routines in HPMPC [5], an interior point method for model predictive
control described in the Ph.D. thesis [6]. The development of BLASFEO was motivated by the
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wish to make the DLA performance gains observed in HPMPC [22] accessible to other software,
in particular in the field of embedded optimization.

2 FRAMEWORK: EMBEDDED OPTIMIZATION

Embedded optimization can be defined as the use of numerical optimization algorithms on embed-
ded platforms for optimal decision making. In embedded optimization, the distinction between
on-line and off-line computations is important, the former being performed in-the-loop at ev-
ery sampling time as soon as a new system measurement is available, the latter comprising pre-
processing steps that can be precomputed ahead of time. In embedded optimization, the optimiza-
tion problems must be solved on-line, typically at high sampling frequencies in real-time, often
on resource-constrained hardware. A typical example is model predictive control (MPC) [16], a
model-based advanced control technique that requires the solution of structured, constrained op-
timization problems at sampling times as low as in the microsecond range [13, 18]. This poses
interesting challenges on the development of fast solvers for embedded optimization [3].

Linear algebra routines are a key aspect in the implementation of these solvers, since they per-
form the most computationally expensive operations. This article focuses on level 3 BLAS- and
LAPACK-like routines, which are the backbone of second-order optimization methods, i.e., algo-
rithms that make use up to second-order derivative information to solve the optimization problem.
Level 2 BLAS-like routines, which are the backbone of first order optimization methods, are be-
yond the scope of this article. A set of linear algebra routines tailored to embedded optimization
problems can take advantage of the special features of this class of problems to reduce the com-
putational time. The following features are considered:

(1) Embedded optimization problems must be solved in real-time, often on resource-
constrained hardware. The computational speed is a key factor.

(2) The size of the matrices is often relatively small, i.e., in the order of tens up to a few hun-
dred. Embedded optimization problems can have several thousands of variables, but they
are often structured and, therefore, the optimization algorithms can exploit this structure
and perform computations on smaller matrices.

(3) Structure-exploiting optimization algorithms can exploit the high-level sparsity pattern
of the problem and, therefore, the data matrices are generally dense.

(4) Numerical optimization algorithms are typically iterative schemes. Furthermore, a se-
quence of similar problems is solved at each sampling time. This implies that each data
matrix is typically reused several times.

These features can be exploited in the design of linear algebra routines as follows:

(1) Linear algebra routines must make an efficient use of available hardware resources. Com-
pilers often do a poor job in converting generic triple-loop based linear algebra source
code into efficient object code fully exploiting hardware capabilities, especially if the hard-
ware lacks features like out-of-order execution and hardware prefetch. Therefore, high-
performance implementation techniques should be employed in the implementation of
fast linear algebra routines.

(2) Matrices with sizes in the order of tens or a few hundred are assumed to fit in some
cache level. As a consequence, implementation techniques like cache blocking are not
considered, simplifying the design of the linear algebra routines. Furthermore, for small
matrices the cost of packing is not negligible with respect to the cost of performing level 3
BLAS operations. Therefore, linear algebra routines should be designed to reduce as much
as possible the need of copying data.
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(3) Sparse linear algebra requires the use of special matrix formats and the efficient handling
of matrix element indices. Sparse linear algebra can make limited use of processor features
like vectorization, and, therefore, it has lower computational throughput, limiting its use
only to the case of very sparse problems. Therefore, only dense linear algebra routines
are considered, with the exception of very special and common sparse matrices with fixed
structure (i.e., diagonal or triangular).

(4) Since data matrices are typically reused several times, it makes sense to store them in
a matrix format that is particularly favorable for the linear algebra routines. The cost
to convert matrices into this format can be amortized over several matrix reuses, or the
conversion may even be performed off-line for data that does not depend on the system
measurements.

3 IMPLEMENTATIONS

This section briefly describes the three BLASFEO implementations. Section 4 contains more de-
tails about the techniques used to obtain high-performance routines in the BLASFEO HP and RF
implementations.

All BLASFEO implementations share a common API. This API is based on C structures for
matrices and vectors, and, therefore, it differs from the API of BLAS and LAPACK. This more
object-oriented approach is necessary to conveniently hide implementation details, as BLASFEO
deals with different matrix formats (column-major for BLASFEO RF and BLASFEO WR, and panel-
major for BLASFEO HP).

In all BLASFEO routines, each matrix is described by means of the three arguments

struct blasfeo_dmat *sA, int ai, int aj

where sA is a pointer to a (double-precision) matrix structure, and ai and aj are the row and
column index of the top left corner of the working sub-matrix, respectively. Each BLASFEO im-
plementation comes with its own implementation of the matrix structure, whose internal details
are hidden to the user. More details about the BLASFEO API can be found in Section A of the
Electronic Appendices.

3.1 BLASFEO WR

The wrapper version of BLASFEO (BLASFEO WR) provides a thin wrapper to the Fortran version
of BLAS and LAPACK routines. It allows one to automatically port BLASFEO to each new architec-
ture for which a BLAS version exists. Furthermore, by linking to optimized BLAS implementations
it gives good performance for large matrices, and the possibility to exploit multi-core CPUs.

In BLASFEO WR, the blasfeo_dmat structure has a member pA (of type pointer to double)
pointing to the first element of a matrix in column-major matrix format. The member m (of type
int) provides the matrix leading dimension in the BLAS notation. The wrapper simply takes care
of extracting this information and updating the pointer to the first element of the working sub-
matrix, as

int lda = sA->m;
double *A = sA->pA + ai + aj*lda;

where sA is a pointer to a blasfeo_dmat structure, and ai and aj are the coordinates of the first
element of the sub-matrix that is the actual operand.

Optionally, the wrapper can perform additional consistency checks before calling the BLAS or
LAPACK routine, for example to make sure that the operation is not exceeding the boundaries of
the matrix.
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3.2 BLASFEO RF

The reference implementation of BLASFEO (BLASFEO RF) has the aim of providing a rather con-
cise and machine-independent implementation, performing well for very small matrices.

Like BLASFEO WR, it makes use of the column-major matrix format. Therefore, the first element
of each working sub-matrix is again computed as

int lda = sA->m;
double *A = sA->pA + ai + aj*lda;

BLASFEO RF is written in ANSI C code, without any use of machine-specific instructions or intrin-
sics. The code is slightly optimized, with high performance for very small matrices and the widest
machine compatibility in mind. In the code optimization, it is assumed that the target machine has
at least eight scalar floating-point (FP) registers.

Each level 3 BLAS routine is written as three nested loops. The innermost loop is over k , and,
therefore, it performs dot products. Cache blocking is not employed. Register blocking is employed
(Section 4.1), with 2 × 2 block size. Therefore, it is assumed that four FP registers are used to hold
the 2 × 2 sub-matrix of the result matrix, while the remaining FP registers are used to hold elements
from the factor matrices and intermediate results. The use of 2 × 2 register block size provides a
reuse factor of 2 of elements from the factor matrices. Furthermore, it provides four independent
accumulators, helping hiding the latency of FP operations.

3.3 BLASFEO HP

The high-performance implementation of BLASFEO (BLASFEO HP) has the aim of providing linear
algebra routines with the highest computational performance, assuming that matrices fit in some
cache level.

BLASFEO HP does not make use of cache blocking. Therefore, level 3 linear algebra routines
are implemented using three nested loops. The inner most loop is coded in C or assembly, hand-
optimized for the target architecture and operating system (Section 4.8). Register blocking is em-
ployed (Section 4.1), with blocking size depending on the target architecture. Vectorization is em-
ployed thanks to the explicit use of SIMD instructions (Section 4.2), again depending on the target
architecture. Matrices are stored in panel-major format (Section 4.3). This format is analogous
to the packed matrix format internally used in GotoBLAS/OpenBLAS/BLIS. The order of the two
outer loops has to be chosen properly (Section 4.5), as it affects the cache bandwidth requirements.
Linear algebra kernels are coded in assembly in a modular fashion, making heavy use of subrou-
tines with custom calling convention (Section 4.4): corner cases are implemented as a trade-off
between code size and performance. There exist specialized kernels for each linear algebra rou-
tine, and in particular LAPACK routines are implemented as if they were level 3 BLAS routines,
and not on top of them (Section 4.6). As a further step in the same direction, the use of custom
DLA routines can merge several routines into a single one, reducing overhead in the case of small
matrices (Section 4.7).

4 DETAILS OF HIGH-PERFORMANCE IMPLEMENTATION TECHNIQUES

This section presents the details of the high-performance techniques used in the implementation
mainly of BLASFEO HP and, to a smaller extent, of BLASFEO RF. Most techniques are standard
practice in high-performance BLAS implementations, but they are revised in the embedded opti-
mization framework. In particular, the choice to avoid on-line packing and expose the panel-major
matrix format creates major implementation challenges. BLASFEO HP is the result of careful im-
plementation trade-offs, necessarily leading to a design that is slightly sub-optimal in some aspects,
but with excellent performance in practice.
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Sections 4.1 to 4.4 describe the implementation of the gemm kernel, which is the backbone of all
level 3 BLAS and LAPACK routines. Indeed, the computationally most expensive parts of all level
3 BLAS routines can be cast in terms of this kernel [9, 14]. In turn, in standard implementations
LAPACK routines are built on top of level 3 BLAS routines, and, therefore, the gemm kernel accounts
for most of the computations in LAPACK routines, too. Sections 4.6 and 4.7 apply the proposed
implementation scheme to other level 3 BLAS and LAPACK routines with focus on small-scale
performance.

4.1 Register Blocking

Register blocking is the simultaneous computation of all elements of a sub-matrix (or block) of the
result matrix fitting into registers. It has the twofold aim of hiding latency of instructions and of
reducing the number of memory operations.

4.1.1 Hiding Instruction Latency. In modern computer architectures, most FP instructions are
pipelined. The execution of a pipelined instruction is split into stages. While an instruction is at a
certain stage of the pipeline, other instructions can be processed at the same time, at other stages of
the pipeline. Therefore, the instruction latency (defined as the number of clock cycles for the result
of the instruction to be available as an input to other instructions) is larger than the instruction
throughput (defined as the reciprocal of the maximum number of such instructions that can be
processed per clock cycle). If a code fragment contains a long sequence of equal and independent
instructions, after an initial delay, equal to the instruction latency, all stages of the pipeline are busy
working on different instructions, and an instruction is processed every number of clock cycles
equal to the instruction throughput. If there is dependency between the output of an instruction
and the input of a following instruction, then the second instruction cannot be processed until the
result of the first instruction is available: this stalls the pipeline.

Register blocking can be used to hide instruction latency. In particular, to code a high-
performance gemm kernel, the pipelines for FP multiplication and addition (or for fused-
multiplication-accumulation, depending on the architecture) must be kept as busy as possible.
The computation of several matrix elements at the same time can provide enough independent
instructions to keep these pipelines fully utilized.

4.1.2 Reducing the Number of Memory Operations. Register blocking allows one to reuse each
matrix element several times once it is loaded into registers (i.e., increase arithmetic intensity).
Therefore, fewer memory operations are necessary to perform the same number of flops. This is
useful to reduce the memory bandwidth requirements below the maximum memory bandwidth
available in the system, and, therefore, to avoid that the DLA kernels become memory-bounded.

The blocking idea can generally be applied to other memory levels (as for example cache block-
ing) to take into account the fact that the available memory bandwidth typically decreases at lower
levels in the memory hierarchy. However, since BLASFEO HP and RF target relatively small ma-
trices that are assumed to fit in the last level of cache (LLC), cache blocking is not employed in
their implementation. Therefore, their performance deteriorates for larger matrices.

4.1.3 Remark on Arithmetic Intensity. Register blocking size affects arithmetic intensity. As a
minimum, this has to be large enough to allow the data streamed from L1 cache to keep the
computational kernel fed (this typically means to not exceed the load instructions throughput).
BLASFEO HP targets matrices fitting in LLC and it does not employ cache blocking, therefore,
bandwidth with respect to main memory is not of interest. Section 4.5 proposes an order for the
two outer loops (such that the L1 cache contains a sub-matrix of the left factor A, while the right
factor B is streamed from L2 or L3 cache) that minimizes the amount of data streamed from LLC,
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attempting to keep the bandwidth requirements below the LLC maximum bandwidth. The numer-
ical experiments in Section 5 show that the performance of BLASFEO HP is typically very close
to the maximum throughput already for rather small matrices, hinting that on the target archi-
tectures the BLASFEO HP routines are compute-bounded and not memory-bounded for matrices
fitting in LLC. For very small matrices (fitting in L1 cache), the performance limiting factor is the
computation overhead (due to the logic to select the correct DLA kernel sizes and the function
calling overhead, as well as to the O (n2) and O (n) terms in the DLA kernel, like, e.g., scaling of the
result matrix in gemm, or using division instructions in factorizations), rather than the insufficient
memory bandwidth.

4.2 Vectorization

Vectorization is the redesign of an algorithm to take advantage of the vector processing capability
of the hardware. Many modern architectures feature Single-Instruction Multiple-Data (SIMD) in-
structions that perform the same operation in parallel on all elements of small vectors of data. In
theory, instructions operating on vectors of size nv can boost the performance up to a factor nv .
SIMD are an easy and efficient way to increase single-thread performance, especially in scientific
computing.

As an example, the x86 and x86_64 architectures have several versions of SSE instructions (op-
erating on 128-bit wide vectors, each holding two double or four single precision FP numbers)
and AVX instructions (operating on 256-bit wide vectors, each holding four double or eight single
precision FP numbers), while the ARM architecture has NEON instructions (operating on 128-bit
wide vectors).

Compilers can attempt to automatically vectorize scalar code, emitting SIMD instructions. How-
ever, producing efficient SIMD code is not a simple task, since it may require deep changes to the
code structure that are often better suited to the programmer, who has a better high-level overview
of the algorithm. As an example, the gemm kernel in optimized BLAS implementations has the inner
loop over k (corresponding to a dot operation), and the two loops around it are partially unrolled
to block for cache and allow vectorization. However, compilers often seem unable to perform such
code transformations, and perform better with an inner loop over i (corresponding to an axpy
operation), which is partially unrolled by the compiler to provide vectorization. See Section B
of the Electronic Appendices for a performance comparison between some popular compilers in
optimizing Netlib-style DLA.

The use of SIMD can be ensured by explicitly coding them in assembly or inline assembly (low
level solution, giving full control also over the instruction scheduling and register allocation) or by
means of intrinsics (higher lever solution, where intrinsics are special functions called from C code
and directly mapped to SIMD instructions, leaving instruction scheduling and register allocation
to the compiler). BLASFEO RF does not make explicit use of vectorization, while BLASFEO HP
uses assembly-coded DLA kernels to have access to the entire instruction set and have full control
over register allocation and instruction scheduling.

4.3 Panel-major Matrix Format

The use of contiguous memory is a key factor in the implementation of high-performance DLA
routines [11]. For example, it helps to fully exploit the available memory bandwidth, it improves
cache reuse, and it reduces the Translation Lookaside Buffer (TLB) misses.

4.3.1 Use of Contiguous Memory. When an element is fetched from memory, data is moved
into cache in chunks (called cache lines) of typically 32 or 64 bytes. This means that the access to
elements belonging to the same cache line is faster, since only one cache line needs to be moved
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into cache. In contrast to that, random access of elements typically requires a different cache line
for each element. Therefore, the access of contiguous elements maximizes the effective memory
bandwidth.

To speed up cache access and reduce its complexity and cost, a certain cache line (depending on
its memory address) can be mapped to a limited number n of locations in cache: this kind of cache
is called n-way associative. Due to associativity, it may happen that cache lines are evicted from
cache even if this is not fully utilized. As an example, if a matrix is stored in column-major order,
for certain column lengths it can happen that contiguous elements on the same row are mapped
into the same cache location, evicting each other. This effectively acts as a reduction in cache size.
Use of contiguous memory can mitigate this, since consecutive cache lines are mapped in different
cache locations.

Finally, memory is seen from a program as virtual memory, that is mapped into physical memory
locations by means of a translation table in the Memory Management Unit, the page table. The TLB
is a cache for the page table, containing the physical address of the most recently used memory
pages (each usually of size 4KB). If memory is accessed in a non-contiguous way, then it may
happen that TLB is not large enough to translate the entire content of cache, increasing the number
of expensive TLB misses.

4.3.2 GotoBLAS Approach. In Reference [8], a gemm design based on reducing TLB misses is pro-
posed. In this approach, a multilayered blocking approach is employed. The working sub-matrices

from theA and B matrices are packed into memory buffers Ã and B̃ before each call to the gemm ker-
nel. These sub-matrices are carefully packed (and possibly transposed) into row-panel and column-
panel matrix formats, respectively. This approach is employed also in OpenBLAS [17] and clearly
presented in the BLIS paper [20].

Matrix elements are stored in the exact same order as accessed by the gemm kernel, and taking

into account cache and TLB sizes and associativities. In the buffers Ã and B̃, matrix elements are
stored into fixed-size panels (which are sub-matrices with many more rows than columns, or the
other way around) of contiguous data. The smaller size of each panel (in short, panel size) depends

on the sizemr × nr of the gemm kernel, and it is equal tomr for Ã and nr for B̃. In the common case

ofmr � nr , the panel sizes for Ã and B̃ are different. The result matrixC is stored in column-major
format.

This approach gives near full FP throughput for large matrices, but it suffers from a severe
overhead for small matrices, since in this case the (quadratic) cost of packing data cannot be well
amortized over the (cubic) cost of performing FP operations.

4.3.3 Panel-major Matrix Format. In embedded optimization, matrices are generally rather
small, and assumed to fit in cache. In this case, if only the three innermost loops in the Goto-
BLAS approach are considered and the matrices A and B are already in the form of the buffers

Ã and B̃, high-performance DLA routines can be obtained. This approach requires exposing the

row-panel and column-panel matrix formats used for Ã and B̃ and to decouple the packing routines
form the DLA routines. In the context of embedded optimization, where optimization algorithms
are typically iterative and, therefore, data matrices are reused several times, this approach has the
advantage of allowing to well amortize packing cost also in case of small matrices. Note, however,

that, in general, Ã and B̃ are stored into different formats (as, e.g., the panel sizes mr and nr can
differ), and that this severely limits the flexibility of the approach. Furthermore, the output matrix
is not in packed format but in panel-major.

BLASFEO HP attempts to overcome these limitations by proposing a paneled matrix format
(called panel-major) with fixed panel size for all input as well as output matrices. More in details,
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Fig. 2. Matrix layout in memory (called panel-major matrix format): matrix elements are stored in the same
order as the gemm kernel accesses them. This gemm kernel implements the optimal “NT” variant (namely,
A nontransposed, B transposed), and it computes a mr × nr sub-matrix of the result matrix C . The panel
height ps is the same for the left and the right factors A and B, as well as for the result matrixC . Each arrow
represents the ps elements that are on the same column within a panel. The diagonal lines indicate that,
in a contiguous memory sweep, once the last element of a column is accessed, the following element to be
accessed is the first element of the following column within the same panel.

in the gemm routine, the A and B matrices are packed into horizontal panels of contiguous data, as
shown in Figure 2. The panel size is fixed and denoted by ps . As a consequence, the DLA kernel
size mr × nr is generally chosen such that both mr and nr are a multiple of ps . The values of mr

and nr are architecture-dependent and a function of the number of registers as well as the SIMD
width. The value of ps is usually chosen as the smaller ofmr and nr , such that every time a cache
line is accessed, it is fully utilized. The output matrixC is directly stored in the panel-major format,
avoiding the need for further packing. The choice of fixing the panel size to the same value ps for
all matrices greatly simplifies the implementation of DLA routines, and it allows each panel-major
matrix to be freely used as an input or output of any DLA routine. Therefore, the panel-major
format is used as the native matrix format in BLASFEO HP.

The panel-major matrix format can be seen as a three-dimensional array, where the size of one
dimension is fixed to ps . In general, DLA routines for tensors can be employed to operate on the
panel-major matrix format. However, for efficiency reasons, the fact that one dimension is fixed
to ps is exploited in the implementation of the routines in BLASFEO HP.

In the panel-major matrix format, the first element of each working sub-matrix is computed dif-
ferently than in the case of a column-major matrix. The index of the panel containing the element
is ai/ps, which, multiplied by the panel length, gives the offset of the first panel element with
respect to the first matrix element. The column index of the element in the panel is aj, which,
multiplied by the panel size ps, gives the offset of the first column element with respect to the
first panel element. Finally, the row index of the element in the column is the reminder ai%ps. In
summary, the first element of the sub-matrix is

int sda = sA->cn;
double *A = sA->pA + ai/ps*ps*sda + aj*ps + ai%ps;

where sA is a pointer to a blasfeo_dmat struct and ai and aj are the coordinates of the first
element of the sub-matrix that is the actual operand. The integer sda (standing for second dimen-
sion of matrix A, analogous to lda in standard BLAS, but referring to the other dimension) is the
length of each panel, which can be larger than the number of columns n if padding for alignment
is employed. The computation is efficiently implemented as
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int sda = sA->cn;
int air = ai & (ps-1);
double *A = sA->pA + (ai-air)*sda + aj*ps + air;

The operation

air = ai & (ps-1)

is the reminder of the division of ai by ps, implemented exploiting the fact that ps is a power
of two, and, therefore, ps-1 can be used as a mask for the reminder. The meaning of each of the
pointer updates is:

(ai-air)*sda is an efficient implementation of ai/ps*ps*sda, where the operation ai/ps
computes the number of the panel where the (ai)th row is; this is then multiplied by
ps*sda, the size (in doubles) of each panel.

aj*ps is the position of the (aj)th column in the (ai/ps)th panel (that can be seen as a column-
major matrix with lda equal to ps).

air is the position of the (ai)th row in the (ai/ps)th panel.

It is important to note that the value of ps is chosen as a power of 2 and it is defined as a con-
stant: therefore, the compiler knows its value and can, e.g., implement multiplications as faster
(arithmetic) shifts left.

Figure 2 shows the panel-major matrix layout and the behavior of the ‘NT’ variant of the gemm
kernel that computesD ← α · A · BT + β ·C , where the left factorA is nontransposed and the right
factor B is transposed. This is the optimal variant, since both A and B are accessed panel-wise (i.e.,
data is read along panels). Furthermore, the regular access pattern of data in memory (i.e., access
of contiguous memory locations) can be easily detected by the hardware prefetcher (if present in
the architecture).

In the “NN” variant of the gemm kernel, the A matrix is optimally accessed panel-wise, but the B
matrix is accessed across panels (i.e., only a few columns of each B panel are used, before moving
to the following panel) making a worse use of caches and TLBs. This complex access pattern is
generally not detected by the hardware prefetcher, and, therefore, software prefetch has to be
explicitly used to move B elements into cache before they are needed.

The gemm routine variants “TN” and “TT” (where the left matrix factor A is transposed) are not
implemented explicitly, due to the inefficient use of vector instructions in these schemes. Both “TN”
and “TT” variants of the gemm operation can be implemented by explicitly transposing the matrix
A and, therefore, using the “NN” and “NT” variants of the gemm routine. Alternatively, a native
“TT” gemm routine can be implemented by using the “NN” assembly subroutine, and transposing
themr × nr result sub-matrix before storing it, as AT · BT = (B · A)T .

4.4 Assembly Subroutines and Modularity

In BLASFEO HP, the optimized linear algebra kernels are coded in assembly. This choice has been
made for several reasons. One key reason is that assembly allows for much more modularity than
what would be possible in higher level languages without compromising performance. Function
calling conventions in high level languages severely limit the use of FP registers to pass data.
Therefore, it is not possible to split a linear algebra kernel into smaller functions without having
to repeatedly store and load the data from accumulation registers, introducing a severe overhead.
Conversely, in assembly it is possible to split a linear algebra kernel into subroutines (that is, into
blocks of code that perform specific tasks) and to have complete freedom in the definition of more
convenient calling conventions.

ACM Transactions on Mathematical Software, Vol. 44, No. 4, Article 42. Publication date: July 2018.



42:12 G. Frison et al.

4.4.1 Subroutines and Custom Calling Convention. In BLASFEO HP each assembly module con-
tains a number of subroutines with local scope performing basic operations (e.g., in the implemen-
tation of the Cholesky factorization: the gemm loop, the loading of a sub-matrix, the Cholesky fac-
torization of a register-resident matrix, the storing of the result). Modules also contain functions
with global scope (and, therefore, following the OS calling convention) that simply consist of the
glue between a sequence of calls to the subroutines. A custom calling convention for the subrou-
tines allows to pass data in FP registers between different subroutines and avoids the overhead of
standard calling conventions (e.g., store of registers on the stack in the prologue, load of registers
from the stack in the epilogue). Therefore, DLA kernels are built in a modular fashion by using
such subroutines like building blocks.

Furthermore, the subroutines can be implemented as either function calls or as macros. In case
subroutines are implemented as function calls, in each module there is only one single copy of
the code of each subroutine, which is executed with calls and returns. This has the advantage of
reducing the code size, and making a better use of instruction cache. As an example, the subroutine
implementing the gemm loop is likely to be a hot codepath, as it is shared by all level 3 DLA routines.
In case subroutines are implemented as macros, a copy of the code of each subroutine is inserted in
each linear algebra kernel, avoiding the cost of calls and returns at the expense of larger code size
and colder critical codepaths. This can be advantageous in case of very small matrices, and in case
few DLA routines are employed. A compiler flag can be used to easily choose between the three
cases: (1) all subroutines as function calls; (2) gemm loop as function call and all other subroutines
as macros; (3) all subroutines as macros.

4.4.2 Handling of Corner Cases. If the sizes of the result matrix are not exact multiples of the
sizes of the optimal kernel or if the sub-matrices are not aligned to the top of a panel, then the
issue of handling corner cases arises. In BLASFEO HP, this is handled by using a few computa-
tional kernels of fixed size and by masking out the uselessly computed elements while storing the
result matrix. For each kernel size, three variants (called nominal, variable size and generic) are
implemented.

Depending on the target architecture, a small number of kernels for each DLA routine is imple-
mented (typically 1 to 3). For example, in the case of the Haswell architecture, the optimal dgemm
kernel has size 12 × 4 but also the kernels of size 8 × 4 and 4 × 4 are implemented. The smaller
size is generally chosen as ps × ps ; i.e., such a kernel processes one panel from A and one panel
from B. Even if it is possible to write DLA kernels tailored to explicitly handle sizes not multiple
of ps , they are generally not considered in the current BLASFEO HP implementation, as their per-
formance improvement is too little compared to the additional amount of code that needs to be
written. For the Intel Haswell and Intel Sandy-Bridge architectures (both having ps = 4 in double
precision), Section 5.1 compares the performance of the dgemm_nn routine in the cases of 4 × 4 and
2 × 2 minimum kernel sizes.

For each DLA kernel size, three variants are implemented. The nominal variant computes a sub-
matrix of the result matrix whose size is exactly equal to the kernel size. These kernels give the
smallest overhead and are used to compute the interior of the result matrix. The variable-size vari-
ant internally computes a sub-matrix of size equal to the kernel size but allows to store a smaller
sub-matrix of the result matrix (masking out some rows and columns). This allows to handle cor-
ner cases, at the expense of a slight overhead (to handle the extra logic required to decide what
elements should be stored and where). Finally, the generalized variant internally computes a sub-
matrix of size equal to the kernel size and allows to store a smaller sub-matrix too, but in addition
the sub-matrix is possibly non-aligned to the top of a panel (carrying over some elements to the
following panel). This allows to handle arbitrary sub-matrices, at the expense of some overhead.
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The choice of having these three variants of each DLA kernel is a trade-off giving reasonably
good performance (as the matrix size increases, most of the computation is performed by the low-
overhead nominal kernel) without requiring the explicit handling of many special cases. The use
of subroutines in BLASFEO allows the kernel variants to share all the code with the exception of
the specialized store subroutines, avoiding code duplication.

4.5 Order of Outer Loops

The gemm routine optimized for small matrices is implemented by means of two loops around the
carefully optimized gemm kernel, which consists of a single C-resident loop. Due to the lack of
cache blocking, in case of a gemm kernel wheremr and nr are not equal, the order of the two outer
loops has a big impact on the performance of the gemm routine as the size of the factor matrices
increase.

In BLASFEO HP, it is generally the case that mr > nr (i.e., the gemm kernel computes a sub-
matrix of C with more rows than columns) in architectures with SIMD instructions, since this
reduces the number of shuffle or broadcast instructions. Therefore, in the gemm kernel, the number
of streamed panels from A (i.e., mr/ps ) is larger than the number of streamed panels from B (i.e.,
nr/ps ). To minimize the memory movements between cache levels and therefore not exceed L2 or
L3 cache bandwidth, it is convenient to keep the mr/ps panels from A in L1 cache, while streaming
the nr/ps panels from B from L2 or L3 cache (and therefore minimizing the amount of data that has
to be loaded from L2 or L3 cache to compute the same amount of flops). This can be obtained by
making the intermediate loop over the columns of the result matrix C (and, therefore, A-resident),
and the outermost loop over the rows of the result matrix C (and, therefore, B-resident).

Ignoring cache associativity, as a rule of thumb this approach gives close to full performance
in the computation of matrices with k up to the value such that mr · k + nr · k elements can fit
in L1 cache at once. In practice, this k value is often in the range 200 to 400, large enough for
most embedded optimization applications. For larger values of k , performance can be recovered
by adding blocking for different cache levels. However, this is not of interest in the BLASFEO
framework.

4.6 BLAS and LAPACK Implementation

If level 3 BLAS and LAPACK routines are implemented without packing, then the gemm kernel can
not handle triangular factor matrices, triangular result matrices, factorizations, substitutions (i.e.,
solution of triangular system of equations), and inversions. These operations require specialized
routines. Several approaches can be used in the implementation of these routines and in their use
of the gemm kernel.

4.6.1 Level 3 BLAS. In optimized level 3 BLAS libraries, when packing is employed, it is possible
to implement all level 3 BLAS routines (with the exception of trsm, implementing substitutions)
using the sole gemm kernel and properly packing/padding routines [9]. The trsm routine is an
exception, since the downgrade part of the routine can be cast in terms of gemm kernel, while the
substitution part can not. In Reference [21], two trsm approaches are compared. In one approach,
the gemm kernel is explicitly used for the downgrade, while another specialized routine takes care
of the substitution part. This approach has the advantage of requiring the design only of the gemm
kernel, but it has the drawback of larger overhead, since there are two function calls and the
result sub-matrix needs to be loaded and stored in memory twice. In the other approach, the gemm
kernel and the specialized substitution routines are merged into a single trsm kernel. This requires
the design of a specialized trsm kernel, but it has lower overhead and, therefore, it gives better
performance for small matrices.
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In BLASFEO HP, the second approach is employed for the implementation of all level 3 BLAS-
like routines, since it gives the best performance for small matrices. Therefore, specialized kernels
are designed, where the main loop is given by the gemm assembly subroutine, while specialized
assembly subroutines are called before and after this loop to take care of triangular matrices and
substitutions. The modularity of the BLASFEO HP assembly subroutine based approach implies
that, once the gemm kernel has been implemented, all other level 3 BLAS kernels can be easily
coded at the cost of a little increase in the code size.

4.6.2 LAPACK. LAPACK routines make use of BLAS routines, but, in general, not BLAS ker-
nels, since their interfaces are not standardized and, therefore, not exposed (the BLIS project is an
exception, exposing also its lower level interface). LAPACK contains both unblocked and blocked
versions of all routines. Unblocked versions make use of level 2 BLAS and elementary operations
such as square roots and divisions. They compute the result matrix one row or column at a time
and are usually employed for small matrices and as routines in blocked versions. Blocked versions
make use of level 3 BLAS and unblocked LAPACK routines for factorizations and substitutions
(that are the matrix counterpart of square roots and divisions). They compute the result matrix
one sub-matrix at a time, and they rely on the underlying optimized BLAS routines to provide
high-performance for large matrices. In the context of embedded optimization, the main draw-
back of this approach is that it suffers from a considerable overhead (due to the many levels of
routines), and the small-scale performance is, therefore, poor.

Some optimized BLAS libraries (as, e.g., OpenBLAS) contain an optimized version of some of
the key LAPACK routines (such as Cholesky and LU factorization, triangular matrix inversion,
multiplication of two triangular matrices). These routines are written making use of the optimized
level 3 BLAS kernels (and not routines), and therefore exhibit a better performance for small ma-
trices. In particular, this allows the choice of a smaller threshold to switch to the blocked version
of the algorithms, therefore, casting more computations in the terms of the optimized level 3 BLAS
kernels.

In BLASFEO HP, LAPACK-like routines are implemented in the same way as level 3 BLAS-like
routines. Namely, special kernels are written for the LAPACK-like routines as well. Therefore,
there is not the equivalent of unblocked LAPACK routines, and the optimized kernels are used for
all matrix sizes. In other words, the block size of the blocked version of LAPACK routines is chosen
to be equal to the gemm kernel size, and the unblocked version of LAPACK routines is simply an
assembly subroutine operating on a register-resident sub-matrix. In the case of small matrices,
numerical tests show that this approach gives the best performance.

4.7 Custom Linear Algebra Routines

The ability to customize linear algebra routines allows for further performance improvements,
especially in the case of small matrices. The RF and HP implementations of BLASFEO can take
advantage of that, while the WR implementation can not, being simply a wrapper to standard
BLAS and LAPACK.

4.7.1 Inverse of Diagonal in Factorizations. In algorithms for matrix factorizations (as, e.g.,
Cholesky or LU), the inverse of the diagonal elements of the result matrix is computed as an inter-
mediate step and generally discarded. In BLASFEO RF and BLASFEO HP, in the matrix structure
there is an additional pointer to memory, which points to an array of FP numbers large enough
to hold any 1-dimensional sub-matrix. In particular, this memory space can be used to save the
inverse of the diagonal computed during factorizations. The inverse of the diagonal can be em-
ployed in subsequent system solutions, removing the need to compute further FP divisions (that
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have considerably longer latency than multiplications). The time saving is linear in the matrix size,
and, therefore, it becomes negligible for large matrices.

4.7.2 Fusing Linear Algebra Routines. As a motivating example, the convex equality constrained
quadratic program

min
x

1
2x

THx + дTx

s .t . Ax + b = 0

is considered, where the matrix H is symmetric and positive definite. The Karush-Kuhn-Tucker
(KKT) optimality conditions can be written as[

H AT

A 0

] [
x
λ

]
=

[
−д
−b

]
,

which is a system of linear equations. The KKT matrix is symmetric and indefinite. One way to
solve such a system is to use the range-space method, to compute the Schur complement of H in
the KKT matrix, −AH−1AT , and to reduce the system to the so-called normal equations,

−AH−1AT λ = −b +AH−1д.

If the matrix A has full row rank, then the Schur complement is a negative definite matrix and its
opposite can be Cholesky factorized to solve the normal equations. The Cholesky factorization of
the opposite of the Schur complement can be computed efficiently as

(AH−1AT )
1/2 = (A(LLT )−1AT )

1/2 = (AL−TL−1AT )
1/2 = ((AL−T ) (AL−T )T )

1/2

(where the exponent
1/2 indicates the Cholesky factorization), by means of the following four calls

to BLAS and LAPACK routines (using the BLASFEO convention of hard-coding the char arguments
in the name):

potrf_l Cholesky factorization of the Hessian matrix H = LLT

trsm_rltn triangular system solution AL−T

syrk_ln symmetric matrix multiplication (AL−T ) (AL−T )T

potrf_l final Cholesky factorization of the Schur complement

The first and second linear algebra routine can be fused into a single custom one, as well as the
third and fourth.

Stacking Matrices. In the implementation of the Cholesky factorization, the routine trsm_rltn is
employed to compute the off-diagonal blocks. Therefore, it is natural to stack theH andAmatrices
as [

H
A

]
and use a non-squared variant of the Cholesky factorization to fuse the routines potrf_l and
trsm_rltn into a single one. In the BLASFEO HP framework, this has the advantage that, depend-
ing on the matrix sizes, the stacked matrix may fit in a smaller number of panels than the total
number of panels of the two original matrices. This is the case if 0 < rem(mH ,ps ) +mA%ps < ps ,
wheremH and mA are the number of rows of the H and A matrices and rem(x ,y) is the reminder
of the division between x and y. Then, the stacked matrix can be processed using a smaller num-
ber of calls to trsm_rltn kernels (note that no new kernel needs to be coded). This technique is
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especially advantageous in the case of small matrices, where the matrix sizes are not too large
compared to the panel size ps .

Concatenating Updates/Downdates. In the implementation of the Cholesky factorization, the
downdate of the sub-matrices is in the form of syrk_ln for the diagonal blocks and of gemm_nt for
the off-diagonal blocks. Therefore, it is natural to fuse the third and fourth routines in the previous
example and to write a specialized kernel performing the update and downdate of each sub-matrix
at once, without having to store and then load again the same data. This reduces the overhead by
increasing the amount of work that each linear algebra kernel performs and, therefore, amortizing
the cost to load and store the sub-matrices over a larger amount of rank-1 updates or downdates.
Also this technique is especially advantageous in the case of small matrices, where the rank of
updates and downdates is typically lower.

In the BLASFEO HP framework, fused linear algebra kernels can be coded very easily and at
very little increase in code size, since no new subroutines need to be coded, and the fused kernels
are simply stacking together calls to existing subroutines.

4.8 Target Architectures and Operating Systems

The current BLASFEO HP implementation supports the following target architectures and instruc-
tion set architectures (ISA).

X64_INTEL_HASWELL. x86_64 architecture with FMA3 and AVX2 ISAs, code optimized for Intel
Haswell and Intel Skylake microarchitectures. The Haswell and Skylake cores have 256-bit wide
execution units, and they can perform 2 fused-multiply-add (FMA) every clock cycle, with a latency
of 5 (Haswell) or 4 (Skylake) clock cycles, respectively. The panel size ps is 4 in double precision
and 8 in single precision. The optimal kernel size is 12 × 4 in double precision and 24 × 4 in single
precision.

X64_INTEL_SANDY_BRIDGE. x86_64 architecture with AVX ISA, code optimized for Intel Sandy
Bridge microarchitecture. The Sandy-Bridge core has 256-bit wide execution units, and it can per-
form 1 multiplication and 1 addition every clock cycle, with a latency of five and three clock cycles,
respectively. The panel size ps is 4 in double precision and 8 in single precision. The optimal kernel
size is 8 × 4 in double precision and 16 × 4 in single precision.

X64_INTEL_CORE. x86_64 architecture with SSE3 ISA, code optimized for Intel Core and Intel
Nehalem microarchitectures. The Core and Nehalem cores have 128-bit wide execution units, and
they can perform 1 multiplication and 1 addition every clock cycle, with a latency of 4/5 (mul in
single/double precision) and 3 (add) clock cycles. The panel size ps is 4 in double precision and 4 in
single precision. The optimal kernel size is 4 × 4 in double precision and 8 × 4 in single precision.

X64_AMD_BULLDOZER. x86_64 architecture with AVX and FMA3 ISAs, code optimized for
AMD Bulldozer microarchitecture. The Bulldozer core has 128-bit wide execution units, and it
can perform two FMA every clock cycle, with a latency of five or six clock cycles. Instructions
operating on 256-bit vectors are executed as two instructions operating on 128-bit vectors; best
performance is obtained explicitly targeting 128-bit vectors. The panel size ps is 4 in double pre-
cision and 4 in single precision. The optimal kernel size is 4 × 4 in double precision and 12 × 4 in
single precision.

ARMV8A_ARM_CORTEX_A57. ARMv8A architecture with NEONv2-VFPv4 ISAs, code opti-
mized for ARM Cortex A57 core. The Cortex A57 core has 128-bit wide execution units, and it
can perform 1 FMA every clock cycle, with a latency of 10 (both double and single precision) clock
cycles. The panel size ps is 4 in double precision and 4 in single precision. The optimal kernel size
is 8 × 4 in double precision and 8 × 8 (or 16 × 4)) in single precision.
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ARMV7A_ARM_CORTEX_A15. ARMv7A architecture with NEONv2-VFPv4 ISAs, code opti-
mized for ARM Cortex A15 core. The Cortex A15 core has 64-bit wide (double precision) and
128-bit wide (single precision) execution units, and it can perform 1 FMA every clock cycle, with
a latency of 9 (double precision) and 10 (single precision) clock cycles. The panel size ps is 4 in
double precision and 4 in single precision. The optimal kernel size is 4 × 4 in double precision and
12 × 4 in single precision.

GENERIC. Generic C code, targeting a typical RISC machine with 32 scalar FP registers. The
panel size ps is 4 in double precision and 4 in single precision. The optimal kernel size is 4 × 4 in
double precision and 4 × 4 in single precision.

The current BLASFEO HP implementation supports the following combinations of operating
systems and compilers

LINUX. BLASFEO runs on Linux 32-bit (ARMv7A architecture) or 64-bit (x86_64 and ARMv8A
architectures) versions, with compilers gcc or clang.

MAC. BLASFEO runs on Mac 64-bit (x86_64 architecture) version, with compilers gcc and clang.

WINDOWS. BLASFEO runs on Windows 64-bit (x86_64 architecture) version, with compiler
MinGW-w64.

The x86_64 assembly kernels in BLASFEO are written using the AT&T syntax. Therefore, they
can not be employed directly in compilers that only accept the Intel syntax (e.g., Visual Studio).
However, since BLASFEO HP assembly kernels do not have any external dependency, supported
compilers like, e.g., MinGW-w64 can be used to assembly the .S files into .o files, which can be
included into a library using, e.g., Visual Studio (together with the .c files compiled using the latter).

5 EXPERIMENTS

This section contains numerical experiments showing the performance of the proposed implemen-
tation approach. Note that all software considered in the experiments is single-threaded. Multi-
thread experiments are outside the scope of the current article and an object of future research.

5.1 Small dgemm Performance: Comparison of Library and JIT Approaches

This section contains some numerical experiments comparing the performance of small dgemm as
implemented using library versus JIT approaches. All tests are performed on recent Intel architec-
tures (Ivy Bridge and Haswell). The results are in Figure 3.

The proprietary BLAS and LAPACK implementation by Intel is part of MKL (Math Kernel Li-
brary, here tested in the version 2017.2.174, labelled MKL in Figure 3). MKL provides a library im-
plementation of dgemm, which can handle any matrix size. The linking flag MKL_DIRECT_CALL_SEQ
enables the use of a fast path for selected DLA routines (comprising gemm), with the aim of im-
proving performance in case of small matrices.

Intel also supports the open-source project LIBXSMM [10], which provides a JIT framework
to generate selected routines optimized for small-scale performance. The tested version is master
1.8.1-1204, labelled XSMM in Figure 3. Out of level 3 BLAS and LAPACK routines, LIBXSMM
currently provides highly optimized implementations only of the NN variant of gemm, with a
limited set of options for the routine arguments (covering the most common use cases). For small
matrices, the performance of the gemm routine provided by LIBXSMM outperforms other JIT im-
plementations [10]. In our experiments, only the C interface of LIBXSMM is considered. LIBXSMM
employs a memory buffer to store gemm kernels optimized for specific operation descriptors (com-
prising, e.g., the operation sizes (m, n, k) and the leading dimension of matrices). The first time
a new descriptor is encountered, the execution falls back to a (statically generated) library version
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Fig. 3. Small-scale performance plot for selected implementation approaches for the dgemm_nn routine, on
Intel Ivy-Bridge (left, maximum double-precision throughput 28.8Gflops) and Intel Haswell (right, maximum
double-precision throughput 52.8Gflops). HP2 refers to BLASFEO HP with 2 × 2 minimum kernel size; HP2F
refers to BLASFEO HP with 2 × 2 minimum kernel size and with DLA routines tailored to fixed matrix sizes.

implemented using SSE4.2, while the JIT framework generates the optimized kernel. Once the JIT
kernel generation is completed, subsequent calls with the same descriptor employ the optimized
kernel. For best performance, LIBXSMM provides the possibility to explicitly trigger the JIT
generation of a kernel, which is dispatched using a function pointer and, therefore, it can be
called directly.

As described in previous sections, BLASFEO is implemented as a library. Currently BLASFEO HP
(labelled HP in Figure 3) is implemented using few kernel sizes, with the minimum kernel size for
level 3 DLA routines equal to 4 × 4. This choice is a trade-off between performance on ‘odd’ sizes
(i.e. sizes not multiple of the minimum kernel size) on one hand, and required number of kernels
and code size on the other hand. For example, in the case of the Intel Sandy-Bridge architecture,
the optimal kernel size is 8 × 4 but also the kernels of size 12 × 4 and 4 × 4 are implemented. The
variable-size variant of each kernel makes use of mask store instructions, therefore, covering any
matrix size between 1 and 12 rows and between 1 and 4 columns. Naturally, if the matrix size is not
multiple of 4, unnecessary FP computations are performed. For the tested matrix sizes, BLASFEO
HP is generally faster than MKL with small-size fast path (and, therefore, it is the fastest library
approach), but slower than LIBXSMM.

In this section, we investigate the effect of reducing the minimum kernel size to 2 × 2 (and, there-
fore, considering kernel sizes multiple of 2) in the high-performance version of BLASFEO (labelled
HP2 in Figure 3). This greatly increases the number of possible kernels (e.g., also 6 × 8, 8 × 6, 6 × 6,
10 × 4, 6 × 4, 2 × 4, 10 × 2, 8 × 2, 6 × 2, 4 × 2, 2 × 2 can be kernel sizes). High-performance imple-
mentation of these kernels (that fully exploit vector units, even if the kernel size is not a multiple
of the SIMD width 4) allows to increase performance for “odd” sizes. However, as the matrix size
increases (and, therefore, the computational performance of gemm increases), the performance im-
provement relative to the HP version shrinks to below 10%. And for very small matrix sizes, up to
4, this does not seem to improve performance, which remains much lower than LIBXSMM.

As a final experiment, we investigate the performance of HP2 routines specialized for matrices
of fixed sizes, described by the triplet (m, n, k). This version is labelled HP2F in Figure 3. The DLA
kernels are unchanged compared to the HP2 version, but the two loops and the logic around them
is removed, replaced by the exact sequence of needed kernel calls. In this experiment the exact
sequence is hard coded, but it could be very easily and cheaply generated using a JIT approach.
For very small sizes, this gives over 2.5 times speedup compared to HP or HP2. The performance
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gets much closer to the one of LIBXSMM, and at times exceeds it, especially as the matrix size
increases. The performance advantage still present in LIBXSMM for, e.g., size 12 is mainly due the
fact that, for sizes smaller than 16, the loops in LIBXSMM are fully unrolled, while in the BLAFEO
kernels the innermost loop size is still fixed to 4, since kernels are untouched.

As a conclusion to this section, in case of very small matrix sizes, the JIT approach used in
LIBXSMM is inherently superior to the library approach used in BLASFEO and MKL. Out of the
library approaches, BLASFEO provides better performance than MKL, even more if the minimum
kernel size in BLASFEO is reduced to 2 × 2.

LIBXSMM is not further considered in this article, since it currently provides only gemm and,
therefore, it is of limited interest in embedded optimization, where other routines like factoriza-
tions and triangular system solutions are needed.

5.2 BLAS- and LAPACK-like Routines

This section contains the result of numerical experiments on the performance of key linear algebra
routines. Section 5.2.1 presents many approaches for the implementation of the linear algebra
routines, and motivates the choice of some of them for the tests in the following sections. The
experiments in this section focus on small-scale performance, while the scalability with the matrix
size is investigated in the following sections. In Section 5.2.2 there are performance plots for the
Intel Haswell processor, which is an example of a high-performance architecture implementing the
latest ISAs. In Section 5.2.3 there are performance plots for the Intel Ivy-Bridge processor, which is
an example of a high-performance architecture with slightly older ISA. In Sections 5.2.4 and 5.2.5
there are performance plots for the ARM Cortex A57 and A15 processors, which are examples of
relatively low-power architectures that require more careful implementation.

For the Intel Haswell architecture, the computational performance of many BLAS- and LAPACK-
like routines is reported. For the sake of space, only the computational performance of the gemm_nt
and potrf_l routines is reported for the remaining architectures.

5.2.1 Choice of Alternative Approaches. This section tests many approaches for the implemen-
tation of the Cholesky factorization, and compares them for small matrices of size n up to 24.
Figure 4 show the computational performance of the considered approaches.

The test machine is a laptop equipped with an Intel Core i7 4800MQ (Intel Haswell architecture),
which under AVX-heavy loads runs at 3.3GHz, giving a maximum throughput in double (single)
precision of 52.8 (105.6)Gflops. The OS is Linux with kernel 4.4. All code is compiled with gcc 5.4.

Figure 1 shows that for small matrices, OpenBLAS outperforms the other open-source alterna-
tives, namely ATLAS and BLIS. Therefore, the latter libraries are not further considered.

The following implementations (coming from both the high-performance computing and the
embedded optimization communities) are considered:

HP - BLASFEO HP: the high-performance implementation of BLASFEO is the main
contribution of this article. The linear algebra kernels are optimized for the Intel
Haswell architecture. Compiler flags: -O2 -mavx2 -mfma.

RF - BLASFEO RF: the reference version of BLASFEO has small code size and easy
embeddability as main aims. Compiler flags: -O2 -mavx2 -mfma.

OB - BLASFEO WR with OpenBLAS: OpenBLAS (version 0.2.19) is a highly optimized
library with hand-crafted assembly kernels. It is probably the best open-source al-
ternative. The DLA kernels are optimized for the Intel Haswell architecture. Com-
piled disabling multi-threading, because this gives the best performance for single-
threaded code.
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Fig. 4. Small-scale performance plot for all considered implementation approaches for the Cholesky factor-
ization routine portf_l.

MKL - BLASFEO WR with Intel’s Math Kernel Library (MKL, version 2017.2.174) is the
best proprietary alternative on Intel processors. Single-thread version. The linking
flag MKL_DIRECT_CALL_SEQ is used to reduce overhead.

Eig - Eigen: Eigen is advertised as offering very good performance and portability using
C++ template headers. Compiler flags: -O3 -mavx2 -mfma. The option to export a
BLAS library does not work in the current version, so Eigen is not employed in all
tests. EIGEN_NO_DEBUG mode is chosen to reduce overhead.

EigFix - Eigen fix size: in Eigen, it is possible to hard code the size of matrices, allow-
ing one to auto generate optimized code. Compiler flags: -O3 -mavx2 -mfma.
EIGEN_NO_DEBUG mode is chosen to reduce overhead.

CodGen - Code-generated triple-loop: this is a C coded triple-loop version of the Cholesky
factorization (that is, a C translation of the LAPACK unpacked routine potf2),
where the size of the matrices is fixed at compile time. Compiler flags: -O3 -mavx2
-mfma -funroll-loops.

As a first note, for such small matrices the difference in performance between single and double
precision is small, as the sequential parts of the Cholesky factorization algorithm (and especially
divisions and square roots) dominate the vectorizable parts.

For n up to roughly 6, the code-generated triple-loop version is the fastest, but it is quickly
outperformed by BLASFEO RF and BLASFEO HP as n increases. BLASFEO RF does not require
recompilation for each value of n and its performance scales much better than code-generated
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triple-loop. Therefore, it is the overall best choice for small matrices. For n larger than roughly 10,
the performance of BLASFEO HP quickly increases: for n = 24, it exceeds 10 Gflops in both double
and single precision.

Eigen with fixed code sizes performs better than BLASFEO HP for sizes up to 2, but it per-
forms worse than code-generated triple-loop. In Eigen, the option to fix the matrix sizes improves
performance only for very small matrices, but for matrices larger than about 15 it decreases per-
formance. All other alternatives show a rather low performance, as they need much larger n for
the performance to increase, with OpenBLAS and MKL performing slightly better than Eigen.

Remarks. As a conclusion to this first set of tests, code generation approaches (code-generated
triple-loop and Eigen with fixed matrix sizes) outperform the approaches proposed in BLASFEO
only for very small matrices, of size up to 6, but they have the burden of having code tailored for
a specific matrix size. The approach used in BLASFEO RF gives better scalability with the prob-
lem size, and a portable and simple code. Therefore, code generation approaches are not further
considered in the remaining tests. The performance of BLASFEO HP increases quickly as soon as
divisions and square roots are not the bottleneck and vectorization pays off.

5.2.2 Intel Haswell. This section contains performance plots for some linear algebra routines
on the Intel Haswell architecture that targets the most recent ISAs in x86_64 laptops/workstations.
The matrix size ranges in steps of 4 from 4 up to 300, which is large enough for most embedded
optimization applications.

Haswell is a deeply out-of-order architecture, performing aggressive hardware prefetch. It is
relatively easy to write gemm kernels giving high-performance, provided that at least 10 accumula-
tion registers are employed. The Haswell core can perform 2 256-bit wide FP fused-multiplication-
accumulate every clock cycle, giving a throughput of 16 and 32 flops per cycle in double and single
precision, respectively.

In the implementation of BLASFEO HP, the panel size ps is 4 in double precision and 8 in single
precision. The optimal BLASFEO HP gemm kernel size is 12 × 4 in double precision and 24 × 4 in
single precision. Hardware prefetch can detect the streaming of data along panels.

The test processor is the Intel Core i7 4800M (Haswell), running at 3.3GHz when the 256-bit
execution units are employed (3.7GHz when they are disabled). The memory is 8GB of DDR3L-
1600 RAM in dual-channel configuration, giving a bandwidth of 25.6GB/s.

The performance of many DLA routines is reported for the Haswell architecture (Figures 5,
6 and 7). Two gemm variants are tested, in both single and double precision. These two variants
are the backbone of most other DLA routines. A second and a third set of tests investigate the
performance of BLAS and LAPACK routines, respectively.

gemm_nt. The gemm_nt is the general matrix-matrix multiplication with options “nontrans-
posed” and “transposed.” The gemm_nt is the optimal gemm variant in BLASFEO HP, as it optimally
streams both A and B, i.e., along panels. The gemm_nt subroutine is used in many kernels such as
symmetric matrix-matrix multiplication and Cholesky factorization.

gemm_nn. The gemm_nn is the general matrix-matrix multiplication with options “nontrans-
posed” and “nontransposed.” In BLASFEO HP, it streams A in an optimal way, along panels, while
B is streamed across panels, requiring software prefetch to hint the processor about this more com-
plex memory access. The gemm_nt subroutine is used in many kernels such as LU factorization.

syrk_ln. The syrk_ln is the symmetric matrix-matrix multiplication, with options “lower” and
“nontransposed.” In BLASFEO, the left and right factor can be different matrices. In BLASFEO HP,
the syrk_ln routine is implemented using two kind of kernels, the gemm_nt (for the off-diagonal
blocks) and syrk_ln (for the diagonal blocks), both implemented using the gemm_nt subroutine.
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Fig. 5. Performance of gemm_nt and gemm_nn on Intel Haswell.

Fig. 6. Performance of BLAS routines on Intel Haswell.
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Fig. 7. Performance of LAPACK routines on Intel Haswell.

trmm_rlnn. The trmm_rlnn is the triangular matrix-matrix multiplication, with options “right,”
“lower,” “nontransposed,” “not-unit.” In BLASFEO HP, it is implemented using a specialized kernel,
which employs the gemm_nn subroutine.

trsm_rltn. The trsm_rlnn is the triangular system solve with matrix right-hand-side, with op-
tions “right,” “lower,” “transposed,” “not-unit.” In BLASFEO HP, it is implemented using a special-
ized kernel (employed also in the potrf_l routine), which employes the gemm_nt subroutine.

potrf_l. The potrf_l is the routine computing the lower triangular Cholesky factorization, with
option “lower.” This factorization is widely employed in embedded optimization. In BLASFEO HP,
the potrf_l routine is implemented using two kernels, the trsm_rltn (for the off-diagonal blocks)
and potrf_l (for the diagonal blocks), both implemented using the gemm_nt subroutine.

getrf. The getrf is the routine computing the LU factorization with partial pivoting, which is
part of LAPACK. In BLASFEO HP, the kernels employed in the getrf routine make use of the
gemm_nn subroutine.

gelqf. The gelqf is the routine computing the LQ factorization, which is part of LAPACK. This
factorization is commonly employed in embedded optimization. In BLASFEO HP, the dgelqf rou-
tine is implemented using a blocked Householder LQ factorization with block size 4 for matrix
sizes n < 128, and with block size 12 for matrix sizes n ≥ 128. The routine employs the dgemm_nt
kernel and the dger4 and dger12 kernels (performing a rank-4 and rank-12 update of a general
matrix, respectively).

Remarks. All experiments show that BLASFEO HP is clearly the best choice for the matrix sizes
of interest, i.e., of sizes up to 300. In particular, for matrices up to about 100, the speedup is of at
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Fig. 8. Performance of gemm_nt and potrf_l on Intel Ivy-Bridge.

least 20–30% with respect to the best available BLAS implementation (usually provided by MKL),
and in the order of two to three times with respect to the best available LAPACK implementation
(again, usually provided by MKL). BLASFEO RF performs well for very small matrices, in which
case it is able to outperform optimized BLAS and especially LAPACK implementations. In the
gemm tests, Eigen performs particularly well for matrices of size 4 × 4, suggesting that this case is
probably handled with a dedicated implementation.

5.2.3 Intel Ivy-Bridge. The Intel Ivy-Bridge is a high-performance architecture from a few years
ago. It is based on the Sandy-Bridge microarchitecture. It supports the AVX ISA, but it lacks the
AVX2 and FMA3 ISAs supported by the more recent Intel Haswell architecture. Execution units
are 256-bit wide, and they can process four doubles or eight floats at a time. The Ivy-Bridge
core can perform one 256-bit wide FP multiplication and one 256-bit wide FP addition at ev-
ery clock cycle, giving a throughput of 8 and 16 flops per cycle in double and single precision,
respectively.

The target architecture used in BLASFEO HP is Sandy-Bridge. In the implementation of BLAS-
FEO HP, the panel size ps is 4 in double precision and 8 in single precision. The optimal BLASFEO
HP gemm kernel size is 8 × 4 in double precision and 16 × 4 in single precision. Hardware prefetch
can detect the streaming of data along panels.

The test processor is the Intel Core i7 3520M (Ivy-Bridge), running at 3.6GHz during all tests.
The maximum throughput in double (single) precision is 28.8 (57.6)Gflops. The memory is 8GB of
DDR3-1600 RAM in dual-channel configuration, giving a bandwidth of 25.6GB/s.

In the case of the Intel Ivy-Bridge, only the gemm_nt and potrf_l routines are tested (Figure 8).
DLA libraries targeting the Sandy-Bridge microarchitecture should be in a mature state nowadays:
This makes the comparison particularly meaningful.
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Gemm_nt. BLASFEO HP can achieve up to 95% of the peak throughput. It performs better than
all alternatives in the matrix sizes of interest, followed by MKL. For matrix sizes up to 50, the
speedup compared to MKL is in the range of 20–30%, which reduces to 5–10% for matrix sizes
up to 300. OpenBLAS performs a little worse, especially in single precision, where it appears to
employ a less performing kernel. Eigen shows a quite solid performance in single precision, but a
rather erratic performance in double precision. As expected, BLASFEO RF is competitive only for
very small matrices.

Potrf_l. The results for the Cholesky factorization routine on Intel Ivy-Bridge are similar to the
ones on Intel Haswell. Namely, BLASFEO HP is about two to three times faster than OpenBLAS and
MKL. BLASFEO RF performs well for small matrices, outperforming optimized implementations
for dimensions up to about 30.

5.2.4 ARM Cortex A57. The ARM Cortex A57 is a relatively low-power architecture, and it is
the 64-bit successor of the ARM Cortex A15. It is a three-way superscalar architecture with out-of-
order execution. The NEON ISA in the ARMv8A architecture supports vectorization in both single
and double precision, with four- and two-wide vectors, respectively. The Cortex A57 core can per-
form a 128-bit wide FP fused-multiplication-accumulate at every clock cycle, giving a throughput
of eight and four flops per cycle in single and double precision, respectively. Each core has 48KB
3-way associative instruction L1 cache and 32KB 2-way associative data L1 cache. All cores share
a 16-way associative unified L2 cache. The cache line size is 64 bytes.

In the implementation of BLASFEO HP, the panel sizeps is 4 in both double and single precision.
The optimal BLASFEO HP gemm kernel size is 8 × 4 in double precision and 8 × 8 (or 16 × 4) in
single precision. Software prefetch is employed for both the left and the right factors, slightly
improving performance.

The test processor is the NVIDIA Tegra TX1 SoC (running at 2.15GHz during all tests) in
the Shield TV. The memory interface is 64-bit LPDDR4-3200 giving 25.6GB/s of bandwidth. The
amount of memory is 3GB.

In the case of the ARM Cortex A57, only the gemm_nt and potrf_l routines are tested (Figure 9).

Gemm_nt. Also for this architecture, BLASFEO HP gives the best performance, reaching 90%
and 93% of full throughput in double and single precision, respectively. The performance is steady
and does not show negative spikes. The performance of OpenBLAS is generally good, and its gemm
kernels give similar performance as the BLASFEO HP ones. However, there are negative spikes
at certain matrix sizes. That could be due to the use of the column-major matrix format for an
architecture with small cache associativity. BLASFEO RF performs rather well for matrices fitting
in L1 cache, but the performance deteriorates for larger matrices and it shows negative peaks due
to cache associativity.

Potrf_l. In case of the Cholesky factorization potrf, BLASFEO HP gives the best performance
for nearly all tested matrix sizes, with the exception of very small sizes where BLASFEO RF may
be the best choice. Compared to OpenBLAS, BLASFEO HP gives a speed up of about two to three
times for matrices of size up to 100.

5.2.5 ARM Cortex A15. The ARM Cortex A15 is a relatively low-power architecture. It is a
three-way superscalar architecture with out-of-order execution, but with a much smaller reorder
buffer than Intel Haswell. ARMv7A does not support vectorization in double precision: there-
fore, the scalar VFP instruction set is employed. In single precision, it is possible to choose be-
tween the scalar VFP instruction set, or the four-wide SIMD NEON instruction set. Due to its high
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Fig. 9. Performance of gemm_nt on ARM Cortex A57.

performance, BLASFEO HP employs the latter. The Cortex A15 core can perform a 64-bit wide
(double precision) and a 128-bit wide (single precision) FP multiplication-accumulate at every clock
cycle, giving a throughput of two and eight flops per cycle in double and single precision, respec-
tively. Each core has 32KB two-way associative instruction and data L1 caches. All cores share a
16-way associative unified L2 cache. The cache line size is 64 bytes.

In the implementation of BLASFEO HP, the panel size ps is 4 in both double and single preci-
sion. The optimal BLASFEO HP gemm kernel size is 4 × 4 in double precision and 12 × 4 in single
precision. Software prefetch has to be employed for both the left and the right factors, as there
appear to be no hardware prefetch.

The test processor is the NVIDIA Tegra TK1 SoC (running at 2.3GHz during all tests), equipped
with 2MB L2 cache. The memory interface is 64-bit wide LPDDR3 giving 17GB/s of bandwidth.
The amount of memory is 2GB.

In the case of the ARM Cortex A15, only the gemm_nt and potrf_l routines are tested (Figure 10).

Gemm_nt. In double precision, both BLASFEO HP and OpenBLAS perform well, very close to the
maximum throughput. BLASFEO RF and Eigen clearly suffer from the lack of software prefetch.
In single precision, the performance of BLASFEO HP clearly stands out. OpenBLAS and BLASFEO
RF do not employ vectorization, therefore, losing a factor 4 with respect to BLASFEO HP. Eigen
appears to use vectorization, but its performance is about 2.5 times lower than BLASFEO HP. In
both single and double precision, the small L1 cache associativity heavily penalizes BLASFEO RF
for matrix sizes multiple of 32 (double precision) and 64 (single precision), due to the use of non-
contiguous memory. It is worthwhile to note that the panel-major format employed in BLASFEO
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Fig. 10. Performance of gemm_nt on ARM Cortex A15.

HP gives very good performance also in the single precision case, where the 12 × 4 gemm kernel
streams four panels at a time (three L1-resident panels form A and 1 L2-resident panel from B),
despite the L1 cache being only two-way associative. This is a good example of the fact that the
BLASFEO panel-major matrix format works very well in practice, despite being suboptimal due to
the constraint of packing both A and B with the same panel size ps (equal to 4 in this case, while
the optimal one would be equal to 12 for A and 4 for B).

Potrf_l. The results are similar in the case of the Cholesky factorization potrf_l. In double
precision, only scalar instructions are used. Therefore, compared to, e.g., OpenBLAS, BLASFEO
HP gives a slightly smaller speedup than in case of architectures with vector instructions, where
the BLASFEO HP vectorized kernels have a large advantage over the scalar unblocked LAPACK
routines. In single precision, the speedup of BLASFEO HP is about four to five times, mainly due
to the lack of vectorization in OpenBLAS.

5.3 Backward Riccati Recursion

The backward Riccati recursion is a special structured factorization for the KKT matrix arising in
optimal control problems. The recursion reads

Pn = Q +APn+1A
T − (S +APn+1B

T ) (R + BPn+1B
T )−1 (ST + BPn+1A

T ),

where the matrices Pn+1 and [
R S

ST Q ] are assumed to be symmetric positive definite. The matrices

A, Q , and P have size nx × nx , the matrices B and ST have size nx × nu , and the matrix R has size
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Fig. 11. Performance of d_ric_trf on Intel Haswell.

nu × nu , where nx is the number of states and nu is the number of controls of the system. The
recursion is repeated N times, where N is the control horizon length.

The Riccati recursion can be implemented efficiently as [5]

C ←
[
BT

AT

]
· Ln+1[

Λn 0
Ln Ln

]
←
(
C ·CT

) 1
2 ,

where Ln+1 is the lower Cholesky factor of Pn+1 and the exponent
1
2 denotes the lower triangular

Cholesky factorization. The algorithm can be implemented using the trmm_rlnn and syrk_ln
BLAS routines and the potrf_l LAPACK routine. Note that this algorithm gives the opportunity
to fuse the syrk_ln and the potrf_l routines.

The computational performance of the algorithm is shown in Figure 11, which closely resembles
the performance plots of BLAS and LAPACK routines. Therefore, also in this case the BLASFEO HP
is the best choice for the matrix sizes of interest, giving a speed-up of about two to three times for
a number of states nx up to 100, with respect to optimized BLAS and LAPACK implementations.

5.4 Dual Newton Strategy

Aim of this section is to demonstrate how the linear algebra provided in BLASFEO can enhance
the performance of new or existing embedded optimization tools. As an example, we take the
open-source software qpDUNES [4], a dual Newton strategy for QPs arising in optimal control.

The main idea of the algorithm is to introduce Lagrange multipliers for the equality constraints
imposed by the system dynamics and solve the resulting (unconstrained) dual problem with New-
ton’s method. In this framework, one of the most computationally expensive operations per itera-
tion of the solver is the solution of a linear system, requiring the factorization of the dual Hessian
Hd and the computation of the Newton direction. The matrix −Hd is positive definite and has
a block tridiagonal structure with N diagonal blocks. This motivates the use of a block banded
Cholesky factorization, which has a complexity that scales linearly in the number of blocks.

To show the room for improvement on the software by the use of BLASFEO, we replace all
operations in the factorization and substitution steps of qpDUNES with calls to BLASFEO subrou-
tines. The benchmark problem is the control of a linear chain of masses and springs. The number
of masses (and, therefore, the number of states nx and controls nu ) as well as the control horizon
length N can be freely scaled. The Hessian matrices are diagonal, and only bounds on the state
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Fig. 12. CPU timings for the computation of Newton direction, varying nx . Comparison of the existing
qpDUNES implementation against the re-implementation using BLASFEO (HP, RF, and WR linked to Netlib
BLAS and LAPACK).

and control variables are considered (and not general polytopic constraints). In this test, the hori-
zon length and number of controls are kept constant with values N = 20 and nu = 2, respectively,
while the number of states nx is varied between 6 and 30. Note that nu does not affect the tim-
ings, since all Hessian blocks are of size nx × nx . The results are shown in Figure 12. BLASFEO RF
matches the performance of the existing implementation for the smaller sizes, while BLASFEO HP
is over five times faster for the largest sizes.

Note that the time needed to convert the data between the row-major matrix format (qpDUNES
internal format) and the BLASFEO structure formats is included in the timings of the BLASFEO
implementations. Since only the solution of the Newton system is optimized, the overall speedup
of the software is lower due to Amdahl’s law. However, the results indicate that using BLASFEO
throughout the code can lead to significant performance gains.

6 CONCLUSION

This article presented the implementation details of BLASFEO, a library of BLAS- and LAPACK-
like routines optimized for use in embedded optimization and small scale high-performance com-
puting, in general. As a key difference with respect to highly tuned BLAS and LAPACK routines,
BLASFEO is designed to give the best performance for rather small matrices that fit in some level
of cache. Compared to the best open-source and proprietary single-threaded BLAS and LAPACK
libraries, the HP implementation of BLASFEO shows large speedups for all the matrix sizes tested
in this article, i.e., for sizes up to 300. Therefore, BLASFEO shows that it is possible to employ
high-performance techniques for the implementation of DLA routines optimized for small matrix
sizes.

For matrices of size up to 100, BLASFEO HP shows a speedup of about 20–30% in the case of
level 3 BLAS-like routines, and of about two to three times in the case of LAPACK-like routines,
compared to the best available DLA implementations. In case of BLAS-like routines, the speedup
is mainly due to the fact that the panel-major matrix format is exposed to the user and, therefore,
to the fact that on-line packing of matrices is avoided. In case of LAPACK-like routines, the much
larger speed-up is mainly due to their implementation as if they were BLAS-like routines. The
BLAS routines and the unblocked LAPACK routines in the standard LAPACK implementation are
both replaced with tailored DLA kernels implemented using register blocking and vectorization.
This greatly enhances performance for small matrices, and it could be used as a technique to
implement higher-performing standard LAPACK routines.
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Currently, the high-performance version of BLASFEO only provides single-threaded DLA rou-
tines. Future work will focus on multi-threaded routines and investigate the parallelization level
achievable in the BLASFEO framework.
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