
An Efficient Implementation of Partial Condensing
for Nonlinear Model Predictive Control

Gianluca Frison1,2, Dimitris Kouzoupis1, John Bagterp Jørgensen2, Moritz Diehl1

Abstract— Partial (or block) condensing is a recently pro-
posed technique to reformulate a Model Predictive Control
(MPC) problem into a form more suitable for structure-
exploiting Quadratic Programming (QP) solvers. It trades off
horizon length for input vector size, and this degree of freedom
can be employed to find the best problem size for the QP solver
at hand. This paper proposes a Hessian condensing algorithm
particularly well suited for partial condensing, where a state
component is retained as an optimization variable at each stage
of the partially condensed MPC problem. The optimal input-
horizon trade-off is investigated from a theoretical point of view
(based on algorithms flop count) as well as by benchmarking
(in practice, the performance of linear algebra routines for
different matrix sizes plays a key role). Partial condensing can
also be seen as a technique to replace many operations on small
matrices with fewer operations on larger matrices, where linear
algebra routines perform better. Therefore, in case of small-
scale MPC problems, partial condensing can greatly improve
performance beyond the flop count reduction.

I. INTRODUCTION

One classical way of solving linear Model Predictive
Control (MPC) problems is to use the state-space equation
to remove the state variables from the problem formulation.
This technique is known as condensing and it reformulates
the large and sparse Hessian of the MPC problem into a
small and dense one, that is generally factorized using a
Cholesky factorization at a computational cost of O(N3)
flops (where N is the horizon length of the MPC problem).
Alternatively, the backward Riccati recursion [12], [14],
[15] or the Schur complement method [4], [17] can be
employed to solve the sparse formulation of the linear MPC
problem at a computational cost of O(N) flops. Despite
the favorable scalability in N of the methods operating on
the sparse formulation, condensing can be competitive also
in a Nonlinear MPC (NMPC) framework [16], especially
after the recent development of efficient Hessian condensing
algorithms [1], [3], [7], [11].

In [2], the author makes redundant the question of whether
the sparse or the condensed formulation is preferable, by
proposing techniques to control the level of sparsity in MPC
problems, trading off horizon length for input vector size.
This degree of freedom in the formulation of the MPC
problem can be employed to find the optimal level of sparsity
given the Quadratic Programming (QP) solver at hand, e.g.
the one minimizing the flop count. In particular, the horizon

1 Department of Microsystems Engineering, University of
Freiburg {gianluca.frison , dimitris.kouzoupis
, moritz.diehl} at imtek.uni-freiburg.de.

2 Department of Applied Mathematics and Computer Science, Technical
University of Denmark {giaf , jbjo} at dtu.dk.

length can be reduced at the expense of a larger input vector
size (partial condensing), or conversely the input vector
size can be reduced at the expense of a larger horizon
length (sequential update). For the Riccati recursion solver
considered in [2], it is found that if roughly nx > nu (where
nx is the state vector size and nu is the input vector size) a
decrease in the horizon length leads to a reduction in the flop
count, while if roughly nx < nu an increase in the horizon
length leads to a reduction in the flop count.

The authors in [13] investigate the use of partial con-
densing (named block condensing therein) in the framework
of NMPC. When employed in conjunction with the dual
Newton strategy, as implemented in the software qpDUNES
[5], partial condensing may bring further computational
benefits beyond the flop count reduction, due to the decrease
of the required number of outer Newton iterations [13].

In the current paper, only the partial condensing case is
considered. In the solution of linear MPC problems (and
more generally linear Optimal Control Problems (OCP)),
the partial condensing procedure can be performed off-
line, and therefore the efficiency of the partial condensing
algorithm itself is of limited interest. However, in the NMPC
framework, the partial condensing algorithm is performed
on-line, at each Sequential Quadratic Programming (SQP)
iteration. Therefore, in this paper a condensing procedure
specially tailored to partial condensing is proposed. This
algorithm takes into account the fact that a state component
is retained as an optimization variable at each stage of the
partially condensed OCP and it exploits the lack of terminal
cost in the OCP sub-problems being condensed. This is
investigated in Section IV, while Sections II and III recall
the linear OCP and the partial condensing idea.

A Riccati-based Interior Point Method (IPM) is employed
for the solution of linear OCPs. An efficient implementation
of the backward Riccati recursion is described in [10]. The
optimal horizon length Np for the partially condensed OCP
is investigated both from a theoretical point of view and
by benchmarking. In the latter case, the performance of
linear algebra routines for different matrix sizes plays a key
role. The linear algebra routines are implemented using the
high-performance techniques proposed in [8], [9]. This is
investigated in Sections V and VI.

Finally, partial condensing reformulates the state bounds
of the original OCP into general mixed linear constraints that
depend on all inputs and initial state of each condensed stage.
In an IPM these constraints are computationally much more
expensive than bounds. In OCP formulations with many
state bounds, this extra cost can destroy the computational

2016 IEEE 55th Conference on Decision and Control (CDC)
ARIA Resort & Casino
December 12-14, 2016, Las Vegas, USA

978-1-5090-1837-6/16/$31.00 ©2016 IEEE 4457

advantages due to partial condensing. However, since each
state depends on the inputs only at previous stages, the
constraint matrix is block triangular. If this structure is
exploited, these constraints can be processed much cheaper
than general constraints, in case of OCPs with many states
and long horizon. This is investigated in Section VII.

II. PROBLEM FORMULATION

In this paper, linear OCPs are assumed to be QPs in the
special form

min
u,x

φ =

N−1∑
n=0

1

2

unxn
1

T Rn Sn rn
STn Qn qn
rTn qTn 0

unxn
1

+

+
1

2

[
xN
1

]T [
QN qN
qTN 0

] [
xN
1

]
s.t. x0 = x̂0

xn+1 = Anxn +Bnun + bn

uln ≤ un ≤ uun
xln ≤ xn ≤ xun
dln ≤ Cnxn +Dnun ≤ dun

(1)

The cost function has linear and quadratic terms in both un
and xn for n = 0, . . . , N−1, plus the terminal cost on xN at
the last stage. The dynamics are described by a state-space
equation. There are bounds on inputs and states at all stages,
plus general constraints at all stages.

If the constraint on the initial value of x0 is retained, this
is a MPC problem. If conversely it is dropped, this is in the
form of a Moving Horizon Estimation (MHE) problem.

III. IDEA AND NOTATION

This section recalls the idea of partial condensing through
an example and introduces the notation used in the remainder
of the paper. Let us consider an OCP with horizon length
N = 6, and let us define the partition of the state and
input vectors such that the states and inputs of Nc = 3
consecutive stages are grouped together into blocks (i.e.
groups of consecutive stages).

x̄ =

x0
x1
x2
x3
x4
x5
x6

=̇

x̄0x̄3
x6

 , ū =

u0
u1
u2
u3
u4
u5

 =̇

[
ū0
ū3

]
.

These can be seen as the state and input vector of an OCP
with horizon length Np = N/Nc = 2. The cost function
matrices and vectors can be partitioned accordingly,

Q̄ =

Q̄0 0 0
0 Q̄3 0
0 0 Q6

 , q̄ =

q̄0q̄3
q6

 ,
S̄ =

[
S̄0 0 0
0 S̄3 0

]
, R̄ =

[
R̄0 0
0 R̄3

]
, r̄ =

[
r̄0
r̄3

]
.

Therefore the cost function can be rewritten as

φ =

Np−1∑
i=0

1

2

[
ūk
x̄k

]T [
R̄k S̄k
S̄Tk Q̄k

] [
ūk
x̄k

]
+

[
r̄k
q̄k

]T [
ūk
x̄k

]
+ φN

=

Np−1∑
i=0

φ̄k + φN

where k := Nci and φN is the terminal cost.
The idea of partial condensing is to remove all but the

first state component in each block by means of condensing.
A block of Nc stages is condensed into a single stage (that
motivates the name block condensing). If the original OCP
is an MPC problem, 1 out of the Np sub-problems are in
MPC form (i.e. the initial state is fixed) and Np − 1 are in
MHE form (i.e. the initial state is an optimization variable).
In the case that the original OCP is an MHE problem, all
Np sub-problems are in the MHE form.

Given an horizon of Nc = 3 within each block, the state
vector x̄k can be computed as function of the initial state xk
and the inputs ūk of the block, as

x̄k = Γx,kxk + Γu,kūk + Γb,k (2)

where

Γx,k =

 I
Ak

Ak+1Ak

 , Γu,k =

 0 0 0
Bk 0 0

Ak+1Bk Bk+1 0

 ,
Γb,k =

 0
bk

Ak+1bk + bk+1

 .
(3)

The initial state of the following block, xk+Nc = xk+3, can
be computed as a function of the initial state xk and the
inputs ūk of the current block as

xk+Nc = Ākxk + B̄kūk + b̄k, (4)

where the matrices
Āk = Ak+2Ak+1Ak

B̄k =
[
Ak+2Ak+1Bk Ak+2Bk+1 Bk+2

]
b̄k = Ak+2(Ak+1bk + bk+1) + bk+2

(5)

can be seen as an extra block-row of the matrices Γx,k, Γu,k
and Γb,k. Equation (4) is the state-space equation of a linear
OCP with horizon Np = 2, that has the same state vector
size nx and a larger input vector size Ncnu. By using (2),
φ̄k can be rewritten as function of the initial state xk and
the inputs ūk of each block

φ̄k =
1

2

[
ūk
xk

]T [
HR,k HS,k

HT
S,k HQ,k

] [
ūk
xk

]
+

[
gr,k
gq,k

]T [
ūk
xk

]
where

HR,k = ΓTu,kQ̄kΓu,k + ΓTu,kS̄
T
k + S̄kΓu,k + R̄k

HS,k = ΓTu,kQ̄kΓx,k + S̄kΓx,k

HQ,k = ΓTx,kQ̄kΓx,k

gr,k = ΓTu,kQ̄kΓb,k + S̄kΓb,k + ΓTu,kq̄k + r̄k

gq,k = ΓTx,kQ̄kΓb,k + ΓTx,kq̄k

4458

About constraints, input bounds are unaffected by the
partial condensing procedure, while both general constraints
and state bounds get in the form of general constraints.

By inserting (2) into the expression for a general constraint

d̄lk ≤ C̄kx̄k + D̄kūk ≤ d̄uk
the result is still a general constraint

d̄lk−C̄kΓb,k ≤ C̄kΓx,kxk+(D̄k+C̄kΓu,k)ūk ≤ d̄uk−C̄kΓb,k.

By inserting (2) into the expression for a state bound

x̄lk ≤ x̄k ≤ x̄uk
the result is no longer a state bound, but rather a general
constraint

x̄lk − Γb,k ≤ Γx,kxk + Γu,kūk ≤ x̄uk − Γb,k.

However, the matrix Γu,k is block-triangular, and this can be
exploited in tailored algorithms, as shown in Section VII.

In the following, only input bounds and state bounds of
the original OCP are considered.

IV. PARTIAL CONDENSING ALGORITHMS

As already noticed, the expression for the state-space
system matrices Āk, B̄k and b̄k can be obtained considering
them as an extra block-row in the matrices Γx,k, Γu,k
and Γb,k respectively. The algorithm to compute all these
matrices can be easily obtained by inspecting the expressions
in (3) and (5), and it has a computational cost of about
2Ncn

3
x +N2

c n
2
xnu flops.

In principle, any Hessian condensing algorithm can be
employed to obtain the expressions for the cost function
matrices of the partially condensed OCP, by condensing
the Np sub-problems. However, since most of these sub-
problems are in the MHE form, one should employ an
algorithm performing well in the case where the initial state
is an optimization variable.

In [8], three different Hessian condensing algorithms are
compared. In the MHE case, an algorithm proposed therein
is found to be the best choice for nearly all problem sizes.
The algorithm employs a recursion that has analogies with
the backward Riccati recursion to simultaneously compute
all quantities needed in the construction of the condensed
Hessian matrix and gradient vector

Hk =

[
HR,k HS,k

HT
S,k HQ,k

]
, gk =

[
gr,k
gq,k

]
,

for the cost function of the condensed OCP. Furthermore, the
algorithm can be tailored to the case of terminal cost equal
to zero (i.e. Qk+Nc

= 0 and qk+Nc
= 0) which nearly is a

reduction by one stage of the horizon length Nc.
The algorithm is summarized in Algorithm 1, where (to

keep the notation lighter) the stages of the OCP sub-problem
are indicated as ranging between 0 to Nc, and the index k
is dropped. If Nc stages are condensed, the computational
cost of the algorithm is of about N2

c nxn
2
u + 7

3Ncn
3
x flops.

In case of state bounds in the original OCP, the constraint
matrices relative to xk and ūk (Γx,k and Γu,k, respectively)
are available at no additional computational cost.

Algorithm 1 Computation of HQ, HS , HR, gq , gr, assuming
QN = 0 and qN = 0

Require:
Γx, Γu, Γb

1:

DNc−1

MT
Nc−1 PNc−1

mT
Nc−1 pTNc−1 ∗

←
RNc−1

STNc−1 QNc−1

rTNc−1 qTNc−1 ∗

2: HR[Nc − 1, Nc − 1]← DNc−1

3: HR[Nc−1, 0 : Nc−2]←MNc−1 ·Γu[Nc−1, 0 : Nc−2]
4: HS [Nc − 1]←MNc−1 · Γx[Nc − 1]
5: gr[Nc − 1]← mNc−1 +MNc−1 · Γb[Nc − 1]
6: for i← Nc − 2, . . . , 0 do

7:

[
L00

L10 ∗

]
←
[
Pi+1

pTi+1 ∗

]1/2

8: ATL ←

BTiATi
bTi

 · L00 +

L10

9:

 Di

MT
i Pi

mT
i pTi ∗

←
RiSTi Qi
rTi qTi ∗

+(ATL)·(ATL)T
10: HR[i, i]← Di

11: HR[i, 0 : i− 1]←Mi · Γu[i, 0 : i− 1]
12: HS [i]←Mi · Γx[i]
13: gr[i]← mi +Mi · Γb[i]
14: end for
15: HQ ← P0

16: gq ← p0

V. CHOICE OF Np: THEORETICAL CONSIDERATIONS

This section investigates the choice of the optimal Np
based on the flop count of algorithms. The backward Riccati
recursion in [10] and an iteration of the Riccati-based IPM in
[9] are considered, and their computational cost is modeled
considering only terms cubic in the number of stage variables
nx and nu. Both algorithms are implemented such that the
number of states and inputs can vary stage-wise: therefore
Np is not constrained to be an integer divisor of N .

A. Backward Riccati recursion case
The flop count of the Riccati recursion in [10] is(

1
3n

3
x

)
+ (N − 1)

(
7
3n

3
x + 4n2xnu + 2nxn

2
u + 1

3n
3
u

)
+

+
(
n2xnu + nxn

2
u + 1

3n
3
u

)
(6)

where terms due to the last, middle and first stages are
grouped together.

Assumption 1: The flop count can be approximated as

N
(
7
3n

3
x + 4n2xnu + 2nxn

2
u + 1

3n
3
u

)
=

= n3xN
(

1
3m3 + 2

m2 + 4
m + 7

3

)
(i.e. assuming that the first and last stages together count for
a middle stage) where

m =
nx
nu

is the ratio between the number of states and inputs.

4459

-3

-2

-1

0

1

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

lo
g

1
0
(α

)

log10(m) = log10(nx / nu)

optimal input-horizon trade-off α

no states bounded
all states bounded

(a) Optimal α.

0

0.2

0.4

0.6

0.8

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

fl
o
p
 r

e
d
u
c
ti
o
n
 f
a
c
to

r

log10(m) = log10(nx / nu)

maximum flop reduction

no states bounded
all states bounded

(b) Maximum flop reduction factor f(m).

Fig. 1: Optimal input-horizon trade-off α and maximum flop
reduction factor as function of m = nx

nu
for an IPM iteration,

for the extreme case of no and all states bounded. The Riccati
recursion alone corresponds to the no-states-bounded case.

Assumption 2: The input vector size and the horizon
length can be traded off continuously. This means that the
horizon length in the partially condensed OCP can be chosen
as Np(α) = N

α for some α ∈ R, α > 0, and consequently
the input vector size in the partially condensed OCP is αnu
(i.e. α is the continuous counterpart of the block size Nc).

As a consequence, the computational cost to solve the par-
tially condensed OCP using the backward Riccati recursion
is of

n3x
N

α

(
1

3m3α
3 + 2

m2α
2 + 4

mα+ 7
3

)
(7)

flops, and it is a function of α. Notice that α > 1 corresponds
to a reduction of the horizon length (the case considered in
this paper), while α < 1 corresponds to an increase of the
horizon length (the case not considered). The minimizer of
the function can be found by setting its derivative to zero.
For α > 0, the minimum of this function is attained at

α = 0.94224m (8)

and it is a (linear) function of the ratio m only, depicted in
blue for 0.01 < m < 100 in Figure 1a. Since α ≈ m, the
maximum flop reduction is obtained by reducing the horizon
length for m < 1 and by increasing it for m > 1.

The approximate maximum flop reduction factor is

f(m) =
n3x

N
α

(
1
3

1
m3α

3 + 2 1
m2α

2 + 4 1
mα+ 7

3

)
n3xN

(
1
3

1
m3 + 2 1

m2 + 4 1
m + 7

3

) =

=
8.6568m2(

7
3m

3 + 4m2 + 2m+ 1
3

) (9)

and it is a function of m only.
The function f(m) is plotted in blue for 0.01 < m < 100

in Figure 1b. Note that, for m ≈ 1 (i.e. nx ≈ nu) there is no
flop reduction (i.e. the OCP has already the optimal sparsity
level). The flop reduction gets significant only if nx and nu
are of rather different size.

In practice, the best value of Np is also affected by the
value of N , since a small value of N limits the number of
possible choices for the actual (integer) Np.

B. IPM iteration case

In case there are only bounds and no general constraints
in an OCP, the backward Riccati recursion is the compu-
tationally most expensive step at each iteration of an IPM.
However, in case of general constraints, their contribution
to the Hessian update at each IPM iteration is also a costly
operation. In the general case, it has a computational cost of

(n2xng) + (N − 1)(nx + nu)2ng + (n2ung)

flops, where ng is the number of general constraints at each
OCP stage.

In the partially condensed OCP, the state bounds at the
last stage remain in the form of state bounds, while at the
intermediate stages they have the constraint matrix[

Dn

Cn

]
=

[
Γu,n
Γx,n

]
that has size (αnu + nx) × (αng). At the first stage, the
constraint matrix is in the same form in the MHE case, while
it reduces to D0 = Γu,0 in the MPC case. In the worst case
(all states are bounded), it holds ng = nx, and therefore
the computational cost of the Hessian update at each IPM
iteration is of about (using Assumptions 1 and 2)

n3x
N
α

(
1
m2α

3 + 2
mα

2 + α
)

(10)

flops. The approximate total computational cost per IPM
iteration is given by the sum of (7) and (10), i.e.

n3x
N

α

(
(1
3m3 + 1

m2)α3 + (2
m2 + 2

m)α2 + (4
m + 1)α+ 7

3

)
(11)

flops. This expression is more complex than the one in (7)
and therefore it is not possible to obtain simple expressions
for the optimal α value and the maximum flop reduction
factor similar to (8) and (9). However, for each value of m,
the flop count expression (11) can be minimized numerically,
and the results are plotted in red in Figures 1a and 1b. Figure
1a shows that the optimal α is no longer a linear function
of m, and for large values of m the optimal block size is
smaller than in the backward Riccati recursion case. Figure
1b shows that, in case of m > 1 (i.e. nx > nu), the maximum
flop reduction that can be attained is much lower than in
the backward Riccati recursion case. E.g. for m = 100 (i.e.
nx = 100nu), the backward Riccati recursion has a flop
reduction factor of 0.036 (or about 27x speed-up), while the
IPM iteration has a flop reduction factor of 0.44 (or slightly
more than 2x speed-up) if all states are bounded.

4460

This shows that an analysis based on the backward Riccati
recursion alone may not accurately describe the behavior of
a Riccati-based IPM, in case there are many state bounds
in the original OCP formulation. In case not all states are
bounded in the original OCP formulation, the attainable flop
reduction is in between the two extremes, and interpolates
linearly with the number of state bounds per OCP stage.

VI. CHOICE OF Np: LINEAR ALGEBRA PERFORMANCE

This section investigates how the optimal choice of Np is
affected by the performance of the linear algebra routines.

The computational performance of linear algebra routines
generally depends on implementation choices and matrix
sizes. In particular, for linear algebra routines in HPMPC
[6], [9], the performance increases quickly for matrix sizes
up to about 20-50, and then it stabilizes close to the peak
throughput for matrices of size up to about 300-400, before
slightly decreasing due to lack of blocking for cache. The
exact intervals depend on the Instruction Set Architecture
(ISA) and on the specific linear algebra routine [8]. Linear
algebra routines can attain only a small fraction of the
peak throughput for very small matrices, affecting solver
performance in case of small-scale OCPs. Partial condensing
is therefore expected to further improve performance beyond
the flop reduction, due to the use of larger matrices.

Figure 2 investigates this through an example. Two un-
constrained MPC problems are considered, one small with
nx = 4 and nu = 1, and one large with nx = 40 and
nu = 10. Both problems have the same horizon length
N = 20, and the same ratio m = nx/nu = 4. Employing a
backward Riccati recursion, the formula (8) gives an optimal
(real) value of Np equal to 5.3, and the formula (9) a flop
reduction factor of 0.625.

In figure 2a it is plotted the flop count for the small MPC
problem for different values of Np when Assumptions 1 and
2 are dropped. The picture for the large MPC problem would
be identical, with the y axes scaled exactly by 1000 = 103

(the computational cost in (6) is cubic in nx and nu). The
optimal value of Np is equal to 4, for a flop count reduction
of 0.559. Starting from an Np value equal to N = 20 on the
right side of the plots, the flop count decreases steadily as
Np decreases until it reaches a minimum. For smaller values
of Np, the flop count quickly increases, and for Np = 1
it is larger than the one of the original MPC problem with
N = 20. Figures 2b and2c plot the running times. The red
curves are the results when the linear algebra routines are
provided by the C99 target ISA in HPMPC (optimal dgemm
kernel size of 4×4). For the large scale problem, the plot in
Figure 2c closely resembles the figures from the flop count.
However, for the small scale problem, the plot in Figure 2b is
rather different: the best value for Np is 2, and for Np = 1 the
solution time is much lower than the original MPC problem.
This is due to the fact that for such a small problem size,
there is a big advantage in replacing many operations on very
small matrices (smaller than the dgemm kernel size) with
fewer operations with larger matrices, where linear algebra
routines can attain a better performance (even if the flop

count increases). This trend gets even more clear for the
blue curves, where the linear algebra routines are provided
by the AVX2 target ISA in HPMPC (optimal dgemm kernel
size ok 12× 4).

These plots also show that, for small-scale OCPs, the
availability of powerful ISAs makes little difference on the
solution time of algorithms (Figure 2b), while it makes big
difference for larger-scale OCPs (Figure 2c). The use of
partial condensing can help to better exploit powerful ISAs
also for small-scale OCPs.

VII. EFFICIENT HANDLING OF STATE BOUNDS

Partial condensing can be employed as a preparation step
before the call to a Riccati-based IPM solver in order to
change the size of the linear MPC problem. Two IPM
versions are tested. The one has not been tailored to take
advantage of the special structure of the matrix Γu, and
therefore it is processed as the constraint matrix of general
constraints. The other has been tailored to exploit the block-
triangular structure of the matrix Γu.

The test problem is the mass-spring problem [17] with
N = 20, nx = 20 and nu = 2. In the original MPC
problem, all states are bounded: this is the worst case for the
application of partial condensing. The value of m = nx/nu

is equal to 10, which in case all states are bounded gives an
optimal value of α of 2.9 (i.e. optimal (real) Np ≈ 6.9) and
a flop reduction factor of about 0.74. As a comparison, in
case there are no state bounds the same value of m gives an
optimal value of α equal to 9.4 (i.e. optimal (real) Np ≈ 2.1)
and a flop reduction factor of about 0.31 (i.e. a much larger
flop reduction).

The plot in Figure 3a shows the actual flop count for an
IPM iteration, computed dropping Assumptions 1 and 2. The
minimum flop count is attained for Np = 6, and the flop
reduction factor is 0.64. Figure 3b shows the solution time
when the state bounds for the original OCP are processed as
general constraints for the partially condensed OCP. The cost
of performing partial condensing on-line (as e.g. in an NMPC
framework) is small and increases steadily as Np decreases.
The solution time for 10 IPM iterations resembles the flop
count picture, with the best Np equal to 4 for a solution
time reduction factor of 0.72. If the partial condensing cost
is added, the best Np is equal to 5 for a smaller solution
time reduction factor of 0.81.

Figure 3c shows the solution time when the block-
triangular structure of Γu is exploited while processing the
constraint matrix associated with the partial condensing of
state bounds: for small values of Np there is clearly an
improvement. However, for this specific problem size, there
is very little improvement in the solution time reduction for
the optimal Np, that is equal to 4 for a solution time reduction
factor equal to 0.78.

Therefore, the exploitation of the block-triangular structure
of the matrix Γu is advantageous only if the block size Nc
is large, and this is the case if both m and N are large, i.e.
for an OCP with many more states than inputs and a long
horizon.

4461

0

1

2

3

4

5

0 5 10 15 20

⋅
 1

0
3
 f

lo
p

s

Np

N = 20, nx = 4, nu = 1

(a) Small-scale, flops.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20

ti
m

e
 [

µ
 s

]

Np

N = 20, nx = 4, nu = 1

AVX2 ISA
C99 ISA

(b) Small-scale, time.

0

100

200

300

400

500

600

700

800

0 5 10 15 20

ti
m

e
 [

µ
 s

]

Np

N = 20, nx = 40, nu = 10

AVX2 ISA
C99 ISA

(c) Large-scale, time.

Fig. 2: Flop count / solution time for the reformulations of a small and a large unconstrained MPC problem obtained using
partial condensing for different values of Np (Np = 20 is fully sparse, Np = 1 is fully condensed). The test processor is
Intel Core i7 4800MQ, C99 and AVX2 ISAs in HPMPC.

0

1

2

3

4

5

6

7

8

0 5 10 15 20

⋅
 1

0
5
 f

lo
p

s

Np

N = 20, nx = 20, nu = 2, nb = 22

(a) IPM, flops per iteration.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20

ti
m

e
 [
m

s
]

Np

N=20, nx=20, nu=2, nb=22

part cond
IPM 10 iter

total

(b) IPM, time, general.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20

ti
m

e
 [
m

s
]

Np

N=20, nx=20, nu=2, nb=22

part cond
IPM 10 iter

total

(c) IPM, time, tailored.

Fig. 3: Flop count / solution time for the reformulations of a MPC problem, obtained using partial condensing for different
values of Np. The MPC problem is solved using a Riccati-based IPM, with state bound processed as general constraints
(center) or as tailored constraints for partial condensing (right). Test processor is Intel Core i7 3520M, AVX ISA in HPMPC.

VIII. CONCLUSION

This paper investigates the use of partial condensing as
a technique to speed-up the solution of linear OCPs in an
NMPC framework by using a Riccati-based IPM. Thanks to
the use of a Hessian condensing algorithm specially tailored
to partial condensing, the partial condensing algorithm itself
accounts for a small fraction of the total solution time. For
small-scale OCPs, partial condensing decreases the solution
times well beyond the flop reduction, replacing many opera-
tions on small matrices with few operations on large matrices
(linear algebra performs better as the matrix size increases).
In this framework, partial condensing allows to better exploit
hardware throughput also for small-scale OCPs.

REFERENCES

[1] J. Andersson. A General-Purpose Software Framework for Dynamic
Optimization. PhD thesis, Faculty of Engineering Science, K.U.
Leuven, Heverlee, Belgium, 2013.

[2] D. Axehill. Controlling the level of sparsity in MPC. Systems &
Control Letters, 76:1–7, 2015.

[3] D. Axehill and M. Morari. An alternative use of the Riccati recursion
for efficient optimization. Systems & Control Letters, 61:37–40, 2012.

[4] A. Domahidi, A. Zgraggen, M. N. Zeilinger, M. Morari, and C. N.
Jones. Efficient interior point methods for multistage problems arising
in receding horizon control. In IEEE Conference on Decision and
Control (CDC), pages 668 – 674, Maui, HI, USA, December 2012.

[5] J. V. Frasch, S. Sager, and M. Diehl. A parallel quadratic programming
method for dynamic optimization problems. Mathematical Program-
ming Computations, 7(3):289–329, 2015.

[6] G. Frison. HPMPC. https://github.com/giaf/hpmpc.git.

[7] G. Frison. Numerical methods for model predictive control. Mas-
ter’s thesis, Department of Informatics and Mathematical Modelling,
Technical University of Denmark, Kgs. Lyngby, Denmark, 2012.

[8] G. Frison. Algorithms and Methods for High-Performance Model Pre-
dictive Control. PhD thesis, Department of Applied Mathematics and
Computer Science, Technical University of Denmark, Kgs. Lyngby,
Denmark, 2016.

[9] G. Frison, H. H. B. Sørensen, B. Dammann, and J. B. Jørgensen. High-
performance small-scale solvers for linear model predictive control. In
IEEE European Control Conference, pages 128–133. IEEE, 2014.

[10] G. Frison and J. B. Jørgensen. Efficient implementation of the Riccati
recursion for solving linear-quadratic control problems. In IEEE Multi-
conference on Systems and Control, pages 1117–1122. IEEE, 2013.

[11] G. Frison and J. B. Jørgensen. A fast condensing method for solution
of linear-quadratic control problems. In IEEE Conference on Decision
and Control, pages 7715–7720. IEEE, 2013.

[12] J. B. Jørgensen, J. B. Rawlings, and S. B. Jørgensen. Numerical
methods for large-scale moving horizon estimation and control. In
Int. Symposium on Dynamics and Control Process Systems (DYCOPS),
volume 7, 2004.

[13] D. Kouzoupis, R. Quirynen, J. V. Frasch, and M. Diehl. Block
condensing for fast nonlinear MPC with the dual Newton strategy. In
5th IFAC Conference on Nonlinear Model Predictive Control, 2015.

[14] C. V. Rao, S. J. Wright, and J. B. Rawlings. Application of interior-
point methods to model predictive control. Journal of optimization
theory and applications, 99:723–757, 1998.

[15] M. C. Steinbach. A structured interior point SQP method for nonlinear
optimal control problems. Springer, 1994.

[16] M. Vukov, A. Domahidi, H. J. Ferreau, M. Morari, and M. Diehl.
Auto-generated algorithms for nonlinear model predictive control on
long and on short horizons. In IEEE Conference on Decision and
Control, pages 5113–5118. IEEE, 2013.

[17] Y. Wang and S. Boyd. Fast model predictive control using online
optimization. In IFAC World Congress, pages 6974 – 6997, Seoul,
July 2008.

4462

