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Abstract

Optimization based control strategies, such as Nonlinear Model Predictive Con-
trol (NMPC) and Moving Horizon Estimation (MHE), have become popular tech-
niques for real-time control of various physical systems. However, in the context
of embedded optimization, systems with fast dynamics are still a challenge. The
simulation of the model and its sensitivity propagation are key tasks that have to
be carried out frequently within most NMPC algorithms. Thus, it is critical for an
optimal control software package to have efficient algorithms for these tasks available.
A software package for optimal control, that was recently developed by the team of
Prof. Moritz Diehl, is acados. The development of integration schemes in acados,
also called integrators, constitutes a major part of this thesis. In the following, the
main contributions of this thesis are summarized.
The Implicit Runge-Kutta (IRK) integrator is maintained and extended to support
differential-algebraic equations (DAE) and the option to propagate exact second order
sensitivities.
The previous work on structure exploitation within IRK methods are presented and
compared. A dynamic system structure, which can also treat index-1 DAEs and is
called “Generalized Nonlinear Static Feedback” (GNSF), combines the approaches that
exploit linear dependencies within the dynamic model. An efficient IRK scheme that
exploits the GNSF structure, thus called GNSF-IRK, was derived and implemented
in acados with the option to efficiently propagate forward and adjoint first order
sensitivities.
Additionally, an algorithm is proposed that can automatically transcribe most index-1
DAE systems into the presented GNSF structure, such that the GNSF-IRK scheme
can be used conveniently.
Within numerical experiments, both the transcription algorithm and GNSF-IRK are
applied to various dynamic models, of which some are correspond to industrial wind
turbines. The analysis of the experiments shows how the algorithms should be used
and how GNSF-IRK can outperform the standard IRK method.





Zusammenfassung

Nichtlineare modellprädiktive Regelung (NMPC) und Zustandsschätzung auf be-
wegten Horizonten (MHE) sind bekannte Echtzeitbetriebsführungsstrategien für eine
Vielfalt an physikalischen Systemen. Im Bereich der eingebetteten Echtzeitopti-
mierung sind Systeme mit schneller und nichtlinearer Dynamik jedoch immer noch
eine Herausforderung. Die Simulation des Modells und seine Sensitivitätsanalyse sind
Kernaufgaben, die im Rahmen der meisten NMPC Algorithmen häufig ausgeführt
werden müssen. Für Softwarepakete im Bereich der optimalen und eingebetteten
Steuerung ist es daher entscheidend effiziente Algorithmen für derartige Aufgaben
bereitzustellen.
Ein solches Softwarepaket für optimale Steuerung, das jüngst im Team von Prof.
Moritz Diehl entwickelt wurde, ist acados. Die hier vorgestellte Arbeit hat zur
Entwicklung der Simulationsalgorithmen in acados, auch genannt Integratoren,
wesentlich beigetragen. Im Folgenden, werden die wichtigsten Aspekte dieser Arbeit
zusammengefasst.
Der implizite Runge-Kutta (IRK) Integrator wurde gepflegt und erweitert, sodass
auch die Simulation differentiell-algebraischer Gleichungen (DAE) und die Option
der Sensitivitätsanalyse zweiter Ordnung unterstützt wird.
Frühere Arbeiten zu IRK Algorithmen, welche die Struktur der Newton-Matrix nutzen,
werden dargestellt und verglichen. Die Struktur eines dynamischen Systems, das
auch index-1 DAEs handhaben kann und “Verallgemeinerte Nichtlineare Statische
Rückkopplung” (GNSF) genannt wird, wird präsentiert. Diese Struktur kombiniert
die Ansätze, lineare Abhängigkeiten der Systemdynamik zu nutzen. Ein effizientes
IRK Verfahren, das die GNSF Struktur ausnutzt (GNSF-IRK), wurde hergeleitet und
im Rahmen von acados implementiert. Der Algorithmus bietet auch die Möglichkeit
herkömmliche und adjungierte Sensitivitäten erster Ordnung zu propagieren.
Zusätzlich wird ein Algorithmus vorgestellt, welcher automatisch die meisten index-1
DAE Modelle in die präsentierte GNSF Struktur umschreiben kann, um das GNSF-
IRK Verfahren praktikabel nutzen zu können.
In numerischen Experimenten wird der Algorithmus zum Umschreiben des dynamis-
chen Systems und GNSF-IRK an verschiedenen Modellen getestet, von denen einige
die Dynamik industrieller Windenergieanlagen modellieren. Die Analyse der Exper-
imente zeigt, wie die Algorithmen genutzt werden sollten und wie GNSF-IRK das
gewöhnliche IRK Verfahren bezüglich der Rechenzeit schlagen kann.
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1 Introduction

Recently, the team led by Prof. Moritz Diehl developed a modular software package
for embedded optimization named acados [1; 2], which gathers a variety of numerical
algorithms for Nonlinear Model Predictive Control (NMPC) that are implemented in
C using the efficient basic linear algebra library BLASFEO [3; 4] such that it is high
performing and can be used on embedded hardware.
In the NMPC framework, numerical optimization methods, such as Interior Point (IP)
or Sequential Quadratic Programming (SQP) methods, are applied to a Nonlinear
Programming (NLP) formulation which arises from an Optimal Control Problem
(OCP) via discretization. The simulation of a dynamic model and sensitivity propaga-
tion, i.e. computing the derivatives of the simulation result with respect to the initial
state and control, are key tasks that often have to be carried out within high-level
optimal control algorithms. Thus, it is critical to have efficient integration schemes
with sensitivity propagation available that can be called by the high-level algorithms
and which we refer to as integrators.
The work described in this thesis deals with the development of such efficient and
structure exploiting integrators for acados.

1.1 Real-Time Optimization

Optimization based control techniques like Model Predictive Control (MPC) and
Moving Horizon Estimation (MHE) enjoy a growing popularity as their application
has become real-time feasible for a growing variety of applications. In this section,
we briefly introduce the formulation and solution of real-time estimation and optimal
control problems presented in [5; 6].
Figure 1 shows the concept of estimation-based feedback control and how the basic
components, controller, estimator and the real system, also referred to as plant [7],
interact with each other. In this framework, some variables of the system are measured
with a certain sample frequency. Using these measurements and the applied control,
the estimator (e.g. MHE) determines an estimate of the current state of the system
and possibly some parameters. Given these estimates, the constraint and objective
functions together with a dynamic model, the NMPC controller calculates the next
values of the “optimal” control input, which is then applied to the system.
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Figure 1: Illustration of the Estimation-based Feedback Control Framework. It is shown
how the controller, the estimator and the system interact with each other.

First used in chemical engineering, real-time estimation and control algorithms be-
come evermore popular [8]. Due to increasingly sophisticated hardware and embedded
optimization software, sampling times have been reduced from several minutes to
microseconds [9] making it feasible for fast changing systems [10]. Moreover, opti-
mization based control is very flexible as one can easily change the problem functions
(objective and constraints) and deal with disturbances.

1.1.1 Nonlinear Model Predictive Control

As for both techniques MPC and MHE, a model is needed to describe the system of
interest, we assume the following controlled implicit Ordinary Differential Equation
(ODE) system to model our system on the horizon [0, T ]:

f(t, ẋ(t), x(t), u(t)) = 0, t ∈ [0, T ] . (1.1)

Hereby, t ∈ R denotes the continuous time, u : R→ Rnu the controls, x : R→ Rnx

the differential states and ẋ(t) = dx
dt their time-derivative. It is assumed that the

corresponding initial value problems (IVP) have a unique solution. For sufficient
conditions on f for the existence and uniqueness of the solution, we refer to the
famous Picard-Lindelöf Theorem [11; 12].
Within MPC, different instances of an optimal control problem (OCP) have to be
solved repeatedly. The continuous time formulation of a general OCP can be written
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as follows [7; 12],

minimize
x(·), u(·)

∫ T

0
L(t, x(t), u(t)) dt+M(x(T )) (1.2a)

subject to 0 = x(0)− x̄0, (1.2b)

0 = f(t, x(t), ẋ(t), u(t)), (1.2c)

0 = g(t, x(t), u(t)), (1.2d)

0 ≥ h(t, x(t), u(t)) for all t ∈ [0, T ]. (1.2e)

The objective, (1.2a) is built as a combination of the way-cost, or Lagrange term,
L(·) and the end-cost, or Mayer term, M(·) [13]. Additionally, we introduced the
path constraints using g(·) for the equalities and h(·) for the inequalities.
Note that in many applications both L(·) and M(·) are least-square functions because
they are used within tracking formulations. This property is very handy as specialized
methods can be applied, e.g. Gauss-Newton Hessian approximations can be used
efficiently [14].
The MPC approach can now be described by the following steps [12]:

1. Get estimate of current state x̄0 and possibly some parameters from the esti-
mator.

2. Solve the OCP (1.2) approximately. This has to be done fast and in deterministic
runtime, since the sampling time T s is a strict upper bound.

3. Apply the optimal control solution u(t), t ∈ [0, T s].

4. Repeat after a fixed sampling time T s.

In the following, the direct time dependency of the functions L, f, g, h will be omitted.
Firstly, because they are rather rare in the context of MPC, and secondly because
models with time dependency can be reformulated by introducing an additional “clock
state” [14].

1.1.2 Moving Horizon Estimation

The optimization problem which has to be solved repeatedly in MHE is very similar
to the OCP (1.2). However, within MHE the controls u(t) are known as they are
provided to the estimator, see Figure 1. For the dynamic system used in the MHE
optimization problem, disturbances w(t) are introduced to represent the plant-model
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mismatch, resulting in the following ODE formulation

0 = f(t, x(t), ẋ(t), u(t), w(t)). (1.3)

The OCP that needs to be solved in MHE is based on the measurements that are
forwarded to the estimator and could be formulated as

minimize
x(·), w(·)

∫ T e

0
L(t, x(t), u(t), w(t)) dt+M(x(T e)) (1.4a)

subject to 0 = f(t, x(t), ẋ(t), u(t), w(t)), (1.4b)

0 = g(t, x(t), u(t), w(t)), (1.4c)

0 ≥ h(t, x(t), u(t), w(t)) for all t ∈ [0, T e]. (1.4d)

The estimation is then given by x(T e). The main differences in comparison to the
OCP (1.2) are that firstly u(t) is given and the disturbances w(t) can be seen as
inputs and secondly that the initial state x(0) is free [12; 7].
Note that all the presented OCPs are still of infinite dimension. In the following,
we will only regard the OCP (1.2) to explain how an approximation of the optimal
solution can be computed. Thus, the continuous time problem will be discretized,
such that it can be tackled with numerical methods.

1.1.3 Optimal Control Algorithms

In optimal control, most algorithms are based on direct methods, in which first the
OCP (1.2) is discretized and then a Newton-type optimization method is applied to
get an approximation of the optimal solution.
The alternative is the indirect approach. Here, first differential equations are derived
to describe the optimal solution via Pontryagins Maximum Principle (PMP) and
then these equations are solved in discrete time [15; 14]. In this thesis, only the direct
approach is considered further.
For the discretization, an appropriate parametrization of the control inputs u(t) is
needed. Most often, a piecewise constant control parametrization is chosen, but
there are more general parametrizations, like piecewise polynomials of some fixed
degree. Let us assume that the time horizon [0, T ] is discretized into N shooting
intervals, parameterizing the functions x(·), u(·) as discrete variables x0, x1, . . . , xN

and u0, . . . , uN−1 respectively.
There are two ways to obtain the finite-dimensional optimization problem, the se-
quential and the simultaneous approach.
In the sequential approach, also called single shooting, the system simulation and
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the optimization are performed sequentially in each iteration. Therefore, only
x0, u0, . . . , uN−1 are kept as optimization variables, whereas x1, . . . , xN are elimi-
nated using the fact that the state trajectory of the solution is given by the initial
state x0 and the control inputs. For the simulation part, one can use integrators, as
presented later in this thesis.
In contrast to the above, using the simultaneous approach, the whole parametrization
x0, . . . , xN , u0, . . . , uN−1 is kept as optimization variables and the simulation and
optimization tasks are performed simultaneously in one Newton-type iteration. This
can be done using either Multiple Shooting (MS) or a direct transcription method, of
which the most popular subclass is the family of direct collocation methods [14; 16].
The simultaneous approach leads to an optimization problem which has much more
variables and inherently a very specific structure, which involves a huge potential for
exploitation [17]. Both approaches result in very different convergence properties in
the Newton-type optimization. Especially for unstable or highly nonlinear systems,
faster local convergence rates are observed when using the simultaneous approach.
Intuitively, this is because the nonlinearity of the dynamics is equally distributed
over the horizon [18].
Using the discretization we introduced above, the following discrete MS formulation
can be derived from the continuous time OCP (1.2):

minimize
x0,...,xN∈Rnx ,
u0,...,uN−1∈Rnu

N−1∑
i=0

li(xi, ui) +M(xN ) (1.5a)

subject to x̄0 − x0 = 0, (1.5b)

xi+1 − ψ (xi, ui) = 0, i = 0, . . . , N − 1, (1.5c)

gi(xi, ui) = 0, i = 0, . . . , N − 1, (1.5d)

hi(xi, ui) ≤ 0, i = 0, . . . , N − 1. (1.5e)

Note that (1.5d), (1.5e) are relaxations of the corresponding constraints (1.2d) and
(1.2e), as they are only enforced on the shooting nodes. In practice, this often limits
the constraint violations sufficiently, when a relatively fine discretization is used [12].
Note that the equations (1.5c) refer to the simulation of the dynamic model in (1.1),
which is the task of an integrator.
In the MS formulation, any integrator could be used, including variable step and
variable order methods. However, for real-time applications, one has fix the code for
the integration over one shooting interval [19].
Including the equations of this integrator in the problem, a direct transcription
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formulation of the OCP is obtained:

minimize
x0,...,xN∈Rnx ,
u0,...,uN−1∈Rnu

N−1∑
i=0

l̃i(xi, ui) + M̃(xN ) (1.6a)

subject to x̄0 − x0 = 0, (1.6b)

xi+1 − ψ̃i (xi, zi, ui) = 0, i = 0, . . . , N − 1, (1.6c)

g̃i(xi, zi, ui) = 0, i = 0, . . . , N − 1, (1.6d)

h̃i(xi, zi, ui) ≤ 0, i = 0, . . . , N − 1. (1.6e)

This is a fully discretized OCP whereby zi ∈ Rnz denote the integration variables
and algebraic states. The fixed step integrator used to simulate the system from
time point k to k + 1 is denoted as ψ̃k and its internal variables are gathered in zk.
The function g̃i gathers the former equality constraints (1.5d) and the integration
equations. Hereby, we assume that the integration variables zi are uniquely defined
by the values xi and ui.
Note that ψ̃i represents a very general single-step integration scheme, as it could be
any RK method for a either an ODE or a DAE system. For the sake of completeness
a short introduction on Newton-type optimization is given in the next subsection.

1.2 Nonlinear Optimization and Newton’s Method

Nonlinear Optimization This section aims to give a brief introduction into the
terminology of nonlinear optimization.
Typically, within the field of nonlinear optimization, one regards a Nonlinear Pro-
gramming (NLP) formulation which has the following form

minimize
x ∈ Rn

F (x)

subject to g(x) = 0,

h(x) ≤ 0,

(1.7)

where F : Rn → R is the objective function and g : Rn → Rng , h : Rn → Rnh are
the equality and inequality constraints respectively. All problem functions, F, g, h
are assumed to be at least once continuously differentiable [14; 20]. Note that the
optimization problems in (1.6) and (1.5) are just structured NLPs.
The first order necessary conditions for the general NLP formulation (1.7) have been
derived by Karush, Kuhn and Tucker and are thus called KKT conditions [21].
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Definition 1.1 (KKT point) The triple (x∗, λ∗, µ∗) with λ∗ ∈ Rng , µ∗ ∈ Rnh , is a
KKT point of the NLP (1.7) if the following KKT conditions hold

∇F (x∗) +∇g(x∗)λ∗ +∇h(x∗)µ∗ = 0 (1.8a)

g(x∗) = 0 (1.8b)

h(x∗) ≤ 0 (1.8c)

µ∗i ≥ 0 ∀i = 1, . . . , nh (1.8d)

µ∗ihi(x
∗) = 0 ∀i = 1, . . . , nh. (1.8e)

Under some mild conditions on the constraints, thus called constraint qualifications,
one can state that for every local minimizer x∗ of NLP (1.7), there exist multipliers
λ∗, µ∗, such that (x∗, λ∗, µ∗) is a KKT point.

Newton-type Methods Newton’s method (also Newton-Raphson method) is one
of the most famous numerical methods [22]. To clarify the terminology, we want
to briefly point out the difference between Newton-type optimization methods and
Newton-type iterations to tackle root finding problems [23].
A Newton-type optimization method tries to find a KKT point by linearizing the
problem functions and performing iterations similar to a classical Newton’s method.
Newton-type iterations for root finding problems are just variants of the classical
Newton’s method, in which for example an approximation of the Hessian matrix is
taken instead of the exact one. They could be used within an IRK scheme to solve
the system of nonlinear equations. However, in this work, we restrict ourselves to
using the classical full-step Newtown’s method within IRK schemes.

1.3 Implementation and Software

This section aims at giving a brief overview on the software frameworks used within
this thesis project.

1.3.1 acados

acados is a recently developed modular open-source software package for embedded
optimization [1; 2]. It gathers a variety of numerical algorithms for NMPC that
are implemented in C using the efficient basic linear algebra library BLASFEO, see
Section 1.3.2.
In some sense, acados aims to replace the ACADO Toolkit which was widely used
and previously developed within the team led by Prof. Moritz Diehl [24; 18; 25; 26].
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The main paradigm of the ACADO Toolkit is code generation, which comes with
a high price to pay in flexibility, maintainability and extensibility of the software.
The new software package acados drops the code generation pradigm and aims to
combine the principles of flexibility, reproducibility, modularity and efficiency. The
algorithmic components in the C part of acados, such as integrators, come with a
generic C interface, through which any dynamic model, cost and constraint function,
etc. can be used. In principle, this code could be provided by any modeling tool with
the necessary differentiation and code generation capabilities, but typically, this is
realized by code generation in CasADi (presented in Section 1.3.3).

1.3.2 BLASFEO

BLASFEO stands for “Basic Linear Algebra Subroutines For Embedded Optimization”
and is a dense linear algebra library providing high-performance implementations of
BLAS- and LAPACK-like routines. Unlike other linear algebra libraries, it aims at
computational performance for small to medium matrices, i.e. for sizes up to a few
hundred, which typically occur within MPC [3; 4].
All implicit integrators in acados are implemented using BLASFEO to perform the
linear algebra operations. This ensures also the comparability of the results presented
in Chapter 5.

1.3.3 CasADi

The open-source software CasADi is a general-purpose numerical optimization frame-
work with a focus on optimal control. CasADi started as a tool for Algorithmic
Differentiation (AD) using a syntax similar to Computer Algebra Systems (CAS),
which explains the name. It is written in C++ and comes with an interface to Python,
Matlab and Octave [27; 28].
Important CasADi features, that are involved in the current acados workflow, are
the AD and C Code generation capabilities. The CasADi algorithms for Jacobian and
Hessian generation first calculate the sparsity pattern of the matrix of interest and
subsequently use a heuristic to find a minimal set of directional derivatives, from
which the full Jacobian can be constructed. Both are done using graph coloring
techniques [29].



2 Dynamic Systems, Integration
Methods and Sensitivity Propagation

This chapter is organized as follows. First, Section 2.1 gives a brief introduction into
the theory of dynamic systems. In Section 2.2, we introduce numerical integration
methods, which can be used to approximate trajectories of a dynamic system. Here,
the main focus are Runge-Kutta methods. Finally, Section 2.3 presents how these
integration methods can be extended to additionally compute the sensitivities of the
simulation result.

2.1 Controlled Dynamic Systems

In order to stay in the context of control, we want to introduce controlled dynamic
systems, i.e. systems that can be manipulated externally, [12].

2.1.1 Ordinary Differential Equations

Definition 2.1 We regard the time t ∈ R, the differential states x(t) ∈ Rnx and
control inputs u(t) ∈ Rnu . A system of Ordinary Differential Equations (ODE)
describes the dynamic evolution of the state vector x and can be written as

0 = f impl(ẋ(t), x(t), u(t)). (2.1)

Here, the notation ẋ(t) = ∂x(t)
∂t is used for the differential state derivatives and the

Jacobian matrix ∂f impl

∂ẋ is assumed to be invertible, ∀t.
We will sometimes regard the special case of an explicit ODE, which reads as

ẋ(t) = f expl(x(t), u(t)) (2.2)

We will often omit the time dependency and write f impl(ẋ, x, u) = 0, because in the
context of optimal control there is typically no time dependency and it simplifies the
notation.

2.1.2 Differential-Algebraic Equations

Some more complex physical systems can not easily be described by an ODE system.
Instead, they can be modeled naturally by a system of differential-algebraic equations.
A very popular example is the class of multibody systems, which are typically modeled
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by applying Lagrange mechanics on each of the present bodies and linking them by
algebraic constraints [30].

Definition 2.2 We introduce the differential states x(t) ∈ Rnx , control inputs
u(t) ∈ Rnu and the algebraic variables z(t) ∈ Rnz for time t ∈ R to define the
following set of (fully-implicit) Differential-Algebraic Equations (DAE) to describe
the behavior of a dynamic system

0 = f impl(ẋ(t), x(t), z(t), u(t)). (2.3)

The DAE is said to be of index 1, if the Jacobian matrix ∂f impl

∂ẋ,z is invertible.

The following definition, adapted from [31], introduces the differential index of a
DAE, which is often referred to just as “index of a DAE” [32].

Definition 2.3 The differential index of the DAE system (2.3) is defined as the
minimal i ∈ N such that the following system is an ODE

∂j

∂tj
f impl(ẋ(t), x(t), z(t), u(t)) = 0, for j = 0, . . . , i (2.4)

In contrast to the previous definition, one often regards a semi-explicit DAE, which
is more structured and can be written as

ẋ(t) = f expl(x(t), z(t), u(t)) (2.5a)

0 = g(x(t), z(t), u(t)) (2.5b)

where the function g(·) defines the algebraic equations. A semi-explicit DAE is of
index 1, if the Jacobian ∂g

∂z (·) is invertible. It should be mentioned that the structure
of a semi-explicit DAE can be exploited within integration schemes, as proposed in
[19, Sec. 4.1.3].
In the following part of this thesis, we will always assume DAE systems to be of
index 1. In practice, one usually reformulates high-index DAE systems until the
differential index is reduced to 1 or 0 by applying index reductions techniques, as
described in [33]. Therefore, the loss of generality here is rather small.

Definition 2.4 An index-1 DAE or ODE in combination with an initial condition
x(t0) = x0 and a given control trajectory u(t) on some time interval t ∈ [t0, T ] is
called an initial value problem (IVP)

0 = f impl(ẋ(t), x(t), z(t), u(t)), x(t0) = x0. (2.6)
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Remark 2.5 (Stiffness) In modern MPC applications, we often have to deal with
stiff dynamic models. These kind of models often occur when considering chemical,
biological, mechanical and electrical processes [34]. As there is no standardized
definition of stiffness, we cite the characterization of Hairer and Wanner, because it is
brief and states the most important property regarding numerical simulations: “Stiff
equations are problems for which explicit methods don’t work” [31]. This is strongly
connected to stability properties of numerical simulation methods, see Section 2.2.4.

2.2 Numerical Simulation

In this section, we treat the numerical approximation of the solution of an IVP (2.6).

2.2.1 General Linear Integration Methods

Numerical integration methods can be used to simulate a dynamic system forward in
time. Let us now regard the following time-dependent IVP

0 = f impl(t, ẋ(t), x(t), u(t)), x(tn) = xn. (2.7)

The time-dependent formulation helps to understand which values are used to ap-
proximate which trajectory at which point in time.
A numerical integration method provides an approximation xn+1 of x(tn+1), where
x(·) denotes the solution of the IVP (2.7).
One distinguishing characteristic is whether the method uses only the numerical
solution at the previous point xn, or a set of previously computed values xn, xn−1, . . .

and their function values. We refer to these kinds of methods as Single-step (also
one-step [35]) and Multistep methods respectively.
In order to have a general formulation available, we introduce the following flexible
notation for single-step methods

0 = G(xn,Kn, un), (2.8a)

xn+1 = Ψ(xn,Kn, un). (2.8b)

Within the scheme, first the integration equations gathered in G are solved (up to
some precision) for the integration variables Kn. Subsequently the simulation result
is obtained by an evaluation Ψ. In this thesis, we nearly exclusively deal with the
most important subclass of single-step methods, the Runge-Kutta methods, presented
in the next subsection.
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2.2.2 Runge-Kutta Methods

We regard Runge-Kutta (RK) methods, which use some function evaluations at
intermediate stage points in the interval [tn, tn+1] to define a numerical solution of
the IVP (2.7) at the end of this interval. We use the following general formulation of
a s-stage Runge-Kutta method

0 = f impl(tn,i, ki, xn + T int

s∑
j=1

aijkj , un) for i = 1, . . . , s, (2.9a)

xn+1 = Ψ(xn,Kn, un) = xn + T int

s∑
j=1

bjkj , (2.9b)

where we denote tn,i = tn + ciT int and use the coefficients aij , bj , ci for i, j = 1, . . . , s,
which fully characterize a RK method. These coefficient are typically neatly arranged
in a Butcher tableau, which reads as:

c A

b>

=

c1 a11 . . . a1s

...
...

...

cs as1 . . . ass

b1 . . . bs

(2.10)

Equation (2.9) is called the differential formulation of an RK method, as ki are
numerical approximations of ẋ(tn,i). In general, we first have to solve the implicit
Equation (2.9a) for ki and subsequently get the simulation result as a weighted sum
of the ki and xn. In the case of an explicit ODE, an RK method reads as:

ki = f expl(tn,i, xn + T int

s∑
j=1

aijkj , un) for i = 1, . . . , s (2.11a)

xn+1 = xn + T int

s∑
j=1

bjkj (2.11b)

Observe that in case of an RK method with strictly lower triangular matrix A,
i.e. aij = 0 for all j ≥ i, we can obtain the solution ki explicitly, successively for
i = 1, . . . , s. For this reason, RK methods with the property that matrix A is lower
triangular are called explicit RK methods (ERK), schemes without this property are
called implicit (IRK). The first introduced (1768) and most simple ERK scheme is
the explicit Euler method, which reads as

xn+1 = xn + T intf
expl(tn, xn, un).
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The Butcher tableau of this and other famous ERK schemes can be found in Table 1.

0

1

0
1
2

1
2

0 1

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

Table 1: Butcher tableaux of some famous ERK schemes: Explicit Euler, Midpoint Rule,
the Runge-Kutta method of order 4 (ERK4), from left to right.

2.2.3 Implicit Runge-Kutta Methods

Although for explicit ODEs the integration equations of an ERK method (2.11) are
very cheap to solve, it is often recommended to use an IRK method instead. In this
general case, Equation (2.9a) is a system of s nx nonlinear equations and variables,
which is typically solved by a Newton-type method, see Section 1.2.
The main benefits of IRK over ERK methods are:

• Higher order: There always exists an implicit method with s stages that is of
order 2s, while there is no ERK method with s stages that has an order larger
than s [19, p.15]. Moreover, there exists no ERK method with s ≥ 5 stages
that has the same order s, which is one reason why the ERK4 formula from
Table 1 is so popular.

• Better Stability Properties: These are especially important for stiff prob-
lems, a brief discussion is given in the next section.

2.2.4 Stability

In this section, a brief introduction on the stability concepts A- and L-stability is
given. Both of them are defined via the test problem ẋ(t) = λx(t) with x(0) = x0,
often referred to as Dahlquist’s equation [36]. The corresponding exact solution
is x(t) = x0 e

λt. Applying an RK method to this test problem and solving the
corresponding integration equations, we can calculate the factor between the initial
state xn and the simulation result xn+1 as an explicit function R, i.e.

xn+1 = R(T intλ)xn = R(z)xn, (2.12)
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where the shorthand notation z = T intλ is used. The region of absolute stability is
defined as

{ z ∈ C | |Re(z)| < 1 }. (2.13)

In the context of Dahlquist’s test problem, this is the set of values z, for which the
numerical solution converges to zero. The exact solution of the test problem converges
to zero for all λ ∈ C− and is therefore stable. The numerical solution should have
the same property which motivates the following definitions.

Definition 2.6 A numerical integration method is called A-stable, if its region of
absolute stability contains the left complex half-plane C−. Furthermore, a method
is called L-stable, if it is A-stable and for its stability function R the condition

lim
z→−∞

|R(z)| = 0 holds. It is important to use L-stable methods for the simulation of

stiff models, as stiff components are damped out faster [31].

The stability properties of collocation methods are mentioned in Section 2.2.5.

2.2.5 Collocation Methods

An intuitive idea for a numerical integration method is to approximate the solution of
the IVP (2.7) by a polynomial. In order to define a collocation method, let us regard
s distinct collocation points 0 ≤ c1 < c2 < · · · ≤ cs ≤ 1. We require the collocation
polynomial to be of degree s and to fulfill the s+ 1 conditions

p(tn) = xn, (2.14)

0 = f impl(tn,i, ṗ(tn,i), p(tn,i), u(tn,i)), (2.15)

at the time points tn,i = tn + ciT int for i = 1, . . . , s, since we know these hold for the
exact solution x(·).
The corresponding collocation integration method is defined by returning p(tn+1), the
evaluation of the collocation polynomial at the desired point of time tn+1 = tn + T int.
This concept is visualized in Figure 2.
A collocation method can be shown to be equivalent to an IRK method with a Butcher
tableau fully defined by the collocation points ci [35]. The remainder values of the
Butcher tableau can be obtained by

aij =

∫ ci

0
`j(τ)dτ, bi =

∫ 1

0
`j(τ)dτ, ∀ i, j = 1, . . . , s, (2.16)
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tn tn,1 tn,2
. . .

tn,q tn+1

p(t)

xn+1

ks

k2k1

xn

Figure 2: An illustration of the collocation principle. The Runge-Kutta integration variables
ki correspond to the derivative of the approximating polynomial at collocation times
tn,i. The output of the collocation method is the value of the polynomial at the final
time.

whereby the Lagrange polynomials `j(·) are given by

`j(t) =
s∏

k=1
k 6=j

t− ck
cj − ck

.

Since we have seen that a collocation method is fully defined by the choice of
collocation points ci, two optimal ways to choose them are presented in the following
paragraphs.

The Gauss-Legendre collocation method In this class of collocation methods
the nodes ci are chosen as the zeros of shifted Legendre polynomials of degree s. It
can be shown that the s-stage Gauss-Legendre method is of order 2s and A-stable
[31, p.72]. Moreover, it can be shown that an A-stable s-stage RK method is at most
of order 2s [31, Theorem 4.4]. Note that the order result refers to the endpoint tn+1.
For the internal stages p(tn,i) it is shown that they have an order of at least s [20,
p.313]. The first three sets of Gauss-Legendre nodes can be found in Table 2.

The Gauss-Radau IIA collocation method Another famous type of collocation
methods are the (Gauss-)Radau IIA methods, which are characterized by choosing
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the nodes c1, . . . , cs to be the zeros of following polynomial

∂s−1

∂zs−1

(
zs−1(z − 1)s

)
. (2.17)

The s-stage Radau IIA method is of order 2s−1 [31, p.73] and L-stable [12], which is a
desirable property for stiff problems. Moreover, the end point of the simulation interval
is always part of the collocation nodes, which is beneficial within the implementation.
The first three sets of Radau IIA nodes can be found in Table 2.

s Gauss-Legendre nodes (Gauss-)Radau IIA nodes

1
1

2
1

2
1

2
−
√

3

6

1

2
+

√
3

6

1

3
1

3
1

2
−
√

15

10

1

2

1

2
+

√
15

10

4−
√

6

10

4 +
√

6

10
1

Table 2: The first three sets of collocation points of the Gauss-Legendre and Radau IIA
methods respectively

2.2.6 IRK Methods for DAEs

Runge-Kutta methods can be generalized for the case of DAE systems in a straightfor-
ward way. In addition to the integration variables k1, . . . , ks, which we had for ODEs,
we introduce the integration variables z1, . . . , zs ∈ Rnz , which are approximations of
the algebraic states at the stage points. Extending RK methods to an index-1 DAE
of the form (2.3), the following system of integration equations has to be solved

0 = f impl

ki, xn + T int

s∑
j=1

aijkj , zi, u

 ∀ i = 1, . . . , s (2.18a)

xn+1 = xn + T int

s∑
j=1

bjkj . (2.18b)

Typically, the nonlinear system consisting of (2.18a) is solved by performing Newton-
type iterations as in the ODE case (2.9). The expression for xn+1 is the same as in
the ODE case.
Often the integrator should also report an approximation of the algebraic variables
z. However, there are different possibilities on how the z-values are reported. The
following aims to give a brief overview on that:
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• Where to approximate z: Classically, one reports a consistent value pair
(xn+1, zn+1), see e.g. [37, p.182]. However, in the context of embedded op-
timization, the values of the algebraic variables are mostly used to evaluate
constraint or objective functions. In the discretization of an OCP, the con-
straints over one shooting interval are typically discretized by one evaluation
of the corresponding function. Therefore, it is also possible to use the start of
this shooting interval as evaluation point of the constraint functions. This is
reasonable because algebraic variables generally change discontinuously at the
start of the next shooting interval and the z value reported at the start of the
simulation provides a value that then continuously evolves over the shooting
interval. Thus, an integrator for DAEs typically reports an approximation of
z at tn or tn+1, although any other time point in [tn, tn+1] is possible. In the
acados framework, the convention is to always report the algebraic variables at
the start of the simulation. Thus, in the following this will be the focus.

• Obtain z as solution of a nonlinear system: One possibility to obtain an
approximation of z at a certain point in time (either tn or tn+1) is to solve the
following nonlinear system in k̄, z̄:

f impl(k̄, x̄, z̄, u), (2.19)

whereby x̄ is either xn or xn+1 and z̄ is the reported value. The Newton-scheme
for this nonlinear system can be initialized efficiently using k̄0 = k1 and z̄0 = z1

or ks, zs respectively if z should be reported at the start or end of the simulation.
Note that if the Butcher tableau contains the time point at which z is to be
reported, we do not have to solve the extra nonlinear system (2.19), because z̄
is part of the solution of (2.18a).

• Obtain z by an interpolation formula: After solving (2.18a), the values zi
for i = 1, . . . , s are available. In MPC, we most often have a constant control
on each shooting interval. Therefore, the algebraic variables are given by a
continuous function and it makes sense to approximate it by the interpolating
polynomial corresponding to the nodes (tn,i, zi) for i = 1, . . . , s. This polynomial
can be evaluated efficiently at the desired time point by the Neville-scheme, see
e.g. [22].

• Using a consistent initial value of z: Another approach of generalizing RK
methods to DAE systems assumes a consistent initial value pair (xn, zn). In the
context of a semi-explicit DAE (2.5a) this means g(xn, zn, u) = 0. Hereby, the
algebraic variables z are modeled just as the differential states using kzj ∈ Rnz
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for j = 1, . . . , s. We will not use this approach, as the algebraic states often
change discontinuously at the start of the simulation due to the discontinuous
change of the controls. A detailed formulation can be found in [19, (4.6)].

2.2.7 Applying Multiple Steps

In the context of multiple shooting, the integration method applied to each shooting
interval often consists of a multiple step Runge-Kutta method. Assuming the shooting
interval is [tn, tn+1], then the multiple step RK method can be written as

Gn(wn,Kn) =


g1
n(wn,K

1
n)

...
g
nsteps
n (wn,K

1
n, . . . ,K

nsteps
n )

 = 0, (2.20a)

where gjn(·) =


f impl(kjn,1, x

j−1
n + T int

∑s
r=1 a1rk

j
n,r, z

j
n,1, un)

...
f impl(kjn,s, x

j−1
n + T int

∑s
r=1 asrk

j
n,r, z

j
n,s, un)

 . (2.20b)

Here, the integration variables kjn,r ∈ Rnx and zjn,r ∈ Rnz for the shooting interval n
and RK step j are collected inKn =

(
K1
n, . . . ,K

nsteps
n

)
withKj

n = (kjn,1, z
j
n,1, . . . , k

j
n,s, z

j
n,s)

for n = 0, . . . , N − 1 and j = 1, . . . , nsteps. Additionally, the shorthand wn = (xn, un)

is used to gather the initial state and control input.
The intermediate state values xjn are defined as

xjn = xj−1
n + T int

s∑
r=1

brk
j
n,r, j = 1, . . . , nsteps,

where x0
n := xn.

2.2.8 Reusing Jacobian Matrices

Within IRK implementations, it is quite common to reuse the Newton matrix and
its factorization over multiple Newton iterations [12, p.83]. It is even possible to
reuse the same Newton matrix over multiple integration steps, but this should be
done carefully, since outdated Jacobian information can result in bad convergence
properties.
Using the notation from Section 2.2.7, the reuse of the Jacobian over multiple steps
can be formulated as follows [38]:
Within the multiple step IRK method, use the Jacobian ∂g1n

∂K1
n
as a Newton matrix in

all Newton iterations corresponding to Kj
n for all j = 1, . . . , nsteps.

If an integrator with sensitivity propagation via IND is applied, see Section 2.3, it
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is good practice to use the following approach. Within the first step, two Jacobian
matrices are evaluated and factorized, one for the Newton iterations and one for the
sensitivity propagation via IND. The latter one is reused within the Newton iterations
of the next integration step. For the IND, we calculate and factorize a new Newton
matrix. Using this approach only nsteps + 1 matrices have to be factorized and a good
convergence rate is maintained, [39], [12, p.88f].
Although the integrators compared in Chapter 5 support the option to reuse the
Jacobian matrices as described above, it was not used within the numerical experiments
presented there. The reasoning for this decision was to focus on very accurate results
to verify that both schemes converge to the same solution. However, the integration
scheme presented in Chapter 3 should be tested further using this option.

2.3 Sensitivity propagation

In the MPC framework, numerical optimization methods (e.g. SQP) are applied to a
NLP which arises from an OCP via discretization. Within the numerical optimization
method, one has to solve IVPs, which acados realizes by calling an integrator. These
IVPs typically correspond to one shooting interval. Thus, the control input is assumed
to be constant and we will write u instead of un in this context. Integrators do not
only have to report the numerical solution of the IVP (2.6) at the final time T , which
we denote as xT (x0, u). Additionally, the sensitivities of the simulation result with
respect to the initial state value x0 and the control inputs u

∂xT (x0, u)

∂(x0, u)
∈ Rnx×(nx+nu), (2.21)

called forward sensitivities should be provided.
In the case of adjoint based Newton-type optimization methods, the integrator should
report the adjoint first order sensitivities

∂xT (x0, u)

∂(x0, u)

>
λ ∈ Rnx+nu , (2.22)

instead of the forward sensitivities (2.21), where λ ∈ Rnx denotes the adjoint or
backward seed.

Higher order sensitivities Numerical optimization methods can also make use
of higher order sensitivities. The theory on higher order sensitivity propagation is
outside the scope of this work. However, during the time of this thesis project, the
standard IRK integrator was extended by the author such that it supports also second
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order sensitivity propagation, using the symmetric Hessian propagation presented
in [40]. A detailed discussion on higher order sensitivity propagation can be found
in [19, Ch.3] or [34].

2.3.1 Sensitivities for Direct Optimal Control – An Overview

In the following sections, different approaches to generate the first order sensitivities
required within a direct optimal control algorithm are presented. Therefore, we assume
that the model functions in the IVP are sufficiently smooth. Sensitivity propagation
techniques can be categorized on whether they are based on a differentiate-then-
discretize or discretize-then-differentiate type of approach. A brief discussion of these
approaches is given in the following.
The idea of the differentiate-then-discretize approach is to extend the ODE model with
variational differential equations (VDE) which describe how the (adjoint) sensitivities
in (2.21), respectively (2.22), evolve in time. This system of variational equations can
then be simulated using any numerical integration method with arbitrary accuracy.
The fact that the VDE system propagates the sensitivities of the exact solution
seems desirable at first sight. However, in the context of embedded optimization
the mismatch between exact and numerical solution is often not negligible and it is
desirable to propagate the sensitivities of the numerical solution instead, such that
the simulation result and the derivatives in the Newton-type optimization algorithm
are consistent.
In the discretize-then-differentiate approach the differentiation task is performed after
the discretization, resulting in a discrete-time sensitivity propagation. The remarks
in the above paragraph motivate the usage of this approach in direct optimal control,
which therefore will be the focus in the remainder of this thesis.

Finite Differences and External Numerical Differentiation One classic ap-
proach to generate sensitivities, like the ones in (2.21), is to use Finite Differences.
Here, the integrator is considered as a black-box function and the finite differences
(FD) technique is used to approximate a directional derivative of the simulation result
xT (x0, u). Using the shorthand w = (x0, u), the directional derivative ∂xT (w)

∂w w̄ ∈ Rnx ,
where w̄ is the direction, can be approximated by

∂xT (w)

∂w
w̄ ≈ xT (w + δw̄)− xT (w)

δ
. (2.23)

Note, that this derivative approximation is strongly dependent on the perturbation
value δ. Even for an optimal choice of δ, which depends on the problem functions, the
loss of accuracy is about half the valid digits of the underlying function evaluation [34].
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As a rule of thumb, one can chose δ ≈
√
TOL, where TOL is the machine precision,

see [12]. Note that for an evaluation of the full Jacobian ∂xT (w)
∂w the integrator has

to be called nx + nu + 1 times. The usage of FD is typically referred to as external
numerical differentiation (END), because the differentiation is performed outside the
integrator using multiple calls. The most important benefit of END is that it is very
easy to implement.

Internal Numerical Differentiation The alternative approach to END is Inter-
nal Numerical Differentiation (IND), where the sensitivity propagation is performed
within the integrator. The main benefit of IND is that it can also handle integration
schemes with adaptive components, such as step size, order, iteration matrices and
the number of Newton-type iterations, which should not be combined with END, as
these adaptive components lead to discontinuities in the map (x0, u) 7→ xT (x0, u).
The idea is to freeze the adaptive components to obtain a fixed integrator function,
which then can be differentiated using either AD or FD.
IND techniques can be further distinguished by whether they use a direct or an
iterative approach. Hereby, the latter should only be used for implicit integration
schemes with inexact or fixed iteration matrices.

2.3.2 Direct IND

Let us consider a constant control input u on the simulation interval [0, T ] which is
divided into nsteps equidistant subintervals [tn, tn+1] with tn = nT int and T int = T

nsteps
.

Using the general formulation (2.8), one step of an integration method applied to
[tn, tn+1] with initial state xn reads as

0 = G(xn,Kn, u) (2.24a)

xn+1 = Ψ(xn,Kn, u), (2.24b)

where Kn gathers the internal integration variables, implicitly given by G(·), such
that the Jacobian ∂G

∂K (·) needs to be invertible. For example, in case of an s-stage RK
method applied to a DAE system, it reads as Kn = (kn,1, zn,1 . . . , kn,s, zn,s). This
special case will be discussed in the last part of this section. However, the general
derivation is needed to derive the efficient structure sensitivity generation of the
GNSF-IRK scheme presented in Chapter 3.

Forward Propagation The idea is to obtain the first order derivatives ∂xn+1

∂x0
, ∂xn+1

∂u

based on the corresponding sensitivity results of the previous integration step using
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the implicit function theorem.[
∂xn+1

∂x0

∂xn+1

∂u

]
=

[
∂Ψn

∂x

∂xn
∂x0

∂Ψn

∂x

∂xn
∂u

+
∂Ψn

∂u

]
+
∂Ψn

∂K

[
∂Kn

∂x0

∂Kn

∂u

]
[
∂Kn

∂x0

∂Kn

∂u

]
= −∂Gn

∂K

−1 [∂Gn
∂x

∂xn
∂x0

∂Gn
∂x

∂xn
∂u

+
∂Gn
∂u

]
,

(2.25)

where the compact notation ∂Gn
∂K = ∂G

∂K (xn,Kn, u), ∂Gn
∂x = ∂G

∂x (xn,Kn, u) and ∂Gn
∂u =

∂G
∂u (xn,Kn, u) is used and similarly for the function Ψ(·). The required derivative
evaluations, e.g. of ∂Gn

∂x ,
∂Gn
∂u , are typically performed efficiently using AD techniques.

Most often, the main computational effort of the direct approach is the factorization
of the Jacobian ∂Gn

∂K and the solution of the corresponding linear system. The current
forward sensitivities are stored in a matrix of the form

[
∂xn
∂x0

∂xn
∂u

]
which is initialized

with
[
∂x0
∂x0

∂x0
∂u

]
= [1 0] and gets updated in each step.

Adjoint Propagation In this paragraph, we derive a general way to propagate
adjoint sensitivities, which were introduced in (2.22). Let us define the adjoint
variables

λwn =

(
∂wnsteps

∂wn

)>
λ̄ =

 ∂x>nsteps
∂xn

0
∂x>nsteps
∂u 1

 λ̄, for all n = 0, . . . , nsteps, (2.26)

whereby λ̄ is the adjoint seed which of dimension nx +nu in contrast to (2.22), where
it is of dimension nx. This should clarify that for multiple step integrators, the
adjoint seed for step n will be the result of the adjoint sensitivity propagation in step
n+ 1, which is of dimension nx + nu. From this point of view, the first adjoint seed
λ̄ ∈ Rnx+nu is just a special case in which the last nu components of the seed are
zero.
As in the previous paragraph, we regard the general integration scheme (2.24) and
assume a constant control input u for the integration steps n = 1, . . . , nsteps. This
said, we can write

wn+1 =

[
xn+1

u

]
=

[
Ψ(xn,Kn, u)

u

]
=: Ψ̃(xn,Kn, u), (2.27)
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where the extended output function Ψ̃ is defined to arrive at a compact notation.
By applying ∂

∂wn
to (2.27) and the integration equations (2.24a), one obtains:

∂wn+1

∂wn
=
∂Ψ̃n

∂w
+
∂Ψ̃n

∂K

∂Kn

∂wn
, (2.28a)

0 =
∂Gn
∂w

+
∂Gn
∂K

∂Kn

∂wn
, (2.28b)

where the partial derivatives are notated as in the previous paragraph.
Note that the partial derivatives of Ψ̃ read as

∂Ψ̃n

∂w
=

[
∂Ψn
∂x

∂Ψn
∂u

0 1

]
,

∂Ψ̃n

∂K
=

[
∂Ψn
∂K

0

]
,

and that this structure should always be exploited. After transposing (2.28a) and
multiplying with λwn+1, we get

∂wn+1

∂wn

>
λwn+1 =

∂Ψ̃n

∂w

>

λwn+1 +
∂Kn

∂wn

>∂Ψ̃n

∂K

>

λwn+1. (2.29)

Now let us introduce λKn+1 as the solution of

0 =
∂Ψ̃n

∂K

>

λwn+1 +
∂Gn
∂K

>
λKn+1 (2.30)

and note that (2.28b) implies ∂Kn
∂wn

>
= −∂Gn

∂w

> ∂Gn
∂K

−>. Furthermore, the chain rule

gives us ∂wn+1

∂wn

>
λwn+1 = λwn . Therefore we obtain

λwn =
∂Ψ̃n

∂w

>

λwn+1 +
∂Gn
∂w

>
λKn+1. (2.31)

In the adjoint IND scheme for n = nsteps − 1, . . . , 0 first equation (2.30) is solved for
λKn+1 such that equation (2.31) can be evaluated. In the end, we obtain the desired

sensitivity λw0 =
∂wnsteps
∂w0

>
λ̄.

Note that in a classic RK scheme (2.31) can be simplified further, because ∂Ψn
∂x = 1.

2.3.3 Sensitivity Propagation for Standard RK methods

In this section the direct IND scheme is more concretely described for the case of
applying an s-stage RK method to a fully implicit index-1-DAE. In this case, the
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functions Ψ, G read as

0 = G(xn,Kn, u) =

f impl(ki, xn + T int

s∑
j=1

aijkj , zi, u)


i=1,...,s

(2.32)

xn+1 = Ψ(xn,Kn, u) = xn + T int

s∑
j=1

bjkj . (2.33)

The integration variables in this section are gathered as Kn = (k1, . . . , ks, z1, . . . , zs).
Observe that the function Ψ is linear, thus the corresponding derivatives are trivially
given by

∂Ψ

∂x
= 1,

∂Ψ

∂u
= 0,

∂Ψ

∂K
=



T intbj 0

. . .

0 T intbj


j=1,...,s

0

 . (2.34)

The Newton matrix can be written as

∂G

∂K
=


T inta11

∂f1
∂x + ∂f1

∂ẋ T inta1s
∂f1
∂x

∂f1
∂z 0

. . . . . .

T intas1
∂fs
∂x T intass

∂fs
∂x + ∂fs

∂ẋ 0 ∂fs
∂z

 , (2.35)

where the shorthand fi = f impl(ki, xn + T int
∑s

j=1 aijkj , zi, u) is used for i = 1, . . . , s.
The remaining derivatives of G are simply

∂G

∂x
=

[
∂fi
∂x

]
i=1,...,s

,
∂G

∂u
=

[
∂fi
∂u

]
i=1,...,s

. (2.36)

Direct Forward Propagation The forward propagation technique derived in
Section 2.3.2 can be simplified for this standard IRK method, and the resulting
procedure is described in Algorithm 1.

Direct Adjoint Propagation Similarly, the adjoint propagation technique derived
in Section 2.3.2 can be simplified for this standard IRK method, and the resulting
procedure is described in Algorithm 2.
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Algorithm 1: Direct Forward Sensitivity Propagation for IRK

1: Input: Implicit index-1 DAE function f impl(ẋ, x, z, u), current forward sensitivi-
ties Sforw ≈

[
∂xn
∂x0

∂xn
∂u

]
Preparation and Evaluation

2: Evaluate ∂fi
∂ẋ,x,z,u , for i = 1, . . . , s . Using AD

3: Set up ∂G
∂w ,

∂G
∂K . (2.35), (2.36)

4: ∂G
∂w0
←
[
∂G
∂x Sforw

]
+
[

0 ∂G
∂u

]
Solve linear system

5: ∂G
∂K

∂K
∂w0

= ∂G
∂w0

Update Sensitivities
6: Sforw ← Sforw + T int

∑s
i=1 bi

∂ki
∂w0

. New Sensitivities

Algorithm 2: Direct Adjoint Sensitivity Propagation for IRK

1: Input: Implicit index-1 DAE function f impl(ẋ, x, z, u), current adjoint sensitivi-
ties λwn+1

Preparation and Evaluation
2: Evaluate ∂fi

∂ẋ,x,z,u , for i = 1, . . . , s . Using AD
Note: Kn have to be stored in simulation

3: Set up ∂G
∂w ,

∂G
∂K . (2.35), (2.36)

Solve linear system

4: λKn+1 ←
(
∂Gn
∂K

)−>

T intb1λ

x
n+1

...
T intbsλ

x
n+1

0


Update Sensitivities

5: Update λwn = λwn+1 + ∂G
∂wλ

K
n+1 . New Sensitivities

2.3.4 Sensitivity Propagation for Algebraic Variables

As mentioned in Section 2.2.6, algebraic variables are likely to be part of constraint
or objective functions. In this case, the MPC algorithm will not only need a value for
z but the integrator should additionally provide the sensitivities of this value with
respect to the initial state and the control, i.e.

∂z(x0, u)

∂(x0, u)
∈ Rnz×(nx+nu). (2.37)

Let us assume a fully implicit DAE (2.3), which is simulated by an IRK scheme
that reports z0, an approximation of z at the start of the simulation interval ap-
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plying an interpolation formula. In this case, the integrator should additionally
provide an approximation of ∂z0(x0,u)

∂(x0,u) . Assuming a consistent tuple (ẋ0, x0, z0, u), i.e.
f impl(ẋ0, x0, z0, u) = 0, we can apply the implicit function theorem and obtain

0 =
∂f impl

∂(x, u)
(ẋ0, x0, z0, u) +

∂f impl

∂(ẋ, z)
(ẋ0, x0, z0, u)

∂(ẋ0, z0)

∂(x0, u)
. (2.38)

Therefore, the sensitivities of the algebraic variables can be obtained by solving

∂(ẋ0, z0)

∂(x0, u)
= −

(
∂f impl

∂(ẋ, z)
(ẋ0, x0, z0, u)

)−1
∂f impl

∂(x, u)
(ẋ0, x0, z0, u) (2.39)

and taking the corresponding submatrix of the solution.
In practice, we need to provide a value for ẋ to evaluate f impl at time t0. This can
be done just like discussed for z in Section 2.2.6, either by applying an interpolation
formula on the points (ti, ki), i = 1, . . . , s, or if a more exact approximation is desired,
one can apply Newton iterations on ẋ0, z0 and the function f impl(·, x0, ·, u) = 0.
The computational cost of this sensitivity propagation is either dominated by the
evaluation of the derivatives of f impl or the solution of the linear system.
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In this chapter, we want to introduce and discuss the concept of structure exploiting
integrators, more specifically IRK schemes.

Motivation As the integration part is a key element in any NMPC scheme, that
often dominates the computational cost in a Newton-type optimization algorithm,
tuning the integrator is essential. Typically, the main computational cost within an
IRK scheme is the factorization of the Newton matrix and the solution of the corre-
sponding linear systems. In order to reduce computation time, different approaches
have been proposed on how to treat this nonlinear system. This chapter aims to
discuss the most important ideas and presents a novel scheme (GNSF-IRK).
The chapter is organized as follows. In Section 3.1, a short overview on previously
used dynamic system structures is given. In Section 3.2, we propose a generalization
of these dynamic system structures which we call “Generalized Nonlinear Static Feed-
back structure”, short GNSF, see Equation (3.12). In Section 3.3, an efficient IRK
scheme, so-called GNSF-IRK, is derived to simulate GNSF structured models and
propagate first order sensitivities efficiently. Finally, in Section 3.4, the GNSF-IRK
Algorithm is compared with earlier approaches and possible extensions are presented.

3.1 State of the Art and Previous Work

This section aims to give a brief overview on the previous work on approaches to
exploit the structure of the Newton matrix within an IRK scheme.
Generally, there are two ways to exploit the structure of the linear system that is
typically solved within an IRK scheme.
First, there is the classical idea to use a well-suited approximation of the Newton
matrix, for which the derivatives of the DAE are only evaluated once. The main idea
is that the IRK equations of each stage have a similar structure and the corresponding
Newton matrix can be factorized relatively cheaply. This concept is presented in
Section 3.1.1.
The second approach is to exploit the structure present within the dynamic system and
was suggested more recently. The ideas presented in Section 3.1.2 and Section 3.1.3
sum up the previous work on this concept. The scheme that is derived later in this
chapter follows this approach.
The main idea of our approach is that given a dynamic system structure with an
“isolated” nonlinear subsystem, one can isolate the corresponding integration equations
and solve them separately. Using this technique, an equivalent integration scheme
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can be derived which performs Newton iterations on a lower dimensional space and
makes them computationally much cheaper. One understands this idea most easily
regarding the three-stage dynamic system structure in Section 3.1.2, as the “isolated”
nonlinear subsystem is most obvious there.
When modeling a physical system, parts of the dynamics are often linear and there
are just some nonlinear terms, which cause the need for an implicit integrator.

3.1.1 Structure Exploitation within an Inexact Newton Scheme

The idea has been initially described by Butcher and Bickart, in [41] and [42]
respectively, and further discussed and extended by many others, e.g. [43; 44; 45].
This section mainly follows the notation in [38], because it uses a general DAE
framework and focuses on the MPC context.

Simplified Newton For the sake of simplicity, let us regard an IRK scheme with
nsteps = 1 and consider the special case s = 3, for which the essential concepts can be
illustrated nicely.
The exact Jacobian of Gn(wn,Kn) in (2.20) reads as

∂Gn
∂K

=

 H1 + T inta11J1 T inta12J1 T inta13J1

T inta21J2 H2 + T inta22J2 T inta23J2

T inta31J3 T inta32J3 H3 + T inta33J3

 , (3.1)

where Hj =
[

dfn,j

dẋ
dfn,j

dz

]
and Jj =

[
dfn,j

dx 0
]
are defined using the shorthand

fn,j = f impl(kn,j , xn + T int
∑s

r=1 ajrkn,r, zn,j , un) for j = 1, . . . , s.
The idea of the Simplified Newton iteration for IRK methods is to use a specific
approximation Mi of the Jacobian in (3.1), where the partial derivatives of f impl are
only evaluated once. The Jacobian approximation is constructed as

Mn = 13 ⊗H + T intAbut ⊗ J = H + T inta11J T inta12J T inta13J

T inta21J H + T inta22J T inta23J

T inta31J T inta32J H + T inta33J

 , (3.2)

where ⊗ denotes the Kronecker product and the matrices H,J are some evaluation
of
[

df impl

dẋ
df impl

dz

]
and

[
df impl

dx 0
]
respectively. There are different recommenda-

tions for the evaluation point of H,J . In general, one can choose any intermediate or
recent point [45]. However, the previous point seems reasonable in case of an explicit
ODE [44] and the first stage point in case of an implicit ODE or DAE [38].
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In a Newton-type iteration on (2.20), one has to solve

(13 ⊗H + T intAbut ⊗ J)∆Kn = −Gn, (3.3)

for ∆Kn to update Kn ← Kn + ∆Kn.
Now, we have to assume that the Butcher matrix Abut ∈ R3×3 is invertible and that
there is decomposition A−1 = V ΛV −1 with a block-diagonal matrix Λ.
It is typical for A−1 to have one real eigenvalue γ and a complex conjugate eigenvalue
pair α ± iβ, for example for Radau IIA [31]. Using this decomposition, we can
premultiply (3.3) by (T intAbut)

−1 ⊗ 1nx+nz and obtain(
Λ̃⊗H + 13 ⊗ J

)
∆K̃i = −

(
Λ̃V −1 ⊗ 1nx+nz

)
Gi, (3.4)

where ∆K̃i =
(
V −1 ⊗ 1nx+nz

)
∆Ki and Λ̃ = Λ

T int
.

Note that the matrix which has to be factorized when solving (3.4) has the following
structure:

Λ̃⊗H + 13 ⊗ J =

 γ̃H + J 0 0

0 α̃H + J −β̃H
0 β̃H α̃H + J

 , (3.5)

where the scaled eigenvalues are defined as γ̃ = γ
T int

, α̃ = α
T int

and β̃ = β
T int

.
Thus, we can split the linear system (3.4) into two subsystems of dimension nx + nz

and 2(nx + nz). The latter one can be transformed into a (nx + nz)-dimensional
complex system, as described in [31, p.122]. These transformations can also be
deployed for both the linear system of the Newton iteration and the one to obtain
the sensitivities, i.e. (2.25).

Single Newton The Single Newton method uses the same approximation of the
Newton matrix (3.5). However, in this scheme the matrix (Abut)

−1 must have only
one real eigenvalue γ. In this case, the Newton matrix (3.5) is even more structured,
namely  γ̃H + J 0 0

0 γ̃H + J 0

0 0 γ̃H + J

 . (3.6)

Thus, the linear system (3.4) is equivalent to three separate systems with the same
real coefficient matrix γ̃H + J .
However, for most high order IRK methods, (Abut)

−1 does not have the desired
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property [31]. Therefore, we typically have to use an approximation Ã of Abut, which
is selected such that its inverse has only one real eigenvalue γ. The matrix Ã is
regular and has a decomposition of the form

Ã−1 = γW (13 − E)W−1,

where E is a strictly lower triangular matrix. A detailed description on the construc-
tion of such a approximation of Abut can be found in [43].
Replacing Abut with such a matrix Ã in (3.3) and premultiplying it with (T intÃ)−1⊗
1nx+nz , we obtain the following expression

(13 ⊗ (γ̃H + J))∆K̂i = −(γ̃(13 − E)W−1 ⊗ 1nx+nz)Gi + (E ⊗ γ̃H)∆K̂i, (3.7)

where the shorthands γ̃ = γ
T int

and ∆K̂i = (W−1 ⊗ 1nx+nz)∆Ki are used. In order
to solve the linear system in (3.7) efficiently, we factorize the matrix γ̃H + J and
subsequently solve three subsystems of dimension nx+nz, which are separable because
E is strictly lower diagonal.

3.1.2 A Three-Stage Dynamic Structure

To get an idea of how a specific dynamic system structure can be exploited within an
integrator, let us first regard a differential equation with a three-stage dynamic system
structure as proposed in [46]. In this type of model, the state vector is partitioned as

x =
[
xLI
>
, xNL

>
, xLO

>
]>
∈ Rnx , with xLI ∈ RnLI

, xNL ∈ RnNL
, xLO ∈ RnLO and the

dynamics can be written as

ẋLI = ALIx
LI +BLIu (3.8a)

ẋNL = fNL(xLI, xNL, u) (3.8b)

ẋLO = ALOx
LO + fLO(xLI, xNL, u). (3.8c)

This system consists of the following three subsystems: the linear input system
(3.8a), the nonlinear system (3.8b) and the linear output system (LOS) (3.8c). The
“isolated” nonlinear subsystem mentioned initially in Section 3.1 is obviously (3.8b).
The associated structure exploiting IRK scheme first solves the integration equations
corresponding to the linear input system (3.8a) exactly in one Newton iteration. This
is possible as they are linear and only depend on xLI and the corresponding integration
variables KLI. As now KLI is given, the algorithm can perform some Newton-type
iterations (with dimension snNL) on the integration equations corresponding to (3.8b)
and solve them for KNL up to some precision. Finally, as now KLI and KNL are
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available, the integration equations corresponding to (3.8c) can be solved easily. The
nonlinear function fLO only has to be evaluated at the stage points and subsequently
the integration variables KLO are defined by a linear system whose matrix can be
precomputed and factorized off-line. Note that the structure can be exploited similarly
in the sensitivity propagation.
The introduction above is meant to give a brief overview on how dynamic system
structures can be exploited within IRK schemes. A more detailed explanation on this
specific scheme can be found in [12, Ch.4] or [46].

3.1.3 Nonlinear Static Feedback Structure

In [47], a structure exploiting collocation scheme for a dynamic system, in the following
called Nonlinear Static Feedback (NSF), structure has been presented

Eẋ = Ax+Bu+ Cϕ (Dx+ Fẋ, u) , (3.9)

where the differential states x ∈ Rnx and control inputs u ∈ Rnu are used. The NSF
structured system is defined by the nonlinear function ϕ : Rnin → Rnout and the
matrices A,E ∈ Rnx×nx , B ∈ Rnx×nu , D, F ∈ Rnin×nx and C ∈ Rnx×nout , which are
assumed to be constant. The scheme presented in [47] performs Newton iterations on
a space of dimension s nout.

3.1.4 Comparing Structure Exploiting IRK Schemes

In this section, we want to formally define a relation between dynamic system
structures for IRK schemes. Using this definition, the formulations in Section 3.1.2
and Section 3.1.3 are formally compared.

Definition 3.1 (Generalization relation between dynamic system structures for
IRK schemes) Given two structured dynamic systems (S1), (S2) and corresponding
structure exploiting IRK schemes, we say that (S1) is a generalization of (S2) if the
following holds:
Any dynamic model (M2) given in the form (S2) can be reformulated into a model
(M1) of the form (S1) such that

dim(S1,M1) ≤ dim(S2,M2),

where dim(S,M) denotes the dimension of the Newton matrix in the scheme associated
with the dynamic structure (S) applied to model (M).
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Remark 3.2 (Partial Order) The set of dynamic system structures associated with
IRK schemes can be partially ordered by the relation defined in Definition 3.1. The
relation could be denoted as �. Reflexivity and transitivity are easy to show and
antisymmetry holds defining equivalence through the relation itself.

Theorem 3.3 The NSF structure (3.9) is a generalization of the structure given by
the linear input (3.8a) and nonlinear subsystem (3.8b) combined.

Proof. Given a system in the form (3.8) with empty xLO, we can transcribe the model
into the form (3.9) by setting

x =

[
xLI

xNL

]
, A =

[
ALI 0

0 0

]
, B =

[
BLI

0

]
, C =

[
0

1

]
,

E = 1, ϕ(x, u) = fNL(xLI, xNL, u).

Then the matrix to be factorized within both schemes will be of dimension snNL.

Theorem 3.4 The NSF structure (3.9) is NOT a generalization of the three-staged
dynamic system structure (3.8).

Proof. This statement can be verified by regarding the following simple dynamic
system for x ∈ R2

ẋ1 = x1 (3.10a)

ẋ2 = sin(x1). (3.10b)

This can be simulated by the IRK scheme corresponding to (3.8) with an empty
nonlinear subsystem (3.8b), because (3.10a) is in the form of (3.8a) and (3.10b) is
in the form of (3.8b). Thus, using this scheme, there is no matrix to be factorized
online.
On the other hand, using this system with the IRK scheme corresponding to the NSF
structure (3.9), the sine function has to be modeled by ϕ. Thus, the Newton matrix
that has to be factorized is at least of dimension s.

3.1.5 Nonlinear Static Feedback with Linear Output

We have seen that the NSF is a generalization of a linear input system coupled to
a nonlinear system, but the corresponding IRK scheme cannot handle the linear
output system efficiently. For this reason, at the beginning of the work with structure
exploiting integrators, we regarded the following dynamic system structure. It consists
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of a Nonlinear Static Feedback coupled to Linear Output subsystem and is thus
referred to as NSFLO. It reads as

Eẋ[1] = A1x
[1] +Bu+ Cφ

(
Dx[1] + Fẋ[1], u

)
,

ẋ[2] = A2x
[2] + f(x[1], u),

(3.11)

where the differential states are denoted as x =
[
x[1]>, x[2]>

]>
∈ Rnx with x[1] ∈

Rnx1 , x[2] ∈ Rnx2 and the control inputs as u ∈ Rnu . Additionally, the functions φ :

Rnin → Rnout , f : Rnx1+nu → Rnx2 and the matrices A1, E ∈ Rnx1×nx1 , B ∈ Rnx1×nu ,

D, F ∈ Rnin×nx1 , C ∈ Rnx1×nout and A2 ∈ Rnx2×nx2 are used.
We were able to derive a structure exploiting IRK scheme for NSFLO, which first solves
the integration equations for the NSF part and subsequently the ones corresponding to
the LOS. The matrix to be factorized within a Newton-type iteration is of dimension
s nout. This scheme is a special case of the one presented in Section 3.3 and is thus
not presented.

Theorem 3.5 The dynamic system structure (3.11) is a generalization of both (3.9)
and (3.8) in the sense of Definition 3.1.

Proof. The fact that it is a generalization of (3.9) is trivial using (3.11) with empty
x[2].
For the generalization of (3.8), we refer to the previous proof and transcribe the LOS
naturally.
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3.2 Generalized Nonlinear Static Feedback (GNSF)

The main goal of this work on structure exploiting integrators was to generalize
the previously used structured dynamic systems in the sense of Definition 3.1. This
generalization should also be able to handle index-1 DAEs. Finally, an efficient IRK
scheme should be derived that exploits this structure. Within the implementation of
the scheme, the number of function evaluations and the complexity of BLAS level 3
operations, such as matrix-matrix multiplications and linear system solves given a
matrix factorization, should be kept at a minimum.
In the pursuit of this goal, we arrived at the Generalized Nonlinear Static Feedback
Structure (GNSF), which is presented in this section.

3.2.1 GNSF Structured Dynamic System Model

Starting with a prototype of an IRK scheme using the (3.11) structure, we successively
added more dependencies and modifications to the structured dynamic system. A
detailed reasoning on the choice of the model structure is presented in the Subsection
3.2.3.
The final structured dynamic system model that will be discussed in the rest of this
chapter is called Generalized Nonlinear Static Feedback structure (GNSF) and reads
as follows:

E

[
ẋ[1]

z[1]

]
= Ax[1] +Bu+ Cφ(Lẋẋ

[1] + Lxx
[1] + Lzz

[1], Luu) + c, (3.12a)

ELO

[
ẋ[2]

z[2]

]
= ALOx[2] + fLO(ẋ[1], x[1], z[1], u). (3.12b)

Here, we denote the states as x =
[
x[1]>, x[2]>

]>
∈ Rnx , x[1] ∈ Rnx1 , x[2] ∈ Rnx2 , the

algebraic variables z =
[
z[1]>, z[2]>

]>
∈ Rnz , z[1] ∈ Rnz1 , z[2] ∈ Rnz2 , the controls

u ∈ Rnu , the (nonlinear) functions φ : Rny+nû → Rnout and fLO : R2nx1+nz1+nu →
Rnx2 , which will be referred to as nonlinearity and linear output function respectively.
Furthermore, we use the model matrices Lẋ, Lx ∈ Rny×nx1 , Lz ∈ Rny×nz1 , Lu ∈
Rnû×nu (which we refer to as linear input matrices), the matrices A ∈ R(nx1+nz1 )×nx1 ,

B ∈ R(nx1+nz1 )×nu , C ∈ R(nx1+nz1 )×nout , E ∈ R(nx1+nz1 )×(nx1+nz1 ) and the vector
c ∈ Rnx1+nz1 which are assumed to be constant and can be divided naturally as

E =

[
E11 E12

E21 E22

]
, A =

[
A1

A2

]
, B =

[
B1

B2

]
, C =

[
C1

C2

]
, c =

[
c1

c2

]
. (3.13)
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Additionally, the matrices ALO ∈ R(nx2+nz2 )×nx2 and ELO ∈ R(nx2+nz2 )×(nx2+nz2 ) are
used for the linear output type system (3.12b).
Deploying a standard IRK scheme on (3.12), a square matrix of dimension s(nx + nz)

has to be factorized to perform Newton iterations on the nonlinear system (2.18a).
In Section 3.3, an equivalent structure exploiting IRK scheme is presented, in which
the matrix to be factorized is of size snout.

3.2.2 Requirements on the GNSF Model

We assume that E − C ∂φ
∂y [Lẋ, Lz] and ELO are invertible such that ẋ, z have well-

defined trajectories. In order to apply the IRK scheme derived in the following
sections, we have to additionally assume that E11 and E22 are invertible matrices.

3.2.3 Motivation - Choice of the Model Structure

In this section, we want to motivate the choice of the GNSF dynamic system struc-
ture (3.12) and its usage with acados.

Generalization of former dynamic system structures As mentioned before,
our goal was to use a structured dynamic system that is a generalization of the
previously used structures in the sense of Definition 3.1. For the sake of completeness,
we state this formally.

Theorem 3.6 The dynamic system structure (3.12) is a generalization of (3.11),
(3.9) and (3.8) in the sense of Definition 3.1.

Proof. One can reformulate a model in the form (3.11) into (3.12) with empty z and
the matrices transcribed naturally as ELO = 1, Lẋ = F,Lx = D,Lu = 1, c = 0, the
first generalization is obvious.
Referring to Theorem 3.5, the remaining follows as the generalization relation � is
transitive, Remark 3.2.

Treatment of implicit DAEs In the context of embedded optimization, the
system of interest is often modeled by a fully implicit DAE. Therefore, structure
exploiting integrators for acados should be able to handle these types of equations.
If an algebraic variable zi is given by an implicit function, i.e.

fzi(x, ẋ, z, u) = 0,

it can typically be included into (3.12) by adding a component to φ which contains
fzi − zi and adding a 1 on the corresponding diagonal entry of E. This trick enables
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us to transform algebraic equations into the NSF type system with invertible matrices
E11 and E22, which is formally stated in the following theorem.

Theorem 3.7 Any index-1 DAE of the form 0 = f impl(ẋ, x, z, u) can be reformulated
in the GNSF format (3.12) such that the proposed structure exploiting IRK scheme
can be used, i.e. the requirements stated in Section 3.2.2 hold.

Proof. We reformulate the DAE only using the NSF type system (3.12a) such that
x[1] = x, z[1] = z and an empty LOS (3.12b), i.e. nx2 = 0, nz2 = 0. We define the
model matrices as E = 1, A = 0, B = 0, C = 1, c = 0 and the nonlinearity function
φ as

φ(y, û) = αf impl(ẋ, x, z, u) +

[
ẋ

z

]
,

for some α ∈ R, that is chosen later. The inputs of φ are just y =
[
ẋ>, x>, z>

]> and
û = u. This GNSF structured system is equivalent to the implicit DAE and fulfills
the requirement that E11, E22 and ELO must be invertible. Additionally, the matrix

E − C∂φ
∂y

[
Lẋ Lz

]
= 1− α ∂f

impl

∂[ẋ, z]

must be invertible, which we can achieve by a good choice of α, i.e. such that the
eigenvalues of α ∂f impl

∂[ẋ,z] are not one, referring to Lemma 3.9.

Remark 3.8 For practical applications of the model reformulation in the previous
proof, one should try to choose α such that the condition number of 1− α ∂f impl

∂[ẋ,z] is
small and the matrix is well conditioned.

Lemma 3.9 Given a matrix M ∈ Rn×n with eigenvalues λ1 ≤ · · · ≤ λn, the matrix
1 + αM with α ∈ R has eigenvalues 1 + αλi for i = 1, . . . , n.

Proof. For every eigenvalue λi of M with corresponding eigenvector vi, the following
holds

. (1 + αM)vi = 1vi + αMvi = (1 + αλi)vi �

Maximization of Dependencies - Preserving Structure Exploitation The
main concept of GNSF-IRK is to simulate the subsystems (3.12a) and (3.12b) sub-
sequently in each integration step and to exploit the linear dependencies in the
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precomputation phase. We included as many affine dependencies in (3.12a) as pos-
sible, preserving the independence of (3.12b). Similarly, the function φ ought to
be as general as possible, preserving the independence of x[2], z[2]. Therefore, the
nonlinearity function φ and the linear output function fLO can depend on all variables
ẋ[1], x[1], z[1], u.

Splitted Input in Nonlinearity Function Another feature is that we chose to
split the input of the nonlinearity function φ into y and û. The reason for this is that
the derivatives of φ with respect to the controls are not needed within the Newton
iterations (see (3.28) and (3.29)) but only for the sensitivity propagation. Splitting
the input enables us to compute these derivatives only when needed.

Linear Input Matrices Note that in the formulation (3.12), we defined the non-
linearity φ as a function of y := Lẋẋ

[1] + Lxx
[1] + Lzz

[1] and û := Luu, instead of
using the full input ẋ[1], x[1], z and u. This was inspired by the original NSF structure
(3.9) from [47], which uses a similar formulation. However, this point was discussed
controversially during the development of the GNSF-IRK scheme for acados. We
concluded that the alternative approach of omitting these matrices could be beneficial
within software frameworks different from acados.
A presentation of this approach as well as a comparison to our GNSF-IRK scheme is
given in Section 3.4.4. To fully understand the discussion in Section 3.4.4, a more
detailed knowledge of the derivation of GNSF-IRK is required, which is thus presented
first.
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3.3 The GNSF Structure Exploiting IRK Scheme

In this section an efficient IRK scheme exploiting the GNSF structured dynamic
system (3.12) is derived. The scheme is referred to as GNSF-IRK throughout this
thesis.

3.3.1 IRK Scheme - Idea

We use the IRK formulation in Equation (2.18) and apply a lifting-condensing
technique similar to the one presented in [47] to solve the IRK equations corresponding
to the NSF type part (3.12a). Subsequently, the IRK equations corresponding to the
LOS (3.12b) are solved by exploiting their structure similarly to the approach in [46].

3.3.2 Structured IRK Equations

The nonlinear system of IRK equations (2.18a) corresponding to the GNSF structured
dynamic system (3.12) reads as follows:

0 = E11k
[1]
i + E12z

[1]
i −A1(x[1]

n + T int

s∑
j=1

aijk
[1]
j )−B1u

− C1φ

Lẋk
[1]
i + Lx(x[1] + T int

s∑
j=1

aijk
[1]
j ) + Lzz

[1]
i , Luu

 ∀i = 1, . . . , s

(3.14a)

0 = E21k
[1]
i + E22z

[1]
i −A2(x[1]

n + T int

s∑
j=1

aijk
[1]
j )−B2u

− C2φ

Lẋk
[1]
i + Lx(x[1] + T int

s∑
j=1

aijk
[1]
j ) + Lzz

[1]
i , Luu

 ∀i = 1, . . . , s

(3.14b)

0 = ELOk
[2]
i −A

LO(x[2]
n + T int

s∑
j=1

aijk
[2]
j )

− fLO(k
[1]
i , x

[1]
n + T int

s∑
j=1

aijk
[1]
j , z

[1]
i , u) ∀i = 1, . . . , s.

(3.14c)

For notational convenience, we gather the integration variables as follows:

K [1] =

(
k

[1]
1

>
, . . . , k[1]

s

>
)>

, Z [1] =

(
z

[1]
1

>
, . . . , z[1]

s

>
)>

,

K [2] =

(
k

[2]
1

>
, z

[2]
1

>
, . . . , k[2]

s

>
, z[2]
s

>
)>

.
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Note that (3.14a) and (3.14b) do not depend on K [2]. For that reason, we are able
to solve first these equations for K [1] and Z up to some precision and subsequently
solve equation (3.14c) for K [2]. Using the above introduced notation, we are now
able to rewrite (3.14a) and (3.14b) in the compact form

E1K
[1] −D1Z

[1] −A1x
[1]
n −B1u−C1Φ(LKK

[1] + Lxx
[1]
n + LZZ

[1], Luu)− c1 = 0

E2Z
[1] −D2K

[1] −A2x
[1]
n −B2u−C2Φ(LKK

[1] + Lxx
[1]
n + LZZ

[1], Luu)− c2 = 0.

(3.15)

Hereby the matrices A1,A2,B1,B2,C1,C2,D1,D2,E1,E2, are defined as follows

A1 =


A1

...
A1

 , A2 =


A2

...
A2

 , B1 =


B1

...
B1

 , B2 =


B2

...
B2

 ,
C1 = 1s ⊗ C1, C2 = 1s ⊗ C2, D1 = −1s ⊗ E12,

D2 = T intAbut ⊗A2 − 1s ⊗ E21,

E1 = 1s ⊗ E11 − T intAbut ⊗A1, E2 = 1s ⊗ E22,

(3.16)

where ⊗ is used to denote the Kronecker product. The matrices LZ,LK,Lx and the
vectors c1, c2 read as

LZ = 1s ⊗ Lz, LK = T intAbut ⊗ Lx + 1s ⊗ Lẋ,

Lx =


Lx
...
Lx

 , c1 =


c1

...
c1

 , c2 =


c2

...
c2

 . (3.17)

In addition, we define the function Φ : Rsnin → Rsnout as:

Φ(y, u) =


φ(y1, Luu)

...
φ(ys, Luu)

 for y =


y1

...
ys

 ∈ Rsnin . (3.18)
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3.3.3 A Lifting-Condensing Technique for the IRK Equations

Now, we want to apply a lifting-condensing technique similar to the one suggested
in [47]. We rewrite Equation (3.15) equivalently as

E1K
[1] −D1Z

[1] −A1x
[1]
n −B1u−C1v − c1 = 0, (3.19a)

E2Z
[1] −D2K

[1] −A2x
[1]
n −B2u−C2v − c2 = 0, (3.19b)

v − Φ(Lxx
[1]
n + LKK

[1] + LZZ
[1], Luu) = 0, (3.19c)

where we have introduced a new vector of variables v ∈ Rsnout to lift the nonlinear
terms in the IRK equations (3.15).
Observe that, since the matrices E11 and E22 are assumed to be invertible, E2 is
always invertible and E1 is invertible for a sufficiently small integration step size [31].
Also notice that (3.19a) and (3.19b) are linear which enables us to rearrange these
equations as

K [1] = E−1
1 (D1Z

[1] + A1x
[1]
n + B1u+ C1v + c1), (3.20a)

Z [1] = E−1
2 (D2K

[1] + A2x
[1]
n + B2u+ C2v + c2). (3.20b)

Now, we can plug (3.20a) into (3.20b) and obtain:

Z [1] = E−1
2 (D2E

−1
1 (D1Z

[1]+ A1x
[1]
n + B1u+ C1v+ c1) + A2x

[1]
n + B2u+ C2v + c2)

which is equivalent to

(1−E−1
2 D2E

−1
1 D1)Z [1]

= E−1
2 (D2E

−1
1 (D1Z

[1] + A1x
[1]
n + B1u+ C1v + c1) + A2x

[1]
n + B2u+ C2v + c2).

We can use this to condense Z [1], i.e. determine a linear expression to compute it
given the variables we want to keep in the structure exploiting integration scheme,
namely v, x

[1]
n , u. Thus, we get the following expression for Z [1]

Z [1] = Zvv + Zuu+ Zxx
[1]
n + Z0, (3.21)
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where we introduced the matrices Zv,Zu,Zx,Z0, which are computed as

Q1 =
(
1−

(
E−1

2 D2

)
(E−1

1 D1)
)
,

Zv = Q−1
1

((
E−1

2 D2

) (
E−1

1 C1

)
+
(
E−1

2 C2

))
,

Zu = Q−1
1

((
E−1

2 D2

) (
E−1

1 B1

)
+
(
E−1

2 B2

))
,

Zx = Q−1
1

((
E−1

2 D2

) (
E−1

1 A1

)
+
(
E−1

2 A2

))
,

Z0 = Q−1
1

((
E−1

2 D2

) (
E−1

1 c1

)
+
(
E−1

2 c2

))
.

(3.22)

Note that for computing these quantities, the matrices E1,E2,Q1 have to be factorized
and the expressions marked with brackets in (3.22) can be computed offline.
We proceed by condensing K [1] similarly, plugging (3.22) into (3.20a) to obtain the
expression

K [1] = Kvv + Kuu+ Kxx
[1]
n + K0, (3.23)

where

Kv =
(
E−1

1 D1

)
Zv + (E−1

1 C1),

Ku =
(
E−1

1 D1

)
Zu + (E−1

1 B1),

Kx =
(
E−1

1 D1

)
Zx + (E−1

1 A1),

K0 =
(
E−1

1 D1

)
Z0 + (E−1

1 c1).

(3.24)

One can observe that all expressions in brackets have already been computed in (3.22)
and can be reused.

Remark 3.10 (Regularity of Q1) In the precomputation phase, the simulation
algorithm should check if the matrix

(
1−E−1

2 D2E
−1
1 D1

)
is invertible. This is most

often the case because 1 is invertible and the matrix to be subtracted is not of full
rank (an upper bound is smin{nz1 , nx1}). However, if the matrix Q1 is not invertible,
one can change the Runge-Kutta formula or the integration step size, since both E1

and D2 are depending on these quantities.

Alternatively, the matrices Zv,Zu,Zx,Z0,Kv,Ku,Kx,K0 could be obtained by plug-
ging (3.20b) into (3.20a). However, this is most often computationally more expen-
sive, as instead of factorizing Q1 ∈ Rsnz1×snz1 , the matrix (1−E−1

1 D1E
−1
2 D2)−1 ∈

Rsnx1×snx1 has to be factorized, which is usually of higher dimension.
Finally, we derive an expression for the input argument of the gathered nonlinearity
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function Φ, which reads as

y = Lxx
[1]
n + LKK

[1] + LZZ
[1] (3.25)

= Lxx
[1]
n + LK(Kvv + Kuu+ Kxx

[1]
n + K0) + LZ(Zvv + Zuu+ Zxx

[1]
n + Z0)

= Yxx
[1]
n + Yuu+ Yvv + Y0,

where the matrices Yv,Yu,Yx,Y0 are introduced as

Yx = Lx + LKKx + LZZx,

Yu = LKKu + LZZu,

Yv = LKKv + LZZv,

Y0 = LKK0 + LZZ0.

(3.26)

All these bold matrices can be precomputed offline, but only after the choice of the
integrator options, i.e. Butcher tableau and step size T int.
The nonlinear part of the integration equations can be gathered in the residual
function r, on which we will perform Newton-type iterations in the main part of the
simulation:

r(v, x[1]
n , u) = v − Φ(Yxx

[1]
n + Yuu+ Yvv + Y0, Luu) = 0. (3.27)

A full-step Newton iteration then reads as:

v← v + ∆v, (3.28)

where ∆v = −
(
∂r

∂v
(v, x[1]

n , u)

)−1

r(v, x[1]
n , u).

Therefore, we need the Jacobian ∂r
∂v and later on, for the purpose of sensitivity

analysis, we additionally need the derivatives with respect to the control inputs and
the initial state value, i.e., ∂r

∂(v,x
[1]
n ,un)

. They can be computed as

∂r

∂v
(·) = 1− ∂Φ

∂y
(·)Yv

∂r

∂(x
[1]
n , u)

(·) = −∂Φ

∂y
(·)
[
Yx Yu

]
−
[

0 ∂Φ
∂û (·)Lu

]
,

(3.29)

where

∂Φ

∂y
(y, u) = diag

(
∂φ

∂y
(yi, u)

)
i=1,...,s

. (3.30)
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Within the acados implementation of GNSF-IRK, φ, ∂φ∂y are evaluated by a C function.
The model functions are typically code generated using CasADi.

3.3.4 Simulation of the Linear Output System

Now, we can solve the IRK equations (2.18a) corresponding to the linear output
system (3.12b). This can be written as

G2(wn,K
[1], Z [1],K [2]) = 0, (3.31)

where the function G2 is defined as

G2(wn,K
[1], Z [1],K [2]) :=

[
ELO

[
k

[2]
i

z
[2]
i

]
−ALO(x[2]

n + T int

s∑
j=1

aijk
[2]
j ) (3.32)

− fLO(k
[1]
i , x

[1]
n + T int

s∑
j=1

aijk
[1]
j , z

[1]
i , u)

]
i=1,...,s

.

Because (3.31) is linear in K [2], the matrixM2 = ∂G2

∂K[2] is constant and the integration
variables K [2] can be obtained exactly by solving a linear system. This equation
reads as K [2] = −M−1

2 G2(wn,K
[1], Z [1], 0). The Jacobian matrix can be computed

and factorized offline as

M2 = 1q ⊗ ELO − T intAbut ⊗
[
ALO 0(nx2+nz2 )×nz2

]
. (3.33)

The final state of the integrator is given by

xn+1 = xn + T int

s∑
j=1

bjkj , (3.34)

where kj =

(
k

[1]
j

>
, k

[2]
j

>
)>

.

The GNSF-IRK scheme is presented as pseudo code in Algorithm 3, not including
any sensitivity propagation.

3.3.5 First Order Sensitivities

This subsection aims at giving a detailed derivation for efficient first order sensitivity
propagation within the GNSF-IRK scheme.
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Algorithm 3: GNSF-IRK scheme - simple simulation

1: Input: x0, u, T int, nsteps, nnewton, precomputed matrices given a Butcher tableau
Yx,Yu,Yv,Y0, Kx,Ku,Kv,K0,Zx,Zu,Zv,Z0, factorization of M2

2: Initialize v with 0 or previous solution
3: yu ← Y0 + Yuu . Compute (3.26) successively, K [1], Z similarly
4: for s = 1 : nsteps do
5: ys ← yu + Yxx

[1]
s−1

Simulate NSF type system (3.12a)
6: for inewton = 1 : nnewton do
7: y← ys + Yvv
8: Evaluate φ(yi, û), ∂φ∂y (yi, û) ∀i = 1, . . . , s . using an AD tool
9: Compute residual and Jacobian r, ∂r∂v . via (3.27), (3.29), (3.30)

10: Solve linear system for ∆v . via (3.28)
11: Apply Newton step v← v + ∆v . via (3.28)
12: end for
13: Obtain K [1], Z [1] . via (3.23), (3.21)

Simulate LOS (3.12b)
14: G2

val ← G2(wn,K
[1], Z [1], 0) . via (3.32)

15: Solve linear system M2K
[2] = −G2

val . M2 factorization precomputed

Obtain simulation result
16: xs = xs−1 + T int

∑q
j=1 bjkj

17: end for

Forward Sensitivities

In this paragraph we establish an efficient way to compute the forward sensitivities
∂xn+1

∂wn
=
[
∂xn+1

∂xn
, ∂xn+1

∂un

]
. Let us start from Equation (2.9). We observe that

∂xn+1(xn, un)

∂wn
=

∂Ψ

∂wn
+
∂Ψ

∂K

∂K

∂wn
(3.35)

= 1nx×(nx+nu) + T int

s∑
j=1

bj
∂kj
∂wn

,

where ∂kj
∂wn

=

 ∂k
[1]
j

∂wn

∂k
[2]
j

∂wn

.
We first derive expressions for first order derivatives of the integration variables
corresponding to the NSF type system (3.12a). For K [1] and Z [1], we use (3.23) and
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(3.21) respectively to directly obtain

∂K [1]

∂wn
=

[
∂K [1]

∂x
[1]
n

,
∂K [1]

∂x
[2]
n

,
∂K [1]

∂u

]
=

[
Kx + Kv

∂v

∂x
[1]
n

, 0, Ku + Kv
∂v

∂u

]
, (3.36a)

∂Z [1]

∂wn
=

[
∂Z [1]

∂x
[1]
n

,
∂Z [1]

∂x
[2]
n

,
∂Z [1]

∂u

]
=

[
Zx + Zv

∂v

∂x
[1]
n

, 0, Zu + Zv
∂v

∂u

]
. (3.36b)

Note that in an efficient implementation storing the zero matrices ∂K[1]

∂x
[2]
n

, ∂Z
[1]

∂x
[2]
n

is
avoided.
The sensitivities ∂v

∂x[1],u
can be obtained by applying the implicit function theorem on

Equation (3.27), yielding the following system of linear equations

∂r

∂v
· ∂v

∂(x[1], u)
= −

(
∂r

∂(x[1], u)

)
. (3.37)

Here, the matrix to be factorized is the same as in the simulation part, see Equa-
tions (3.28) and (3.29).
Now looking at the K [2] variables, we apply the implicit function theorem to Equa-
tion (3.31) and obtain

∂K [2]

∂wn
= −M−1

2

[
∂G2

∂wn
+

∂G2

∂K [1]

∂K [1]

∂wn
+

∂G2

∂Z [1]

∂Z [1]

∂wn

]
. (3.38)

Here, the needed partial derivatives of the G2 are constructed as follows:

∂G2

∂x[1]
=

−∂fLO
∂x[1]

(k
[1]
i , x

[1]
n T int +

s∑
j=1

aijk
[1]
j , z

[1]
i , u)


i=1,...,s

∂G2

∂x[2]
= −

 ALO

. . .

ALO


∂G2

∂u
=

−∂fLO
∂u

(k
[1]
i , x

[1]
n + T int

s∑
j=1

aijk
[1]
j , z

[1]
i , u)


i=1,...,s

∂G2

∂K [1]
=

−T intaij
∂fLO
∂x[1]

(k
[1]
i , x

[1]
n + T int

s∑
j=1

aijk
[1]
j , z

[1]
i , u) (3.39)

−δij
∂fLO
∂ẋ[1]

(k
[1]
i , x

[1]
n + T int

s∑
j=1

aijk
[1]
j , z

[1]
i , u)


i,j=1,...,s

∂G2

∂Z [1]
= diag

−∂fLO
∂z

(k
[1]
i , x

[1]
n + T int

s∑
j=1

aijk
[1]
j , z

[1]
i , u)


i=1,...,s

.
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Observe that the derivatives ∂K
[2]

∂x
[2]
n

are constant and can be precomputed. Furthermore,

in an efficient implementation ∂G2

∂Z[1] is stored as a compressed block matrix.

Adjoint Sensitivities

In this paragraph, we derive an efficient way to propagate adjoint sensitivities within
the GNSF-IRK scheme. We use the general derivation in Section 2.3.2. Therefore,
the integration scheme has to be regarded in the general form (2.8). In Table 3, the
notational counterparts of the GNSF-IRK scheme in the context of Section 2.3.2 is
clarified.

Context Section 2.3.2 Context GNSF-IRK

Integration Variables K v
Integration Equations G(xn,Kn, u) r(xn,v, u)

Output Function Ψ(xn,Kn, u)

[
Ψ1(xn,v, u)
Ψ2(xn,v, u)

]
Table 3: GNSF-IRK in the context of a general integration method

Hereby, we revise that K [1],K [2] are obtained by

K [1] = Kvv + Kuu+ Kxx
[1]
n + K0, (3.40a)

K [2] = −M−1
2 G2(wn,K

[1], Z [1], 0). (3.40b)

We formally define the output functions of the scheme Ψ1,Ψ2 as[
Ψ1(xn,v, u)

Ψ2(xn,v, u)

]
=

[
x

[1]
n + T int

∑s
i=1 bik

[1]
i (xn,v, u)

x
[2]
n + T int

∑s
i=1 bik

[2]
i (xn,v, u)

]
. (3.41)

The required derivatives of Ψ1 can be obtained by

∂Ψ1

∂x
[1]
n

= 1nx1
+ T int

s∑
i=1

biK
i
x,

∂Ψ1

∂x
[2]
n

= 0,

∂Ψ1

∂v
= T int

s∑
i=1

biKv
i,

∂Ψ1

∂u
= T int

s∑
i=1

biK
i
u,

(3.42)

where we divide the matrices Kv,Ku,Kx naturally as

Kv =


Kv

1

...
Kv

s

 , Ku =


K1

u
...

Ks
u

 , Kx =


K1

x
...

Ks
x

 . (3.43)
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Furthermore, the derivatives of Ψ2 are given as

∂Ψ2

∂x
[1]
n

= T int

s∑
i=1

bi
∂k

[2]
i

∂x
[1]
n

,
∂Ψ2

∂x
[2]
n

= 1nx2
+ T int

s∑
i=1

bi
∂k

[2]
i

∂x
[2]
n

,

∂Ψ2

∂v
= T int

s∑
i=1

bi
∂k

[2]
i

∂v
,

∂Ψ2

∂u
= T int

s∑
i=1

bi
∂k

[2]
i

∂u
,

(3.44)

where the derivatives of K [2] can be calculated by

∂K [2]

∂x
[1]
n

= −M−1
2

(
∂G2

∂x
[1]
n

+
∂G2

∂K [1]
Kx +

∂G2

∂Z [1]
Zx

)
,

∂K [2]

∂u
= −M−1

2

(
∂G2

∂u
+

∂G2

∂K [1]
Ku +

∂G2

∂Z [1]
Zu

)
,

∂K [2]

∂v
= −M−1

2

(
∂G2

∂K[1]
Kv +

∂G2

∂Z [1]
Zv

)
.

(3.45)

For the derivatives of G2, we refer to (3.39), and mention again that ∂K[2]

∂x
[2]
n

is constant
and can be precomputed.

3.3.6 Sensitivity Propagation for the Algebraic Variables

In this section, we derive a way to efficiently compute the sensitivities of the algebraic
variables ∂zn

∂wn
within the GNSF-IRK scheme. It exploits the GNSF structure and is

therefore more efficient than the general approach described in Section 2.3.4.
The following derivation is very similar to the one in the previous sections, because
the system of equations has a very similar structure but is of dimension nout instead
of snout. It shall still be described here for the sake of completeness.
Let us first regard the z[1] component. One observes that it does not depend on the
linear output type system, i.e. ∂z

[1]
n

∂x
[2]
n

= 0. Thus, we first just regard (3.12a). In this

context the function corresponding to f impl in Section 2.3.4, is

0 = f impl[1]
(ẋ[1], x[1], z[1], u)

= E

[
ẋ[1]

z[1]

]
−Ax[1] −Bu− Cφ(Lẋẋ

[1] + Lxx
[1] + Lzz

[1], Luu)− c.
(3.46)
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The system of equations (3.46) can be split as

0 = E11ẋ
[1]
n + E12z

[1]
n −A1x

[1]
n −B1u− C1φ

(
Lẋẋ

[1]
n + Lxx

[1]+ Lzz
[1]
n , Luu

)
− c1

0 = E21ẋ
[1]
n + E22z

[1]
n −A2x

[1]
n −B2u− C2φ

(
Lẋẋ

[1]
n + Lxx

[1]+ Lzz
[1]
n , Luu

)
− c2.

(3.47)

Let us apply a lifting-condensing technique equivalent to the one we applied to the
integration equations in the previous sections. We introduce the variable ν0 ∈ Rnout

and use the fact that E11 and E22 are invertible. The system (3.47) is equivalent to

ẋ[1]
n = (E11)−1(A1x

[1]
n +B1u+ C1ν0 + c1 − E12z

[1]
n ), (3.48a)

z[1]
n = (E22)−1(A2x

[1]
n +B2u+ C2ν0 + c2 − E21ẋ

[1]
n ), (3.48b)

ν0 = φ
(
Lẋẋ

[1]
n + Lxx

[1] + Lzz
[1]
n , Luu

)
. (3.48c)

Plugging now (3.48a) into (3.48b) gives us

(1−E−1
22 E21E

−1
11 E12)z[1]

n =

E−1
22 (A2x

[1]
n +B2u+ C2ν0 + c2 − E21E

−1
11 (A1x

[1]
n +B1u+ C1ν0 + c1)).

(3.49)

Thus, we can write

z[1]
n = Zx

0x[1]
n + Zu

0u+ Z f
0ν0 + Z0

0 (3.50)

with

Q1 = (1− E−1
22 E21E

−1
11 E12),

Zx
0 = Q−1

1 ((E−1
22 E21)(E−1

11 A1) + E−1
22 A2),

Zu
0 = Q−1

1 ((E−1
22 E21)(E−1

11 B1) + E−1
22 B2),

Z f
0 = Q−1

1 ((E−1
22 E21)(E−1

11 C1) + E−1
22 C2),

Z0
0 = Q−1

1 ((E−1
22 E21)(E−1

11 c1) + E−1
22 c2).

(3.51)

By plugging (3.50) into (3.48a), we obtain

ẋ[1]
n = Kx

0x[1]
n +Ku

0u+K f
0ν0 +K0

0, (3.52)
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where the following matrices are introduced:

Kx
0 = E−1

11 (A1 − E12Zx
0),

Ku
0 = E−1

11 (B1 − E12Zu
0),

K f
0 = E−1

11 (C1 − E12Z f
0),

K0
0 = E−1

11 (c1 − E12Z0
0).

(3.53)

Let us now rewrite Equation (3.48c) introducing the residual function r as

0 = r(ν0, x
[1]
n , u) = ν0 − φ

(
Y x

0x[1]
n + Y u

0u+ Y f
0ν0 + Y 0

0, Luu
)
, (3.54)

where the following matrices are introduced

Y x
0 = LẋKx

0 + LzZx
0 + Lx,

Y u
0 = LẋKu

0 + LzZu
0,

Y f
0 = LẋK f

0 + LzZ f
0,

Y 0
0 = LẋK0

0 + LzZ0
0.

(3.55)

Differentiating (3.50) w.r.t.
(
x

[1]
n , u

)
, we obtain

∂z
[1]
n

∂
(
x

[1]
n , u

) =
[
Zx

0 Zu
0
]

+ Z f
0 ∂ν0

∂
(
x

[1]
n , u

) . (3.56)

We obtain an expression for ∂ν0

∂
(
x
[1]
n ,u

) by applying the implicit function theorem on

(3.54)

∂ν0

∂
(
x

[1]
n , u

) = − ∂r

∂ν0

−1 ∂r

∂
(
x

[1]
n , u

) . (3.57)

Hereby, the derivatives of r are given by

∂r

∂
(
x

[1]
n , u

) = −∂φ
∂y

[
Y x

0 Y u
0
]
−
[

0 ∂φ
∂ûLu

]
,

∂r

∂ν0
= 1− ∂φ

∂y
Y f

0.

(3.58)

Note that ẋ[1]
n , zn are still obtained as suggested in Section 2.3.4 by an interpolation

formula.
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Let us now regard the sensitivities of z[2]. One observes that ẋ[2]
n , z

[2]
n is given by[

ẋ
[2]
n

z
[2]
n

]
=
(
ELO)−1

(
ALOx[2]

n + fLO(ẋ[1]
n , x

[1], z[1]
n , u)

)
. (3.59)

Applying the implicit function theorem to this equation one obtains

d
(
ẋ

[2]
n , z

[2]
n

)
d
(
x

[1]
n , u[2]

) =
(
ELO)−1

(
∂fLO

∂
(
x[1], u

) +
∂fLO
∂z

dz[1]
n

d
(
x[1], u

) +
∂fLO
∂ẋ[1]

dẋ[1]
n

d
(
x[1], u

)) .
(3.60)

Note that the matrix ELO can be factorized offline and the sensitivities of ẋ[1]
n , z[1]

were derived in the first part of this section.
The derivative with respect to x[2]

n is constant and can be precomputed as

d
(
ẋ

[2]
n , z

[2]
n

)
dx[2]

n

=
(
ELO)−1

ALO. (3.61)

3.4 Discussion on GNSF-IRK

In this section, we want to discuss some further aspects of the proposed GNSF-IRK
scheme, like design choices and the context of state-of-the-art algorithms.

3.4.1 Differences from other Dynamic System Exploiting IRK
Schemes

A main difference of the derivation in Section 3.3 compared to the one in [47] is that
the lifting-condensing technique in [47] is derived for a collocation method, whereas
we take the more general approach of an IRK method.
Additionally, we use a DAE formulation compared to the ODE formulation in (3.9),
which gives us an additional subsystem for the NSF type system, see Equation (3.15).
The LOS formulation in (3.12b) is a generalization of the original one in (3.8c) because
it supports the dependence on previously determined state derivatives, i.e. ẋ[1] and
the matrix in front of the unknowns does not have to be 1.

3.4.2 Complexity Comparison

In order to compare the computational complexity of a standard IRK and the proposed
GNSF-IRK scheme, we consider their Newton iterations and their complexity ratio,
like it was done in [47].
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Recall that the size of the Newton matrix that has to be factorized online is s(nx +nz)

for the standard IRK and snout for the GNSF-IRK scheme. Asymptotically, for a very
high number of stages s and a GNSF model with nout > 0, the matrix factorization
becomes the bottleneck of both integration schemes. The computational complexity
of this schemes is thus

Cirk = (s(nx + nz))
3,

Cgnsf = (snout)
3,

which results in the following complexity ratio

Cratio =
Cgnsf
Cirk

=

(
nout

nx + nz

)3

. (3.62)

Note that this ratio is only driven by the ratio nout
nx+nz

, in which it enters cubically.
This suggests a large saving in computational cost for systems that can be transcribed
into the GNSF form with a ratio nout

nx+nz
� 1, i.e. systems with many states but very

few nonlinear dependencies in the dynamics.
However, this only holds asymptotically and for the number of stages s fairly low
in typical applications. It does not take sensitivity propagation into account and
there are several operations that have to be carried out within GNSF-IRK, for which
there is no equivalent in a standard IRK scheme. Although the computational cost
of these operations can be neglected asymptotically, it is very relevant for practical
applications. This can be observed when comparing the results in Chapter 5 with
the theoretical maximum speedup in (3.62).

3.4.3 Lagrange Mechanics and Flexibility of GNSF

In this subsection, we want to recall the remark on mechanical systems in the original
NSF paper [47] and extend it to illustrate the flexibility of the GNSF structure. It
was already pointed out that mechanical systems are typically derived via Lagrange
mechanics, yielding an ODE of the form

M(q)q̈ + C(q, q̇)q̇ + F (q̇, q, u) = 0, (3.63)

where the generalized coordinates q ∈ Rnq are used to define the state vector as
x =

[
q>, q̇>

]> ∈ R2nq .
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Such an ODE can be written in the following structured form[
1 0

0 M(x)

]
ẋ =

[
0 1

0 −C(x)

]
x−

[
0

F (x, u)

]
, (3.64)

in which the first nq equations are linear. Thus, one can transcribe the system into the
NSF or GNSF form with φ mapping to Rnq or potentially even a lower dimensional
space. For this kind of systems, the complexity ratio (3.62) that corresponds to the
saving in the factorization of the Newton matrix is 1

8 .
Moreover, dynamic models of the form above can be extended by adding more
differential states. These could be states that are added after the derivation of
the mechanical model in (3.63), as it is the case in the test models presented in
Section 5.1.2 and Section 5.1.3, regarding ϑ there.
Additionally, the dynamic model can be extended by adding so-called quadrature
states. These can be used to track quantities that are not represented by a state of
the model but are of interest within the NMPC scheme [48]. Such a quantity could be
any kind of objective or constraint function of the general OCP (1.2). This quantity
will then be simulated by the integrator, resulting in a more accurate representation
compared to the approach of evaluating the corresponding function using the output
of the integrator. Since the initial model is not depending on the dynamics of the
quadrature states, they can be efficiently simulated using GNSF-IRK by modeling
them as part of the LOS.

3.4.4 GNSF_early – An Alternative GNSF Formulation

As mentioned in Section 3.2.3, some design choices were adjusted when experimenting
with prototypes of GNSF-IRK.
In this subsection, we want to discuss an alternative approach compared to the
GNSF-IRK scheme presented in Section 3.3 and its implementation in acados. The
approach uses CasADi code generation more extensively and was used in some early
prototype of GNSF-IRK. Thus, we refer to it as GNSF_early.

GNSF_early – Formulation The idea is to generate the residual function r(v, x
[1]
n , u)

directly in CasADi and to omit the linear input matrices. The main argument for
this is that CasADi can automatically detect the sparsity patterns of matrices and
generate efficient C code to perform operations using these matrices.
The structured dynamic system for GNSF_early uses the same formulation (3.12), but
instead of the term φ(Lẋẋ

[1]+Lxx
[1]+Lzz

[1], Luu), one can use φearly(ẋ[1]+x[1]+z[1], u),
i.e. no linear input matrices. Since the values for x[1], ẋ[1] are available when evaluating
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fLO, it is not beneficial to use linear input matrices for this function.

GNSF_early - Discussion Note that all points but the last (Linear Input Matrices)
from Section 3.2.3 are still valid for the GNSF_early formulation.
In every Newton iteration of GNSF-IRK the residual function r from (3.27) has to
be evaluated once. Therefore, the input y has to be calculated from v, x

[1]
n , u, which

happens through matrices Yv,Yx,Yu. It could make sense to exploit the sparsity of
the corresponding matrix multiplications, i.e. in Equation (3.25).
Moreover, the derivatives of the residual function ∂r

∂(v,x
[1]
n ,u)

could be generated using

AD in CasADi instead of realizing the matrix-matrix multiplication in Equation (3.29)
by BLASFEO routines. The code generation could be computationally beneficial
compared to the the current acados implementation using BLASFEO routines.
We also have to multiply with the matrices Kv,Kx,Ku,Zv,Zx,Zu in order to do both,
obtain the output of the scheme via Equations (3.21) and (3.23) and to implement
sensitivity propagation, via Equations (3.45) and (3.36).
Additionally, the linear transformations to get the input y and initial linear operations
within φ could be summarized by CasADi, such that internally the concatenation of
these transformations is computed. However, since the CasADi developers highlight
that CasADi is not a computer algebra system (CAS) [28], it is not expected by
the author that this happens within the code generation, but it could be further
investigated.
In Section 5.6, we will observe that all the bold matrices are often quite sparse,
especially for large-scale models. Thus, there is some potential for sparsity exploita-
tion. However, it will strongly depend on the dynamic model, if code generated
CasADi functions would outperform the high-performing dense linear algebra BLAS-
FEO routines or vice versa.
The final implementation of GNSF-IRK follows the paradigms maintainability and
adaptivity of acados more closely instead of code generation, which was the paradigm
of ACADO and this early version.

Comparison to GNSF–IRK and its acados implementation In the remain-
der of this subsection, we want to give some reasons for using the formulation with
linear input matrices in (3.12) throughout this thesis. In the following, we assume
that the code generation should happen before choosing the integrator options, i.e.
Butcher tableau, step size T int, etc.
First, since we have to perform a precomputed linear transformation on x0,v, u

anyway for each evaluation of the gathered nonlinearity function Φ, see (3.26), we
can include linear transformations into the precomputed one with no additional
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computational cost. The linear transformation included through the linear input
matrices should be one that would have to be performed within the nonlinearity
function otherwise.
Second, this formulation enables us to reduce the input dimension of φ, using only
the components which are needed. The input dimension nin has 2nx1 + nu + nz1 as
an upper bound when reformulating the model reasonably, i.e. taking Section 4.1
into account. Note that 2nx1 + nu + nz1 is the input dimension of φ using the
other formulation GNSF_early. This makes the matrices corresponding to the linear
transformations from our previous point likely to be smaller and thus the matrix
multiplications cheaper. Using the same argument, the Jacobian matrices of φ get
smaller and the corresponding matrix-matrix multiplications, see (3.29), become
cheaper.
This being said, using linear input matrices is beneficial, assuming that we want to
use code generation only for the model functions φ, fLO.
In practice, it is very uncomfortable to switch from C to Matlab and back to C when
changing options of the integrator, which is one reason why there is no extensive
comparison between the two versions. Furthermore, modularity, maintainability and
adaptivity are key concepts of acados and using the GNSF_early approach would
clash with these concepts.
Regarding the recent developments in acados, one way to combine the GNSF_early ap-
proach with the acados framework reasonably would be to perform the automatic
transcription and code generation using CasADi in the C++ interface layer. This layer
is still under development and its main purpose is to generate the Matlab and
Python interfaces through SWIG [49].

3.4.5 Further possible Generalizations and Improvements

Compatibility with Simplified and Single Newton methods In order to
exploit the structure of the IRK equations even more, one could try to combine the
two approaches presented in Section 3.1. Note that the three-stage dynamic system
structure exploitation presented in Section 3.1.2 and [46] can be combined with the
IRK structure exploitation presented in Section 3.1.1 using the DAE formulation
in [38].
However, it is not clear if and how the scheme in [47] and the one presented in this
thesis can be efficiently combined with the IRK structure exploitation in Section 3.1.1,
which could be further investigated.

A Multi-Stage GNSF Structured System It is possible to generalize the GNSF
structure (3.12) further by concatenating an arbitrary number of GNSF systems, as
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it is shown in Figure 3. This idea has been suggested in [12, p.134] for the three-stage
dynamic system structure presented in Section 3.1.2.
The implementation of a multi-stage GNSF-IRK scheme is a task that remains
outside the scope of this thesis. Moreover, it is even harder to transcribe a dynamic
model into the multi-stage GNSF structure shown in Figure 3, i.e. the algorithm in
Section 4.2 has to be thoughtfully extended. Generally speaking, it is not clear if
such structures appear frequently within dynamic models used in practice. However,
we expect that this structure is often present within multibody models that are used
often in robotics [50].
Thus, we suggest for future work to first extend the automatic transcription method
from Section 4.1 to multi-stage GNSF structured systems and investigate how far
and often such structures can be detected within models of interest.
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Figure 3: Concept of a multi-stage GNSF structured dynamic system and workflow of an
IRK scheme exploiting this structures.



4 GNSF Model Transcription

In this chapter, we first discuss general principles one should take into account
when transcribing a model into the GNSF structure and then derive an automatic
transcription method that has been implemented as a feature of acados.

4.1 General Transcription Discussion

For an efficient deployment of GNSF-IRK the given dynamic model has to be
transcribed into the GNSF structure (3.12). This transcription is neither trivial nor
unique. When transcribing a dynamic system model into the GNSF structure, the
following principles should be kept in mind to get a good speed-up by using the
GNSF-IRK scheme:

1. Maximize components modeled in LOS (3.12b): For each component of
the differential (respectively algebraic) state vector x (z) one has to decide
if it is made part of the NSF type system (3.12a) or of the LOS (3.12b). As
the simulation of the LOS is computationally cheaper, one should make a
component always part of the LOS if possible. If this is not possible, i.e., if
the state depends nonlinearly on itself or any other state variable in the NSF
depends on it, the component must be made part of the NSF type system.

2. Minimize dimension of Newton iteration: The output dimension nout of
the nonlinearity function φ should be as small as possible, as the computational
complexity is cubic in nout.

3. Minimize input dimension of φ: The input dimensions ny, nû of φ should
be as small as possible in order to minimize the size of the linear input matrices
Lẋ, Lx, Lz, Lu and the cost of multiplying with Yv,Yu,Yx (introduced earlier
in this section) and Lu, which has to be done in each Newton iteration and
within the sensitivity propagation.

4. Outsource initial linear transformations into the linear input matri-
ces: This can help to tune the reformulation with respect to the point above.
Sometimes, the nonlinearity function φ actually proceeds a weighted sum of
components and the input dimension of φ can be reduced by taking this into
account when defining the linear input matrices.
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4.2 An Automatic Transcription Method

In order to make a structure exploiting integrator conveniently usable, it is crucial
to provide an algorithm which automatically transcribes a dynamic system into the
specific structure used in the IRK implementation. As most continuous-time models
can be brought into the form of an implicit index-1 DAE relatively easily, the goal is
to derive an algorithm that transcribes such models into the GNSF structure (3.12)
and follows the principles derived in the previous section.
This section introduces the concepts of an algorithm, that follows the principles 1
to 3 from the previous section and is referred to as automatic transcription method.
Additionally, we present its implementation as pseudo code structured into functions
in the Algorithms 4 to 10. Algorithm 4 gives an overview of the transcription
algorithm using the functions presented in Algorithms 5 to 10.

Algorithm 4: Transcribe a dynamic system into the GNSF structure

1: Input: Implicit model consisting of x, ẋ, u, z and an expression
f impl(x, ẋ, u, z) describing the dynamics.

2: gnsf ← determine_trivial_gnsf_transcription( model ) . Alg. 5
3: gnsf ← detect_affine_terms_reduce_nonlinearity( gnsf ) . Alg. 7
4: [gnsf, reordered_model] ← reformulate_with_LOS( gnsf, model )

. Alg. 8,9
5: gnsf ← reformulate_with_invertible_E_mat( gnsf ) . Alg. 10
6: check_reformulation( gnsf, reordered_model )
7: generate_C_code( gnsf, reordered_model )
8: Output:

• reordered_model: consisting of a sorted state vector x̄ and a permuted
expression f̄ impl in which some functions which were made part of the linear
output system of the GNSF model have changed signs

• gnsf: dynamic system model in GNSF format, equivalent to the reordered
model

Pseudo Code Notation In the following code, the concept of index sets is real-
ized by using lists or vectors. For notational convenience, the basic set operations
\ , ∪ , ∩ , ∈ are naturally extended for these types of objects . Additionally, − is
used to denote the subtraction of a scalar from each element of the list.

Initial Transcription In the first function (Algorithm 5), the dynamic system is
trivially transcribed into the GNSF structure, i.e. with A,B,C,E, c = 0, C = 1 and
an empty LOS.
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Algorithm 5: Function determine_trivial_gnsf_transcription( model )

1: Input: model: Implicit dynamic system model consisting of x, ẋ, u, z
and an expression f impl(x, ẋ, u, z) describing the dynamics.

Obtain trivial transcription
2: x[1] ← x, z[1] ← z, x[2] ← [ ], z[2] ← [ ]; . empty LOS
3: A← 0, B ← 0, C ← 1, E ← 0, c← 0, φ← f impl; . NSF (3.12a)
4: ELO ← [ ] , ALO ← [ ] , fLO ← [ ]; . LOS (3.12b)
5: create “gnsf” containing struct . Define gnsf model

E,A,B,C, c, ELO, ALO, φ, fLO, x, ẋ, u, z
6: gnsf ← determine_input_nonlinearity_function( gnsf ) . Alg. 6
7: check_reformulation( gnsf, reordered_model )
8: Output: gnsf: dynamic system model in GNSF format, equivalent to the model

Afterwards (in Algorithm 7), the transcription method detects all affine terms in the
nonlinearity function φ and represents them through the matrices A,B,E, c instead.
Subsequently, all structural zeros in the expression φ is detected and removed,
reducing the dimension nout. The input of the nonlinearity function is determined in
Algorithm 6. Here, y (û) is defined as the concatenation of x, ẋ, z (u) components, that
the expression φ depends on. The linear input matrices Lx, Lẋ, Lz, Lu are selecting
the elements of x, ẋ, z and u respectively. Thus, they are binary matrices and the
idea to outsource initial linear transformations into these matrices is not taken into
account by the proposed algorithm.
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Algorithm 6: Function determine_input_nonlinearity_function

1: Input: gnsf dynamic system model without input of nonlinearity
y, û and corresponding matrices Lx, Lẋ, Lz, Lu

2: y ← [ ] , û← [ ] . initialize empty

Determine y
3: for v ∈ {x[1], ẋ[1], z} do
4: for i = 1 : length(v) do . check dependency on vi
5: if ∂φ

∂vi
6= 0 then

6: y ←
[
y, v

[1]
i

]
. append vi to y

7: end if
8: end for
9: end for

Determine û
10: for i = 1 : length(u) do . check dependency on ui
11: if ∂φ

∂ui
6= 0 then

12: û←
[
û, u

[1]
i

]
. append ui to û

13: end if
14: end for

Determine linear input matrices
15: Lx ← ∂y

∂x[1]
, Lẋ ← ∂y

∂ẋ[1]
, Lz ← ∂y

∂z , Lu ← ∂û
∂u

16: make y, û, Lx, Lẋ, Lz, Lu part of gnsf
17: Output: gnsf dynamic system model with input of nonlinearity y, û

and corresponding matrices Lx, Lẋ, Lz, Lu
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Algorithm 7: Function detect_affine_terms_reduce_nonlinearity( gnsf )

1: Input: gnsf: dynamic system model in GNSF format, with trivial
model matrices A,B,C, c, E,ALO

Detect linear terms in x
2: for i = 1 : length(φ) do . determine A
3: for j = 1 : length(x) do
4: if ∂φi

∂xj
is constant then

5: A(i, j)← ∂φi
∂xj

;

6: end if
7: end for
8: end for

Detect linear terms in u, ẋ, z
9: Similar to the above, details omitted here . determine B,E

Detect constant terms
10: for i = 1 : length(φ) do . determine c
11: if φi is constant then
12: ci ← φi;
13: end if
14: end for

15: φ← φ−Ax−Bu+ E

[
ẋ
z

]
− c ; . define consistent φ

Reduce dimension of nonlinearity
16: I=0 ← { i | φi = 0 }, I6=0 ← Znout

1 \ I=0 ; . detect zeros
17: φ← φI6=0

, nout ← length(φ), . reduce nonlinearity
C ← 0(nx1+nz)×nout ;

18: for i = 1 : nout do . define consistent C
19: C(I 6=0(i), i)← 1
20: end for

Update gnsf model
21: make A,B,C, c, E, φ part of gnsf
22: gnsf ← determine_input_nonlinearity_function( gnsf )
23: check_reformulation(gnsf, reordered_model)
24: Output: gnsf: dynamic system model in GNSF format, where all

affine linear dependencies are moved from φ
to the matrices A,B, c, E



62 4 GNSF Model Transcription

Detection of the Linear Output System Now that the linear structure is
detected, a function, presented in Algorithms 8 and 9, needs to be called that detects
a set of x, z components that can be made part of the LOS.
In this function, we first check the necessary criterion for components to be made
part of the LOS. This is that the nonlinear functions φ, fLO can not depend on any
of these components. This criterion is used to determine components that in any
case have to be part of the NSF subsystem, INSF_comp, and components that can
potentially be modeled as through the LOS Icand (first part of Algorithm 8).
When reformulating the structured dynamic system with a LOS, additionally to
determining the division of the states, the equations have to be divided accordingly.
Here, the approach is to determine one equation for each component that will be
kept as part of the NSF type system. It is necessary to determine the equations, as
they have to be checked for dependencies on the candidates i ∈ Icand later. If one of
the NSF equations (INSF_eq) depends on one of the candidates, this candidate has to
be modeled through the NSF type subsystem, see Algorithm 8, line 26.
In the easiest case, there is exactly one equation in which ẋi occurs linearly, then this
equation will be the one associated with ẋi, see Algorithm 8, line 9.
The second case is that there is more than one equation with a linear term in ẋi,
(respectively zi). In this case, we want to choose the equation that remains part of
the NSF type system to be the one that has the least dependencies on candidates for
the LOS. Therefore, we define the following quantity, indicating how dependent the
equation with index ieq is on the candidates for the LOS Icand

ζ(ieq, Icand) := |{ i ∈ Icand | ∃ linear term xi or ẋi, respectively zi in equation ieq }|
(4.1)

which one could call candidate dependency of equation ieq given the candidates Icand.
Equations with lower candidate dependency index are preferred to be kept part of
the NSF type system, see Algorithm 8 line 12.
The third case is that there is no equation with a linear term in ẋi, respectively zi.
In this case, we check in which of the unsorted equations a nonlinear dependency
on ẋi, respectively zi, occurs, see Algorithm 8, line 14. Given this set of equations,
the one with the least candidate dependency is taken. Subsequently, the equation
is modified by adding the term ẋi, respectively zi, to both sides of the equation,
i.e. via E and Cφ, see Algorithm 8, line 20. This is done, because the equation ieq
corresponding to a NSF component ẋi, respectively zi, should have a nonzero entry
in the corresponding entry of Eieq,:. Otherwise, it is likely to end up with a singular
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matrix E. For example, when attempting to model an algebraic equation of the form

0 = g(zi, x̄),

where x̄ is a subvector of the state vector x and g is nonlinear in both x̄ and zi.
Transcribing this equation without the mentioned trick would result in a zero row in
the matrix E.
Given the NSF components and an equal number of associated equations, the re-
maining equations can be rewritten as a linear output type system (3.12b). Here, all
terms can be transcribed using the nonlinear function fLO, except the linear terms in
ẋ[2], z[2] and x[2], which are modeled using ELO and ALO respectively. The detailed
transcription can be found in Algorithm 9, lines 35 to 38.

Ensuring regularity of E11, E22, E
LO To ensure that the necessary conditions on

the GNSF model formulation hold, i.e. that E11, E22, E
LO are regular, Algorithm 10

was added to the automatic GNSF transcription algorithm.
In the first part, E11 and E22 are checked for regularity. Let us regard one of them
and refer to it as M . If M is not regular, the algorithm will find the submatrix
M sub = MZj

1,Z
j
1
with minimal j, such that M sub is not regular. Then, it will add a

1 to the lower right entry of M sub and a corresponding term to the Cφ part of the
corresponding equation in the GNSF model.

Remark 4.1 Algorithm 8 ensures that an equation i which is part of the NSF part
corresponds to the variable vi, due to the sorting in lines 23 and 32. Additionally,
each of these equations has a nonzero entry in the column of E corresponding to vi,
i.e. Ei,i 6= 0. Thus, all diagonal entries of E are nonzero. This makes it likely that
E11 and E22 are regular before the function in Algorithm 10 is called. In this case
Algorithm 10 just checks the regularity of the matrices E11, E22 and ELO once by
evaluating their determinant.

Remark 4.2 Algorithm 10 is based on a heuristic and the modified matrix E11 or
E22 might be ill-conditioned. Thus, if the function actually modifies the model, it
will always print a warning, reminding the user that it should be used carefully and
one ought to consider checking the model formulation.

Additionally, the matrix ELO will be checked for regularity. In case that this check
fails, the algorithm will throw an error because it is not possible to add terms in
ẋ

[2]
i to both sides, since there is no term the right side of (3.12b) that can handle

expressions in ẋ[2].
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Theorem 4.3 Given an index-1 DAE, Algorithm 8 ensures that there are no zero
columns in ELO.

Proof. Assuming a component vi of ẋ or z is made part of the LOS. Then this
component did not occur nonlinearly in any of the model equations. Otherwise, there
is a contradiction to line 2 of Algorithm 8. Additionally, there can be no linear
dependency on vi in (3.12a), this would contradict line 26 of Algorithm 8. Thus, if
there is a zero column in ELO, the corresponding variable did not occur at all in
the initial model, which contradicts the assumption that the model was an index-1
DAE.

Corollary 4.4 The matrices E11, E22, E
LO that are generated by the proposed auto-

matic transcription method have no zero column.

Implementation and Limitations The transcription algorithm is implemented
as a Matlab function for CasADi models in SX symbolic variables. It was made
part of acados and can be found in the folder /interfaces/matlab/sim in the
acados Github repository [2].
When testing the transcription algorithm, we found the following limitations:

• Limitation to SX models: It is not possible to use the algorithm with MX

symbolic variables. For these expressions the CasADi function simplify is less
powerful compared to the implementation for SX expressions. For example,
after subtracting some summands, CasADi is not able to detect structural zeros
in the expression corresponding to the nonlinearity function φ. This is due to
the fact, that CasADi’s MX symbolic variables use matrix operations by default,
for which the CAS functionality is quite limited.
Within most wind turbine models splines are used to evaluate the aerodynamic
coefficients, see Section 5.1. Unfortunately, splines and external functions in
CasADi are only supported with MX symbolic variables.
One solution to this problem is to define the model with SX symbolic variables
and a dummy spline function such that the algorithm can be used. Subsequently
one would have to parse the resulting model and define an equivalent MX model.
However, a better solution would be to implement an interface for the spline
such that it can be used with SX symbolic variables.

• Limitation to models with explicit coefficients: Another limitation of
this implementation is also connected to a flaw of the CasADi function simplify.
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For example, given an equation of the form

(c1x1 + c2x2)

c3
= 0, (4.2)

whereby x1, x2 are components of the state vector x and c1, c2, c3 ∈ R are
constants, Algorithm 7 will find that the coefficient associated with x1 is equal
to c1

c3
. However, the CasADi function simplify cannot simplify the expression

(c1x1+c2x2)
c3

− c1x1
c3

to c2x2
c3

. Thus, in the initial CasADi expression f impl, the
coefficients should be multiplied out.
The underlying problem is probably connected to the fact that a linear term in
a variable can be represented through multiple nodes of the expression graph,
which is CasADi’s internal representation of an expression.
One solution to this deficit of the CasADi CAS capabilities would be to use
the CasADi expression, for which Algorithm 7 detected a linear dependency
on xi. This expression could be parsed and the summand that contains xi
could be removed such that an equivalent CasADi expression without the term
is obtained.
However, the most elegant solution would probably be to empower CasADi’s
CAS to simplify such terms.

A solution that tackles both of the above limitations is to implement the transcription
algorithm using a different full featured CAS that is able to simplify such terms. It
should however be possible to interface this CAS with CasADi such that the matrices
and expressions can be automatically transfered into CasADi, which in turn will
generate the efficient C code for acados.
As an example, the application of the proposed automatic transcription method to a
test problem is illustrated in Section 5.1.1.



66 4 GNSF Model Transcription

Algorithm 8: Part 1 of Function reformulate_with_LOS( gnsf, model )

1: Input: gnsf: dynamic system model in GNSF format, where all
affine linear dependencies are moved from φ to the
matrices A,B, c, E and the LOS is empty

Check necessary criterion
2: INSF_comp ← { i | φ depends on xi or ẋi };
INSF_comp ← INSF_comp ∪ { i+ nx | φ depends on zi }

3: Icand ← Znx+nz
1 \ INSF_comp;

4: INSF_eq ← ∅, INSF_comp
+ ← INSF_comp, Iunsort_eq ← Znx+nz

1 ;
5: while true do
6: for i ∈ INSF_comp

+ do

Find equation corresponding to component i
7: Ieq ← { j | Ej,i 6= 0 } ∩ Iunsort_eq;
8: if |Ieq| == 1 then
9: ieq ← Ieq

10: else if |Ieq| > 1 then
11: Determine ζ(j, Icand) for j ∈ Ieq
12: ieq ← arg minj∈Ieq ζ(j, Icand)
13: else
14: Ieq ← { j ∈ Iunsort_eq | component i occurs nonlinearly in eq. j }
15: if Ieq = ∅ then
16: Ieq ← Iunsort_eq
17: end if
18: Determine ζ(j, Icand) for j ∈ Iunsort_eq
19: ieq ← arg minj∈Ieq ζ(j, Icand)
20: Add term ẋi (respectively zi) to both sides of ieq (via E and Cφ)
21: end if
22: INSF_eq ← INSF_eq ∪ {ieq}, Iunsort_eq ← Iunsort_eq \ {ieq}
23: Store the pair (i, ieq);
24: end for

Add NSF components
25: for ieq ∈ INSF_eq do
26: INSF_comp ← INSF_comp ∪ { j | Eieq,j 6= 0 or Aieq,j 6= 0 };
27: INSF_comp

+ ← Icand ∩ INSF_comp;
28: end for
29: if INSF_comp

+ == ∅ then break;
30: end if
31: end while
32: Sort the list INSF_eq according to the indices INSF_comp using line 23 ;
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Algorithm 9: Part 2 of Function reformulate_with_LOS( gnsf, model )

Final split
33: ILOS_comp ← Icand, ILOS_eq ← Znx+nz

1 \ INSF_eq
Ix1 ← INSF_comp ∩ Znx

1 , Iz1 ← INSF_comp ∩ Znx+nz
1+nx

− nx
Ix2 ← ILOS_comp ∩ Znx

1 , Iz2 ← ILOS_comp ∩ Znx+nz
1+nx

− nx
Permute states x, ẋ, z

34: x← [xIx1 ;xIx2 ], ẋ← [ẋIx1 ; ẋIx2 ], z ← [zIz1 ;xIz2 ]

Redefine equations ILOS_eq in LOS
35: for ieq ∈ ILOS_eq do
36: ilo ← index of ieq in ILOS_eq

37: fLO ←
[
fLO; (Aieq,Ix1x

[1]+Bieq,:u+cieq+Cieq,:φ−Eieq,Ix1 ẋ
[1] − Eieq,Iz1z[1])

]
38: ALO

ilo,:
← Aieq,Ix2 , ELO

ilo,:
← Eieq,ILOS_comp

39: end for

Define reordered model
40: f impl ←

[
f impl

INSF_eq ; f impl
ILOS_eq

]
41: Set up reordered_model consisting of x, ẋ, z, u, f impl

Remove LOS equations from NSF
42: Remove rows corresponding to ILOS_eq from A,B,C,E, c

Reduce nonlinearity Cφ
43: I6=0 ← { i | φi 6= 0 }, C ← CI 6=0

, φ← φI 6=0

Update gnsf model
44: make new E,A,B,C, c, φ,ELO, ALO, f, x, ẋ part of gnsf
gnsf ← determine_input_nonlinearity_function( gnsf )

45: Output:

• reordered_model: consisting of a sorted state vector x̄, a permuted expression
f̄ impl

• gnsf: dynamic system model in GNSF format, equivalent to the reordered
model, where as many states as possible are made part of LOS x[2]
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Algorithm 10: Function reformulate_with_invertible_E_mat( gnsf )

1: Input: gnsf: dynamic system model in GNSF format, with possibly
non-invertible matrices E,ELO.

2: k ←
[
ẋ[1]

z

]
3: for i← 1, 2 do
4: if i == 1 then
5: I ← Znx1

1

6: else if i == 2 then
7: I ← Znx1+nz

nx1+1

8: end if
9: if det(EI,I) == 0 then

10: for imax ∈ I do
11: Isub ← Zimax

min(I), Esub ← EIsub,Isub

12: while rank(Esub) < length(Isub) do
13: Eimax,imax ← Eimax,imax + 1
14: if Cimax,: == 0 then . Add new entry to φ
15: φ← [φ; k(imax)]

C:,length(φ)+1 ← 0, Cimax,length(φ)+1 ← 1
16: else . Modify entry of φ
17: j ← index where E:,j 6= 0
18: if C:,j 6= 0 then
19: error: C is not a selection matrix!
20: end if
21: φj ← φj + kimax

Cimax,j

22: end if
23: end while
24: end for

Update gnsf model
25: Make φ, C part of gnsf

gnsf ← determine_input_nonlinearity_function(gnsf)
26: end if
27: end for
28: if det(ELO) == 0 then
29: Error: Either (probably) a component of ẋ, z does not occur

in the model at all, or
the columns of ELO happen to be linearly dependent, with no zero column.

30: end if
31: Output: gnsf: dynamic system model in GNSF format, with invertible

matrix E, or error.



5 Evaluation and Numerical
Experiments

In this chapter, the proposed algorithms, GNSF-IRK and the automatic transcrip-
tion method, are tested on different dynamic system models that are presented in
Section 5.1.
All numerical experiments presented in this chapter were performed using acados on
an ordinary Laptop equipped with an Intel i7-3520M processor, running a 64-bit
version of Ubuntu 16.04.
The C code to perform the numerical experiments with the public models as well
as the implementations of the proposed Algorithms can be found can be found in
the Github branch [51]. The GNSF-IRK and standard IRK implementation can
be found in /acados/sim/sim_gnsf.c and /acados/sim/sim_irk_integrator.c,
respectively. The files to run the numerical experiments are located in the directory
/examples/c/.
The Butcher tableaux used correspond to the Gauss-Legendre collocation methods,
presented in Section 2.2.5. Within the IRK schemes, the first order forward sensitivity
propagation is also performed and included in the computation times.

5.1 Test Problems and Dynamic Models

This section briefly presents the dynamic models that are used to obtain the numerical
results presented in the rest of this chapter.

5.1.1 An Inverted Pendulum DAE Model

We refer to the following DAE system as inv_pend, as it models a planar pendulum.
The model formulation consists of six differential states

(px, vx), (py, vy) : position and velocity in x- and y-direction,

(α, vα) : angular position and velocity,
(5.1)

five algebraic states

(ax, ay) : acceleration in x- and y-direction,

(aα) : angular acceleration,

(F x, F y) : resulting forces in x- and y-direction

(5.2)
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and one control input u which denotes the force applied in x-direction from outside.
The parameters used in the formulation are the mass m = 2, the applied torque
M = 3.5, the moment of inertia I = 0.1 and the gravitational constant g = 9.81. The
model equations are naturally written in the semi-explicit form as

ṗx = vx, (5.3a)

ṗy = vy, (5.3b)

α̇ = vα, (5.3c)

v̇x = ax, (5.3d)

v̇y = ay, (5.3e)

v̇α = aα, (5.3f)

0 = max − (F x + u), (5.3g)

0 = may +mg − F y, (5.3h)

0 = Iaα −M − (F x + u)py + F ypx, (5.3i)

0 = ax + vyvα + pyaα, (5.3j)

0 = ay − vxvα − pxaα (5.3k)

As an example, the GNSF structured model and the application of the automatic
transcription method shall be illustrated for this model in the following.
We used the automatic transcription method presented in Section 4.2 to obtain an
equivalent GNSF structured model. The dimensions of the implicit model and the
equivalent GNSF model can be found in Table 4.

Table 4: Dimensions of the inverted pendulum (inv_pend) model.

Model dimensions GNSF dimensions

nx nu nz nparam nx1 nz1 nout ny nû
6 1 5 0 5 5 3 8 1

Regarding the dynamic model in (5.3), we observe that the last three equations
contain nonlinear terms, namely products of x and z components. Thus, these
equations have to be modeled through the NSF part of GNSF. Since the products of
state components are different within all three equations, we can conclude that in an
equivalent GNSF structured model nout ≥ 3 has to hold. Table 4 states that for the
automatically obtained transcription nout = 3, which means that principle 2 from
Section 4.1 is fulfilled in this example.
Furthermore, the differential and algebraic states that are involved in these equations
also have to be modeled through the NSF part. Sorted as in (5.1) and (5.2), we
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conclude that the x components px, py, vx, vy, vα and z components ax, ay, aα, F x, F y

have to be part of the NSF part of GNSF.
We reasoned that all states except α have to be part of the NSF part of GNSF. Since
the dynamics of α in (5.3c) only depend on vα and no other equation is depending
on α or α̇, we observe that it is possible to model α through the LOS part of GNSF.
The order of the differential and algebraic states is not changed by the transcription
algorithm, i.e.

x =



px

py

vx

vy

vα

α


, z =


ax

ay

aα

F x

F y

 .

Moreover, Table 4 states that nx1 = 5 and nz = nz1 = 5 for the GNSF model obtained
by the transcription algorithm. This implies that α is indeed modeled through the
LOS of GNSF within the automatically transcribed model. Note that as many states
as possible are made part of the LOS, which means that the transcription principle 1
from Section 4.1 is fulfilled for this model.
The dynamics of α are stated in (5.3c) and are reformulated through the LOS (3.12b)
which is defined by

ELO = [−1] , ALO = [0] , fLO = −vα.

The remaining model equations in (5.3) are reformulated within the NSF type system,
which is defined by the following matrices

E =



−1 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0 0

0 0 −1 0 0 1 0 0 0 0

0 0 0 −1 0 0 1 0 0 0

0 0 0 0 −1 0 0 1 0 0

0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 −0.1 0 0

0 0 0 0 0 −2 0 0 1 0

0 0 0 0 0 0 −2 0 0 1



,



72 5 Evaluation and Numerical Experiments

A =



0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



, B =



0

0

0

0

0

0

0

0

−1

0



, C =



0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 1

1 0 0

0 0 0

0 0 0



, c =



0

0

0

0

0

0

0

0

0

19.62



,

and the nonlinearity function

φ(y, û) =

 −3.5− (F x + u)py + F ypx

vyvα + pyaα

−(vxvα + pxaα)

 ,
where y = [ px, py, vx, vy, vα, aα, F x, F y ]> and û = u and the linear input matrices
are defined such that y = Lẋẋ

[1] + Lxx
[1] + Lzz

[1], û = Luu, i.e.

Lx =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, Lẋ = 0, Lz =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


, Lu =

[
1
]
.

Note that only the states that are actually used within the φ expression are part of y
(û). Thus, we verified that transcription principle 3 from Section 4.1 is fulfilled for
this model.
As stated in the previous chapter, the transcription algorithm sorts the model
equations corresponding to the NSF part such that the first nx1 equations correspond
to x[1] and the following nz1 equations correspond to z[1]. In the NSF part of the
GNSF model, the first five equations correspond to (5.3a), (5.3b) and (5.3d) to (5.3f),
which means that the sorting worked for first nx1 equations.
Regarding the Equations (5.3g) to (5.3k), it is not clear how to match the equations
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and algebraic variables. The transcription method matched them as shown in Table 5.

Algebraic variable ax ay aα F x F y

Associated equation (5.3j) (5.3k) (5.3i) (5.3g) (5.3h)

Table 5: Algebraic variables of the inv_pend model and equations associated with them by
the automatic transcription method.

One can easily verify that the last five equations of the NSF type system are equivalent
to the equations (5.3j), (5.3k), (5.3i), (5.3g) and (5.3h) in that order. This reformu-
lation naturally results in a GNSF structured model that fulfills the requirement, i.e.
the equations do not have to be modified within Algorithm 10.
For this particular model, we conclude that deploying the automatic transcription
method resulted in a reasonable GNSF formulation that follows the essential prin-
ciples in Section 4.1. Furthermore, the factor the dimension of the Newton matrix
scales with within GNSF-IRK is nout = 3 instead of nx + nz = 11 for the standard
implementation. Regarding the asymptotic complexity ratio in (3.62), we expect
a speedup factor of

(
11
3

)3 ≈ 49 within the linear system solves when comparing
GNSF-IRK to the standard IRK implementation. Already having a look at Table 11,
we observe that in practice this speedup is “only” 18.1 for s = 7, which is already a
method of very high order. Thus, the complexity ratio in (3.62) should be considered
with caution.

5.1.2 The wt_nx13 Wind Turbine Model

We refer to the following model as wt_nx13, because it is a wind turbine model and
consists of 13 differential states. The model is derived from a simplified flexible
multibody formulation. The differential states of the model can be denoted as
x =

[
q>, q̇>, ϑ

]> ∈ R13, where ϑ corresponds to the pitch angle and q ∈ R6 consists
of the first tower eigenmodes in x and y direction, the rotation angle of the hub, the
rotation angle of the generator and the collective deformation of all three blades in
their first mode in tangential direction and in axial direction. The control vector
u = [T gen, ϑref]

> ∈ R2 consists of the generator torque and the pitch angle that is
tracked by a lower level controller.
The first part of the model equations enforce ∂q

∂t = q̇, the second part of the implicit
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ODE is presented in (5.4).

0 = (5.4)

−3q̈5p19 sinϑ+ 3q̈4p18 cosϑ+ q̈1p8 + q̈1p7 + q̈1p28 + q1p27 + q̇1p26 + 3q̈1p21 − F thrust

p1T rot + q̈2p8 + q̈2p7 + q̈2p29 + q2p27 + q̇2p26 + 3q̈2p21
−T rot + 3q̈4p16 sinϑ− 3q̈5p17 cosϑ+ (q3 − q6) p6 + q̈3p5 + 3q̈3p20 + (q̇3 − q̇6) p2

−p25 sinϑT rot + 3q̈3p16 sinϑ− F thrustp23 cosϑ+ 3q̈1p18 cosϑ+ 3q̈4p14 + 3q4p12 + 3q̇4p10
p24 cosϑT rot − F thrustp22 sinϑ− 3q̈1p19 sinϑ− 3q̈3p17 cosϑ+ 3q̈5p15 + 3q5p13 + 3q̇5p11

p9T gen + (q̈6p4 + q̈6p3) p9
2 + (q6 − q3) p6 + (q̇6 − q̇3) p2


,

where we use the shorthands

vrot_rel = q̇1 + p30 q̇4 cosϑ,

vwind_eff = vwind − vrot_rel,

λ = q̇3 p33/vwind

(5.5)

to define

P rot = 0.5p32 vwind_eff
3 cp(λ, ϑ)p31,

T rot = P rot / q̇3,

F thrust = 0.5p32 vwind_eff
2 ct(λ, ϑ).

(5.6)

All parameter values pi for i = 1, . . . , 33 are confidential for the moment. The
dynamics of ϑ read as

ϑ̇ = (ϑref − ϑ)/τϑ. (5.7)

Typically, in NMPC models for wind turbines, the aerodynamic coefficients cp, ct
are evaluated using splines [52]. However, within this model and the wt_nx21 model
presented in the next subsection, the aerodynamic coefficients are modeled as polyno-
mials that are well defined only in a certain region, in which the simulations of our
numerical experiments stay.
Since it was not possible to directly apply the automatic transcription method to
wind turbine models that use splines, we chose to use the higher dimensional wind
turbine models with the polynomial formulation, i.e. wt_nx13 and wt_nx21.
The wind speed vwind is a function parameter that is set to 12m

s for the simulation
over a time horizon of 0.2s. We applied the automatic transcription method from
Section 4.2 to the model equations and obtained an equivalent dynamic model in the
GNSF form with the dimensions listed in Table 6.
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Table 6: Dimensions of the wt_nx13 model.

Model dimensions GNSF dimensions

nx nu nz nparam nx1 nz1 nout ny nû
13 2 0 1 11 0 5 8 1

5.1.3 The wt_nx21 Wind Turbine Model

We refer to the following model as wt_nx21, because it is a wind turbine model and
consists of 21 differential states. The model is very similar to the wt_nx13 model.
The difference compared to the wt_nx13 model is that q ∈ R10, where the first four
components of q have the same purpose as for the wt_nx13 model. However, the last
six components of q model the three blades in their first mode in tangential direction
and in axial direction separately. Within the wt_nx13 model, these quantities are
modeled collectively using only two components of q. This explains why the factor 3
occurs so often in (5.4). The equation describing the behavior of q̈ can be found in
Equation (6.1) in the appendix.
We used the automatic transcription method from Section 4.2 to obtain an equivalent
model in the GNSF structure. The dimension of the implicit and the equivalent
GNSF model can be found in Table 7.

Table 7: Dimensions of the wt_nx21 model.

Model dimensions GNSF dimensions

nx nu nz nparam nx1 nz1 nout ny nû
21 2 0 1 21 0 10 27 1

5.1.4 The wt_nx6 Wind Turbine Model

We will refer to this model as wt_nx6, as it is a wind turbine model and has six
differential states. In this model, the aerodynamic coefficients cp, ct are modeled by
splines. The splines used within this model are relatively costly to evaluate. Although,
a fast spline evaluation was developed recently, it not yet available in CasADi [53].
Because of the spline formulation that can only be used with CasADi MX symbolics,
the model was transcribed by hand instead of using the automatic transcription
algorithm. The resulting model dimensions can be found in Table 8.
The model is also used in the acados C examples and can be found in the folder
/examples/c/wt_model_nx6.
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Table 8: Dimensions of the wt_nx6 model.

Model dimensions GNSF dimensions

nx nu nz nparam nx1 nz1 nout ny nû
6 2 0 0 6 0 1 5 0

5.2 Comparing Computation Times

In this section, we want to get some insight on how GNSF-IRK can be compared
with the standard IRK implementation regarding the distribution of computation
time spent within the algorithms. Since there are different approaches to compare
computation times, we first want to discuss them briefly.
In [47] a runtime comparison was done for the NSF exploiting IRK. There, the authors
chose to compare the total time (tot) spent in the integrator and the time spent to
compute linear system solutions (lss), i.e. matrix factorizations and triangular solves.
In this section, we additionally regard the time spent in linear algebra within the
integrator (la), which is regarded as the most important timing in the comparison.
First, this is due to the fact that the number of calls to and time spent inside external
function evaluations is close to constant for all IRK implementation. Second, the
speedup within this linear algebra time can be regarded as the actual speedup in the
integration scheme regarding Amdahl’s law, since only these operations are changed
by the structure exploitation.
If the Jacobians are not reused, the number of integration steps nsteps has rather
small influence on the timing comparison. Therefore, in the numerical experiments of
this section, we use nsteps = 1. Both algorithms are used with nnewton = 3, Butcher
tableaux corresponding to the Gauss-Legendre collocation method and the option to
propagate first order forward sensitivities.
Figure 4 illustrates the values in Table 9, in which also the speedup of GNSF-
IRK w.r.t. the standard IRK implementation is listed. We observe that the time
spent to evaluate the external functions is not significantly different in the IRK
implementations. However, the time required to solve the linear systems and to
carry out the remaining operations is strongly dependent on the IRK implementation.
For the standard IRK implementation, the lss time is indeed growing fast with the
number of stages. For s = 2 nearly half of the CPU time is spend to solve the linear
systems and for very high orders (s = 7), solving the linear systems takes more than
85 % of the CPU time.
We see that GNSF-IRK is indeed mainly developed with the intention to reduce this
(lss) time. The speedup regarding just the linear system solutions (lss) ranges from 3
to more than 8.
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Figure 4: Comparison of computation times for standard IRK and GNSF-IRK, using the
wt_nx13 model. The values presented can be found in Table 9.

s GNSF-IRK Standard IRK Speedup Factor

tot la lss tot la lss tot la lss

1 75 57 12 76 54 37 1.01 0.947 3.08
2 144 106 29 206 164 128 1.43 1.55 4.41
3 231 179 54 416 353 292 1.8 1.97 5.41
4 320 249 75 706 618 531 2.21 2.48 7.08
5 505 419 145 1280 1170 1040 2.53 2.79 7.19
6 659 555 200 1910 1780 1610 2.89 3.21 8.03
7 870 747 270 2720 2570 2340 3.13 3.44 8.67

Table 9: Comparison of computation times for standard IRK and GNSF-IRK, using the
wt_nx13 model. Timings are in [µs], factors have no unit.

Regarding the remaining operations, which are mainly matrix-vector and matrix-
matrix multiplications, one observes that there are much more operations needed
when using the structure exploiting implementation. For s = 1, these operations take
more than three times the time to solve the linear systems, (the ratio la−lss

lss ). However,
as the matrices are of lower dimension, the complexity of these operations still grows
much slower than the complexity of solving the linear systems. For GNSF-IRK
with s = 7, the remaining operations still take around 1.7 times the lss time, so
asymptotically they are still cheaper compared to the linear solves.
Regarding Table 9, one observes that all listed speedups grow with the number of
stages s, corresponding to the order of the method. While the total speedup is
negligible for s = 1, it is greater than two for s = 4 and greater than three for s = 7.
In the case s = 1, there is a total speedup of 1%. However, considering only the time
to perform linear algebra operations within the integrator, GNSF-IRK is 5% slower.
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Thus, there must be a speedup within the external function calls, which is due to the
fact, that some linear operations are removed from the code generated function φ.
Note that the speedup when comparing the linear algebra operations, is very close to
the total speedup, as the external function calls are rather cheap for this model. In or-
der to give an intuition that this is not always the case, let us regard the wt_nx6 model.
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Figure 5: Comparison of computation times for standard IRK and GNSF-IRK, using the
wt_nx6 model. The values presented can be found in Table 10.

s GNSF-IRK Standard IRK Speedup Factor

tot la lss tot la lss tot la lss

1 57 15 3 60 16 10 1.05 1.07 3.33
2 105 24 3 119 30 18 1.13 1.25 6
3 152 31 5 201 72 50 1.32 2.32 10
4 200 42 7 274 100 70 1.37 2.38 10
5 247 56 11 400 183 139 1.62 3.27 12.6
6 292 64 12 495 231 181 1.7 3.61 15.1
7 340 81 11 673 368 299 1.98 4.54 27.2

Table 10: Comparison of computation times for standard IRK and GNSF-IRK, using the
wt_nx6 model. Timings are in [µs], factors have no unit.

In Figure 5 and Table 10 the same kind of comparison is done for the wt_nx6 model.
Here, the external function calls take a lot of time, which is due to the fact that
an inefficient spline implementation is used to model the aerodynamic coefficients.
Regarding s = 7 and the ratio tot−la

tot , we find that 76% of GNSF-IRKs computation
time is spent in the external functions, whereas it is only 45% for the standard
implementation.
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However, GNSF-IRK still provides a significant total speedup, ranging from 5% to
98%. Considering the linear algebra timing (la), GNSF-IRK is up to 4.5 times faster
compared to the standard implementation. Thus, one could argue that this model
is even better suited for GNSF-IRK compared to the wt_nx13 model. This can be
justified by the ratio nout

nx
, which is 1

6 ≈ 0.1667 for wt_nx6 compared to 5
13 ≈ 0.3846

for wt_nx13. Hence, one can expect an even higher total speedup for this model when
using an efficient spline implementation.

0

500

1,000

1,500

2,000

2,500

number of stages

C
P
U

ti
m
e
in

[µ
s]

GNSF-IRK

external functions
solving linear systems
remaining operations

0

500

1,000

1,500

2,000

2,500

number of stages

Standard IRK

0

500

1,000

1,500

2,000

2,500

number of stages

Naive GNSF-IRK

Figure 6: Comparison of computation times for standard IRK and GNSF-IRK, using the
inv_pend model with automatic GNSF transcription Table 4 in the left subplot and
Table 11. In the right subplot, a naively transcribed GNSF model is used, see Table 12
and Table 13.

s GNSF-IRK Standard IRK Speedup Factor

tot la lss tot la lss tot la lss

1 26 23.3 5.2 34.7 29.8 21 1.33 1.28 4.04
2 53.6 48.2 12.7 110 100 81.8 2.05 2.08 6.44
3 91.9 85 21 247 233 201 2.69 2.74 9.56
4 115 105 22.7 398 381 332 3.47 3.62 14.6
5 174 163 41.5 739 715 641 4.24 4.38 15.4
6 240 229 60.2 1140 1110 1020 4.74 4.86 16.9
7 330 314 86.6 1730 1690 1570 5.23 5.4 18.1

Table 11: Comparison of computation times for standard IRK and GNSF-IRK, using the
inv_pend model with the automatic transcription method, Table 4. Timings are in
[µs], factors have no unit.

For the inv_pend model, a similar timing comparison is shown in the first two subplots
of Figure 6 and Table 11.
The additional subplot on the right side shows the computation times for a naively
transcribed GNSF model. This reformulation was obtained using the transcription
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method in Chapter 4 but skipping the essential steps in lines 16 to 20 in Algorithm 7.
The dimensions of this naive GNSF reformulation are listed in Table 12. The timings
of standard IRK and GNSF-IRK with the naive reformulation are listed in Table 13.
For this model, GNSF-IRK gives a really good speedup considering the total time. It
is greater than two for s ≥ 2 and greater than four for s ≥ 5.

Table 12: Dimensions of the inverted pendulum (inv_pend) model with a naively transcribed
GNSF model, compare to Table 4.

Model dimensions GNSF dimensions

nx nu nz nparam nx1 nz1 nout ny nû
6 1 5 0 6 5 11 8 1

s GNSF-IRK Standard IRK Speedup Factor

tot la lss tot la lss tot la lss

1 62 60 23 36 30 23 0.581 0.5 1
2 189 180 82 112 102 84 0.593 0.567 1.02
3 394 383 193 249 237 202 0.632 0.619 1.05
4 611 602 309 398 378 331 0.651 0.628 1.07
5 1040 1020 583 710 687 615 0.686 0.672 1.05
6 1590 1570 949 1120 1090 995 0.704 0.696 1.05
7 2400 2370 1510 1670 1640 1520 0.696 0.692 1

Table 13: Comparison of computation times for standard IRK and GNSF-IRK, using the
inv_pend model with a naive GNSF reformulation, Table 12. Timings are in [µs],
factors have no unit.

In contrast to this, transcribing a model naively into the GNSF format results
in a significantly longer runtime of GNSF-IRK compared to the standard IRK
implementation. Since the linear systems for both algorithms are of the same
dimension, namely nout = nx + nz, the linear solves take approximately the same
time, see Table 13. Moreover, the remaining operations are much more expensive for
the naively transcribed GNSF model, because many of the matrix multiplications
have a dimension depending on nout.
This comparison was mainly made to show both, the necessity of having an algorithm
to obtain a suitable GNSF version of the model, and the possible overhead that
can arise in the application of GNSF-IRK to an inappropriate model, i.e. one with
nx + nz ≈ nout.
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5.3 Convergence and Initialization

In this section, GNSF-IRK and the standard IRK algorithm are compared regarding
their convergence properties and natural initialization.
As both schemes are designed to solve a mathematical equivalent system of equations,
the converged solutions should always be the same. However, the numerical properties
of the schemes are not the same as Newton iterations are performed on a different
space. Moreover, the natural initialization, i.e. initializing the integration variables
(K, respectively v) with zeros, distinguishes the two schemes.
In order to compare the behaviour of the algorithms, the standard IRK integrator
should be initialized equivalently to the natural initialization of the GNSF-IRK. Initial
values for standard IRK that are equivalent to the natural initialization of GNSF-IRK
can be easily obtained by first computing[

ẋ
[1]
0

z
[1]
0

]
= E−1(Ax

[1]
0 +Bu0 + c), (5.8)

and subsequently[
ẋ

[2]
0

z
[2]
0

]
=
(
ELO)−1

(ALOx
[2]
0 + fLO(ẋ

[1]
0 , x

[1]
0 , z

[1]
0 , u0)), (5.9)

where x0 denotes the initial state and u0 the applied control. Now, the standard
IRK scheme can be initialized equivalently to GNSF using ki = ẋ0 and zi = z0, for
i = 1, . . . , s.
First, we want to discuss Figure 7 in detail, as it is a typical plot for this section. It
shows the behavior of our IRK implementations, i.e. standard and GNSF, within the
first Newton iterations applied to an IVP from Section 5.1, here the inv_pend model.
The results for the other models are presented in the following figures. The standard
IRK is listed twice, with its natural initialization (IRK: zero-init) and with the one
equivalent to the GNSF-IRK initialization (IRK: gnsf-init), that is described above.
For nnewton = 3, there is hardly a difference concerning accuracy, as one can see in
Section 5.4. Thus, we only regard the first two Newton iterations in this section.
In Figure 7, we observe that for the inv_pend model GNSF-IRK has the same conver-
gence behavior as the standard IRK with the equivalent initialization. Additionally,
we note that the natural IRK initialization is significantly worse compared to the one
of GNSF-IRK.
In Figure 8, only the first Newton iteration applied to the wt_nx6 model is presented
because for this model, we can hardly observe a difference between the methods.
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Figure 7: inv_pend model: Error comparison standard IRK vs. GNSF-IRK.
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Figure 8: wt_nx6 model: Error comparison standard IRK vs. GNSF-IRK.
Actually, there is only a slight difference visible between the IRK initializations with
s = 7. In this case, the standard IRK implementation with the GNSF initialization
is marginally more accurate compared to the other algorithms.
The results for the wt_nx13 and the wt_nx21 model are presented in Figure 9 and
Figure 10. Since there is hardly a difference between these figures observable, we
want to discuss them simultaneously. After a single Newton iteration, the standard
IRK implementation with the GNSF initialization provides the best solution, followed
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Figure 9: wt_nx13 model: Error comparison standard IRK vs. GNSF-IRK.
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Figure 10: wt_nx21 model: Error comparison standard IRK vs. GNSF-IRK.

by GNSF-IRK and the standard IRK implementation with its natural initialization.
The difference between the methods is bigger if more stages are used. However, the
difference between all methods is relatively small, smaller than 0.05. For nnewton = 2,
there is no difference visible and the corresponding plots are omitted.

The observations in this section can be summarized as follows. For the test problems
used, the GNSF initialization is better or equally good compared to the natural
standard IRK initialization. An intuitive explanation for this is that the GNSF ini-
tialization takes the linear dependencies into account and neglects only the nonlinear
term φ, respectively the GNSF-IRK initialization assumes φ to be zero. However,
this is just a heuristic and one can easily come up with counter examples, in which
the standard IRK initialization is favorable.
On the other hand, we saw that for two test problems, the wt_nx13 and the
wt_nx21 model, the standard IRK with GNSF initialization has a slightly better
convergence rate compared to GNSF-IRK. One possible explanation for this is that
some matrices used within GNSF-IRK are not as well conditioned, which results



84 5 Evaluation and Numerical Experiments

in less accurate solutions of the linear systems. This could be investigated further,
and one could modify the automatic GNSF transcription aiming for well conditioned
matrices.
Another reason for the above results could be that within GNSF-IRK the integration
equations corresponding to the linear dynamics are solved separately and exactly,
using the current solution for the nonlinear equations. In contrast to that, standard
IRK Newton iterations solve both linear and nonlinear equations simultaneously.
Finally, we state that the convergence properties observed in this section are similar
to the ones of the standard IRK implementation and even if they are slightly worse,
the saving of computation time compensates for this, see Section 5.2 and Section 5.4.

5.4 Efficiency Comparison

In this section, GNSF-IRK is compared with the standard IRK algorithm considering
accuracy and computation time together in order to analyze their overall efficiency.
Therefore, we consider different numbers of steps nsteps and numbers of stages s.
For the numerical experiments discussed in the remainder of this thesis, it was chosen
to always use all possible combinations of the parameter values shown in Table 14.
Moreover, we always simulate and propagate the first order forward sensitivities.
However, in the plots of this section, we restrict ourselves to nnewton = 3, as for this
value the different initializations of the algorithms, discussed in Section 5.3, have only
slight effects on the results.

nsteps s nnewton

1 1 1
2 2 2
3 3 3
4 4 4
5 5
7 6
10 7
20
50
100

Table 14: Parameters of IRK schemes used within the experiments presented in this chapter.

In the numerical experiments, the relative error of the simulation and sensitivity
propagation is computed with respect to a reference solution that is obtained using
an IRK method with s = 8, nnewton = 5 and nsteps = 400.
The plots in this section are meant to give a measure for efficiency by plotting
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the relation between the relative error and the CPU time using a logarithmic scale
for both axes. The results for different values of nsteps and the same value for s
are presented as one polygonal line within the plot. Since it is possible to use the
integration methods with different values for nsteps ∈ N apart from the ones used to
generate the plot and all step sizes h > 0 by varying T , these lines are meaningful
and allow for a relatively fair comparison of the methods. Similar plots, in which the
axis corresponding to the error is reversed, are called work-precision diagrams [31].
Additionally, the lower left part of all the lines plotted can be regarded as the efficient
set, also called Pareto-front, of the biobjective optimization problem that one would
naturally formulate to choose an integration method by taking the computation time
and the accuracy as objective functions. This property is discussed more precisely in
Section 5.5.
As the natural initialization of GNSF and its strong effects on the results in the
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Figure 11: inv_pend model: Different orders of IRK using GNSF-IRK and the standard
IRK implementation respectively, for nnewton = 3, with natural initialization. The
values for nsteps are listed in Table 14.

first Newton iterations are discussed in Section 5.3, this section will focus on a
number of Newton iterations that is typical within a multiple shooting algorithm, say
nnewton = 3, which is the default in acados. For every IVP, it has to be investigated
individually, which parameter values, Table 14, are suitable to solve it efficiently.
Both IRK implementations were applied to the inv_pend model and the results are
visualized in Figure 11, which is a typical type of plot for this section. After three
Newton iterations, typically both IRK implementations converge to the same solution.
Thus, the lines of GNSF-IRK and the standard IRK that use the same s and Butcher
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tableau, can be easily identified with each other. They provide the same, or not
distinguishable, accuracy for the same number of steps such that these plots can be
seen as a proof of work. Note that this holds even though both implementations are
used with their natural initialization (Section 5.3). However, as they have different
CPU times, it looks like the corresponding lines are shifted in x-direction. The length
of this shift corresponds to the speedup provided by GNSF-IRK with respect to
the standard implementation. Note that for higher order methods, the shifts and
speedups are bigger, which we have already seen in Section 5.2. As the 4 stage method
with one integration step provides a very good accuracy, the methods with s > 4 are
not shown in Figure 11.
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Figure 12: wt_nx13 model: Different orders of IRK using GNSF-IRK and the standard
IRK implementation respectively, for nnewton = 3, with natural initialization. The
values for nsteps are listed in Table 14.

Figure 12 shows a similar comparison for the wt_nx13 model. It is separated into
two subplots to improve readability. In the first subplot s = 1, 2, 3 are shown and in
the second one the methods with s = 3, . . . , 7 are visualized.
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Regarding the lines for s = 1, one observes that the CPU time for GNSF-IRK grows
a bit slower with the number of steps. This can be reasoned by the fact that there are
some operations that have to be performed just once in GNSF-IRK independently of
the number of steps. This effect can be found for all models, i.e. also in Figure 11,
Figure 13 and Figure 14.
The lines for s = 1 also show how well-suited the model is for the structure ex-
ploitation, meaning how far the dimensions nout and ny are reduced with respect
to their upper bound nx + nz and 2nx + nz respectively. For the inv_pend and the
wt_nx6 model GNSF-IRK is always faster compared to the standard implementation.
In contrast to that, for the wt_nx13 and the wt_nx21 model, GNSF-IRK is only
faster if a minimum number of steps is used.
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Figure 13: wt_nx21 model: Different orders of IRK using GNSF-IRK and the standard
IRK implementation respectively, for nnewton = 3, with natural initialization. The
values for nsteps are listed in Table 14.

In the second subplot in Figure 12, the results of the IRK implementations are
separated, because GNSF-IRK is significantly faster for higher order methods.
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Figure 14: wt_nx6 model: Different orders of IRK using GNSF-IRK and the standard IRK
implementation respectively, for nnewton = 3, with natural initialization. The values
for nsteps are listed in Table 14.

Let us take a closer look at the efficient set of methods. For GNSF-IRK, this efficient
set contains methods with all values for s, i.e. 1 to 7. In contrast to this, the efficient
set of the standard implementation only contains methods with values for s ranging
from 1 to 5. Thus, we conclude that the optimal choice of the IRK settings, meaning
the Butcher tableau and number of integration steps nsteps, strongly depends on which
IRK implementation (GNSF or standard) is used. The availability of a structure
exploiting IRK scheme makes it more attractive to use higher order methods with a
lower number of integration steps. This qualitative result can also be seen regarding
the results for the wt_nx21 and wt_nx6 model in Figure 13 and Figure 14.
For a truly fair timing comparison of the schemes, one should compare only the
methods that belong to the efficient set of settings of an IRK algorithm. Namely, one
should compare higher order methods of GNSF-IRK with lower order methods of the
standard IRK that use more integration steps and thus provide a similar accuracy.
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5.5 Efficiency Comparison with Pareto front

For the sake of completeness, we formally define some terms from the field of multi-
objective optimization formally in the following, using the notation in [54].

Definition 5.1 Given a nonempty set S ⊆ Rn and a function f : S → Rm, the
problem

minimize
x ∈ S

f(x) (5.10)

is called multiobjective or multicriteria optimization problem. In the case of m = 2,
(5.10) is also called biobjective optimization problem.
A point x̄ ∈ S is called Edgeworth-Pareto optimal (EP optimal) solution of (5.10) if
there exists no x ∈ S \ {x̄} such that

fi(x) ≤ fi(x̄) for i = 1, . . . ,m,

and fj(x) < fj(x̄) for at least one j ∈ {1, . . . ,m}.

The set of images of optimal solutions of a multiobjective optimization problem, i.e.

E = { y = f(x) ∈ Rm | x is an EP optimal solution of (5.10) },

is called efficient set, also Pareto front or Pareto set [55].

We use the above definitions to visualize and evaluate the numerical results from the
previous section further.
In Figure 15, all EP optimal methods for both IRK algorithms are highlighted and
connected by a stair graph. In this setting, it makes sense to use the stairs that
“underestimate” the efficient set, which can be interpreted as follows.
The stair plot can be evaluated at a specific time, the maximal amount of time in
which the integrator must be able to carry out its tasks. The function value of the
stairs provides the best accuracy that can be obtained by this IRK algorithm within
the given time.
Additionally, one can switch the axes of the plot to obtain a very similar plot, in which
the stair plot is still well-defined. Here, we use the convention that the function value
of the stairs plot at a point of discontinuity is defined as the minimum of the vertical
line. Given a specific accuracy that at least should be satisfied by the integrator, we
evaluate the stair plot for this accuracy and obtain the minimal time this integrator
needs to provide at least this accuracy.



90 5 Evaluation and Numerical Experiments

10−1 100
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

CPU time in [ms]

re
la
ti
ve

er
ro
r

gnsf pareto
gnsf s = 1
gnsf s = 2
gnsf s = 3
gnsf s = 4
gnsf s = 5
gnsf s = 6
gnsf s = 7

10−1 100
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

CPU time in [ms]

re
la
ti
ve

er
ro
r

irk pareto
irk s = 1
irk s = 2
irk s = 3
irk s = 4
irk s = 5
irk s = 6
irk s = 7

Figure 15: wt_nx13 model: Different order IRK methods computed with GNSF-IRK and
standard IRK. The EP-optimal methods are highlighted and connected by stairs as
an approximation of the efficient set.
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Figure 16: wt_nx13 model: Speedup of GNSF-IRK w.r.t. the standard IRK, using the
highlighted approximation of the efficient set in Figure 15.
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The computation times that are at least needed to provide a certain accuracy with
GNSF-IRK and the standard implementation can then be compared to get the
speedup of GNSF-IRK w.r.t. standard IRK when choosing the settings for both
algorithms efficiently. Figure 16 visualizes how this speedup is behaving for varying
required accuracies using the wt_nx13 test problem.
Taking a closer look at Figure 15, we can now specify which methods are EP-optimal
for GNSF-IRK and standard IRK respectively. Starting with low accuracies, the
first difference is that the method with s = 1 and nsteps = 4 is EP-optimal for the
standard IRK but not for GNSF-IRK. The method with s = 3 and nsteps = 1 is
EP-optimal for GNSF-IRK, but not for the standard IRK implementation. Whereas,
the methods with s = 3 and nsteps = 3, 4, 5 are EP-optimal for standard IRK, but not
for GNSF-IRK. However, we already found out in the last section that for GNSF-IRK
higher order methods are more favorable even for relatively low accuracies. Thus,
this kind of plots does not provide new qualitative information, and they are omitted
for the other models.
Considering Figure 16, we observe that the speedup of GNSF-IRK compared to the
standard IRK is especially good for high accuracies. Regarding low accuracies, i.e.
where the relative error is greater than 10−2, GNSF-IRK is partly 5% to 10% slower
compared to the standard implementation. Whereas for higher accuracies a speedup
factor of up to 2.9 can be observed.
Within an NMPC scheme, the accuracy that should be satisfied by an integrator is
strongly depending on the practical application and the model. Sometimes medium
accuracy is fine because there is an uncertainty within the model or noise. Additionally,
when controlling systems with fast dynamics, one might not afford computing very
accurate solutions [56]. In the medium to low accuracy range, i.e. relative error
between 10−4 and 10−2, a speedup between 1.5 and 2 can be expected using the
wt_nx13 model. On the other hand, for some applications, the sampling times
and time horizon are relatively long and there exist well-engineered models. For
example, regarding wind turbines, in [57], [52] sampling times of 0.2s and 0.1s are
used respectively. Thus, it could make sense to use a very accurate integrator with a
relative error smaller than 10−4. In this case, a speedup greater than 2 seems to be a
realistic estimation.
Similar plots are presented in Figure 17, Figure 18 and Figure 19 for the other test
problems.
Figure 17 shows again, that the inv_pend model is very well suited for GNSF-IRK.
Given any accuracy, one can obtain a positive speedup by using GNSF-IRK. For
accuracies better than 10−3, the speedup factor is always greater than 2 for accuracies
better than 10−5 it is mostly greater than 3.
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Figure 17: inv_pend model: Speedup of GNSF-IRK w.r.t. the standard IRK, using an
approximation of the efficient set similar to Figure 15.
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Figure 18: wt_nx21 model: Speedup of GNSF-IRK w.r.t. the standard IRK, using an
approximation of the efficient set similar to Figure 15.

Figure 18 shows that for the wt_nx21 model it makes sense to use GNSF-IRK if
accuracies higher than 10−2 are required. However, as this system is a more detailed
model of a wind turbine, compared to the wt_nx13 model, the model mismatch
is supposed to be smaller, which makes longer sampling times and high accuracy
integrators more attractive for MPC. Thus, for this model, one can expect a speedup
greater than 50% by using GNSF-IRK.
Figure 19 shows that the structure within the wt_nx6 model is really well suited for
GNSF-IRK. Given any accuracy, one can obtain a positive speedup by using the
GNSF-IRK scheme. However, this speedup is always in the range of 5% to 34%. The
reason for this relatively small speedup is that the spline evaluations used in the
model are very costly, which we already saw in the previous sections of this chapter.
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Figure 19: wt_nx6 model: Speedup of GNSF-IRK w.r.t. the standard IRK, using an
approximation of the efficient set similar to Figure 15.

5.6 Sparsity of Bold Matrices

In this section, we want to look at the bold matrices Yx, Yu, Yv, Kx, Ku, Kv, Zx,

Zu, Zv with a focus on their sparsity pattern, i.e. the positions of nonzero matrix
entries. Let us refer to these matrices as GNSF-IRK matrices, because they are
the ones that are actually used within GNSF-IRK. We saw in Section 5.2 that the
deployment of GNSF-IRK comes with the computational burden of multiplying with
these matrices. Within GNSF-IRK, these operations are often more costly compared
to the linear system solutions. Thus, it makes sense to investigate possibilities to
tune these operations.
In Figure 20, the sparsity patterns of these matrices are plotted for the wt_nx6 model
using Gauss-Legendre tableaus of different sizes s. In addition to the sparsity
patterns, gray lines are plotted to show the block structure of the matrices. Since the
wt_nx6 model is an ODE, the matrices Zx,Zu,Zv are empty and not listed.
We observe that the matrices with index x and u consist of blocks that always have
the same sparsity pattern and are vertically concatenated. The structure of these
blocks originates from the structure inherent within the dynamic model.
The matrices with index v grow in both directions with increasing s. Regarding the
matrix Yv for this model, we note that all blocks have the same simple structure.
On the other hand, we see that this is not the case for the matrix Kv. However, all
blocks of Kv only have nonzero elements at positions where the initial block, i.e. Kv

for s = 1, has a nonzero entry.
The same properties also hold for the matrices corresponding to the inv_pend model,
which are shown in the Figures 21 and 22. Namely, the matrices with index x and u
consist of blocks that have the exact same sparsity pattern as their initial block, i.e.
the corresponding matrix for s = 1. The matrices with index v consist of blocks that
have the same sparsity pattern as their initial block, but there are some additional
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Figure 20: wt_nx6 model: Sparsity patterns of the GNSF-IRK matrices.

zero entries in the subsequent blocks.
It could be possible to derive the described properties for the GNSF-IRK matrices for-
mally using their definitions. At least with the regarded test problems, we were not
able to find a counter example.

We note that the bold matrices for the wt_nx6 model are not very sparse and using
BLASFEO routines to multiply them is computationally efficient.
In order to figure out if BLASFEO routines are generally an efficient way to perform
these computations, we want to get an overview on the sparsity of the bold matrices
for the other test models, without looking at the patterns.
For this purpose, we calculate the percentages of nonzero entries within the GNSF-
IRK matrices, which are given in Table 15 and Table 16.
Since the GNSF-IRK matrices with index x and u have the same sparsity ratio for
all s tested, they are listed together in Table 15. We have seen that the ratio of
nonzero elements within the GNSF-IRK matrices with index v generally varies with
the number of stages s, when looking at the sparsity patterns in Figures 20, 21 and 22.
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Figure 21: inv_pend model: Sparsity patterns of the GNSF-IRK matrices.

However, the percentage of nonzero entries within the GNSF-IRK matrices using the
wt_nx13 and wt_nx21 model is constant, i.e. all blocks in these matrices have exactly
the same structure.
Comparing the three wind turbine models, one observes that the ones with more
states result in GNSF-IRK matrices that are more sparse. For the wt_nx13 model, the
GNSF-IRK matrices consist of 19 to 24% of nonzero entries. Using the wt_nx21 model,
only around 10% of the entries in the GNSF-IRK matrices are nonzero.

We want to briefly discuss the estimated difference in computation time, when using
sparse linear algebra routines instead of BLASFEO. Modern CPU architectures
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Figure 22: inv_pend model: Sparsity patterns of the GNSF-IRK matrices, Z matrices.

have vector floating point units. Typically, these units can operate on four doubles
with a single instruction, giving an approximately 4 times speedup over the scalar
code in sparse computations. Efficient implementations that use vectorization are
available within the BLASFEO HP (high performance) version. Additionally, within
BLASFEOs panel-major matrix format, matrix elements are stored in the same order
as they are typically accessed by the BLASFEO routines such that the computational
kernel of the CPU can be continuously fed [3]. Both points are not true for sparse
linear algebra routines. In combination, one can expect that the usage of sparse linear
algebra routines can only outperform BLASFEO if the percentage of nonzero entries
is lower than around 10%.
Regarding again Table 15 and Table 16 with respect to the previous discussion, we
can state that for the regarded test problems the deployment of efficient BLASFEO
routines is indeed a good choice given the alternative of sparse linear algebra. Only
for the largest wind turbine model, wt_nx21, the percentage of nonzero entries within
the GNSF-IRK matrices is at a level for which sparse linear algebra routines could
potentially compete with BLASFEO.
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The discussion in this section can be summarized as follows. For the regarded test
problems, the usage of high performing linear algebra routines, such as the ones in
BLASFEO, is a suitable choice for the operations of interest. If GNSF-IRK is used
with larger models, such that the GNSF-IRK matrices are very sparse, it could make
sense to use sparse linear algebra routines instead.
However, this thesis already proposed two other approaches to reduce the compu-
tational burden of operations that involve the GNSF-IRK matrices, which we will
briefly recall.
First, Section 3.4.4 suggested to use CasADi code generation more extensively, which
would not only exploit the sparsity within the GNSF-IRK matrices, but also the
sparsity pattern within the Jacobian. Moreover, this approach could also yield cheaper
derivative evaluations, since the chain rule, e.g. in (3.29), could be carried out using
advanced AD algorithms in CasADi.
Second, Section 3.4.5 suggests to extend the automatic transcription method to detect
also multi-stage GNSF structures. It should be further investigated how frequently
these structures occur within NMPC models. Hereby, the focus should be on large
dynamic system models that result in very sparse GNSF-IRK matrices, if the proposed
single-stage GNSF-IRK algorithm is deployed.

Yx Kx Zx Yu Ku Zu

wt_nx6 43 28 - 30 33 -
wt_nx13 22 24 - 19 23 -
wt_nx21 10 11 - 7.4 12 -
inv_pend 18 8 0 12 0 20

inv_pend naive 15 8.3 0 38 33 40

Table 15: Percentage of nonzero entries within the GNSF-IRK matrices with index x or u
for all test problems.

Yv Kv Zv

min max min max min max

wt_nx6 80 80 53 67 - -
wt_nx13 20 20 20 20 - -
wt_nx21 10 10 10 10 - -
inv_pend 23 33 17 33 5.6 33

inv_pend naive 19 24 15 29 2.7 16

Table 16: Percentage of nonzero entries within the GNSF-IRK matrices with index v for
all test problems. The maximum and minimum of this ratio are taken regarding
s = 1, . . . , 6.





6 Conclusions and Outlook

This thesis proposed a new structure exploiting IRK scheme suitable for Model
Predictive Control. It further aimed at giving an overview on the concept of integrators
for embedded optimization software. The work mainly focused on IRK methods
with sensitivity propagation for index-1 DAE systems, which are suitable for typical
NMPC applications. The state-of-the-art implementation of an IRK scheme was
outlined and discussed. Previous work on structure exploitation of the Newton matrix
within an IRK scheme was presented and compared. The approaches to exploit
linear dependencies within the underlying dynamic system were investigated with
the intention to combine and extend them. The result was a general dynamic system
structure that can also handle index-1 DAEs and is called GNSF. An efficient IRK
scheme (GNSF-IRK) that exploits the proposed structured dynamic system and that
can also propagate first order sensitivities was derived.
The structure exploiting IRK scheme has been implemented in C within the acados

framework using BLASFEO to perform linear algebra operations efficiently. In order
to make this implementation conveniently usable, an automatic transcription method
has been derived, which is able to transcribe most index-1 DAE systems into the
GNSF form, such that the proposed GNSF-IRK scheme can be deployed efficiently.
Both algorithms were successfully tested with several models, some of which were
kindly supplied by our industrial partners within the eco4wind project, the goal of
which the goal is to develop NMPC controllers for wind turbine generators.
The properties of the proposed GNSF-IRK scheme were discussed in detail, including
the evolution and distribution of computation time and how the error compares to
the one of the standard IRK implementation.
It was concluded, that an optimal choice of options for the IRK algorithm is depending
on whether the structure exploiting GNSF-IRK or a standard IRK implementation is
used. We found that an optimal choice of options for GNSF-IRK uses a rather high
integration order with a relatively low number of steps compared to the standard
implementation.
The numerical experiments showed that the usage of GNSF-IRK with an appropri-
ately GNSF reformulated model typically results in a speedup, which is however very
depending on the model and the desired accuracy. The speedup factors we found in
realistic applications vary between 1 to 3.8.

Finally, possible extensions of the proposed algorithms and improvements in their
implementations have been critically discussed and classified.
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The potential of extending the proposed algorithms to a multi-stage GNSF formulation
should be investigated further. An approach to use CasADi code generation more
extensively within the implementation should be benchmarked against the current
implementation. Moreover, the extension of the proposed GNSF-IRK scheme to
optionally propagate second order sensitivity information and the implementation
of a lifted Newton version of the scheme was left out of the scope. These aspects
and their benchmarking within NMPC schemes are interesting directions for further
research.



Appendix – Model Equations
corresponding to the wt_nx21 Model

The appendix only consists of the model equations that describe the dynamics of q
within the wt_nx21 model, see Section 5.1.3.
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