
Embedded Optimization Methods for
Industrial Automatic Control ?

H.J. Ferreau ∗ S. Almér ∗ R. Verschueren ∗∗ M. Diehl ∗∗

D. Frick ∗∗∗ A. Domahidi ∗∗∗∗ J.L. Jerez ∗∗∗∗ G. Stathopoulos †

C. Jones †

∗ABB Corporate Research, Segelhofstrasse 1K, 5405 Baden-Dättwil,
Switzerland, e-mail: {joachim.ferreau,stefan.almer}@ch.abb.com
∗∗ Systems Control and Optimization Laboratory, Department of

Microsystems Engineering and Department of Mathematics, University
of Freiburg, Georges-Koehler-Allee 102, 79110 Freiburg, Germany,

e-mail: {robin.verschueren,moritz.diehl}@imtek.uni-freiburg.de
∗∗∗Automatic Control Laboratory, ETH Zürich, Physikstrasse 3,

8092 Zurich, Switzerland, e-mail: dafrick@control.ee.ethz.ch
∗∗∗∗ embotech GmbH, Physikstrasse 3, Automatic Control Laboratory,

8092 Zurich, Switzerland, e-mail: {domahidi,jerez}@embotech.com
†Automatic Control Laboratory, École Polytechnique Fédérale de

Lausanne, 1015 Lausanne, Switzerland,
e-mail: {georgios.stathopoulos,colin.jones}@epfl.ch

Abstract:
Starting in the late 1970s, optimization-based control has built up an impressive track record of
successful industrial applications, in particular in the petrochemical and process industries. More
recently, optimization methods for automatic control are more and more deployed on so-called
embedded hardware to cater for application-specific needs such as guaranteed communication
latency, low energy consumption or cost effectiveness. This development greatly broadens
the scope of applications to which optimization methods can be applied to sectors such as
robotics, automotive, aerospace or power electronics. However, it also poses additional challenges
regarding both the algorithmic concepts and their actual implementations for a given computing
hardware. This survey paper discusses key challenges for using embedded optimization methods
and summarizes their main use cases in current industrial practice. Motivated by this discussion,
a number of dedicated embedded optimization algorithms and their actual implementations
are reviewed. The presentation is organized according to the mathematical structure of the
embedded optimization problem, ranging from convex quadratic programming over more general
convex and nonconvex problems to formulations comprising discrete optimization variables.

Keywords: Optimization; Optimal control; Automatic Control; Model-based control;
Predictive control; Real-time systems; Embedded systems; Industrial control

1. BACKGROUND

1.1 Historical remarks

When the first programmable digital computers ap-
peared in the 1940s, mathematicians and engineers quickly
adopted this new technology for the numerical solution
of mathematical optimization problems. Arguably the
most prominent example is the simplex algorithm for
minimizing a linear cost function subject to linear con-
straints (Dantzig (1963)). The subsequent exponential
growth in computing power (per dollar or square centime-
ter of silicon) enabled the solving of ever larger and more
difficult problems, and control engineers started to con-
sider microprocessors a viable option for process control.
? Support by the EU via ERC-HIGHWIND (259 166), ITN-TEMPO
(607 957), and ITN-AWESCO (642 682) and by the DFG within
Reseach Unit FOR 2401 is gratefully acknowledged.

Starting in the late 1970s, model predictive control (MPC)
has emerged as a successful symbiosis of numerical op-
timization and feedback control theory, see e.g. Richalet
et al. (1978); Garćıa et al. (1989); Mayne et al. (2000);
Rawlings and Mayne (2009). Based on a dynamic model of
the process to be controlled, MPC optimizes the predicted
future process behavior by choosing the best admissible
control actions. The past three decades have witnessed
thousands of successful applications of MPC in the pro-
cess industry, where the optimizer typically solves a con-
strained linear-quadratic MPC problem every couple of
seconds or minutes on industrial PCs, see the surveys
by Qin and Badgwell (2003); Darby and Nikolaou (2012).

More recently, researchers achieved spectacular advances
in both theory and algorithms for solving optimization
problems in real-time on embedded controller hardware.
For example, MPC has been implemented on embed-

ded CPUs (see e.g. Ferreau et al. (2007); Vukov et al.
(2012); Liniger et al. (2015)), digital signal processors (see
e.g. Wills et al. (2005); Almér et al. (2013); Beccuti et al.
(2009)), programmable logic controllers (see e.g. Huyck
et al. (2012)), or field-programmable gate arrays (see
e.g. Mönnigmann and Kastsian (2011); Hartley and Ma-
ciejowski (2010); Boechat et al. (2013); Jerez et al. (2014))
at up to Megahertz sampling rates.

1.2 What does “embedded” optimization mean?

An “embedded system” typically refers to a computer sys-
tem that is an integrated part of a larger, complete device.
This definition implies little about whether a numerical
optimization can be carried out on an embedded system
or not. Consequently, the notion “embedded” is often used
in a rather vague manner within the optimization and
automatic control community. In order to define the term
“embedded optimization” and to clarify the scope of this
survey, a few related notions will be reviewed first:

Does “embedded” mean fast? If this notion is used to
express that some computation shall be carried out within
short time periods, it hardly contributes to a useful defini-
tion. A priori there is no maximum time span for perform-
ing an optimization to be called “embedded”; why should
embedded optimization not run at a sampling rate of one
minute or more? Moreover, mentioning execution times
without considering dimensions and other characteristics
of the optimization problem at hand is rather meaningless.
Embedded optimization may solve large-scale, complex
problems. If one talks about efficient rather than fast
optimization, this becomes somewhat more descriptive as
embedded optimization is typically performed on comput-
ing hardware with limited resources that need to be used
with care.

So, does “embedded” mean limited resources? In our expe-
rience, most often this is the case. Main reasons for using
embedded computing hardware are reduced hardware cost
or size (compared to, e.g., a desktop PC) and reduced
power consumption of the device. Consequently, embedded
optimization methods shall be deployable on hardware
with limited computational power or memory, and possibly
even reduced accuracy for representing numbers within
the calculations. However, if that would be all to it, a
resource-efficient implementation for solving large-scale
optimization problems on a computer cluster installed in
the hull of a container ship should be called “embedded
optimization”, too.

Does “embedded” mean real-time? This is indeed the most
important requirement from an algorithmic perspective;
whatever a computation is carried out, it needs to termi-
nate within a pre-defined maximum time limit returning a
sufficiently accurate solution. But why is this important?

Because “embedded” also means autonomous. If there is
always a human operator who can block the result of
the optimization algorithm and enforce alternative input
signals to the system, we would be very reluctant to
call this optimization “embedded”. This also creates a
connection to the first notion: if the optimization is carried
out too frequently for a human operator to supervise the
outcome, it needs to run autonomously. However, also slow

computations can be setup autonomously. In the container
ship example, if the cluster runs for minutes obeying
a strict real-time limit and the result is used without
supervision by a human operator, then (and only then)
one may call even this setup embedded optimization.

The above considerations can be summarized in the fol-
lowing two informal definitions:

Definition 1. An optimization method is called embedded
if and only if it a) can run autonomously, i.e., if it delivers a
sufficiently accurate solution within a real-time limit given
a priori, and b) can be deployed on a computing hardware
with limited resources.

Definition 2. An optimization application is called em-
bedded if and only if an embedded optimization method
is run autonomously on a computing hardware that is
an integrated part of a larger, complete device and its
outcome is used to influence the behaviour of the device.

1.3 Industry needs

In order for (embedded) optimization to be a viable choice
for industrial automatic control, a number of general
requirements need to be met. We briefly discuss a couple
of important ones.

Reliability: According to Definition 2, the embedded op-
timization algorithm needs to run autonomously and is
an integral part of a larger device, typically a commercial
product. Any failure of such a device may lead to serious
financial damage or even endanger the health of people. It
is therefore of uttermost importance that the optimization
algorithm can be implemented in a highly reliable manner.
If a failure of the algorithm cannot be excluded, such a
situation should at least be reliably detected and mitigated
by means of a suitable backup strategy.

Restricted hardware: As customers are often price-sensitive,
this implies a pressure to use the least expensive compu-
tational hardware that meets the requirements. Moreover,
the choice of the hardware might be pre-determined by
other considerations regarding the product. This favours
optimization algorithms that are efficient, allow for a
lightweight implementation and offer “tuning knobs” to
trade-off computational load against solution accuracy.

Rapid prototyping: With product development cycles be-
coming shorter, there is also less time to setup and tune the
underlying optimization algorithm. This favors algorithms
that are generally applicable and do not rely on some
kind of “magic” to make them work well on a specific
problem. Even if these procedures can be automated,
one should note that any kind of time-consuming pre-
processing (which in a broader sense also includes code
generation or explicit pre-solving of the problem) makes
prototyping less agile.

Maintainability: Scientists may write their PhD thesis and
leave, products may need to be maintained for decades.
Algorithms that are easier to understand and give clear
indications of why they failed in a particular situation are
more likely to be successfully maintained by non-academic
experts and thus more attractive to be used within a
commercial product.

1.4 Outline

The remainder of this paper is organized as follows: Sec-
tion 2 describes important use cases of embedded opti-
mization in industrial applications. These use cases are
then categorized by their mathematical structure in Sec-
tion 3. Based on this categorization, different embed-
ded optimization algorithms and implementations are dis-
cussed in the following sections. Namely, Section 4 dis-
cusses algorithms for convex quadratic programming. Sec-
tion 5 addresses algorithms for general convex optimiza-
tion, with a a focus on splitting methods. Section 6 and
Section 7 review algorithms for nonconvex and discrete
optimization, respectively. Section 8 concludes the paper.

2. USE CASES

Embedded optimization may be used in different ways.
This section introduces its major use cases and also
mentions a couple of examples of successful applications
of embedded optimization from various fields. Note that
this paper focuses on methods and implementations for
embedded optimization and that a complete survey on
actual applications is beyond its scope. The mathematical
structure of the embedded optimization problems to be
solved is discussed in detail in Section 3.

2.1 Model predictive control

Optimization algorithms are only deployed on embedded
hardware if they are to run repeatedly. A common rea-
son for doing so is optimization-based control, typically
in form of model predictive control (MPC). MPC is a
feedback control approach that repeatedly solves optimiza-
tion problems at a fixed sampling rate (see Camacho and
Bordons (2007); Rawlings and Mayne (2009)). For a given
application, these problems are structurally identical but
differ in certain parameters that incorporate the feedback
information into the problem. While MPC has tradition-
ally been used mainly in the process and petrochemical
industry (see Qin and Badgwell (2003)), embedded MPC
is becoming frequently used in industrial domains such as
automotive, robotics, aerospace, power electronics or the
energy sector.

MPC problems solved in automotive applications are typi-
cally of linear-quadratic type and require sampling times in
the order of 10–100 milliseconds. For example, linear MPC
has been used in experiments for Diesel engine air path
control (Ortner and del Re (2007)), combustion control in
a HCCI engine (Widd et al. (2009)), idle speed control
(Di Cairano et al. (2012)) or hybrid electric vehicle energy
management (Di Cairano et al. (2013)).

A particularly challenging domain is power electronics as
the nature of the control problems requires both explicit
treatment of nonlinearities or discrete decisions and very
fast sampling times in the order of 20–1000 microseconds.
MPC involving discrete decisions based on explicit ap-
proaches have been used for controlling a voltage source
inverter with LCL filter (Mariethoz and Morari (2009)
and Almér et al. (2013)) or a step-down DC-DC converter
(Geyer et al. (2008)). Nonlinear MPC formulations tackled
with iterative solution methods have been used to control,

e.g., load commutated inverters (see Besselmann et al.
(2016b,a)) or a voltage source inverter with LCL filter
(Almér et al. (2015)).

There exist many more embedded MPC applications and
we restrict ourselves to mention the following, just to
illustrate how broad the range of possible applications
has become: early experiments using MPC for controlling
a hovercraft has been reported in Seguchi and Ohtsuka
(2003b), Noga et al. (2014) describes experimental results
on using nonlinear MPC for cryogenic cooling control, an
MPC based on a mixed-integer quadratic programming
formulation for crane control has been proposed in Iles
et al. (2014) and van Duijkeren et al. (2016) employ path-
following MPC for serial-link robot manipulators.

2.2 Moving horizon estimation

Embedded optimization is also used for estimating the
current state of the process to be controlled. If the process
exhibits substantially nonlinear dynamics, moving hori-
zon estimation (MHE) may be the preferred choice for
obtaining accurate estimates. Similar to MPC, also MHE
requires one to solve sequences of optimization problems
whose mathematical structure is fixed but the parameters
representing the actual measurements vary over time.

Embedded MHE has been demonstrated to deliver su-
perior practical performance in a number of applications
domains. For example, it has been applied to autonomous
agricultural vehicles (Kraus et al. (2013)), to overhead
cranes (see Debrouwere et al. (2014) and Vukov et al.
(2015)), to induction machines (Frick et al. (2012)) or to
an active cantilever (Abdollahpouri et al. (2017)). In these
applications, embedded MHE was running at sampling
rates of up to 4 kHz.

2.3 Static optimization, scheduling and planning

The use of embedded optimization has also been investi-
gated beyond the control domain. For example, Vargas-
Villamil and Rivera (2000) used it for scheduling of semi-
conductor manufacturing lines, and Biegler and Zavala
(2009) present a framework for enterprise-wide dynamic
optimization. An industrial perspective on integrating pro-
duction scheduling and control is given in Harjunkoski
et al. (2009). An example of embedded static optimiza-
tion is given by Defraene et al. (2012), where a convex
optimization problem is solved repeatedly for improved
clipping of audio signals.

3. MATHEMATICAL STRUCTURE

Optimization problems arising in embedded applications
almost always feature a deterministic formulation (in con-
trast to stochastic optimization), a single objective func-
tion to be optimized (in contrast to multi-objective op-
timization) and sparse problem data (e.g. in multistage
problems). This section further categorizes such deter-
ministic, single-objective optimization problems according
to their mathematical structure. This is an important
prerequisite for discussing embedded solution methods
in subsequent sections as the problem structure strongly
influences both their respective numerical efficiency and
their reliability.

3.1 Convex optimization

We state general convex optimization problems in the
following form:

minimize
w ∈ Rn

f(w) (1a)

subject to Cw = c, (1b)

w ∈ Ω, (1c)

where we define the convex function f : Rn → R,
the matrix C ∈ Rneq×n, the vector c ∈ Rneq and the
convex set Ω. Convex optimization problems constitute
an important subclass as any locally optimal solution w∗

(i.e. f(w∗) ≤ f(w) for all feasible w in a neighborhood
around w∗) is also a global solution (i.e. f(w∗) ≤ f(w)
for all feasible w) . This strongly reduces the likelihood of
iterative methods getting stuck at sub-optimal “solutions”.

Quadratic programming An important subclass of con-
vex optimization problems are convex quadratic program-
ming (QP) problems, which can be written in different
forms equivalent to the following one:

minimize
w ∈ Rn

1

2
w>Hw + g>w (2a)

subject to Cw = c, (2b)

Dw ≤ d (2c)

with positive semi-definite Hessian matrix H ∈ Rn×n,
gradient vector g ∈ Rn, constraint matrices C ∈ Rneq×n,
D ∈ Rniq×n and right-hand side vectors c ∈ Rneq , d ∈ Rniq .
We associate the Lagrange multipliers λ ∈ Rneq with the
equality constraints and the multipliers µ ∈ Rniq with the
inequalities. The vector of dual variables will be denoted
by y = [λ>, µ>]>. If the Hessian matrix is set to zero, one
gets a linear programming (LP) problem.

Linear optimal control Linear MPC is an optimal control
method for systems governed by linear dynamics:

xk+1 = Axk +Buk, (3)

where we introduced discrete-time state vectors xk ∈ Rnx
and control inputs uk ∈ Rnu , as well as the system matrix
A ∈ Rnx×nx and the control matrix B ∈ Rnx×nu , re-
spectively. Linear MPC repeatedly optimizes the predicted
behavior of the system along a finite horizon and therefore
solves at each sampling instant a specially structured con-
vex QP problem:

minimize
x0,...,xN ,
u0,...,uN−1

N−1∑
k=0

[
xk
uk

]> [
Q S>

S R

] [
xk
uk

]
+ x>NPxN

subject to xk+1 = Axk +Buk, k = 0, . . . , N − 1,

Dx
kxk +Du

kuk ≤ dk, k = 0, . . . , N − 1,

Dx
NxN ≤ dN ,

x0 = x0.

(4)

The positive semi-definite weighting matrices are denoted
by Q,P ∈ Rnx×nx , S ∈ Rnu×nx and R ∈ Rnu×nu ,
whereas the inequality constraint matrices are Dx

k ∈
Rniq,k×nx , Du

k ∈ Rniq,k×nu , for states and controls, respec-

tively, together with the vector d ∈ Rniq,k . At a given
sampling instant, the initial value for the state is assumed
to be a fixed vector x0 ∈ Rnx .

3.2 Non-convex optimization

Continuous optimization problems that are known (or at
least not required) to be non-convex are usually expressed
as nonlinear programming (NLP) problems:

minimize
w ∈ Rn

f(w) (5a)

subject to c(w) = 0, (5b)

d(w) ≤ 0 (5c)

with f as in (1) but possibly non-convex. Furthermore, we
define functions c : Rn → Rneq and d : Rn → Rniq . With
each of the constraint functions, we associate Lagrange
multipliers λ, µ, as in (2), such that the definition of the
Lagrangian function reads as

L(w, λ, µ) := f(w) + λ>c(w) + µ>d(w) . (6)

Under the common assumption, that f, g, h are smooth
and that LICQ holds at the solution (Nocedal and Wright,
2006, Ch. 12), the following equations form the first order
necessary conditions for optimality, and are well-known as
the Karush-Kuhn-Tucker (KKT) conditions:

∇wL(w, λ, µ) = 0, (7a)

c(w) = 0, (7b)

d(w) ≤ 0, (7c)

µ ≥ 0, (7d)

µ>d(w) = 0. (7e)

Nonlinear optimal control When reviewing methods for
solving NLP problems, the focus is on formulations that
arise from nonlinear optimal control problems (OCP). We
consider OCPs that are NLP problems with a partic-
ular stage-wise structure (e.g. obtained through a mul-
tiple shooting discretization of a continuous-time OCP,
see Bock and Plitt (1984)):

minimize
x0,...,xN ,
u0,...,uN−1

N−1∑
k=0

l(xk, uk) + E(xN) (8a)

subject to xk+1 = Fk(xk, uk), k = 0, . . . , N − 1, (8b)

dk(xk, uk) ≤ 0, k = 0, . . . , N − 1, (8c)

dN (xN) ≤ 0, (8d)

x0 = x0. (8e)

We define the discrete-time dynamic system equations as
Fk : Rnx+nu → Rnx , typically obtained through numerical
integration of continuous-time dynamic equations. We
denote the number of inequality constraints in each stage k
by niq,k, such that we can write the inequality constraints
as functions dk : Rnx+nu → Rniq,k . To simplify notation,
we gather all optimization variables of the OCP in the
vector w = [x>0 , u

>
0 , x

>
1 , . . . , x

>
N]>.

We observe that the Lagrangian function, as defined in (6),
is partially separable for problems with OCP structure (8).
More specifically, the Hessian of the Lagrangian has the
following form:

∇2
wL(w, λ, µ) =

Q0 S
>
0

S0 R0

Q1 S
>
1

S1 R1

. . .
QN

 , (9)

where we used the shorthand notation Qk := ∇2
xk
L, Sk :=

∇2
uk,xk

L, Rk := ∇2
uk
L, where each matrix is evaluated

at the point (w, λ, µ). This observation is important with
respect to the efficiency of numerical methods to solve
nonlinear OCPs, as we will see in Section 6.

Alternatives to multiple shooting for discretizing a cont-
inuous-time OCP are so-called single shooting (see Sargent
and Sullivan (1978)), which however is not suitable for
unstable dynamics, and direct collocation (see Biegler
(1984)), which is useful for large-scale applications, as the
subproblems contain even more structure than (8).

Receding horizon control Nonlinear MPC consists of
continuously solving OCPs of the form (8) in order to
control the system in an “optimal” fashion. The discrete-
time model (8b) is used to predict the future system
behavior and consequently to optimize for the states xk
and controls uk. Once the solution is found, only the first
optimal control value u0 is applied to the system at each
time step and the procedure is repeated.

In (nonlinear) MPC, it is often the case that the desired
control performance is to track some reference signal
closely. Typically, this is expressed with least-squares
terms in the objective function (8a):

fLS(w) =
1

2

N−1∑
k=0

‖hk(xk, uk)− zk‖22

+
1

2
‖hN (xN)− zN‖22,

(10)

where hk : Rnx+nu → Rnr , for k = 0, . . . , N − 1, and
hN : Rnx → Rnr are nonlinear output functions that
should track the reference signal zk ∈ Rnr , k = 0, . . . , N .

Moving horizon estimation A related problem is moving
horizon estimation (MHE), where instead one looks a
fixed number of time steps into the past, using recorded
measurements to optimize for an optimal estimate for the
current state of the system x0. The “controls” for the case
of MHE take the form of process noise. The fact that the
value x0 is not fixed forms the biggest structural difference
with MPC.

3.3 Optimization with discrete decisions

Discrete decisions are part of many industrial control ap-
plications. Convex problems of the form (1), or nonconvex
problems of form (5) where some or all of the decision
variables w are restricted to the set of integers Z are
of particular interest. These problems are called mixed-
integer nonlinear programming (MINLP) problems and
take the following form:

minimize
w ∈ Rnc × Zni

f(w) (11a)

subject to c(w) = 0, (11b)

d(w) ≤ 0 (11c)

with n := nc + ni and f, c, d are defined analogously to
their smooth counterparts in (5).

Mixed-integer quadratic programming When the cost
of a MINLP problem is restricted to be linear (or con-
vex quadratic), and the constraints are polyhedral, these

classes of problems are called mixed-integer linear (or
quadratic) programming (MILP/MIQP) problems; de-
fined as

minimize
w ∈ Rnc × Zni

1

2
w>Hw + g>w (12a)

subject to Cw = c, (12b)

Dw ≤ d (12c)

with n := nc + ni, positive semi-definite Hessian matrix
H ∈ Rn×n, and g, C, c,D, d are analogue to (2). In prac-
tice, many decisions are binary, or can be modeled as a
combination of few binary decisions. For these problems,
called mixed-binary linear or quadratic (MBP), Zni is re-
placed by {0, 1}ni . In the control literature, most problems
referred to as MILP/MIQP problems only contain binary
decision variables and we will therefore use these terms
interchangeably.

Optimal control with discrete decisions Discrete-time
hybrid systems can be represented, as discrete hybrid au-
tomata (DHA), piece-wise affine (PWA) systems, mixed-
logical dynamical (MLD) systems, linear complementarity
(LC) systems, and more. Under some mild assumptions, all
of these descriptions are equivalent and one can be trans-
formed into the other, see Heemels et al. (2001); Torrisi
and Bemporad (2004). The MLD framework (Bemporad
and Morari (1999)) is particularly useful from a com-
putational perspective, because it represents the hybrid
dynamics as a system of mixed-integer linear constraints,
by introducing auxiliary binary and continuous variables
δk ∈ {0, 1}nδ and zk ∈ Rnz :

xk+1 = Axk +Buk +Bδδk +Bzzk + b , (13a)

Exxk + Euuk + Eδδk + Ezzk ≤ e , (13b)

where some of the state vectors xk ∈ Rnx,c × {0, 1}nx,b
and controls uk ∈ Rnu,c × {0, 1}nu,b can also be binary.
The matrices Bδ, Bz, Ex, Eu, Eδ, Ez and the vector b are
of appropriate dimension, with e ∈ Rniq . In the context
of model-predictive control, this gives rise to a multistage
MBP formulation for mixed-integer MPC problems:

minimize
x0,...,xN ,
u0,...,uN−1,
δ0,...,δN−1,
z0,...,zN−1

N−1∑
k=0

[
xk
uk

]> [
Q S>

S R

] [
xk
uk

]
+ x>NPxN

subject to xk ∈ Rnx,c × {0, 1}nx,b ,
uk ∈ Rnu,c × {0, 1}nu,b ,
δk ∈ {0, 1}nδ , zk ∈ Rnz ,
xk+1 = Axk +Buk +Bδδk +Bzzk + b,

Exxk + Euuk + Eδδk + Ezzk ≤ e,
Dx
NxN ≤ dN ,

x0 = x0.

(14)

The matrices Q,P, S,Dx
N are as in (4). Standard poly-

hedral state and input constraints can be added to this
formulation without loss of generality.

4. METHODS FOR CONVEX QUADRATIC
PROGRAMMING PROBLEMS

4.1 Overview

The first methods for solving convex QP problems emerged
from adaptations of the famous simplex method for solving

LPs (Dantzig, 1963). These so-called active-set methods
still play an important role in solving QP problems in
embedded applications, mainly due to the efficiency of
existing implementations and the fact that so-called warm-
starting (i.e. reusing solution information of the previous
problem instance) may greatly reduce computational load.
However, from a theoretical perspective, they lack practi-
cal a priori bounds on the number of iterations that they
may need to find a solution. Historically, that has been
a major motivation to develop interior-point (sometimes
also called path-following) methods, for which polynomial
runtime guarantees have been proved in 1984 for the
first time (see Karmarkar (1984)). Nowadays, interior-
point methods are often a preferred choice in embedded
quadratic programming due to their rather constant com-
putational load when solving various instances of related
problems. Moreover, they allow for exploiting the inherent
sparsity of optimal control problems as sketched in Sec-
tion 3 in a straight-forward manner.

Both these two traditional approaches for solving con-
vex QP problems suffer from common drawbacks that
have inspired the quest for alternative embedded solution
methods. First, both active-set (AS) and interior-point
(IP) methods require rather sophisticated linear algebra
routines (including matrix factorizations) for performing
the underlying computations. This makes any implemen-
tation of these methods considerably complex (in terms
of amount of source code) and hard to execute on devices
with limited accuracy of the internal number representa-
tion (such as most PLCs or FPGAs). In order to overcome
this first drawback, so-called first-order methods have been
proposed for use in embedded optimization. They are
particularly simple to implement, allow for warm-starting
and can easily exploit any sparsity pattern. Unfortunately,
their actual numerical performance strongly depends on
the characteristics of the problem to be solved, such that
these methods may be anywhere between orders of magni-
tudes faster to orders of magnitude slower than traditional
AS or IP methods. Moreover, they share another drawback
of all approaches mentioned so far: they are iterative ap-
proaches exhibiting the potential risk of slow convergence
or even failure to find a solution in certain circumstances.
In contrast, so-called explicit methods have been proposed
that pre-compute the solutions to all possibly occurring
QP instances offline and store them in a look-up table to
be searched online. While this approach has allowed for
astonishingly high sampling rates in certain applications,
it suffers from the curse of dimensionality and is only
applicable to embedded optimization problems featuring
small problem dimensions.

In the following, we are going to briefly sketch the main
ideas and existing embedded implementations of all of
these four major approaches. As there exist even more
methods for tackling convex QP problems, some of them
are mentioned at the end of this section.

4.2 Active-set methods

Active-set methods are based on the observation that solv-
ing an equality-constrained QP problem (i.e. one without
inequalities (2c)) is equivalent to solving a single linear
set of equations, which is fairly trivial. Thus, AS methods

start with a guess which inequality constraint will hold
with equality at the optimal solution (called the working
set) and solve the resulting equality-constrained QP prob-
lem. If it turns out that this guess was not correct, it is
updated by adding inequality constraints to or removing
them from the working set until the optimal solution is
found. Primal AS methods produce a sequence of feasible
iterates (i.e. ones that respect all constraints) until the
optimal solution is found, while dual AS methods maintain
dual feasibility of the iterates until one is found that is
also (primal) feasible, hence optimal. Matlab’s quadprog
function implements a primal active-set method (among
others). Dual active-set methods are available in the code
qpas (see Wills et al. (2005), based on dual algorithm
proposed in Goldfarb and Idnani (1983)) and QPSchur,
see Bartlett and Biegler (2006). A parametric active-set
strategy designed for use in MPC is implemented in the
open-source software qpOASES, see Ferreau et al. (2008,
2014).

4.3 Interior-point methods

The basic idea of IP methods is not to account for the
inequality constraints (2c) explicitly, but to penalize con-
straint violations by means of an additional term in the
objective function instead. However, in order to make
this work reliably, a non-quadratic (typically logarithmic)
penalty term needs to be used. The resulting equality-
constrained NLP problem is then solved using Newton’s
method. Structure exploiting IP methods have been pro-
posed for use in embedded optimization, e.g. by Rao
et al. (1998), where the linear equation system underlying
the Newton step is solved using Riccati recursions, and
by Wang and Boyd (2010) whose primal IP approach
employs a block-wise Cholesky factorization.

In order to increase efficiency of the implementation, code
generation has become a popular approach for obtaining
customized implementations of IP methods: the generic
QP solver CVXGEN by Mattingley and Boyd (2009) exploits
data sparsity by pre-computing a permutation such that
the LDLT factorization of the linear system underlying
the Newton step is sparse. In contrast, the primal-dual IP
solver FORCES presented in Domahidi et al. (2012) (later
integrated into FORCES PRO) is tailored to the multistage
structure typical of MPC problems.

Another way to increase efficiency of the implementation
has been proposed in Frison et al. (2014), where the most
time-critical linear algebra operations have been tailored
to the intrinsic CPU features of the target hardware.

4.4 First-order methods

First-order methods may be further categorized into split-
ting methods, which are discussed in detail in Section 5,
and gradient methods. The latter iteratively compute a
step towards the solution of the unconstrained QP prob-
lem and then project this step onto the feasible set. As
this projection is difficult in case of output or polytopic
constraints (in fact, exact projection is as complex as
solving a full QP problem), several variants to dualize some
parts of the problem formulation have been proposed:
the Matlab toolbox FiOrdOs (see Ullmann (2011)) auto-
generates code for either primal fast gradient methods (if

only simple constraints are present) or dual fast gradient
methods by applying a Lagrangian relaxation to equality
and polytopic constraints as proposed in Richter et al.
(2011). The GPAD algorithm proposed in Patrinos and
Bemporad (2012) dualizes only the inequality constraints,
which allows one to either eliminate or keep the states
in the primal problem. Recently, generalized versions of
these fast gradient methods were proposed by Giselsson
(2014) and shown to require a significantly lower number
of iterations on certain problems. Also gradient methods
based on inexact first-order information have been pro-
posed (see Nedelcu et al. (2014)) and implemented in
the open-source toolbox DuQuad as described in Kvamme
(2014–2015). Finally, also the commercial embedded solver
FORCES PRO can generate code for first-order methods (e.g.
primal/dual fast gradient methods).

4.5 Explicit MPC

Bemporad et al. (2002a) pointed out to the control com-
munity that the solution of any linear MPC problem is a
continuous, piece-wise affine function of the initial state x0,
defined over a polyhedral partition of the feasible set.
For optimization problems of sufficiently small problem
dimension, this solution function can be pre-computed
offline and then stored into a look-up table. Evaluating
this look-up table for determining the next control input
is the only computational task that remains to be done
online. As this evaluation is extremely simple, it can be
implemented on virtually any computing platform, as long
as sufficient memory for storing the function is available.
This makes explicit MPC a frequently used tool for embed-
ded MPC implementations, particularly for systems with
high sampling rates. A recent survey on explicit methods
can be found in Alessio and Bemporad (2009).

The multi-parametric toolbox (MPT) as developed by Kvas-
nica et al. (2004) is a mature and popular Matlab toolbox
that implements various explicit methods such as multi-
parametric quadratic programming and variants that aim
at providing an only approximate solution to the QP prob-
lems at the benefit of reduced off-line or online complexity.

4.6 Further approaches

Several further approaches for solving convex QP problems
have been recently proposed for use in embedded optimiza-
tion. Among them are the multiplicative update dual opti-
mization algorithm PQP by Di Cairano and Brand (2013),
proposing a simple, highly parallelizable QP algorithm. In
contrast, the dual Newton-type code qpDUNES by Frasch
et al. (2014) and the piecewise-smooth Newton method
proposed in Patrinos et al. (2011) are tailored to linear
optimal control problems. Both make use of second-order
information to converge to the optimal solution within
only a few, but computationally complex iterations.

5. METHODS FOR (MORE) GENERAL CONVEX
OPTIMIZATION PROBLEMS

In this section we give a brief overview of splitting meth-
ods, a wide family of conceptual schemes that decompose
a (difficult) optimization problem into (significantly) sim-
pler subproblems and solve those instead of the original

one. Although the focus of splitting methods tradition-
ally lies in large-scale optimization applications, recent
advances have rendered them a competitive alternative to
other optimization algorithms when it comes to embedded
control. The following section is based on the extended
survey Stathopoulos et al. (2016).

5.1 Splitting methods overview

We first rewrite problem (1) as a summation of two convex
functions, i.e.,

minimize
w, v ∈ Rn

h(w) + g(v)

subject to w = v ,
(15)

where

h(w) = f(w) + δ(Cw | c), g(w) = δ(w | Ω),

and δ(z | C) is an indicator function for the (convex) set C
defined as

δ(z | C) =

{
0 z ∈ C
∞ otherwise.

A slight abuse of notation is used when the set C is a
singleton, and δ(Cw | c) is written, rather than δ(Cw |
{c}). Note that h and g are nonsmooth, extended real-
valued functions, i.e., f, g : Rn → R ∪ {+∞}.
The underlying assumption behind splitting methods is
that minimizing separately over h and g is simpler (less
costly) than solving (1) directly. There are a variety
of ways to proceed with these minimizations, e.g., by
forming (augmented) Lagrangian relaxations and then
applying alternating minimization schemes, by mixing
Lagrangians with augmented Lagrangians or by mixing
alternating minimizations with partial linearization of the
functions involved. A fairly general method from which
several others can be derived is the Proximal Method of
Multipliers (PMM):

(w[i+1], v[i+1]) ∈ argmin
w,v

Pρ(w, v;λ)

λ[i+1] = λ[i] + ρ(w[i+1] − v[i+1]) ,
(16)

where Pρ is the proximal augmented Lagrangian function
defined as:

Pρ(w, v;λ) =h(w) + g(v) + λ>(w − v)+

ρ

2
‖w − v‖2 +

1

2
‖w − w[i]‖2P1

+
1

2
‖v − v[i]‖2P2

.

(17)

The function (17) comprises the Lagrangian function with
the addition of a quadratic regularizer for w− v (augmen-
tation term) and two proximal terms ensuring that the
current primal iterates w and v will not deviate much from
their former values. The matrices P1 and P2 are positive
semidefinite, while ρ > 0 is a penalty term.

Although minimizing (17) over (w, v) simultaneously is
as difficult as solving (15), it can be much easier to
do it in an alternating manner. By doing so and with
proper choices of the matrices P1 and P2, (16) gives rise
to several popular splitting methods like the Alternating
Direction Method of Multipliers (ADMM) and Douglas-
Rachford splitting (Eckstein and Bertsekas (1992)) and the
Chambolle-Pock scheme (Chambolle and Pock (2011)).

Example 1. (Douglas-Rachford splitting). Consider the case
where we set P1 = P2 = 0 in (17) and minimize (16) by
alternating. The iterations read

w[i+1] = argmin
w

h(w) + (ρ/2)‖w − (v[i] − λ[i]/ρ)‖2

v[i+1] = argmin
v

δ(v | Ω) + (ρ/2)‖v − (w[i+1] + λ[i]/ρ)‖2

λ[i+1] = λ[i] + ρ(w[i+1] − v[i+1])

When Douglas-Rachford splitting is applied to the dual
of (15), one recovers ADMM applied to (15). Note that
the method can deal with the more general case where v
is an affine mapping of w, or when v and w are coupled
via a linear equality of the form Mw +Nv = b.

5.2 Computational speedup

In linear MPC, f is often a quadratic function correspond-
ing to some tracking or regulation objective, w is the vector
of state and input variables, while δ(Cw | c) describes the
dynamics of the system. State and input constraints can be
enforced via the indicator functions δ(w | Ω). This being
the case, the first minimization step in Example 1, but also
in several splitting schemes, amounts to solving a system of
linear equations. Provided that the second step, i.e., the
projection onto the constraint set Ω is often cheap, the
linear system solve is the main computational burden of
the algorithm. It is, therefore, worth investing some effort
to speedup the solve. This can be done in several ways,
e.g., by pre-factorizing the matrix involved in the inver-
sion or by inverting it offline. When linear time invariant
systems are considered the matrix does not change from
one iteration to the next, and significant computational
savings can be achieved. For a detailed treatment of the
computational linear algebra aspect of splitting methods
the interested reader is referred to (Stathopoulos et al.,
2016, Chapter 5).

5.3 Bells and whistles

In the absence of second order information (Hessians
of the smooth terms), splitting methods share many of
the weaknesses of gradient-based optimization algorithms.
These issues can be mitigated by using several heuristic
and non-heuristic approaches that ‘polish’ the methods
and improve their performance.

Conditioning. As is the case with every first order
method, splitting schemes suffer from slow convergence
when the problem data are ill-conditioned. Precondition-
ing the data offline is often very helpful to recover per-
formance. Roughly speaking, by scaling the problem data
we choose a new coordinate system that adjusts better
to the geometry of the problem. The adjustment typically
takes place in the dual space, i.e., the level sets of the
smooth part of the dual form of (15) are shaped to be-
come ‘more uniform’. More details on preconditioning of
splitting methods are given in Giselsson and Boyd (2015,
2017).

Acceleration. Inspired by Nesterov’s accelerated gradi-
ent (Nesterov (1983)) and Tseng’s generalization to prox-
imal gradient methods (Tseng (2008)), several splitting

schemes have been accelerated by means of adaptive re-
laxation sequences. The performance of the accelerated
variants is often remarkable, especially given that the
extra cost per iteration is almost negligible. Refinements of
accelerated methods have been developed in O’Donoghue
and Candes (2015), where the acceleration is occasionally
halted so as to avoid overly aggressive steps that cause
oscillatory behavior.

Warm-starting. Linear MPC requires the solution of a
sequence of convex optimization problems which do not
differ significantly from each other. The change often
concerns the affine part of the objective function (e.g.,
tracking a time varying signal) and the right-hand side
of the linear equality constraints (dynamics), where the
updated state appears (see (4)). Splitting methods can
be easily warm-started by initializing the new optimal
control problem to the optimal primal and dual iterates
of the previous one. Assuming that the problems are
reasonably similar, this heuristic improves the convergence
performance (see (Stathopoulos et al., 2016, Chapter 6) for
several examples).

Non-linearity. Recent results (Attouch and Bolte (2009);
Attouch et al. (2013)) have provided a very general frame-
work for proving global convergence of descent methods on
non-smooth semi-algebraic objectives. These techniques
can be exploited to develop splitting, or decomposition
algorithms for nonlinear problems that require similar op-
erators and provide similar benefits to the more classic con-
vex approaches (Hours and Jones (2016)). When deploying
an embedded nonlinear MPC solution, it is often the case
that only a very small number of optimization steps can be
completed in each sample period, before the input is ap-
plied to the system, the state estimate is updated, and the
parametric problem to be solved changes. The resulting
suboptimality error for these continuously changing family
of problems has been studied, and general conditions under
which this error is stable have been developed (Hours and
Jones (2016)).

5.4 Summary

We conclude this section by giving a rough guideline on
when splitting methods should be used. Two important
aspects to keep in mind are that splitting schemes are
only useful if (i) the original problem is decomposable into
subproblems that are much easier to solve (ideally they
have closed form solutions) and (ii) when a solution of
low to medium accuracy is sufficient. Splitting methods
can tackle a wide variety of convex objectives and con-
straints, a characteristic that makes them more general
than quadratic programming solvers. In addition, they
often enjoy a low memory footprint and are very simple
to code, requiring a few tens of lines of code consisting of
simple linear algebra operations. The latter is an appealing
characteristic for embedded control.

6. METHODS FOR NONLINEAR OPTIMAL
CONTROL PROBLEMS

The focus of this section lies on discussing various al-
gorithms for solving nonlinear optimal control problems,
tailored to real-time and embedded applications. We will
be specific on real-time methods for MPC. The methods
that we mention in this section are also perfectly suited
for MHE, due to the stark resemblance of MPC and MHE,
however we will stick to the “control” point of view, for
sake of simplicity.

6.1 Newton-type methods

The overarching strategy of the methods discussed in the
following is Newton’s method. This method yields iterates
w[i], i = 0, 1, . . . that ultimately return a solution of a
set of nonlinear equations R(w) = 0. In the context of
optimal control, we solve nonlinear OCPs as defined in (8)
by finding approximations (w[i], λ[i], µ[i]), i = 0, 1, . . . , for
a solution to the KKT conditions (7).

Two major families of Newton-type algorithms to solve
nonlinear OCPs exist. They differ in their treatment of the
non-smooth complementarity conditions (7c)-(7e). This
leads to the two classes of sequential quadratic program-
ming (SQP) and nonlinear interior-point (NIP) methods,
respectively, which are sketched in the following.

6.2 SQP methods

A first way of iteratively solving the KKT system (7) is to
linearize its nonlinear equations (7a)-(7d) at the current
iterate (w[i], λ[i], µ[i]), and from there compute a new
approximation by solving a QP problem in each iteration.
More specifically, the resulting linearized complementarity
system corresponds to the KKT conditions of the following
QP:

minimize
w ∈ Rn

1

2
(w − w[i])>H(w − w[i])

+ g>(w − w[i])

subject to clin(w) = 0,

dlin(w) ≤ 0 ,

(18)

of which the structure corresponds to the one of NLP (8),
i.e.

w[i] =
[
x

[i]
0 , u

[i]
0 , x

[i]
1 , . . . , x

[i]
N

]>
, as before,

H = ∇2
wL(w[i], λ[i], µ[i]), as in (9),

g = ∇wf(w[i]),

clin(w) =

x0 − x0

x1 − x[i]
1 − F0(x

[i]
0 , u

[i]
0)− [A0 B0]

[
x0 − x[i]

0

u0 − u[i]
0

]
...

dlin(w) =

d(x

[i]
0 , u

[i]
0) + [Dx

0 Du
0]

[
x0 − x[i]

0

u0 − u[i]
0

]
...

d(x
[i]
N) +Dx

N (xN − x[i]
N)

 ,

with the definitions of xk, uk, x0 as in (4), as well as
Dx
k , D

u
k , which now form the linearization of the nonlinear

inequality constraints at the current iterate w[i]. Further-
more, we linearized the discrete dynamic equations (8b)
at w[i], resulting in the system matrices Ak ∈ Rnx×nx
and Bk ∈ Rnx×nu . Note that the structure of (18) is
the same as that of linear MPC problem (4), with the
only difference that all matrices are varying over the MPC
horizon. For more details about the connection between
linear and nonlinear MPC we refer the reader to Gros et al.
(2017).

The primal and dual solution of QP (18) form the up-
dated iterates (w[i+1], λ[i+1], µ[i+1]). It can be solved di-
rectly by using a structure-exploiting QP solver, e.g.
HPMPC (Frison et al. (2014)), qpDUNES (Frasch et al.
(2015)), FORCES (Domahidi et al. (2012)). Alternatively,
we can use the so-called condensing approach (Bock and
Plitt (1984)), which results in a much smaller QP due to
the elimination of the dynamic constraints, namely the
equality constraints in (18). Any general purpose dense QP
solver can then be applied to solve the smaller QP. Worth
noting in this context is the QP solver qpOASES (Ferreau
et al. (2014)), which exploits the fact that subsequent
problems in real-time MPC lie close to each other, as we
will explain in Section 6.4.

The exact Hessian∇2
wL(w[i], λ[i], µ[i]) might become indef-

inite at some iterates. In this case, the step (w[i+1] −w[i])
in (18) is not guaranteed to be a descent direction, which is
highly unfavorable. One remedy is to apply regularization.
This consists of adding curvature to the original Hessian
in order to obtain a positive definite approximation.

Apart from the above exact-Hessian based approach, many
widely-used variants of the SQP algorithm exist that use
an approximation to the Hessian. We mention one which is
of particular interest to embedded application of receding
horizon control.

The Generalized Gauss-Newton method One example
of an SQP variant that has been proven to work well
in practice is the Generalized Gauss-Newton (GGN)
method (Bock (1983)). This method applies to least-
squares problems, e.g. (10). In solving such types of prob-
lems, instead of using the exact Hessian as explained in
Section (6.2), we can use the following Hessian approxi-
mation which is cheaper to compute:

HGGN =
∂h(w[i])

∂w

>
∂h(w[i])

∂w
, (19)

where we stack the nonlinear output functions of (10) in
h = [h>0 , . . . , h

>
N]. Note that we do not compute second-

order sensitivities, and that the Gauss-Newton Hessian
is positive semi-definite by construction. Furthermore, no
Lagrange multipliers are required for its computation.

A special case occurs if the nonlinear OCP objective is
a convex quadratic (f(w) = 1

2w
>HOCP w + g>OCPw, with

HOCP � 0), then GGN consists of performing SQP with
subproblems (18), but with H = HOCP.

When is the Gauss-Newton Hessian a good approximation
of the exact Hessian? In Verschueren et al. (2016), it is
proven for an SQP method with full steps that a local

minimizer of the nonlinear problem becomes unattractive
if the approximate Hessian is smaller (in the matrix sense)
than half of the exact Hessian. For least-squares problems
as (10), this problem is avoided if the problem is only
mildly nonlinear or when the residuals are small.

One generalization of the GGN algorithm worth mention-
ing is Sequential Convex Programming (SCP, Tran-Dinh
et al. (2012)), applicable to NMPC formulations with more
general convex objective function or inequality constraints.
SCP still does linearize the non-convex dynamic equations,
but passes off the convex objective and/or inequalities to
a general-purpose convex solver.

6.3 Nonlinear interior-point methods

In interior point methods, the way of treating the nonlinear
KKT system (7) is to smoothen the complementarity
conditions (7c)-(7e) by introducing the so-called barrier
parameter τ > 0, such that the perturbed KKT conditions
read as

∇wL(w, λ, µ) = 0, (20a)

c(w) = 0, (20b)

µidi(w) + τ = 0, i = 1, . . . , niq. (20c)

System (20) is then solved with Newton’s method, for a
given value of the barrier parameter τ . Afterwards, τ is
adapted appropriately and the next iteration starts. The
structure of the linear systems that need to be solved
in each step is identical to the ones in interior point
methods for convex quadratic problems. The difference
is that the quantities are linearized in each iteration.
Note that, similar as in SQP methods, one can use an
approximation of the exact Hessian ∇2

wL(w, λ, µ) for the
Newton iterations instead.

An important consideration in nonlinear interior point
methods is the strategy for updating the barrier parame-
ter. Different strategies exist, and a good strategy for inte-
rior point methods for linear or quadratic programs does
not necessarily perform well on nonlinear problems (No-
cedal et al. (2009)).

Another algorithmic component is globalization, in order
to ensure convergence to a local optimum. Recently, filter
line-search methods became popular (Wächter and Biegler
(2006a)). An excellent implementation is the package
IPOPT (Wächter and Biegler (2006b)). Other codes that
are more practical for use on embedded and/or real-time
platforms, are FORCES PRO (Zanelli et al. (2016)) and
PIPS-NLP (Chiang et al. (2016)).

6.4 Online methods for nonlinear MPC

A useful realization in the context of receding horizon
control is that the subsequent optimization problems that
we are trying to solve bear a striking similarity. Often,
the state of the underlying plant does not change all that
much, depending on the difference between the time con-
stant of the plant and the sampling time of the controller.

Supposing that we have a solution to some instant of the
online control problem, we can do at least two things to
prepare for the control problem in the next time instant:
1) we use an initial guess which consists of the solution of

the previous problem shifted in time, 2) we employ a so-
called tangential predictor that gives us information of the
optimization problem (both IP and SQP methods deliver
such a tangential predictor, but unfortunately the interior
point solution manifold becomes highly nonlinear at an
active set change, which results in a less accurate predictor
for those methods compared to SQP). By combining
shifting and the use of a tangential predictor, we usually
end up with an adequate initial guess for the next optimal
control problem instance.

However, when applying an advanced optimal control
method in an online fashion, like NMPC, we face the
following problem. At each time instant, we estimate the
current state, upon which we base our optimal control
problem. Solving this problem takes time, which makes
our current state estimate quickly become outdated. This
might be called the real-time dilemma (Diehl (2001)).

We can take either of two options to solve this dilemma.
The first option is to compensate for the computational
delay introduced by the method at hand. This approach
is taken in e.g. the advanced step controller by Zavala and
Biegler (2009), which is based on a nonlinear interior point
algorithm. It takes into account a prediction of what the
initial state will be when the computations will be ready.

The second option is to not fully solve the optimal control
problem to convergence. This is opted for in e.g. the
Newton-type controller (Li and Biegler (1989)), which only
performs one full Newton SQP-step per sampling time.
This method is based on a single shooting discretization
and does not make use of a tangential predictor. The
Continuation/GMRES method by Ohtsuka (2004) also
takes just one Newton step, but is based on an interior
point algorithm, and by contrast does make use of a
tangential predictor.

An efficient implementation of the Continuation/GMRES
method is the AutoGenU package (Ohtsuka and Kodama
(2002)) and an example of experimental validation of this
method is done on a radio-controlled hovercraft (Seguchi
and Ohtsuka (2003a)).

Another approach for online NMPC and NMHE that has
been proven to be efficient in practice is the real-time
iteration (RTI) scheme (Diehl et al. (2002)). This SQP-
type method only solves one QP (18) per sampling instant.
The underlying idea is to approach a local solution while
controlling the plant. The RTI scheme has some attractive
properties for practical application. First, it makes use of
a generalized tangential predictor, which can be shown to
work well across active set changes, even when started from
an approximate solution (we refer to Diehl et al. (2009) for
a more in-depth comparison between the different types
of tangential predictors). Secondly, we can save time by
splitting our computations in a feedback and preparation
phase. The preparation phase consists of simulation of
the nonlinear system, as well as generating first- and
second-order derivative information. Also condensing is
part of this phase. The feedback phase starts when the
measurement of the initial state becomes available, and
consists just of the solution of one QP, thus minimizing
feedback delay.

A popular implementation of the RTI is the ACADO Tool-
kit (Houska et al. (2011)). Special code generated inte-
grators for embedded optimization exploit the iterative
nature of the process and allow for a significant CPU
time reduction (Quirynen et al., 2017). Many examples
of experimental application of the RTI scheme exist, e.g.
on electrical drives in the megawatt range (Besselmann
et al. (2016b)), on small-scale race cars (Verschueren et al.
(2014)), on autonomous agricultural vehicles (Kayacan
et al. (2014)) and on a 6-DOF robotic manipulator (van
Duijkeren et al. (2016)).

7. METHODS FOR OPTIMAL CONTROL
PROBLEMS WITH DISCRETE DECISIONS

Receding horizon optimal control problems involving dis-
crete decisions can be broadly classified into pure- and
mixed-integer problems. Pure-integer (or integer) prob-
lems are optimization problems, where all decision vari-
ables are restricted to a subset of the integers, i.e., all
decision variables are discrete. Such problems are often
related to scheduling and planning, many of which have
been studied extensively and have counterparts as opti-
mization over graphs, such as the caterer problem (Jacobs
(1954)), the vehicle routing problem (Dantzig and Ramser
(1959)), or the assignment problem (Martello and Toth
(1987)). For these problems, tailored methods for finding
global or approximate solutions exist, some of which can
be implemented in an embedded context.

In most cases, however, control problems involve both
discrete and continuous quantities and therefore fall in the
latter category of mixed-integer problems. In the following,
we will elaborate on different solution methods for mixed-
integer problems, that are suited for embedded control
applications.

7.1 Explicit solutions

Similar to the linear MPC case as discussed in Section 4.5,
the solution of mixed-integer MPC problems of form (14) is
likewise a piece-wise affine function of the initial state, x0

(Bemporad et al. (2002b)). However, it is usually dis-
continuous and its domain is non-convex, i.e., a finite
union of polyhedra. Furthermore, the number of regions
of the piece-wise affine function grows exponentially, not
only in the control horizon N , but also in the number of
binary optimization variables. Generating and storing the
explicit solution therefore becomes a major limitation, and
is feasible only for problems with few binary variables and
a short horizonN . If the explicit solution can be generated,
it can be evaluated very efficiently using a binary tree
search, see Tøndel et al. (2003); Christophersen et al.
(2007). Furthermore, it is possible to obtain suboptimal
explicit solutions with reduced storage complexity, see
Axehill et al. (2014).

Generating explicit solutions of mixed-integer MPC prob-
lems, as well as efficient embeddable C-code, is imple-
mented as part of the multi-parametric toolbox (Herceg
et al. (2013)) for Matlab. Also the hybrid toolbox (Be-
mporad (2004)) for Matlab implements tools for the
generation of explicit MPC controllers involving discrete
decisions.

7.2 Enumeration-based methods

Most effective online methods for solving mixed-integer
problems rely on some form of enumeration of the discrete
decisions. Methods based on pure enumeration are some-
times used (Geyer (2005); Rodriguez et al. (2013)), par-
ticularly for input-switched/switched-affine systems with
very short control horizons. The trajectory of such systems
is fully determined by the (measured) initial state and the
sequence of switching inputs. Therefore, the trajectories
resulting from all possible switching sequences can be pre-
dicted numerically and the sequence leading to the lowest-
cost trajectory chosen. This technique can be used for arbi-
trary (possibly nonconvex) cost, constraints and discrete-
time dynamics. It can even be applied to continuous-
time dynamics, using numerical integrators. The required
computation grows exponentially in control horizon N ,
but is fixed and known a-priori, making this method
well-suited for embedded applications. For systems with
continuous inputs or larger control horizon, this method
becomes impractical, and smarter methods of enumeration
are required.

The most popular of these techniques is branch-and-bound
(Wolsey and Nemhauser (1988); Bertsimas and Weisman-
tel (2005)). For problems, where the only source of noncon-
vexity is the discrete nature of some of the decision vari-
ables, e.g. in a convex optimization problem of form (1),
where some of the decision variables are restricted to
be integers, a hierarchy (or tree) of relaxations can be
established. Each node in the tree corresponds to fixing
one of the discrete decision variables to a particular value
and relaxing all others to an interval containing all possible
discrete decisions of that variable. The branch-and-bound
algorithm traverses this tree, solving the relaxation, a
convex optimization problem, at each node. The solution
of this relaxed problem provides a (local) lower bound
on the objective value for all nodes further down in the
tree, i.e., nodes where more discrete decision variables
are fixed. The decision of determining which node of the
tree to explore next is called branching. Traversing the
tree downwards, fixing more and more discrete variables,
leads to better and better lower bounds. Leaf nodes of
the tree represent convex optimization problems, where all
discrete decisions have been fixed. If the convex problem
at a leaf node is feasible, we obtain a feasible solution of
the original mixed-integer problem, and therefore a global
upper bound on the optimal objective value. If at some
node, the local lower bound exceeds the best global upper
bound, none of the nodes further down the tree need
to be explored, since they can only lead to suboptimal
solutions. This is called bounding and helps avoiding to
enumerate all possible combinations of discrete decisions.
The method of branch-and-cut combines branching with
cutting-plane techniques (Wolsey and Nemhauser, 1988).
In branch-and-cut, the relaxed problems are augmented
with constraints that are redundant for the original mixed-
integer problem but reduce the feasible set of the relaxed
problem, reducing the number of nodes that have to be
explored. Both of these methods can be extended to be
used for solving general MINLP problems, using spatial
branch-and-bound, with tools such as BARON (Sahinidis
(2014)), Bonmin (Bonami et al. (2013)) or Couenne (Belotti
et al. (2009)).

Solving general MINLPs is very rarely feasible in an em-
bedded context. However, branch-and-bound is particu-
larly well suited for solving MIQPs (Fletcher and Leyffer
(1998)), in part, because the relaxed problems, needed
to be solved at each node, are simple, convex quadratic
programs. In control, mixed-integer MPC problems can
be formulated as MIQPs, see (14), where the multistage
structure of the optimization problem can be exploited to
further improve the speed at which the relaxed QPs can
be solved, thereby improving the overall computational
efficiency of the branch-and-bound scheme. This fact has
been exploited in (Axehill, 2008, p. 123ff), where a dual
active-set method tailored to the MPC structure was used
as a solver for the relaxed problems in branch-and-bound.
In Frick et al. (2015) a method for generating embedded C-
code for a parametric branch-and-bound solver that can be
tailored to the particular mixed-integer MPC problem was
presented. The method utilizes FORCES (Domahidi et al.
(2012)), a tool for generating customized interior-point
solvers for parametric QPs. FORCES PRO (Domahidi and
Jerez (2014)) can now generate tailored statically allocated
branch-and-bound solvers. Similarly, in Bemporad (2015),
a tailored active-set method based on non-negative least
squares is proposed as a relaxed QP solver in combination
with branch-and-bound. The active-set method features
warm-starting and early-stopping, which can be used to
accelerate the branch-and-bound procedure, particularly
in a receding horizon setting. Heuristics for improving
the performance of branch-and-bound schemes, tailored
to mixed-integer MPC problems, are discussed in Frick
et al. (2015). In Axehill et al. (2010), it is shown that
semi-definite programming (SDP) relaxations are at least
as tight as QP relaxations, and in Moehle and Boyd
(2015) a perspective-based formulation for switched-affine
systems, with general convex programs as relaxations, is
presented. These relaxations are also at least as tight as
the QP relaxations. Such methods can lead to fewer nodes
that have to be explored in a branch-and-bound scheme,
however efficient SDP or general convex solvers are not yet
available in an embedded context.

7.3 Splitting methods

With the recent interest in methods based on operator
splitting for solving convex and smooth nonconvex prob-
lems, there have been efforts to develop similar methods
for nonsmooth problems arising in MPC with discrete
decisions. As in the convex case, a consensus problem of
form (15) is considered, where the problem is split into
two parts h and g. In the case of mixed-integer problems
the function g(w) = δ(w | Ω) is the indicator function
for a nonconvex set and contains constraints modeling
the discrete nature of the problem. Ω is usually chosen
such that g becomes separable for each stage of the MPC
problem, i.e, Ω = Ω0 × . . .× ΩN . Douglas-Rachford split-
ting/ADMM (see Example 1 in Section ref) is used as a
heuristic in Takapoui et al. (2016) to solve problems of
this type, when a solution w to the projection πΩ(w) :=
argminw∈Ω ‖w − w‖2 onto the set Ω can be computed
efficiently. Neither optimality, nor convergence guarantees
are available in this case, which is a topic of active research.
In Frick et al. (2016) a method based on operator splitting
was developed to find KKT points of (15). It utilizes the

PWA description of the hybrid dynamics, yielding a non-

convex set of the form Ω =×N

k=0

⋃M
i=1 Ωk,i, where the

sets Ωk,i are simple, low-dimensional polyhedra. Evalu-
ating the projection πΩ(w) reduces to projections onto
the individual sets Ωk,i and then choosing the minimum
distance solution among the solutions of πΩk,i(wk) for each
k. For some cases, guarantees for local convergence and
local optimality are given. Both of these methods are very
simple, can be warmstarted and are therefore well suited
to be implemented in an embedded setting. Furthermore,
they can be used to handle larger problems, for which
using explicit solutions is not feasible. Finally, they often
outperform solvers based on branch-and-bound.

7.4 Other approaches

Other notable approaches include Hempel (2015), where
using inverse optimization, hybrid MPC problems with
piece-wise affine dynamics are transformed into linear com-
plementarity problems with special structure. These linear
complementarity problems can be solved using standard
NLP solvers, and often outperform commercial mixed-
integer programming solvers.

In the case of integer controls and nonlinear continuous dy-
namics, a convexification strategy was developed by Sager
(2005) that allows one to efficiently obtain solutions of a
relaxed problem that can be transformed into ε-feasible
solution approximations whose error can be bounded in
practice and in theory (Sager et al., 2012).

8. CONCLUSIONS

Embedded optimization is becoming a mature technology
and the field is still developing and expanding quickly.
While most applications used to rely on rather simple,
convex QP formulations just a decade ago, nowadays even
highly nonlinear or mixed-integer formulations for indus-
trially relevant problems are solvable within a couple of
milliseconds on embedded computing hardware. This sur-
vey provided an overview of the most promising algorith-
mic concepts as well as state-of-the-art implementations.

Current trends such as “internet of things” are about to
make embedded computing resources ubiquitous, natu-
rally asking for smart software to harvest their full po-
tential. For many applications it will not be sufficient to
just control systems and devices decently. Rather, it is
going to be expected that they behave optimally and in
an autonomous manner. Embedded optimization will not
be the answer to all questions arising from this evolution,
but it is likely to be a key building block.

REFERENCES

Abdollahpouri, M., Takács, G., and Rohal’-Ilkiv, B.
(2017). Real-time moving horizon estimation for a
vibrating active cantilever. Mechanical Systems and
Signal Processing, 86, 1–15.

Alessio, A. and Bemporad, A. (2009). Nonlinear model
predictive control, volume 384 of Lecture Notes in Con-
trol and Information Sciences, chapter A Survey on
Explicit Model Predictive Control, 345–369. Springer.

Almér, S., Mariéthoz, S., and Morari, M. (2013). Sampled
Data Model Predictive Control of a Voltage Source In-
verter for Reduced Harmonic Distortion. IEEE Transac-
tions on Control Systems Technology, 21(5), 1907–1915.

Almér, S., Mariéthoz, S., and Morari, M. (2015). Dy-
namic Phasor Model Predictive Control of Switched
Mode Power Converters. IEEE Transactions on Control
Systems Technology, 23(1), 349–356.

Attouch, H. and Bolte, J. (2009). On the convergence of
the proximal algorithm for nonsmooth functions involv-
ing analytic features. Mathematical Programming, 116,
5–16.

Attouch, H., Bolte, J., and Svaiter, B. (2013). Convergence
of descent methods for semi-algebraic and tame prob-
lems: proximal algorithms, forward-backward splitting
and regularised Gauss-Seidel methods. Mathematical
Programming, 137, 91–129.

Axehill, D. (2008). Integer Quadratic Programming for
Control and Communication. Ph.D. thesis, Linköping
University, The Institute of Technology.

Axehill, D., Besselmann, T., Raimondo, D.M., and Morari,
M. (2014). A parametric branch and bound approach
to suboptimal explicit hybrid MPC. Automatica, 50(1),
240–246.

Axehill, D., Vandenberghe, L., and Hansson, A. (2010).
Convex relaxations for mixed integer predictive control.
Automatica, 46(9), 1540–1545.

Bartlett, R. and Biegler, L. (2006). QPSchur: A Dual, Ac-
tive Set, Schur Complement Method for Large-scale and
Structured Convex Quadratic Programming Algorithm.
Optimization and Engineering, 7, 5–32.

Beccuti, A.G., Mariethoz, S., Cliquennois, S., Wang, S.,
and Morari, M. (2009). Explicit model predictive control
of DC-DC switched-mode power supplies with extended
kalman filtering. IEEE Transactions on Industrial Elec-
tronics, 56(6), 1864–1874.

Belotti, P., Lee, J., Liberti, L., Margot, F., and Wächter,
A. (2009). Branching and bounds tightening techniques
for non-convex MINLP. Optimization Methods and
Software, 24(4-5), 597–634.

Bemporad, A. (2004). Hybrid toolbox - user’s guide.
http://cse.lab.imtlucca.it/∼bemporad/hybrid/
toolbox.

Bemporad, A. and Morari, M. (1999). Control of systems
integrating logic, dynamics, and constraints. Automat-
ica, 35(3), 407–427.

Bemporad, A., Morari, M., Dua, V., and Pistikopoulos,
E.N. (2002a). The explicit linear quadratic regulator
for constrained systems. Automatica, 38, 3–20.

Bemporad, A. (2015). Solving mixed-integer quadratic
programs via nonnegative least squares. IFAC-
PapersOnLine, 48(23), 73–79.

Bemporad, A., Borrelli, F., and Morari, M. (2002b). On
the Optimal Control Law for Linear Discrete Time
Hybrid Systems, 105–119. Springer, Berlin Heidelberg.

Bertsimas, D. and Weismantel, R. (2005). Optimization
over integers, volume 13. Dynamic Ideas Belmont.

Besselmann, T.J., Almér, S., and Ferreau, H.J. (2016a).
Model Predictive Control of Load-Commutated
Inverter-Fed Synchronous Machines. IEEE Transactions
on Power Electronics, 31(10), 7384–7393.

Besselmann, T.J., de moortel, S.V., Almér, S., Jörg, P.,
and Ferreau, H.J. (2016b). Model predictive control
in the multi-megawatt range. IEEE Transactions on

Industrial Electronics, 63(7), 4641–4648.
Biegler, L. (1984). Solution of dynamic optimization prob-

lems by successive quadratic programming and orthog-
onal collocation. Computers and Chemical Engineering,
8, 243–248.

Biegler, L. and Zavala, V. (2009). Large-scale nonlinear
programming using IPOPT: An integrating framework
for enterprise-wide dynamic optimization. Computers
and Chemical Engineering, 33(3), 575–582.

Bock, H.G. (1983). Recent advances in parameter identifi-
cation techniques for ODE. In Numerical Treatment of
Inverse Problems in Differential and Integral Equations,
95–121. Birkhäuser.

Bock, H.G. and Plitt, K.J. (1984). A multiple shooting al-
gorithm for direct solution of optimal control problems.
In Proceedings of the IFAC World Congress, 242–247.
Pergamon Press.

Boechat, M.A., Liu, J., Peyrl, H., Zanarini, A., and
Besselmann, T. (2013). An architecture for solving
quadratic programs with the fast gradient method on
a field programmable gate array. In Proceedings of the
21st Mediterranean Conference on Control Automation
(MED), 1557–1562.

Bonami, P., Belotti, P., D’Ambrosio, C., Forrest,
J.J., Ladanyi, L., Laird, C., Lee, J., Margot, F.,
Vigerske, S., and Waechter, A. (2013). Bonmin (ba-
sic open-source mixed integer programming). URL
https://projects.coin-or.org/Bonmin.

Camacho, E. and Bordons, C. (2007). Model Predictive
Control. Springer, 2nd edition.

Chambolle, A. and Pock, T. (2011). A first-order primal-
dual algorithm for convex problems with applications to
imaging. Journal of Mathematical Imaging and Vision,
40(1), 120–145.

Chiang, N.Y., Hang, R., and Zavala, V.M.
(2016). An augmented lagrangian filter method
for real-time embedded optimization. URL
http://www.optimization-online.org/DB HTML/
2016/10/5664.html.

Christophersen, F.J., Kvasnica, M., Jones, C.N., and
Morari, M. (2007). Efficient evaluation of piecewise
control laws defined over a large number of polyhedra.
In European Control Conference, 2360–2367.

Dantzig, G.B. (1963). Linear Programming and Exten-
sions. Princeton University Press.

Dantzig, G.B. and Ramser, J.H. (1959). The truck dis-
patching problem. Management Science, 6(1), 80–91.

Darby, M. and Nikolaou, M. (2012). MPC: Current
practice and challenges. Control Engineering Practice,
20, 328–342.

Debrouwere, F., Vukov, M., Quirynen, R., Diehl, M., and
Swevers, J. (2014). Experimental validation of combined
nonlinear optimal control and estimation of an overhead
crane. IFAC Proceedings Volumes, 47(3), 9617–9622.

Defraene, B., van Waterschoot, T., Ferreau, H., Diehl, M.,
and Moonen, M. (2012). Real-time perception-based
clipping of audio signals using convex optimization.
Transactions on Audio, Speech and Language Process-
ing, 20(10), 2657–2671.

Di Cairano, S. and Brand, M. (2013). On a multiplicative
update dual optimization algorithm for constrained lin-
ear MPC. In Proceedings of the 52nd IEEE Conf. on
Decision and Control, Firenze, Italy, 1696–1701.

Di Cairano, S., Liang, W., Kolmanovsky, I.V., Kuang,
M.L., and Phillips, A.M. (2013). Power smoothing
energy management and its application to a series hy-
brid powertrain. IEEE Transactions on control systems
technology, 21(6), 2091–2103.

Di Cairano, S., Yanakiev, D., Bemporad, A., Kol-
manovsky, I.V., and Hrovat, D. (2012). Model predictive
idle speed control: Design, analysis, and experimental
evaluation. IEEE Transactions on Control Systems
Technology, 20(1), 84–97.

Diehl, M. (2001). Real-Time Optimization for Large
Scale Nonlinear Processes. Ph.D. thesis, Universität
Heidelberg.

Diehl, M., Bock, H.G., Schlöder, J., Findeisen, R., Nagy,
Z., and Allgöwer, F. (2002). Real-time optimization and
nonlinear model predictive control of processes governed
by differential-algebraic equations. Journal of Process
Control, 12(4), 577–585.

Diehl, M., Ferreau, H.J., and Haverbeke, N. (2009). Effi-
cient numerical methods for nonlinear mpc and moving
horizon estimation. In L. Magni, M. Raimondo, and
F. Allgöwer (eds.), Nonlinear model predictive control,
volume 384 of Lecture Notes in Control and Information
Sciences, 391–417. Springer.

Domahidi, A., Zgraggen, A., Zeilinger, M., Morari, M.,
and Jones, C. (2012). Efficient Interior Point Methods
for Multistage Problems Arising in Receding Horizon
Control. In Proceedings of the IEEE Conference on
Decision and Control (CDC), 668 – 674. Maui, HI, USA.

Domahidi, A. and Jerez, J. (2014).
FORCES professional. embotech GmbH
(http://embotech.com/FORCES-Pro).

Eckstein, J. and Bertsekas, D.P. (1992). On the Douglas-
Rachford Splitting Method and the Proximal Point Al-
gorithm for Maximal Monotone Operators. Mathemat-
ical Programming, 55(1), 293–318.

Ferreau, H.J., Bock, H.G., and Diehl, M. (2008). An online
active set strategy to overcome the limitations of explicit
MPC. International Journal of Robust and Nonlinear
Control, 18(8), 816–830.

Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., and
Diehl, M. (2014). qpOASES: a parametric active-set
algorithm for quadratic programming. Mathematical
Programming Computation, 6(4), 327–363.

Ferreau, H., Ortner, P., Langthaler, P., del Re, L., and
Diehl, M. (2007). Predictive control of a real-world diesel
engine using an extended online active set strategy.
Annual Reviews in Control, 31(2), 293–301.

Fletcher, R. and Leyffer, S. (1998). Numerical experience
with lower bounds for MIQP branch-and-bound. Opti-
mization, SIAM Journal on, 8(2), 604–616.

Frasch, J.V., Sager, S., and Diehl, M. (2015). A parallel
quadratic programming method for dynamic optimiza-
tion problems. Mathematical Programming Computa-
tions, 7(3), 289–329.

Frasch, J.V., Vukov, M., Ferreau, H.J., and Diehl, M.
(2014). A new quadratic programming strategy for
efficient sparsity exploitation in SQP-based nonlinear
MPC and MHE. In Proceedings of the 19th IFAC World
Congress.

Frick, D., Domahidi, A., and Morari, M. (2015). Embed-
ded optimization for mixed logical dynamical systems.
Computers & Chemical Engineering, 72, 21–33. A Trib-
ute to Ignacio E. Grossmann.

Frick, D., Domahidi, A., Vukov, M., Mariethoz, S., Diehl,
M., and Morari, M. (2012). Moving horizon estimation
for induction motors. In Sensorless Control for Electri-
cal Drives (SLED), 2012 IEEE Symposium on.

Frick, D., Jerez, J.L., Domahidi, A., Georghiou, A., and
Morari, M. (2016). Low-complexity iterative method
for hybrid MPC. arXiv preprint:1609.02819, 1–27. URL
http://arxiv.org/abs/1609.02819.

Frison, G., Sorensen, H.B., Dammann, B., and Jørgensen,
J.B. (2014). High-performance small-scale solvers for
linear model predictive control. In Proceedings of the
European Control Conference (ECC), 128–133.

Garćıa, C., Prett, D., and Morari, M. (1989). Model
Predictive Control: Theory and Practice – a Survey.
Automatica, 25, 335–348.

Geyer, T., Papafotiou, G., Frasca, R., and Morari, M.
(2008). Constrained optimal control of the step-down
dc-dc converter. Power Electronics, IEEE Transactions
on, 23(5), 2454–2464.

Geyer, T. (2005). Low complexity model predictive control
in power electronics and power systems. Ph.D. thesis,
Eidgenössische Technische Hochschule ETH Zürich, Nr.
15953, 2005.

Giselsson, P. (2014). Improved fast dual gradient methods
for embedded model predictive control. In Proceedings
of the 19th IFAC World Congress, Cape Town, South
Africa, 2303–2309.

Giselsson, P. and Boyd, S. (2015). Metric Selection in Fast
Dual Forward-Backward Splitting. Automatica, 62, 1–
10.

Giselsson, P. and Boyd, S. (2017). Linear convergence
and metric selection in douglas-rachford splitting and
ADMM. To appear in IEEE Transactions on Automatic
Control, 62(2), 532–544.

Goldfarb, D. and Idnani, A. (1983). A numerically stable
dual method for solving strictly convex quadratic pro-
grams. Mathematical Programming, 27, 1–33.

Gros, S., Zanon, M., Quirynen, R., Bemporad, A., and
Diehl, M. (2017). From linear to nonlinear MPC: bridg-
ing the gap via the real-time iteration. International
Journal of Control. (in press).

Harjunkoski, I., Nyström, R., and Horch, A. (2009). Inte-
gration of scheduling and control – Theory or practice?
Computers & Chemical Engineering, 33(12), 1909–1918.
FOCAPO 2008 – Selected Papers from the Fifth Inter-
national Conference on Foundations of Computer-Aided
Process Operations.

Hartley, E. and Maciejowski, J. (2010). Predictive control
for spacecraft rendezvous in an elliptical orbit using
an FPGA. In Proceedings of the European Control
Conference, 1359–1364. Zurich, Switzerland.

Heemels, W., Schutter, B.D., and Bemporad, A. (2001).
Equivalence of hybrid dynamical models. Automatica,
37(7), 1085–1091.

Hempel, A.B. (2015). Control of Piecewise Affine Sys-
tems Through Inverse Optimization. Ph.D. thesis, ETH
Zürich. Dissertation, ETH-Zürich, Nr. 23222, 2015.

Herceg, M., Kvasnica, M., Jones, C.N., and Morari, M.
(2013). Multi-parametric toolbox 3.0. In Proceedings
of the European Control Conference, 502–510. Zürich,
Switzerland.

Hours, J.H. and Jones, C.N. (2016). A parametric non-
convex decomposition algorithm for real-time and dis-

tributed nmpc. IEEE Transactions on Automatic Con-
trol, 61(2), 287–302.

Houska, B., Ferreau, H.J., and Diehl, M. (2011). An auto-
generated real-time iteration algorithm for nonlinear
MPC in the microsecond range. Automatica, 47(10),
2279–2285.

Huyck, B., Ferreau, H., Diehl, M., Brabanter, J.D., Impe,
J.V., Moor, B.D., and Logist, F. (2012). Towards
online model predictive control on a programmable logic
controller: Practical considerations. Article ID 912603.

Iles, S., Matusko, J., and Kolonic, F. (2014). Real-time
Predictive Control of 3D tower crane. In 2014 IEEE
23rd International Symposium on Industrial Electronics
(ISIE), 224–230.

Jacobs, W. (1954). The caterer problem. Naval Research
Logistics Quarterly, 1(2), 154–165.

Jerez, J., Goulart, P., Richter, S., Constantinides, G.,
Kerrigan, E., and Morari, M. (2014). Embedded Online
Optimization for Model Predictive Control at Mega-
hertz Rates. IEEE Transactions on Automatic Control,
59(12), 3238–3251.

Karmarkar, N. (1984). A new polynomial time algorithm
for linear programming. Combinatorica, 4, 373–395.

Kayacan, E., Kayacan, E., Ramon, H., and Saeys, W.
(2014). Distributed nonlinear model predictive control
of an autonomous tractor-trailer system. Mechatronics,
24(8), 926–933.

Kraus, T., Ferreau, H.J., Kayacan, E., Ramon, H.,
De Baerdemaeker, J., Diehl, M., and Saeys, W. (2013).
Moving horizon estimation and nonlinear model predic-
tive control for autonomous agricultural vehicles. Com-
puters and electronics in agriculture, 98, 25–33.

Kvamme, S. (2014–2015). DuQuad Webpage.
http://sverrkva.github.io/duquad/.

Kvasnica, M., Grieder, P., Baoti, M., and Morari, M.
(2004). Multi parametric toolbox (MPT). In R. Alur
and G. Pappas (eds.), HSCC (Hybrid Systems: Compu-
tation and Control), volume 2993 of Lecture Notes in
Computer Science, 448–462. Springer Verlag.

Li, W. and Biegler, L. (1989). Multistep, Newton-Type
Control Strategies for Constrained Nonlinear Processes.
Chem. Eng. Res. Des., 67, 562–577.

Liniger, A., Domahidi, A., and Morari, M. (2015).
Optimization-based autonomous racing of 1: 43 scale
RC cars. Optimal Control Applications and Methods,
36(5), 628–647.

Mariethoz, S. and Morari, M. (2009). Explicit model-
predictive control of a pwm inverter with an LCL filter.
Industrial Electronics, IEEE Transactions on, 56(2),
389–399.

Martello, S. and Toth, P. (1987). Linear assignment
problems. In Surveys in Combinatorial Optimization,
volume 132 of North-Holland Mathematics Studies, 259–
282. North-Holland.

Mattingley, J. and Boyd, S. (2009). Convex Optimiza-
tion in Signal Processing and Communications, chapter
Automatic Code Generation for Real-Time Convex Op-
timization. Cambridge University Press.

Mayne, D., Rawlings, J., Rao, C., and Scokaert, P. (2000).
Constrained model predictive control: stability and op-
timality. Automatica, 26(6), 789–814.

Moehle, N. and Boyd, S. (2015). A perspective-based
convex relaxation for switched-affine optimal control.
Systems & Control Letters, 86, 34–40.

Mönnigmann, M. and Kastsian, M. (2011). Fast explicit
model predictive control with multiway trees. In Pro-
ceedings of the 18th IFAC World Congress, 1356–1361.

Nedelcu, V., Necoara, I., and Quoc, D.Q. (2014). Com-
putational complexity of inexact gradient augmented
lagrangian methods: Application to constrained MPC.
SIAM Journal on Control and Optimization, 52(5),
3109–3134.

Nesterov, Y. (1983). A method for solving a convex pro-
gramming problem with rate of convergence O(1/k2).
Doklady Mathematics, 269(3), 543–547.

Nocedal, J. and Wright, S.J. (2006). Numerical Opti-
mization. Springer Series in Operations Research and
Financial Engineering. Springer, 2 edition.

Nocedal, J., Wächter, A., and Waltz, R.A. (2009). Adap-
tive barrier update strategies for nonlinear interior
methods. SIAM Journal on Optimization, 19(4), 1674–
1693.

Noga, R., de Prada, C., Ohtsuka, T., Blanco, E., and
Casas, J. (2014). Non-linear moving horizon state esti-
mation and control for the superfluid helium cryogenic
circuit at the large Hadron Collider. In 53rd IEEE
Conference on Decision and Control, 3530–3535.

O’Donoghue, B. and Candes, E. (2015). Adaptive Restart
for Accelerated Gradient Schemes. Foundations of
Computational Mathematics, 15(3), 715–732.

Ohtsuka, T. and Kodama, A. (2002). Automatic code gen-
eration system for nonlinear receding horizon control.
Transactions of the Society of Instrument and Control
Engineers, 38(7), 617–623.

Ohtsuka, T. (2004). A continuation/GMRES method for
fast computation of nonlinear receding horizon control.
Automatica, 40(4), 563–574.

Ortner, P. and del Re, L. (2007). Predictive Control of a
Diesel Engine Air Path. IEEE Transactions on Control
Systems Technology, 15(3), 449–456.

Patrinos, P. and Bemporad, A. (2012). An accelerated
dual gradient-projection algorithm for linear model pre-
dictive control. In Proc. IEEE 51st Conf. on Decision
and Control (CDC), 662–667.

Patrinos, P., Sopasakis, P., and Sarimveis, H. (2011). A
global piecewise smooth newton method for fast large-
scale model predictive control. Automatica, 47, 2016–
2022.

Qin, S. and Badgwell, T. (2003). A survey of industrial
model predictive control technology. Control Engineer-
ing Practice, 11, 733–764.

Quirynen, R., Gros, S., Houska, B., and Diehl, M. (2017).
Lifted collocation integrators for direct optimal control
in ACADO toolkit. Mathematical Programming Compu-
tation. (under review, preprint available at Optimization
Online).

Rao, C., Wright, S., and Rawlings, J. (1998). Application
of Interior-Point Methods to Model Predictive Control.
Journal of Optimization Theory and Applications, 99,
723–757.

Rawlings, J. and Mayne, D. (2009). Model Predictive
Control: Theory and Design. Nob Hill.

Richalet, J., Rault, A., Testud, J., and Papon, J. (1978).
Model predictive heuristic control: applications to in-
dustrial processes. Automatica, 14, 413–428.

Richter, S., Morari, M., and Jones, C.N. (2011). Towards
computational complexity certification for constrained

MPC based on lagrange relaxation and the fast gradient
method. In Conference on Decision and Control and
European Control Conference (CDC-ECC), 5223–5229.

Rodriguez, J., Kazmierkowski, M.P., Espinoza, J.R.,
Zanchetta, P., Abu-Rub, H., Young, H.A., and Rojas,
C.A. (2013). State of the art of finite control set model
predictive control in power electronics. IEEE Transac-
tions on Industrial Informatics, 9(2), 1003–1016.

Sager, S. (2005). Numerical methods for mixed–integer
optimal control problems. Der andere Verlag, Tönning,
Lübeck, Marburg. ISBN 3-89959-416-9.

Sager, S., Bock, H.G., and Diehl, M. (2012). The integer
approximation error in mixed-integer optimal control.
Mathematical Programming (Series A), 133, 1–23.

Sahinidis, N.V. (2014). BARON: Global Optimization of
Mixed-Integer Nonlinear Programs, User’s Manual.

Sargent, R. and Sullivan, G. (1978). The development of
an efficient optimal control package. In J. Stoer (ed.),
Proceedings of the 8th IFIP Conference on Optimization
Techniques (1977), Part 2. Springer, Heidelberg.

Seguchi, H. and Ohtsuka, T. (2003a). Nonlinear Receding
Horizon Control of an Underactuated Hovercraft. In-
ternational Journal of Robust and Nonlinear Control,
13(3–4), 381–398.

Seguchi, H. and Ohtsuka, T. (2003b). Nonlinear receding
horizon control of an underactuated hovercraft. Interna-
tional journal of robust and nonlinear control, 13(3-4),
381–398.

Stathopoulos, G., Shukla, H., Szűcs, A., Pu, Y., and Jones,
C.N. (2016). Operator Splitting Methods in Control.
Foundations and Trends(R) in Systems and Control,
3(3), 249–362.

Takapoui, R., Moehle, N., Boyd, S., and Bemporad, A.
(2016). A simple effective heuristic for embedded mixed-
integer quadratic programming. In Proceedings of the
American Control Conference, Boston, MA, USA.

Tøndel, P., Johansen, T., and Bemporad, A. (2003). An
Algorithm for Multi-Parametric Quadratic Program-
ming and Explicit MPC Solutions. Automatica, 39, 489–
497.

Torrisi, F. and Bemporad, A. (2004). HYSDEL – a tool
for generating computational hybrid models for analysis
and synthesis problems. IEEE Transactions on Control
Systems Technology, 12(2), 235–249.

Tran-Dinh, Q., Savorgnan, C., and Diehl, M. (2012).
Adjoint-based predictor-corrector sequential convex
programming for parametric nonlinear optimization.
SIAM J. Optimization, 22(4), 1258–1284.

Tseng, P. (2008). On accelerated proximal gradient
methods for convex-concave optimization. URL
http://www.mit.edu/∼dimitrib/PTseng/papers/
apgm.pdf.

Ullmann, F. (2011). FiOrdOs: A MATLAB Toolbox for
C-Code Generation for First Order Methods. Master
thesis, ETH Zurich, Switzerland.

van Duijkeren, N., Verschueren, R., Pipeleers, G., Diehl,
M., and Swevers, J. (2016). Path-following NMPC for
serial-link robot manipulators using a path-parametric
system reformulation. In Proceedings of the European

Control Conference (ECC).
Vargas-Villamil, F.D. and Rivera, D.E. (2000). Multilayer

optimization and scheduling using model predictive con-
trol: application to reentrant semiconductor manufac-
turing lines. Computers & Chemical Engineering, 24(8),
2009–2021.

Verschueren, R., Bruyne, S.D., Zanon, M., Frasch, J.V.,
and Diehl, M. (2014). Towards time-optimal race car
driving using nonlinear MPC in real-time. In Proceed-
ings of the IEEE Conference on Decision and Control
(CDC), 2505–2510.

Verschueren, R., van Duijkeren, N., Quirynen, R., and
Diehl, M. (2016). Exploiting convexity in direct optimal
control: a sequential convex quadratic programming
method. In Proceedings of the IEEE Conference on
Decision and Control (CDC).

Vukov, M., Loock, W.V., Houska, B., Ferreau, H., Swevers,
J., and Diehl, M. (2012). Experimental Validation of
Nonlinear MPC on an Overhead Crane using Automatic
Code Generation. In Proceedings of the American
Control Conference, Montreal, Canada, 6264–6269.

Vukov, M., Gros, S., Horn, G., Frison, G., Geebelen,
K., Jørgensen, J.B., Swevers, J., and Diehl, M. (2015).
Real-time nonlinear MPC and MHE for a large-scale
mechatronic application. Control Engineering Practice,
45, 64–78.

Wächter, A. and Biegler, L.T. (2006a). Line Search Filter
Methods for Nonlinear Programming: Motivation and
Global Convergence. SIAM Journal on Optimization,
16, 1–31.

Wächter, A. and Biegler, L.T. (2006b). On the implemen-
tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical
Programming, 106(1), 25–57.

Wang, Y. and Boyd, S. (2010). Approximate dynamic
programming via iterated bellman inequalities.

Widd, A., Ekholm, K., Tunestal, P., and Johansson, R.
(2009). Experimental evaluation of predictive com-
bustion phasing control in an HCCI engine using fast
thermal management and VVA. In 2009 IEEE Control
Applications,(CCA) & Intelligent Control,(ISIC), 334–
339. IEEE.

Wills, A., Bates, D., Fleming, A., Ninness, B., and Mo-
heimani, S. (2005). Application of MPC to an active
structure using sampling rates up to 25kHz. 3176–3181.
44th IEEE Conference on Decision and Control and
European Control Conference, Seville, Spain.

Wolsey, L.A. and Nemhauser, G.L. (1988). Integer and
Combinatorial Optimization. John Wiley & Sons.

Zanelli, A., Domahidi, A., Jerez, J., and Morari, M. (2016).
FORCES NLP: An efficient implementation of interior-
point methods for multistage nonlinear nonconvex pro-
grams. International Journal of Control: Special Issue
on MPC Algorithms and Applications. (accepted for
publication).

Zavala, V.M. and Biegler, L. (2009). The Advanced Step
NMPC Controller: Optimality, Stability and Robust-
ness. Automatica, 45, 86–93.

