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Abstract Many practical applications lead to optimization problems that can either be
stated as quadratic programming (QP) problems or require the solution of QP problems
on a lower algorithmic level. One relatively recent approach to solve QP problems are
parametric active-set methods that are based on tracing the solution along a linear
homotopy between a QP problem with known solution and the QP problem to be
solved. This approach seems to make them particularly suited for applications where
a-priori information can be used to speed-up the QP solution or where high solution
accuracy is required. In this paper we describe the open-source C++ software package
qpOASES, which implements a parametric active-set method in a reliable and efficient
way. Numerical tests show that qpOASES can outperform other popular academic and
commercial QP solvers on small- to medium-scale convex test examples of the Maros-
Mészáros QP collection. Moreover, various interfaces to third-party software packages
make it easy to use, even on embedded computer hardware. Finally, we describe how
qpOASES can be used to compute critical points of nonconvex QP problems.
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1 Introduction

This paper describes the current release 3.0 of the open-source software package
qpOASES1. This software package implements a parametric active-set method for
solving convex quadratic programming (QP) problems and for computing critical
points of nonconvex quadratic programming problems.

The class of convex QP problems is important in its own right. Gould and Toint
maintain a bibliography [30] of currently about 1000 publications that comprise many
application papers from disciplines as diverse as portfolio analysis, structural analy-
sis, VLSI design, discrete-time stabilization, optimal and fuzzy control, finite impulse
response design, optimal power flow or economic dispatch. The Maros-Mészáros QP
test set [44] collects a number of benchmark and application problems that can be
accessed through the CUTEr testing environment [32]. Linear model predictive con-
trol (MPC) problems constitute another important subclass of convex QP problems. As
MPC is frequently applied to processes with very fast dynamics, it becomes crucial to
solve the resulting convex QP problems at very high rates; possibly within a millisec-
ond or less [57]. Moreover, as MPC controllers typically need to run autonomously
without further user-interaction, QP solution needs to be highly reliable.

QP problems also arise as subproblems in sequential quadratic programming (SQP)
methods. SQP methods aim at solving nonlinear optimization problems by using a
linear-quadratic approximation of the original problem in each iteration. Depending on
the way the nonlinear objective function is approximated, the resulting QP problems
are often convex but may also become nonconvex for certain SQP-type schemes.
Again, the fast and reliable solution of QP problems is crucial to make such nonlinear
optimization algorithms work efficiently.

1.1 Problem description

We consider quadratic programming problems of the following form,

min
x∈Rn

1
2

xT H x + gT x (1a)

s. t. al ≤ Ax ≤ au, (1b)

comprising a symmetric Hessian matrix H ∈ Rn×n , a constraint matrix A ∈ Rm×n ,
a gradient vector g ∈ Rn , and lower and upper constraint bound vectors al, au ∈

1 The name qpOASES is derived from the term “online active set strategy” [19] reflecting the fact that the
code has been originally developed for use in model predictive control applications.
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Rm ∪ {∞,−∞}m . Throughout this paper, inequality signs between vectors are to be
understood element-wise.

For reasons of efficiency, it is important to exploit box constraints on the problem
variables that lend the special substructure AT = (I ÃT ) to the constraint matrix.
qpOASES exploits this substructure in the numerical linear algebra methods.

It is appropriate to introduce some notation at this point. Throughout this article,
vectors are column vectors; an index subscript i on a vector denotes the i-th element;
a set subscript on a vector denotes the subvector of elements; the operator ◦ denotes
element-wise multiplication of vectors. We will need to encode a working set W as
an m-vector with entries from {−1, 0,+1}, whose i-th component indicates whether
constraint i of the matrix A is inactive (Wi = 0) or active at the lower (Wi = −1)

or upper (Wi = +1) bound. We further denote by AW the matrix that consists of the
rows of A indicated by Wi ̸= 0.

1.2 Optimality conditions

A quadratic program of the form (1) is convex (strictly convex) if and only if its Hessian
matrix H is positive semidefinite (positive definite); it is nonconvex otherwise. If
feasible, strictly convex QP problems are known to possess a unique global minimum.
Uniqueness still holds for feasible convex QP problems if H is positive definite on
the null-space of the strictly active constraints in the solution. For nonconvex QP
problems, finding the global minimum is NP-hard [45], as is the verification of local
optimality of a constrained critical point in the case of weakly active constraints [10].
In these cases, we only strive to find a locally optimal solution or a critical point,
respectively.

For the characterization of solutions of QP (1) we partition the index set m =
{1, . . . , m} for a feasible point x into four disjoint sets

A e(x) = {i ∈ m | al
i = (Ax)i = au

i }, A l(x) = {i ∈ m | al
i = (Ax)i < au

i },
A u(x) = {i ∈ m | al

i < (Ax)i = au
i }, A f(x) = {i ∈ m | al

i < (Ax)i < au
i }

of equality, lower active, upper active, and free constraint indices, respectively. It is
well known [see, e.g., 48] that for any solution x∗ of QP (1) there exists a vector
y∗ ∈ Rm of Lagrange multipliers or dual variables such that

H x∗ + g − AT y∗ = 0, al ≤ Ax∗ ≤ au, (2a)

(Ax∗ − al)i y∗
i = 0, i ∈ A l(x∗), y∗

i ≥ 0, i ∈ A l(x∗), (2b)

(Ax∗ − au)i y∗
i = 0, i ∈ A u(x∗), y∗

i ≤ 0, i ∈ A u(x∗), (2c)

y∗
i = 0, i ∈ A f(x∗). (2d)

A pair (x∗, y∗) ∈ Rn+m that satisfies (2) is called a critical point. In the convex case it
additionally holds that every critical point is a global solution of QP (1). The primal-
dual solution is furthermore unique if and only if the following two conditions are
satisfied:

123



H. J. Ferreau et al.

1. The active constraint rows Ai , i ∈ A e ∪ A l ∪ A u, are linearly independent.
2. Matrix H is positive definite on the null space of the strictly active constraints.

For the nonconvex case, critical points are not necessarily local minima. To verify
local optimality, we can use a sufficient condition of second order. We specialize a
result from nonlinear constrained optimization [20, Theorem 9.3.1 and the following
remark] to the QP case: Let (x∗, y∗) ∈ Rn+m be a critical point and define the set of
strongly active inequality constraints

A l
+(x∗, y∗) = A l(x∗) ∩ {i ∈ m | y∗

i > 0},
A u

−(x∗, y∗) = A u(x∗) ∩ {i ∈ m | y∗
i < 0}.

Then x∗ is a strict local minimizer of (1), if

sT Hs >0 ∀s ∈ Rn with s ̸=0, Ai s =0, i ∈ A e(x∗) ∪ A l
+(x∗, y∗) ∪ A u

−(x∗, y∗).
(3)

1.3 Existing methods

A great variety of methods for solving QP problems exists. Many of them can be
categorized into one of two main families, namely active-set and interior-point meth-
ods, but other approaches, such as fast gradient methods, exist and have important
applications, see for example [46].

Interior-point methods were initially developed for linear programming [39] and
were later extended to convex quadratic and general nonlinear programming. They
are mainly used in two different variants: primal barrier methods and primal-dual
methods. Barrier methods replace the inequality constraints (1b) of the QP problem
by a weighted barrier function in the objective. This barrier function is constructed such
that it becomes (infinitely) expensive to violate the constraints; typically, a logarithmic
barrier is used. The resulting equality constrained nonlinear problem is then solved by
Newton’s method. In order to ensure convergence to the solution of the original QP
problem, this procedure is repeated with a decreased weight on the barrier function.
That way, IP methods follow the so-called central path, a nonlinear path from a strictly
feasible point towards the solution. If the weight is changed only moderately in each
step of the outer loop, then the inner Newton iterations can be shown to always remain
in the region of quadratic convergence and thus solve the inner problem within very
few iterations, cf. [59]. A polynomial runtime guarantee can be given for certain update
schemes of the weight, as shown in [47]. Primal-dual IP methods combine the inner
and outer loop of primal barrier methods by reducing the weight on the barrier in each
iteration of Newton’s method.

Active-set methods were originally developed as extensions of the simplex method
for solving LP problems [11,58]. The fundamental idea of all active-set methods is
to fix a working set, a maximal linearly independent subset of the active constraints,
and to solve the resulting equality constrained QP problem. The working set is then
updated repeatedly until optimality is reached. Active-set methods can be divided into
primal, dual, and parametric methods. Once a feasible starting point has been found,
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primal active-set methods generate a sequence of primal feasible iterates until dual
feasibility and hence an optimal solution is obtained [48]. If no feasible starting point
is available, a so-called Phase I is employed to generate one or to detect infeasibility;
see e.g. [20]. Dual active-set methods for convex QP problems generate a sequence of
dual-feasible iterates until primal feasibility and hence an optimal solution is obtained.
In the strictly convex case, this is equivalent to solving the dual of the QP problem (1)
with a primal active-set method [28].

The numerical behavior of active-set and interior-point methods is usually quite
different: While active-set methods need on average substantially more iterations than
interior-point methods, each active-set iteration is computationally much cheaper.
Often, one or the other method will perform favorably on a certain problem instance,
indicating that both approaches are important. An advantage of active-set methods
is the possibility to warm-start or hot-start2 the iterations when solving a sequence
of related QP problems, which can lead to substantial speed-ups. Contrary to primal
active-set or primal barrier methods, dual active-set methods do not require a possibly
expensive Phase I.

An up-to-date list of available quadratic programming codes can be found on the
web page [31].

A variant of the active-set method that has received comparably little attention
are parametric active-set methods, which are centered around the idea of tracing the
solution of a linear homotopy parameterized by τ ∈ [0, 1] between a QP problem with
known solution (τ = 0) and the QP problem to be solved (τ = 1),

min
x(τ )∈Rn

1
2 x(τ )T H x(τ ) + g(τ )T x(τ ) (4a)

s. t. al(τ ) ≤ Ax(τ ) ≤ au(τ ). (4b)

If g(τ ), al(τ ), and au(τ ) are affine-linear functions of the homotopy parameter τ ,
it can be shown that the optimal solutions x(τ ) depend piecewise affine-linearly on
τ . The algorithm considered in this paper has been proposed in [7] in the form of
the primal-dual Parametric Quadratic Programming (PQP) method, and was later
adapted for use in model predictive control (MPC), see [19].

In MPC, one is interested in the on-line optimization of a dynamic process over a
prediction horizon in time,

min
v∈Rnv×(N+1),

u∈Rnu×N

1
2

N−1∑

k=0

(
∥vk − vr

k∥2
Qk

+ ∥uk − ur
k∥2

Rk

)
+ 1

2
∥vN − vr

N ∥2
P (5a)

s. t. v0 = vest, (5b)

vk+1 = Akvk + Bkuk + ck ∀ k ∈ {0, . . . , N − 1}, (5c)

d l
k ≤ Ckvk + Dkuk ≤ d u

k ∀ k ∈ {0, . . . , N − 1}, (5d)

d l
N ≤ CN vN ≤ d u

N . (5e)

2 We use the notion warm-start if the QP solution procedure is initialized based on the solution of the
previous QP problem. Hot-start refers to the case where also internal matrix factorizations are re-used.
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Here, the process is described by the discrete-time dynamic system (5c) on N time
intervals [ti , ti+1], 0 ≤ i ≤ N − 1, which defines the vector v = (v0, . . . , vN ) ∈
Rnv×(N+1) of state predictions. The process is affected by a sequence of future control
inputs u = (u0, . . . , uN−1) ∈ Rnu×N to be determined such that a convex objec-
tive function (5a) is minimized subject to process constraints (5d)–(5e) that must be
satisfied.

Problem (5) is a quadratic problem that depends parametrically on the initial state
vector vest ∈ Rnv . Using the dynamic equations (5c) to eliminate the process states v

from the problem yields the following equivalent QP problem:

min
u(v0)∈Rn

1
2 u(v0)

T Hu(v0) + g(y0)
T u(v0) (6a)

s. t. al(v0) ≤ Au(v0) ≤ au(v0), (6b)

which can be easily re-parameterized to yield the standard form (4) of a paramet-
ric QP problem. The current state vector v0 is repeatedly estimated from real-world
measurements, and at each sampling instant problem (6) is solved on-line to find the
optimal feedback control u0 ∈ Rnu . This optimized control is then used to control
the process, until the next, more recent feedback control has been computed from the
next state observation. As measurements of vest typically vary slowly, one can expect
the optimal solution of the parametric QP problem (6) to also change only moderately
with time. Therefore, it is beneficial to exploit the parametric hot-starting capabilities
of active-set methods for MPC in order to meet the hard real-time constraints on the
available on-line computation time, see [12,19] for further details.

1.4 Structure and contribution of this article

This article presents the open-source software package qpOASES, first mentioned
in [14,19], in its most recent release 3.0. In this paper, the new release of qpOASES is
shown to constitute a reliable and efficient, object-oriented C++ implementation of a
parametric primal-dual active-set method. Section 2 starts by recalling the parametric
quadratic programming algorithm as described in [7]. In Sect. 3 we describe new
algorithmic extensions that were introduced in release 3.0 of qpOASES. We elaborate
on the mathematical background of these extensions and present numerical details
of the implementation details. Section 4 outlines the object-oriented design of the
C++ implementation in more detail. Small code examples for typical use cases of
qpOASES are given, and we mention possibilities for extending the functionality
of qpOASES by deriving from existing C++ classes, providing an opportunity to
tailor important parts of the code to special problem structures. Section 4.5 discusses
important parameters of the algorithm and the qpOASES code. They are based on
numerical improvements that allow a trade-off between efficiency and reliability of
the algorithm, tailored to the numerical characteristics of the specific QP problem to
be solved. Section 5 contains details about interfaces to various third-party software
packages and mentions a number of applications of qpOASES to real-world problems,
partly on embedded computer hardware. We show in Sect. 6 that qpOASES performs

123



qpOASES: a parametric active-set algorithm

competitively with popular academic and commercial QP solvers on small- to medium-
scale test examples. We also present results of qpOASES finding stationary points of
nonconvex QP problems. In addition, we discuss how the homotopy framework can be
efficiently exploited for hot-starting QP problems within a given sequence of problems,
for example, QP problems arising in model predictive control applications. We briefly
address in Sect. 7 how to obtain a copy of qpOASES and how to install it.

2 Algorithm

In this section we describe the PQP method due to [7], which forms the basis for
the new algorithmic developments that we discuss in Sect. 3. The choice of matrix
decompositions for the linear algebra employed in the computation of step directions
is entirely decoupled from the PQP method itself. We briefly address the null-space
method implemented in qpOASES and give details on the handling of QP problems
with sparse matrix data.

From now on, we generally assume convexity, i.e., positive semi-definiteness of H ,
unless explicitly stated otherwise.

2.1 The parametric programming paradigm

The idea behind parametric active-set methods is to trace optimal solutions on a homo-
topy path between two QP instances, parameterized by τ ∈ [0, 1]. Denote the set of
affine-linear functions from [0, 1] to Rk by

H k = { f : [0, 1] → Rk | f (τ ) = (1 − τ ) f (0) + τ f (1), τ ∈ [0, 1]}, (7)

and let g(τ ) ∈ H n, al(τ ), au(τ ) ∈ H m . We are interested in the solution of the
one-parametric family of QP problems

min
x(τ )∈Rn

1
2 x(τ )T H x(τ ) + g(τ )T x(τ ) (8a)

s. t. al(τ ) ≤ Ax(τ ) ≤ au(τ ). (8b)

For fixed τ , denote an optimal primal-dual solution by z(τ ) = (x(τ ), y(τ )), where
y(τ ) are the Lagrange multipliers of the inequality constraints (8b). It can be shown
that optimal solutions z(τ ) depend piecewise linearly but not necessarily continuously
on τ , see [7]. The active set is constant on each linear segment. Parametric active-
set algorithms follow z(τ ) by jumping from the beginning of one segment to the
next, updating the working set W (τ ) accordingly. We take the liberty of dropping the
argument τ whenever this does not create ambiguities.

We can immediately observe that this approach allows in a natural way to hot-start
the QP solver after modifications to the QP vectors. In addition, no Phase 1 is needed
to begin with. We could always recede to the homotopy start g(0) = 0, al(0) =
0, au(0) = 0, x(0) = 0, y(0) = 0, although better choices are discussed in Sect. 3.
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2.2 The classic parametric quadratic programming method

A parametric active-set method was first described by [7] for convex QP under the name
parametric quadratic programming algorithm. We restate it here using the notation
of problem (8).

1. Start with an optimal primal-dual solution z(0) = (x(0), y(0)) and associated
working set W (0) ∈ {−1, 0, 1}m of the previously solved QP. Let τ := 0.

2. Determine the step direction ∆z = (∆x,∆y) using the current working set W (τ ).
3. Determine the maximum homotopy step length ∆τ and possibly the index of a

blocking constraint, l, or a blocking multipliers sign change, k.
4. If ∆τ ≥ 1 − τ , then stop with z(1) := z(τ ) + (1 − τ )∆z as the solution of (8).
5. Set τ+ := τ + ∆τ, z(τ+) := z(τ ) + ∆τ∆z, and W (τ+) := W (τ ).
6. If constraint l is blocking:

(a) Set W (τ+)l := ±1 (depending on whether an upper or lower constraint is
blocking).

(b) If the new working set W (τ+) is linear dependent, find an exchange constraint
index k or stop due to infeasibility of (8) for all τ > τ+. Adjust dual variables
y(τ+) and set W (τ+)k := 0.

7. If sign change of y(τ+)k is blocking:
(a) Set W (τ+)k := 0.
(b) If H has nonpositive curvature on the null-space of W (τ+), find an exchange

constraint index l or stop due to unboundedness of (8) for all τ > τ+. Adjust
primal variables x(τ+) and set W (τ+)l := ±1.

8. Set τ := τ+ and W (τ ) := W (τ+). Continue with step 2.

Several steps in this algorithm deserve a more detailed explanation.

Computing the step direction (Step 2)

Denote by aW (τ ) the vector that consists of entries al
i (τ ) or au

i (τ ) depending on what
bounds (if any) are marked active in Wi (τ ). We can then determine the step direction
(∆x,∆y) by solving

KW

(
∆x

−∆yW

)
=

(
H AT

W
AW 0

)(
∆x

−∆yW

)
=

(−(g(1) − g(τ ))

aW (1) − aW (τ )

)
(9)

and letting ∆yi = 0 if Wi (τ ) = 0. Given invertibility of the matrix KW for W (0),
see Sect. 3.2, steps 6 and 7 ensure that this property is maintained for all τ > 0.
More details on the numerical linear algebra involved in solving (9) can be found in
Sect. 2.3.

Determining the homotopy step length (Step 3)

We can follow z(τ ) in direction ∆z along the current segment until either an inactive
constraint becomes active (primal blocking), or a dual variable of an active constraint
changes its sign (dual blocking).
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The step length ∆τ onto the first blocking constraint can be determined by ratio
tests,

RT : Rm × Rm → R ∪ {∞}, (u, v) /→ min{ui/vi | 1 ≤ i ≤ m, vi > 0}. (10)

The minimum yields ∞ by convention if the set of ratios is empty. With the help of
Eq. (10), the maximum step towards the first blocking constraint is given by

∆τp = min
{

RT
(

Ax(τ ) − al(τ ),−A∆x
)

, RT
(
au(τ ) − Ax(τ ), A∆x

)}
(11)

and towards the first blocking sign change by

∆τd = RT(W (τ ) ◦ y(τ ), W (τ ) ◦ ∆y), (12)

There might be more than one limiting blocking constraint or sign change. This
situation, referred to as a tie, will be addressed in Sect. 3. The maximum step allowed
∆τ = min{∆τp,∆τd}, however, is unique.

Determining linear dependence and an exchange constraint (Step 6)

The new working set W + := W (τ+) is formed by addition of a new constraint l to the
working set W , which can lead to rank deficiency of the matrix AW+ and thus loss of
invertibility in Eq. (9). We can check for linear dependence of Al on AW by solving

(
H AT

W
AW 0

) (
p

qW

)
=

(
AT

l
0

)
. (13)

This test can be carried out cheaply by reusing the factorization employed to solve (9).
Al is linearly dependent on AW if and only if p = 0. In this case, to determine an
exchange constraint resolving linear dependency, let q be constructed from qW like
∆y from ∆yW . Equation (13) then yields

0 = −AT
l +

∑

i :Wi ̸=0

qi AT
i . (14)

Multiplying Eq. (14) by λW +
l with an arbitrary λ ≥ 0 and adding this as a special

form of zero to the stationarity condition in Eqs. (2a) yields

H(x(τ ) + ∆τ∆x) + g(τ+) =
∑

i :Wi ̸=0

yi (τ
+)AT

i

= −λW +
l AT

l +
∑

i :Wi ̸=0

(yi (τ
+) + λW +

l qi )AT
i . (15)
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All coefficients of Ai , i : W +
i ̸= 0 on the right hand side of Eq. (15) are also valid

choices ỹ for the dual variables as long as they satisfy the sign condition W +
i ỹi ≤ 0.

Hence, we need to compute the index k and multiplier λ of the exchange constraint.
For this, we obtain q from qW by letting qi = 0 if W +

i = 0, and carry out the ratio
test

λ⋆ := RT
(
−W +

l (W ◦ y(τ+)), W +
l (W ◦ q)

)
, (16)

If λ⋆ = ∞, then the parametric QP is infeasible beyond τ+, in particular in τ = 1 by
convexity of the feasible set. Otherwise, let k be a minimizing index of the ratio set
and let y(τ+) := ỹ where

ỹl = −λ⋆W +
l , ỹi = yi (τ

+) + λ⋆W +
i qi for i : Wi ̸= 0. (17)

Furthermore, ỹk vanishes by construction of λ⋆. Removing constraint k from W +

restores linear independence. For a proof, we refer to [7].

Determining zero curvature and an exchange constraint (Step 7)

The new working set W + is formed by removal of a constraint from W . This may
lead to exposition of a direction of zero curvature in the null-space of AW+ , which has
higher dimension than the null-space of AW , again leading to loss of invertibility in
Eq. (9). Directions of zero curvature can be detected by solving

(
H AT

W
AW 0

) (
s

ξW

)
=

(
0

−(ek)W

)
, (18)

where ek ∈ Rm denotes the k-th unit vector. H is singular on the null-space of AW+

if and only if ξW = 0, see [7]. Then, s solves

Hs = 0, Aks = −1, AW+s = 0 (19)

and all points x̃ = x(τ+)+σ s, σ > 0 are also optimal solutions if x̃ is primal feasible.
We can determine the largest such σ = min{σ l, σ u} from the ratio tests

σ l = RT(Ax(τ+) − al,−As), σ u = RT(au − Ax(τ+), As). (20)

If σ = ∞, then the parametric QP is unbounded beyond τ+, and in particular in τ = 1.
Otherwise, let l be a minimizing index of a ratio set that delivered the minimizer σ ,
and let x(τ+) := x(τ+) + σ s. By construction of σ , the constraint row l is active in
x(τ+) and can be added to the working set via W +

l := ±1. Again, we refer to [7] for
a proof.

As for the linear independence test, the nonzero curvature test can be evaluated
cheaply by reusing the factorization computed for Eq. (9). Note that this procedure
only guarantees regularity of Z T H Z , but not existence of a Cholesky factor if H is
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not positive semidefinite. An extension to the case of directions of negative curvature
is addressed in Sect. 3.

2.3 Linear algebra

The factorization of KW in Sect. 2.2 is the basis for determination of the step direction,
the linear independence test, and the nonzero curvature test. In this section, we describe
the computation of dense null-space factors from both dense and sparse matrices, the
exploitation of simple bounds on the QP variables, and quicker version of linear
independence tests.

2.3.1 Null-space factorization

In qpOASES, for solving the saddle-point problem KW we implement a null-space
method that can be expected to be numerically stable [6]. In each step, to exploit active
simple bounds on the QP variables, we permute and partition ∆x = (∆xX ,∆xF ) into
fixed and free variables according to the working set W , and ∆yW = (∆yA,∆yX )

into multipliers for active linear constraints and fixed simple bounds in W . Gradient
g = (gX , gF ) and residual a = (aA, aX ) as well as Hessian H and constraints
submatrix Ã (see Sect. 1.1) are permuted and partitioned accordingly,

H =
(

HX H T
M

HM HF

)
, Ã =

(
AX AF

)
. (21)

We use the representation xF = Z xZ + Y xY based on a TQ factorization AF (Z Y ) =
(0 T ) of the working set constraints matrix, wherein Z and Y are column-orthonormal
bases of the null-space and the range-space of AF , and T is southeast triangular
(as proposed in [26] to facilitate matrix updates). Finally, a Cholesky factorization
RT R = Z T HF Z of the null-space projection of the Hessian yields

⎛

⎜⎜⎜⎜⎝

HX H T
M Y H T

M Z AT
X I

Y T HM Y T HF Y Y T HF Z T T

Z T HM Z T HF Y RT R
AX T
I

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

∆xX
∆xY
∆xZ

−∆yA
−∆yX

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

−gX
−Y T gF
−Z T gF

aA
aX

⎞

⎟⎟⎟⎟⎠
, (22)

to be solved by block-wise backward substitution. Herein, the right hand side vectors
gX , gF , aA, and aX are generic, to be replaced by the appropriate right hand sides in
step 2, step 6b, and step 7b of the PQP algorithm.

2.3.2 Fast linear independence tests

During the linear independence tests, see step 6, a backsolve with the special right
hand side aW = (aA, aX ) = 0 has to be carried out. Hence (∆xX ,∆xY ) = 0 in (22)
and we obtain a test of a nonzero component of ∆xZ = −(RT R)−1 Z T gF in which
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we may safely ignore the basis transformation (RT R)−1. Hence, as mentioned in [14],
step 6 may be carried out by simply looking for a nonzero entry in the matrix-vector
product Z T AT

l in (13).

2.3.3 Special shapes of the Hessian and constraint matrices

In the code qpOASES we automatically detect and exploit special structure of the
Hessian matrix H : diagonal and unit diagonal Hessian matrices. In the first case, the
Cholesky factorization RT R = HF is trivial. In the second case, the KKT system (22)
reduces to the much simpler system (23),

⎛

⎜⎜⎜⎜⎝

I AT
X I

I T T

I
AX T
I

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

∆xX
∆xY
∆xZ

−∆yA
−∆yX

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

−gX
−Y T gF
−Z T gF

aA
aX

⎞

⎟⎟⎟⎟⎠
(23)

that can be factorized and solved at greatly reduced cost. For the case of bound-
constrained QP problems, i.e. problems that do not comprise linear constraints, the
KKT system (22) reduces to

⎛

⎝
HX H T

M I

HM RT R
I

⎞

⎠

⎛

⎝
∆xX
∆xF

−∆yX

⎞

⎠ =

⎛

⎝
−gX
−gF
aX

⎞

⎠ , (24)

again factorized and solved at greatly reduced cost.

2.3.4 Matrix updates

After an active-set exchange, the block KKT matrix of the working set W in (22)
changes in a single row and column only. Hence, instead of recomputing this factoriza-
tion with cubic runtime effort, it is possible to recover it from a previous one by orthog-
onal transformations and rank one updates involving only a quadratic runtime effort.
This technique is central to the efficiency of active-set methods and goes back to [4,25].
It has since been investigated for different factorizations, e.g. [22,23,27,29,36,40].
A detailed presentation of the update techniques implemented in our code qpOASES
can be found in [14,26] and fundamentals for null-space updates can be found in [48].

2.3.5 Sparse matrices

In the new release of qpOASESwe adopt the paradigm of computing dense factors of
sparse matrices, see e.g. [21]. Both the Hessian matrix H and the constraint matrix A
may be stored in a compressed row or compressed column storage format to reduce the
amount of memory bandwidth and floating-point operations required during computa-
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tion of the dense TQ and Cholesky factors as well as during formation of matrix-vector
products with H and A.

2.3.6 Limitations and alternatives

The dense factorizations implemented in qpOASES yield satisfactory runtimes only
for problems that are not too large in terms of the numbers n of unknowns and m of
constraints. The current implementation can be expected to show satisfactory perfor-
mance for (typically dense) problems with up to about 1,000 unknowns and constraints.
Obviously, any exploitation of special structures arising in the Hessian or constraints
matrix that extends beyond sparse representation of the QP matrices would result in
significant speed-ups. One prominent example is a condensing preprocessing step that
exploits block structures arising in optimal control and MPC problems, see [9,42],
before passing a significantly smaller QP on to the solver. An alternative is the direct
exploitation of such structures in a block structured KKT solve in place of (22), see,
for example, [5,40]. Finally, the effective treatment of large-scale sparse QPs with
an active-set method is only possible using sparse factorizations with suitable update
schemes such as those presented in [22,36].

3 New algorithmic developments in qpOASES

In this section we describe the numerical challenges that occur in the PQP algorithm
and present countermeasures implemented in qpOASES. Although these challenges
are closely interconnected, they can be roughly broken up into a few individual issues:
We address the treatment of equality constraints in Sect. 3.1, the choice of the initial
working set in Sect. 3.2; the far bounds strategy in Sect. 3.3; rounding errors and
ill-conditioning in Sects. 3.4, 3.5, 3.6, and 3.7; comparison with zero in Sects. 3.8 and
3.9; and cycling and ties in Sect. 3.10. These algorithmic developments address the
reliability of the PQP algorithm and extend its applicability to nonconvex QP problems.
Finally, an alternative strategy for handling positive semidefiniteness of the Hessian
matrix as well as an extension of the homotopy framework to varying QP matrices
are mentioned. We also relate the new algorithmic developments to caller-accessible
parameters of qpOASES solver options.

3.1 Equality constraints

Many QPs contain equality constraints of the form al
i = au

i . Obviously, constraint i
must be contained in the optimal active set. If the considered QP is non-degenerate,
it must also be in the optimal working set, and Wi ̸= 0. It may hence be beneficial to
exclude Wi from modifications in order to reduce the combinatorial complexity of the
active set identification. In the degenerate case, however, it may be necessary to keep
constraint i out of the working set if, for example, there are more equalities than vari-
ables. qpOASES considers constraints with lower and upper bound differing by less
than boundTolerance as equalities. Disabling the switch enableEqualities
leads to relaxation of equalities to al

i (τ ) ≤ Ax(τ ) ≤ au
i (τ ) in the initial point τ = 0
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of the homotopy, and enforces al
i (1) = au

i (1) only. The amount of relaxation is set
through boundRelaxation and may be further changed if ramping is enabled.
This may facilitate the choice of a numerically more stable initial working set, e.g.,
variable bounds only.

3.2 Initial working set

Step 2 of Sect. 2.2 requires the matrix KW to be regular for the initial working set
W (0). Suitable choices may be computed by the caller, using, for example, crashing
techniques, see [60] for example. In the event that the caller of qpOASES does not
provide a suitable initial W (0), we choose W (0) such that all simple bounds are
marked active. Existence of finite bounds on every variable is ensured by the far
bounds strategy, see Sect. 3.3. Then the matrix AW is the n-by-n identity matrix, its
null-space is {0}, and the projected Hessian Z T HF Z is vacuous. In this case, simple
bounds in the initial active set are active at their lower bounds by default. This may
be changed by setting initialStatusBounds accordingly.

3.3 Far bounds

For QP problems that are missing bounds on one or more of the variables or constraints,
al

i = −∞ or au
i = ∞, we employ a far bounds strategy. It consists of clipping infinite

or large entries in al
i and au

i to finite, moderately large values −M l
i ≈ −106 and

Mu
i ≈ 106, respectively. We then solve the QP with far bounds and distinguish three

cases:

1. If we find a solution with no far bounds active, then this solution also solves the
original QP.

2. If the QP with far bounds is infeasible, we enlarge the values M l
i and Mu

i by a
certain growth factor, for example by 103 and solve again.

3. If the first case has not occurred even after having grown the far bounds to very
large value considered to constitute infinity, for example 1020, then the original
problem is declared infeasible or unbounded. We declare infeasibility if the last QP
with far bounds was infeasible, and unboundedness if at least one of the far bounds
is still active in the last optimal solution.

The far bounds strategy can be carried out efficiently by exploiting the parametric
nature of the algorithm. We can reuse the current working set and current matrix
factorizations via hot-starts for the sequence of QPs with growing far bounds (see also
Sect. 6.3). We also apply the far bounds strategy to general linear constraints in order
to facilitate flipping, as described in Sect. 3.7.

The far bounds strategy may be enabled using the switch enableFarBounds.
The initial size of the far bounds box is initialFarBounds, and the growth factor
is growFarBounds.

123



qpOASES: a parametric active-set algorithm

3.4 Iterative refinement

If the KKT matrix KW has a high condition number, then small perturbations of
the right hand side in Eq. (9) due to, for example, truncation errors, can lead to large
changes in the solution ∆z. As a consequence, the ratio tests (11) and (12) can become
unstable, yielding different results for only small perturbations of the right hand side in
equation (9). This undesirable behavior can be mitigated by, for example, reducing the
forward error of ∆z through iterative refinement [56]. Other possibilities for stabilizing
ratio tests have been presented, in the framework of the simplex method for linear
programming, by [33] and [60].

Iterative refinement can be enabled by setting numRefinementSteps to a pos-
itive value. Early termination of refinement iterations happens if the KKT residual
2-norm falls below epsIterRef.

3.5 Drift correction

Rounding errors can also accumulate over several iterations and lead to a parametric
“solution” z(τ ) that is optimal with an accuracy significantly worse than machine
precision. We call this phenomenon drift. Large drift can even lead to breakdown
of the algorithm because the general assumption of optimality of z(τ ) is violated.
However, the parametric homotopy framework allows for reducing the drift to zero
immediately by perturbing the current dual variables, the current constraint vectors,
and the current gradient appropriately such that z(τ ) is optimal again. We directly carry
out this backwards analysis by requiring for i = 1, . . . , m exact primal feasibility,

al
i (τ ) :=

{
Ai x(τ ) if Wi = −1,

min(al
i (τ ), Ai x(τ )) if Wi ∈ {0,+1}, (25a)

au
i (τ ) :=

{
Ai x(τ ) if Wi = +1,

max(au
i (τ ), Ai x(τ )) if Wi ∈ {−1, 0}, (25b)

exact dual feasibility,

yi (τ ) :=

⎧
⎪⎨

⎪⎩

max(yi (τ ), 0) if Wi = −1,

0 if Wi = 0,

min(yi (τ ), 0) if Wi = +1,

(26)

and afterwards repairing stationarity via the gradient modification,

g(τ ) := AT y(τ ) − H x(τ ). (27)

In case the multiplication with A, AT , and H is numerically at least as expensive
as the remainder of the iteration, drift correction should be applied only infrequently,
i.e. every nDC ≫ 1 iterations.
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Drift correction may be enabled by setting the option enableDriftCorrection
to a positive value.

3.6 Termination check

A well-designed termination criterion must work reliably on both well- and ill-
conditioned problems. While it is tempting to use the homotopy parameter τ in the
termination criterion as done in Sect. 2.2, this choice renders the criterion dependent
on the choice of the homotopy start. We instead propose to use the relative distance δ

in the QP data space

∆τ = (g(τ ), al(τ ), au(τ )),

s j = (∆1
j − ∆τ

j )/ max{1, |∆1
j |}, j = 1, . . . , n + 2m, δ = ∥s∥∞, (28)

which yields a termination criterion that is independent of cond(KW (1)). This modified
termination criterion does not give a guarantee for the distance to the exact solution.
Instead, a backwards analysis result holds: The computed solution is the exact solution
to a perturbed QP that deviates by no more than δ from the one to be solved.

The threshold of the condition-independent termination check may be set through
terminationTolerance.

3.7 Flipping bounds

Flipping bounds is a strategy similar to long steps in the dual simplex method [41,51],
where one variable changes in the working set from upper to lower bound immediately
without becoming inactive in between, i.e., it flips. Flipping bounds only need to be
employed if H is indefinite or positive semidefinite.

Obviously, flipping is only possible if al
i (1) and au

i (1) have finite entries. We ensure
finiteness of the constraint vectors via the far bounds strategy, see Sect. 3.3.

We then perform flipping in the following way: If we remove a constraint l from
the active set and no other constraint k enters, we monitor the size of the smallest
diagonal entry ri of the Cholesky factor R that grows by a row and column. If for
some δcurv > 0 it holds that r2

i < δcurv, then we introduce a jump in the QP homotopy
by moving the opposite bound of constraint l such that it becomes active immediately.
This is easily achieved by setting

al
l(τ

+) := au
l (τ+), W +

l := −1, if Wl = +1, (29a)

au
l (τ+) := al

l(τ
+), W +

l := +1, if Wl = −1. (29b)

Consequently, the Cholesky decomposition from the previous step stays valid for the
current projected Hessian. We can thus successfully avoid small diagonal entries in
the Cholesky factors R.

We employ the same strategy if the Cholesky decomposition breaks down due to
a negative eigenvalue in the projected Hessian Z T HF Z . This allows one to move
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along the direction of negative curvature onto the opposite bound and hence permits
the treatment of nonconvex QP problems, for which we identify a parametric path of
critical points.

The flipping bounds strategy can be enabled using the switch enableFlipping-
Bounds; the threshold δcurv for the Cholesky diagonal elements is epsFlipping.

3.8 Ratio tests

In the ideal ratio test (10) we take a minimum over a subset of k quotients with strictly
positive denominators. The presence of round-off error however makes it necessary
to substitute this ideal ratio test by an expression with adjustable tolerances,

ucut
i = max(ui , 0), i = 1, . . . , k,

RTr(u, v, εden, εnum) = min{ucut
i /vi | i = 1, . . . , k, vi ≥ εden, ucut

i ≥ εnum}. (30)

The denominator tolerance εden > 0 is a threshold to consider tiny positive values vi
to be equal to zero. Such values are discarded as candidates for the minimum.

Negative numerators are cut off at zero before the quotients are taken, yielding a
nonnegative minimum. For the ratio tests for determination of the step length (11)
and (12), this choice is motivated by the fact that, in exact arithmetic, ui ≥ 0 for
all i = 1, . . . , k with vi > 0 holds. Hence, only values ui that are negative due to
round-off are manipulated, and the step length satisfies ∆τ ≥ 0 also in finite precision
arithmetic.

The tolerances εnum and εden for numerators and denominators in ratio tests may
be set using the options epsNum and epsDen, respectively.

3.9 Linear independence test and nonzero curvature test

After solving system (13) for (p, qW ) or system (18) for (s, ξW ), we must compare
the norm of p or ξW with zero to detect linear dependence of AW or a direction of
zero curvature in its null-space, respectively. We use the relative conditions

∥p∥∞ ≤ εLI∥ζq∥∞, ζ T
q = (pT , qT ) for the linear independence test, and

(31a)

∥ξW ∥∞ ≤ εNZC∥ζs∥∞, ζ T
s = (sT , ξ T

W ) for the nonzero curvature test. (31b)

We also remark that ∥ζq∥∞ = ∥q∥∞ if p = 0 and ∥ζs∥∞ = ∥s∥∞ if ξW =
0. In the implementation, we may thus replace ∥ζq∥∞ by ∥q∥∞ for test (31a) and
∥ζs∥∞ by ∥s∥∞ for test (31b). If we perform the cheaper linear independence test (see
Sect. 2.3.2), we compute p̃T = Al Z . We declare linear independence of constraint l
from the constraints in W if there exists an index i such that

| p̃i | > εLI∥AT
l ∥2

2. (32)
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Users may choose between the full variant (13) and the fast variant of Sect. 2.3.2
by toggling the switch enableFullLITests. The threshold εLI for p is
epsLITests, and invoked dual jumps λ⋆ must be smaller than maxDualJump.
Nonzero curvature tests may be enabled through the switch enableNZCTests.
The threshold εNZC for ξW is epsNZCTests, and invoked primal jumps σ must be
smaller than maxPrimalJump.

3.10 Ties and ramping

Instead of trying to treat ties (see Sect. 2.2) rigorously, which may be as computation-
ally expensive as solving the QP itself [55], we try to avoid them in the first place: Let a
homotopy start g(0), al(0), au(0) with optimal solution (x(0), y(0)) and working set
W (0) be given. Then, for every triple of m-vectors r (0), r (1), r (2) ≥ 0, the primal-dual
pair (x(0), ỹ(0)) with

ỹi (0) =

⎧
⎪⎨

⎪⎩

yi (0) + r (0)
i if Wi = −1,

yi (0) if Wi = 0,

yi (0) − r (0)
i if Wi = +1,

i = 1, . . . , m, (33)

is an optimal solution for the homotopy start g̃(0), ãl(0), ãu(0), where for i = 1, . . . , m

ãl
i (0) =

{
al

i (0), if Wi = −1,

al
i (0) − r (1)

i , otherwise,
ãu

i (0) =
{

au
i (0), if Wi = +1,

au
i (0) + r (2)

i , otherwise,
(34a)

g̃(0) = AT ỹ(0) − H x(0). (34b)

In other words, if we move the inactive constraints’ bounds further away from Ax(0),
and the dual variables of the active constraints further away from zero, then x(0) stays
feasible and g(0) can be adapted to restore stationarity of (x(0), ỹ(0)) with the same
working set W (0).

Recall now that the ratio tests depend on the residuals of the inactive constraints
and the dual variables of the active constraints. Many QP problems exhibit special
structures such as, for example, identical bounds for several variables. To avoid primal
ties for such special structures, it is important to avoid picking the same value for two
entries of r ( j). Hence, for given parameters rfinal > rinitial > 0, we choose a linear
ramp shape

r ( j)
i = rinitial

m − i
m − 1

+ rfinal
i − 1
m − 1

, j = 0, 1, 2, i = 1, . . . , m. (35)

This ramping ensures progress ∆τ > 0 because r j
i > 0 for all j , and if residuals are

chosen such that all ratios are pairwise different, it also ensures absence of ties in the
next iteration.
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The ramping strategy may be enabled using the switch enableRamping and
performs a linear interpolation between the values initialRamping and final-
Ramping.

3.11 Iterative regularization procedure

For solving QP problems where the Hessian matrix is positive semidefinite, an iterative
regularization procedure that makes use of the homotopy framework has been proposed
in [16]. The core idea is to add a regularization term to the objective function to arrive
at the following regularized QP problem:

min
x∈Rn

1
2 xT H x + gT x + εreg

2 (x − x̄)T (x − x̄) (36a)

s. t. al ≤ Ax ≤ au. (36b)

First, this problem is solved for x̄ = 0 to yield a first approximation x⋆ to an opti-
mal primal solution. Next, the regularization is “re-centered” by setting x̄ = x⋆ and
problem (36) is solved again. Repeating this procedure yields a special case of a prox-
imal point algorithm for which linear convergence towards an optimal solution of the
original problem has been shown [50].

It is important to note that this iterative regularization procedure perfectly fits into
the homotopy framework of qpOASES as it requires the solution of a sequence of QP
problems with varying gradients. Thus, having solved the first regularized problem,
the solution of the subsequent QP problems can be hot-started and typically requires
only a few, if any, additional active-set iterations.

The iterative regularization strategy may be enabled using the switch enable-
Regularisation. The number of regularization steps may be set in num-
RegularisationSteps, and the regularization constant εreg of equation (36) in
epsRegularisation.

3.12 Warm-starts after changes to the QP matrices

During the solution of a sequence of QP problems, the parametric QP algorithm also
allows for warm-starting, i.e. reuse of an available active set together with the primal-
dual point, if the QP matrices H or A change [18]: Assume we have an optimal solution
z∗ = (x∗, y∗) and an optimal working set W ∗ for the QP problem

min
x∈Rn

1
2 xT H x + gT x s. t. al ≤ Ax ≤ au, (37)

and want to solve the perturbed QP

min
x∈Rn

1
2 xT H̃ x + g̃T x s. t. ãl ≤ Ãx ≤ ãu. (38)
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with new matrix data H̃ , Ã and new vector data g̃, ãl, ãu. We may then compose a
homotopy start (τ = 0) for the second QP problem by setting

ãl(0) := al + ( Ã − A)x∗, (39a)

ãu(0) := au + ( Ã − A)x∗, (39b)

g̃(0) := g − (H̃ − H)x∗ + ( Ã − A)T y∗. (39c)

and (for τ = 1) let g̃(1) = g̃, ãl(1) = ãl, ãu(1) = ãu. The working set W (0) = W ∗

remains unaltered. Alternatively, one could simply ramp an all-zero homotopy start,
again keeping the working set W (0) = W ∗, see Sect. 3.10.

As usual in sequential nonlinear methods, this approach requires the matrix K̃W
for the given working set W (0) to remain regular. If the initial factorization of K̃W
reveals rank deficiency of K̃W , we recede to a cold-start with a safe working set as
described in Sect. 3.2.

4 Software design and algorithmic parameters

This section outlines the software design of qpOASES and briefly explains how to set
up and solve QP problems. We also discuss its most important algorithmic parameters
for adjusting the behavior of the solver as described in Sect. 3.

4.1 General remarks

qpOASES is an open-source C++ implementation of the parametric QP algorithm of
Sect. 2 and all algorithmic enhancements as presented in Sect. 3. Its object-oriented
design introduces separate classes for different QP problem types and encapsulates all
matrix-vector operations, such that they can be easily adapted to the respective prob-
lem characteristics. Moreover, qpOASES has been implemented in a self-contained
manner to facilitate compatibility with different, also embedded, hardware platforms.
All matrix-vector operations within qpOASES are performed by customized C imple-
mentations of the required LAPACK/BLAS routines, but direct linking against the
LAPACK or BLAS library [1,8] is also possible.
qpOASES distinguishes two different ways of solving a QP problem of the form (1).

First, it can be solved by performing a cold-start, i.e. without any prior solution infor-
mation. This is the usual situation if just a single QP problem is to be solved. Second,
provided that a QP problem with same dimensions has been already solved before,
the current QP problem can be solved by performing a hot-start based on the optimal
solution and the internal matrix factorizations of the previously solved QP problem.
Hot-starts can be very efficient when solving whole sequences of parameterized QP
problems as arising in model predictive control or within SQP algorithms.
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4.2 QP solver classes

The current release 3.0 of qpOASES comes with three different QP solver classes that
offer user-interfaces for tackling different QP problem formulations:

1. The QProblem class is designed for solving a single QP of the standard form (1).
It also allows the user to efficiently solve whole sequences of QP problems with
varying gradient or constraint vectors by performing hot-starts based on solution
information of the previous QP problem.

2. The classQProblemB offers the same functionality asQProblem, but is tailored
to QP problems (or sequences) that only comprise bounds on the variables x , often
called box constraints. The distinction between bounds and general constraints
arises naturally in many applications, such as model predictive control, and can
lead to substantial computational savings.

3. Finally, the class SQProblem extents the functionality of the QProblem class
to also allow hot-starts based on the previous QP solution in case of varying QP
matrices (see Sect. 3.12).

All these three classes offer user-functions for passing the QP problem data, setting
algorithmic options and for obtaining results and status information. All internal data
members of the QP solver are hidden from the user. For example, these classes store
information on the bounds and constraints of the QP problem by means of further
auxiliary classes that manage lists of free and fixed variables or active and inactive
constraints.

4.3 Linear algebra classes

qpOASES has originally been developed for small to medium-scale QP problems with
dense Hessian and constraint matrices. Consequently, the internal matrix factorizations
have been implemented as dense linear algebra routines.

For enhancing qpOASES’s applicability to sparse QP problems, a minimal
Matrix base class has been introduced that encapsulates all matrix-vector opera-
tions. This framework allows the user to easily switch between special linear alge-
bra routines for dense and sparse QP matrices, and to exploit symmetry of the
Hessian. For doing so, QP matrices can be passed as either of the following types:
DenseMatrix, SparseMatrix, SymDenseMat, SymSparseMat. Through
the ConstraintProduct class, the user may also provide a tailored routine that
directly calculates the matrix-vector product Ax .

Internally, dense matrices are stored in arrays, while sparse matrices are stored in
either a row compressed or a column compressed storage format.

4.4 Solving QP problems with qpOASES

The following code fragment illustrates the calling syntax of qpOASES for solving a
QP problem with 10 variables and 25 constraints. It is assumed that QP data matrices
H, A, and QP data vectors g, lb, ub, lbA, and ubA of appropriate dimension have
already been defined.
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// set up QProblem object
QProblem example( 10,25 );

// solve first QP
int maxIter = 100;
example.init( H,g,A,lb,ub,lbA,ubA, maxIter );

// retrieve solution of first QP
double xOpt[10];
example.getPrimalSolution( xOpt );

First, the user needs to instantiate an object of the QProblem class by passing the
dimension of QP problem. Then, the first QP problem is solved by calling the member
function init, which takes the QP data as well as the maximum number of iterations
as arguments. Afterwards, the optimal primal solution is retrieved from the QP object.

In case that a whole sequence of QP problems is to be solved, it is possible to
hot-start the QP solution procedure based on solution information of the previously
solved QP problem. This is done by calling the member function hotstart of the
QProblem class, which takes the new QP gradient and constraint vectors as well as
the maximum number of iterations as arguments:

// Solve second QP with new gradient and constraint vectors
maxIter = 100;
example.hotstart( g2,lb2,ub2,lbA2,ubA2, maxIter );

For more details on the calling syntax and for a documentation of the classes
QProblemB and SQProblem, we refer to the qpOASES User’s Manual [15]. Also
information on how to specify the QP matrices in dense or sparse matrix format can
be found therein.

4.5 Setting algorithmic parameters of qpOASES

In this subsection, we address the realization of the new algorithmic developments
of Sect. 3 in our implementation qpOASES. We show how to set option parameters
through the qpOASES interface, and we describe convenient pre-configured sets of
options that are available for these parameters. Individual option parameters listed in
Table 1, together with the default values they assume in the pre-configured sets. The
respective meanings of the parameters are addressed in Sect. 3.

4.5.1 Setting options through the interface

The qpOASES interface provides access to many of the algorithmic details presented
in Sects. 2 and 3 through the Options class as follows.

// get a copy of the current options
Options opt = example.getOptions( );

// switch to MPC preconfiguration, and relax the termination tolerance
opt.setToMPC( );
opt.terminationTolerance = 1.0e-4;
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// pass the modified set of options to the solver
example.setOptions( opt );

4.5.2 Pre-configured sets of options

Through the Options class, we provide quick access to three pre-configured sets
of options: default, MPC, and reliable. They can be accessed by calls to the mem-
ber functions setToDefault, setToMPC, or setToReliable. The respective
options values are listed in Table 1.

Table 1 Summary of algorithmic parameters in qpOASESwith their respective default values in the MPC,
default, and reliable pre-configurations. The constant εmach denotes the machine precision

Options member Section MPC Default Reliable

enableEqualities Section 3.1 BT_TRUE BT_FALSE BT_FALSE

boundRelaxation 104 104 104

boundTolerance Section 3.2 106 εmach 106 εmach 106 εmach

initialStatusBounds ST_INACTIVE ST_LOWER ST_LOWER

enableFarBounds Section 3.3 BT_TRUE BT_TRUE BT_TRUE

initialFarBounds 106 106 106

growFarBounds 103 103 103

numRefinementSteps Section 3.4 0 1 2

epsIterRef 102 εmach 102 εmach

enableDriftCorrection Section 3.5 0 1 1

terminationTolerance Section 3.6 109 εmach 107 εmach 107 εmach

enableFlippingBounds Section 3.7 BT_FALSE BT_TRUE BT_TRUE

epsFlipping 103 εmach 103 εmach

epsNum Section 3.8 −103 εmach −103 εmach −103 εmach

epsDen +103 εmach +103 εmach +103 εmach

enableFullLITests Section 3.9 BT_FALSE BT_FALSE BT_TRUE

epsLITests 105 εmach

maxDualJump 108

enableNZCTests Section 3.9 BT_FALSE BT_TRUE BT_TRUE

epsNZCTests 3 · 103 εmach 3 · 103 εmach

maxPrimalJump 108 108

enableRamping Section 3.10 BT_FALSE BT_TRUE BT_TRUE

initialRamping 0.5 0.5

finalRamping 1.0 1.0

esnableRegularisation Section 3.11 BT_TRUE BT_FALSE BT_FALSE

numRegularisationSteps 2

epsRegularisation 5 · 103 εmach

enableCholeskyRefactorisation 0 0 1
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The default options set collects recommended settings for qpOASES. All vital
algorithmic features are enabled, and nonconvex QP problems can be handled by
flipping bounds. If no explicit calls to Options are made, this is the configuration
all computations will be carried out with.

The MPC set of options is designed for model predictive control applications in
which we expect to solve strictly convex problems only. It ensures that a single iteration
of the active-set method is carried out as fast as possible by disabling several of the
more costly algorithmic features. Moreover, by disabling ramping at the cost of a
possibly increased total iteration count, this set of options ensures that the primal
homotopy path generated indeed is continuous and can hence be attributed with a
physical interpretation [14].

The reliable options set deviates from the default one in only a few choices.
The number of iterative refinement steps has been increased to address highly ill-
conditioned systems, and full linear independence test are carried out instead of the
fast tests of Sect. 2.3.2. Most important, the Cholesky factorization of Z T H Z is recom-
puted in every iteration, thus greatly increasing the per-iteration cost of qpOASES at
the benefit of increased numerical stability.

5 Interfaces and applications

The qpOASES distribution also includes several interfaces to widely-used third-party
software packages in order to facilitate its use. This section gives an overview of
these interfaces and outlines several real-world applications of qpOASES that have
been completed in the past. For some of them qpOASES has been run on embedded
computer hardware.

5.1 Interfaces for Matlab, Octave and Scilab

qpOASES can be directly used within Matlab!, allowing a user to run the solver
without touching its C++ source code. For example, a single QP can be solved by
calling

[x,fval,exitflag,iter,lambda] = qpOASES( H,g,A,lb,ub,lbA,ubA,
options,x0 );

Besides the usual data specifying a QP of the form (1), a set of options and an
initial guess for the primal solution can be passed. If no initial guess is given, the
usual homotopy starting at the origin is performed. The output arguments contain the
optimal primal solution vector as well as optionally the optimal objective function
value, a status flag, the number of iterations actually performed, and the optimal dual
solution vector, respectively.

Options can be generated using the qpOASES_options command in order to
retrieve the full functionality of the C++ version, e.g.

options1 = qpOASES_options( 'MPC' );
options2 = qpOASES_options( 'reliable', 'maxIter',500 );
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for generating two sets of pre-defined algorithmic options that are tailored for fast
MPC applications or most reliable QP solution, respectively. In the second case, also
the default value for the maximum number of iterations is adapted.

The Matlab! interface automatically detects whether the QP only comprises box
constraints and internally instantiates the corresponding QP object. Moreover, it is
possible to pass QP matrices in sparse format. This standard interface always performs
a cold-start taking into account the guess for the primal solution (if specified), but also
variants exist for solving whole sequences of QP problems using all features of the
online active set strategy. For example, the following commands initialize a sequence
of QP problems with the data of the initial ('i') QP problem, perform a hot-start
('h') for solving the second QP problem and clean-up ('c') the internal memory of
the Matlab! interface:

[QP,x,fval,exitflag,iter] = qpOASES_sequence('i',H,g,A,lb,ub,lbA,ubA);
[x,fval,exitflag,iter] = qpOASES_sequence('h',QP,g2,lb2,ub2,lbA2,ubA2);
qpOASES_sequence( 'c', QP );

In order to support open-source alternatives to Matlab!, qpOASES provides
similar interfaces to Octave [13] and scilab [52].

5.2 Interfaces to YALMIP, the ACADO Toolkit, and MUSCOD-II

qpOASES also has been interfaced to YALMIP [43], a modelling language for solv-
ing convex and nonconvex optimization problems. Moreover, qpOASES is the default
QP solver within the open-source package ACADO Toolkit for automatic con-
trol and dynamic optimization [35]. For solving nonlinear optimal control problems,
MUSCOD-II [42] can use qpOASES as underlying QP solver.

5.3 Running qpOASES on dSPACE! and xPC target

The qpOASES code also provides an interface to Simulink! that allows the user to
compile the code within a C mex S-function. This is particularly useful when using
qpOASES to solve model predictive control problems. Different variants interfacing
the QProblem, QProblemB and SQProblem class to the Simulink! workspace
are available. The S-function block expects all QP data to be given in signal form.
It outputs the first piece of the primal solution as required in the MPC context, the
optimal objective function value, a status flag and the number of actually performed
QP iterations.

The Simulink! interface also allows one to conveniently compile qpOASES onto
dSPACE! or xPC target hardware by means of the Simulink! Real-Time Work-
shop [38]. The main requirement is the availability of a C++ compiler for the respective
hardware. Compilation of qpOASES has been tested for dSPACE! boards version
5.3 or higher together with the dSPACE! C++ Integration Kit version 1.0.2 or higher.
Also successful use on xPC target hardware has been reported, cf. Sect. 5.4.
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5.4 Real-world applications

During the last few years, qpOASES has been used by a number of researchers for a
wide range of applications. For example, it has been used for

• model predictive control of a Diesel engine test bench at the University of Linz,
Austria, on dSPACE! hardware at sampling times of 50 ms (dense QP problems
comprising about 20 bounded variables and 20 constraints) [18];

• trajectory planning for a boom crane at the University of Stuttgart, Germany, similar
to the one described in [3], on dSPACE! hardware at sampling times in the order
of 100 ms (about 57 bounded variables and 160 constraints);

• solving QP problems for controlling a tendon-driven robot platform at ETH Zurich,
Switzerland, on a Standard PC [49];

• model predictive control of beam tip vibrations at the Slovak University of Tech-
nology, Bratislava, Slovakia, on an xPC target at sampling times of 10 ms (up to
150 bounded variables) [53];

• time-optimal control of machine tools at KU Leuven, on dSPACE! and xPC
hardware at sampling times in the order of 4–10 ms (about 45 bounded variables
and 182 constraints) [54].

It is worth stressing that all given QP problem dimensions refer to the dense for-
mulation (6) and that QP solution times were typically much lower than the reported
sampling time.

Moreover, qpOASES has been used within several industrial applications solving
QP problems with up to a few hundred variables and a few thousand constraints. Due
to confidentiality reasons, we only mention its integration into an embedded engine
controller developed by Hoerbiger Control Systems AB, Sweden, to control an integral
gas engine in the pipeline network of the United States [2]. The dense QP problems
comprised about 10–14 variables, up to several hundred constraints and have been
solved on embedded hardware with very limited computational resources (compared
to a standard PC).

6 Testing

6.1 Convex QP problems

qpOASES is mainly intended for sequences of small to medium size, dense QP prob-
lems. We discuss the case of QP sequences in Sect. 6.3 but it is of course also possible
to use qpOASES to solve single QP instances. Figure 1 assesses the performance
of qpOASES in comparison with other QP solvers. We chose QP solvers that have
an appropriate license and provide a Matlab! interface: The interior-point code
OOQP [24] and the primal and dual active-set and barrier variants of Cplex [37]
(CPLEXP, CPLEXD, CPLEXB). For each solver we use the default parameters. For
qpOASES we test the default (qpOASES) and the “mpc” (qpOASESmpc) parameter
variants, where we changed the initial working set of the mpc method from zero to all
lower bounds active (as for the default variant) in order to make useful comparisons
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Fig. 1 Performance graph of different QP solvers on all 43 problems of the Maros-Mészáros test set [44]
with n ≤ 250, m ≤ 1,001; matrices passed in dense format

between the two versions of qpOASES calls. Unfortunately, the Cplex solvers’ inter-
face exhibits a large calling overhead of around 1 s. In addition, the internal timing
results of Cplex are rounded to 0.01 s (sometimes even down to 0 s), which makes
an appropriate comparison hard to carry out. We have overcome this issue by imple-
menting a wrapper file for the Cplex mex file in C, which carries out high resolution
timings but discards “constructor” call timings within the mex file, which have been
found responsible for the calling overhead.

No particular starting points were provided to the solvers. We discard the primal and
dual initial values from the CUTEr interface because they are zero for all considered
problems. The solvers are allowed to find suitable starting points, for example via
ramping (cf. Sect. 3.2).

Figure 1 shows a performance profile, which depicts how many percent of the test
set problems (ordinate) are solved by each solver within a certain time factor (abscissa)
of the fastest method on each problem. Generally, fast methods have their graph in
the left hand part, reliable methods in the upper part of the diagram. All 43 problems
from the Maros-Mészáros test set [44] with n ≤ 250 and m ≤ 1, 001 were used and
the matrices were given to the solvers in dense format. We believe that this size is
reasonable for problems that can be solved in fast real-time applications. The quality
of the solutions (x∗, y∗) was measured using a residual ρ of conditions (2) defined via

ρstat =∥H x∗+g− AT y∗∥∞, ρl
cmpl =max{min(|Ax∗−al|i , y∗

i ) | y∗
i > 0},

ρfeas = max(0, al− Ax∗, Ax∗−au), ρu
cmpl =max{min(|Ax∗−au|i ,−y∗

i ) | y∗
i <0},

ρ =max(ρstat, ρfeas, ρ
l
cmpl, ρ

u
cmpl).

For some problems, some solvers terminated without indication of failure but returned
a low quality solution. Here, we only consider a problem solved if ρ ≤ 10−4. We
observe that qpOASES outperforms the other methods on this test set in terms of speed
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Fig. 2 Performance graph of different QP solvers on all 73 problems of the Maros-Mészáros test set [44]
with n ≤ 1,000, m ≤ 1,001; matrices passed in sparse format

and reliability. The mpc version performs almost as well, even though no neighboring
information of problems can be exploited for hot-starts.

Figure 2 shows the performance profiles for all 73 test problems with n ≤ 1,000 and
m ≤ 1,001, passed to the solvers in sparse format. This size represents problems that
qpOASES can solve in a reasonable time with its dense linear algebra subroutines. On
these problems, OOQP and Cplex can exploit the sparsity of the problems efficiently.
The sparse matrix vector products of qpOASES are still dominated by the cost of the
dense linear algebra routines. In terms of speed, the active-set versions of Cplex are
performing best. However, qpOASES is the most reliable method, closely followed by
the active-set versions of Cplex. The mpc variant of qpOASES works less reliably,
as expected on that kind of test collection.

Table 5 in the appendix to this paper lists the detailed results that served as the basis
for the performance profiles in Figs. 1 and 2. For the Cplex solvers, the table only
contains the results for the case that matrices were passed in sparse format, because
Cplex seems to convert dense matrices to sparse format before starting the actual
computation.

We have also tested qpOASES on the Netlib LP problem QAP8 (n = 1,632, m =
912), which is known for its difficult, almost degenerate constraints: qpOASES suc-
cessfully converges to the solution within 23,111 iterations, while the primal and dual
active-set variants of Cplex need 29,736 and 39,495 iterations, respectively.

6.2 Nonconvex QP problems

Due to the flipping bounds strategy, qpOASES can be used to find critical points
of nonconvex QP problems. In Table 2 we show the number of iterations for a few
test problems from the CUTEr collection [32]. We also check the second order suf-
ficient condition (3) which is satisfied for every critical point. In order to determine
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Table 2 Iterations of qpOASES on nonconvex QP problems from the CUTEr test collection [32]

Problem n m Iters SOSC

NCVXQP1 100 50 89 sat.

NCVXQP2 100 50 96 sat.

NCVXQP3 100 50 83 sat.

NCVXQP4 100 25 105 sat.

NCVXQP5 100 25 93 sat.

NCVXQP6 100 25 69 sat.

NCVXQP7 100 75 44 sat.

NCVXQP8 100 75 47 sat.

NCVXQP9 100 75 31 sat.

NCVXQP1 1,000 500 4,089 sat.

NCVXQP2 1,000 500 3,836 sat.

NCVXQP3 1,000 500 1,095 sat.

NCVXQP4 1,000 250 1,071 sat.

NCVXQP5 1,000 250 1,032 sat.

NCVXQP6 1,000 250 835 sat.

NCVXQP7 1,000 750 1,112 sat.

NCVXQP8 1,000 750 2,085 sat.

NCVXQP9 1,000 750 834 sat.

All solutions satisfy the second order sufficient conditions (SOSC)

the strongly active inequality constraints, we required the numerical values of the
Lagrange multipliers to satisfy |y∗

i | > 10−8. The problems were solved with algorith-
mic parameters of qpOASES that are identical with the default settings except for the
explicit treatment of equalities (enableEqualities), which was switched on.

6.3 Sequences of QP problems

The parametric active-set strategy as implemented in qpOASES allows warm-starting
and hot-starting the solution procedure at any given primal-dual iterate and with any
given working set. This feature is particularly useful when solving sequences of QP
problems whose optimal solutions are not expected to differ much from one problem
to the next. We illustrate this fact by using qpOASES to solve all five test examples of
the small online QP benchmark collection [17], which provides sequences of strictly
convex QP problems as arising from different linear model predictive control applica-
tions. Within each of these QP sequences, the QP matrices are constant and only the
QP vectors are varying.

Table 3 summarizes the problem dimensions of each benchmark example and also
gives the length of each sequence in terms of number of QP problems. In the first four
examples, the optimal active-set changes by up to 18 constraints between successive
optimal solutions, while up to 154 changes in the optimal active-set can be observed
in the last example.
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Table 3 Number of variables
(n), number of constraints (m)
and number of QP instances for
each problem of the online QP
benchmark collection [17]

Problem n m no. QPs

chain80 240 0 101

chain80w 240 709 101

diesel 20 20 600

crane 57 160 921

CDU 800 800 7,200

Table 4 Maximum and average
number of iterations when
solving the problems of the
online QP benchmark collection
[17] with qpOASES

Problem Cold-starts Hot-starts

Max. Avg. Max. Avg.

chain80 62 7.4 19 2.3

chain80w 84 10.0 16 2.6

diesel 26 0.4 22 0.2

crane 64 43.9 42 0.3

CDU 263 68.8 313 3.9

Table 4 lists both the maximum and the average number of iterations needed by
qpOASES to find the optimal solution. These numbers are given once for cold-started
QP solutions and once for QP solutions based on hot-starts as described in Sect. 4.
It can be seen that hot-starting the QP solution can reduce both the average and the
maximum number of iterations significantly. While interior-point solvers typically
have limited warm-starting capabilities, also other active-set QP solvers can benefit
from warm-starting. The positive impact on the maximum number of iterations is
limited in case of sequences that feature a few situations where the optimal solution
changes quite dramatically from one QP problem to the next.

7 Distribution of qpOASES

7.1 Download

The qpOASES software package is available for download from

http://www.qpoases.org

and distributed under the GNU Lesser General Public License (LGPL) to allow link-
ing against proprietary codes. Proceed to the menu point “Download” to obtain a
gzipped tar archive of the most current version 3.0 of qpOASES. The user’s manual,
license text, and extensive source code documentation generated from doxygen [34]
are available here as well.

7.2 Installation

To install qpOASES on a 32-bit or 64-bit x86 machine running a standard Linux
system, unpack thetar.gz archive to obtain a directory named qpOASES. Executing
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“make” there will build a static and a dynamic library named libqpOASES.a and
libqpOASES.so, and will put them in the directory bin.

The static library libqpOASES.a contains solver code callable from a user-side
C++ program that is statically linked against it. The dynamic librarylibqpOASES.so
contains solver code callable from a user-side C++ program that is dynamically linked
against it.
qpOASES can be built under the operating systems MacOS or Windows by a

straightforward modification of the top-level make file Makefile to make use of the
respective OS-specific make file make_osx.mk or make_windows.mk.

The source code of qpOASES is self-contained, but can be optionally linked against
LAPACK [1] and BLAS [8] by modifying the appropriate operating system specific
make file.

Interfaces to third-party software are excluded from the standard build process, and
can be built separately from the subdirectoryinterfaces/matlab,interfaces
/octave, etc. We refer the reader to the qpOASES User’s Manual [15] for further
details.

8 Summary

We have described the open-source QP solver qpOASES in its most recent release
3.0. The new numerical features, including iterative refinement, data-space termina-
tion criterion, ramping, and flipping bounds, improve its reliability and even enable
the determination of critical points of nonconvex QP problems. We have explained
how the new algorithmic parameters can be modified through the various user inter-
faces for C, Matlab!, GNU Octave, and Scilab. Moreover, we have presented a
numerical comparison with other popular QP solvers that shows the competitiveness
of qpOASES as a stand-alone solver in terms of speed and reliability for small- to
medium-scale, dense QP problems.
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9 Appendix

See Table 5.
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qpOASES: a parametric active-set algorithm
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