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Abstract— An efficient Newton-type scheme for the approx-
imate on-line solution of optimization problems as they occur
in optimal feedback control is presented. The scheme allows a
fast reaction to disturbances by delivering approximations of
the exact optimal feedback control which are iteratively refined
during the runtime of the controlled process. The approximation
errors of this real-time iteration scheme can be bounded and the
solution contracts towards the optimal feedback control. The
robustness and excellent real-time performance of the method
is demonstrated in a numerical experiment, the control of an
unstable system, namely an airborne kite that shall fly loops.

This paper is a short version of an article that appeared
recently in the SIAM Journal on Control and Optimization [1].

I. INTRODUCTION

Feedback control based on the real-time optimization
of nonlinear dynamic process models, also referred to as
nonlinear model predictive control (NMPC), has attracted
increasing attention over the past decade, in particular in
chemical engineering [2], [3], [4], [5]. Based on the current
system state, feedback is provided by an online optimization
of the predicted system behavior, using the mathematical
model. The first part of the optimized control trajectory is
implemented at the real system, and a sampling time later the
optimization procedure is repeated. Among the advantages
of this approach are the flexibility provided in formulating
the objective and in modelling the process using ordinary or
partial differential equations (ODE or PDE), the capability
to directly handle equality and inequality constraints, and the
possibility to treat large disturbances fast.

One important precondition, however, is the availability of
reliable and efficient numerical optimal control algorithms.
One particularly successful algorithm that is designed to
achieve this aim, the recently developed real-time iteration
scheme, will be the focus of this paper. In the literature,
several suggestions have been made how to adapt off-line
optimal control algorithms for use in online optimization. For
an overview and comparison of important approaches see e.g.
Binder et al. [6]. We particularly mention here the “Newton-
type control algorithm” proposed by Li and Biegler [7] and
de Oliveira and Biegler [8] and the “feasibility-perturbed
SQP” approach to NMPC by Tenny et al. [9]. Both ap-
proaches keep even intermediate optimization iterates fea-
sible. This is in contrast to the simultaneous dynamic op-
timization methods, as the collocation method proposed in
Biegler [10] or the direct multiple shooting method in Bock
et al. [11] and in Santos [12], which allow infeasible state
trajectories and are more suitable for trajectory following
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problems and problems with final state constraints. The real-
time iteration scheme belongs to this latter class.

Most approaches in the literature try to solve fast but
exactly an optimal control problem. However, if the time
scale for feedback is too short for exact computation, some
approximations must be made: for this aim an “instantanous
control” technique has been proposed in the context of
PDE models that approximates the optimal feedback control
problem by regarding one future time step only (Choi et
al. [13], [14]). By construction, this “greedy” approach
to optimal control is based on immediate gains only and
neglects future costs; thus it may result in poor performance
when future costs matter. A somewhat opposed approach
to derive a feedback approximation (formulated for ODE
models) is based on a system linearisation along a fixed
optimal trajectory over the whole time horizon and can e.g.
be found in Krämer-Eis and Bock [15] or Kugelmann and
Pesch [16]. The approach works well when the nonlinear
system is not too largely disturbed and stays close to the
nominal trajectory.

The real-time iteration scheme presented in this paper is
a different approximation technique for optimal feedback
control. It regards the complete time horizon and performs
successive linearizations along (approximately) optimal tra-
jectories to provide feedback approximations. Using these
linearizations, it iterates towards the rigorous optimal so-
lutions during the runtime of the process. In this way a
truly nonlinear optimal feedback control is provided whose
accuracy is limited, however, by the time needed to converge
to the current optimal solutions. In contrast to a somewhat
similar idea mentioned in [7] the real-time iteration scheme
is based on the direct multiple shooting method [17], a
simultaneous optimization technique, which offers excellent
convergence properties in particular for tracking problems
and problems with state constraints.

The scheme was introduced in its present form in Diehl
et al. [18] going back to ideas presented in Bock et al. [19].
In its actual implementation it is able to treat differential
algebraic equation (DAE) models (Leineweber [20]), as they
often arise in practical applications. It has already been
successfully tested for the feedback control of large-scale
DAE models with inequality constraints, in particular a
binary distillation column [21], [22], [18]. Moreover, it has
been applied for the nonlinear model predictive control of a
real pilot plant distillation column situated at the Institut für
Systemdynamik und Regelungstechnik (ISR) of the University
of Stuttgart [23], [24], [25].

However, to concentrate on the essential features of the
method and on a new proof of contractivity of the scheme,
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Fig. 1. Problem Pk(xk): initial value xk and NLP variables sk, . . . , sN

and qk, . . . , qN−1.

we will restrict the presentation in this paper to ordinary dif-
ferential equation (ODE) models and optimization problems
of a simplified type. Moreover, we will start the paper by
regarding (nonlinear) discrete-time systems first; the multiple
shooting technique, which allows to formulate a discrete-time
system from an ODE system, is only introduced later, and
very briefly, when the numerical example is presented. All
the material is covered in more detail in in [1]; for more
information about the real-time iteration scheme we refer
to [24], [26], [27], [28].

A. Real-Time Optimal Feedback Control

Throughout this paper, let us consider the following sim-
plified nonlinear controlled discrete-time system:

xk+1 = fk(xk, uk), k = 0, . . . , N − 1, (1)

with system states xk ∈ R
nx and controls uk ∈ R

nu .
The aim of optimal feedback control is to find controls
uk that depend on the current system state xk and that
are optimal with respect to a specified objective. As time
advances, we proceed by solving a sequence of nonlinear
programming problems Pk(xk) on shrinking horizons, each
with the current system state xk as initial value (for a
visualisation, see Fig. 1). Let us define Pk(xk) to be the
problem:

min
sk, . . . , sN ,

qk, . . . , qN−1

N−1∑
i=k

Li(si, qi) + E(sN ) (2a)

subject to xk − sk = 0, (2b)

fi(si, qi) − si+1 = 0, i = k, . . . , N − 1. (2c)

The control part (q∗k, . . . , q∗N−1) of the solution of problem
Pk(xk) allows to define the optimal feedback control

uk := q∗k.

Note that, due to the dynamic programming property, the
optimal control trajectory (q∗0 , . . . , q∗N−1) of the first problem
P0(x0) would already give all later closed-loop controls
u0, u1, . . . uN−1, if the system behaves as predicted by the
model. The practical reason to introduce the closed-loop

optimal feedback control is, of course, that it allows to
optimally respond to disturbances.

We will now assume that we know each initial value
xk only at the time when the corresponding control uk is
already needed for application to the real process, and that
the solution time for each problem Pk(xk) is not negligible
compared with the runtime of the process. This is a typical
situation in realistic applications: ideally, we would like to
have the solution of each problem Pk(xk) instantaneously,
but due to finite computing power this usually cannot be
accomplished in practice. In this paper we propose and
investigate an efficient Newton-type scheme that allows
to approximately solve the optimization problems Pk(xk)
during the runtime of the real process.

Remark: In practical applications, inequality path con-
straints of the form h(si, qi) ≥ 0, like bounds on controls
or states, are of major interest, and are usually present in the
formulation of the optimization problems Pk(xk). For the
purpose of this paper we leave such constraints unconsidered,
since general convergence results for Newton type methods
with changing active sets are difficult to establish. However,
we note that in the practical implementation of the real-time
iteration scheme they are included and pose no difficulty for
the performance of the algorithm.

B. Newton-Type Optimization Methods

In order to solve an optimization problem Pk(xk), let
us first introduce the Lagrange multipliers λk, . . . , λN , and
define the Lagrangian function Lk(λk, sk, qk, . . .) of problem
Pk(xk) to be

Lk(·) =
∑N−1

i=k Li(si, qi) + E(sN ) + λk
T (xk − sk)

+
∑N−1

i=k λi+1
T (fi(si, qi) − si+1)

(3)
Summarizing all variables in a vector

y = (λk, sk, qk, λk+1, sk+1, qk+1, . . . , λN , sN), (4)

we can formulate necessary optimality conditions of first
order (also called Karush-Kuhn-Tucker conditions):

∇yLk(y) = 0. (5)

To solve this system, a Newton-type method would start at an
initial guess y0 and compute a sequence of iterates y1, y2, . . .
according to yi+1 = yi+∆yi, where each ∆yi is the solution
of the linear system

∇yLk(yi) + Jk(yi)∆yi = 0. (6)

Here, Jk(y) is an approximation of ∇2
yLk(y) (in this paper

we use a Gauss-Newton approximation, for details see [24],
[1]). Note that this second derivative matrix (resp. its ap-
proximation) is independent of xk, and that it has a a block
sparse structure [17].

It is well known that the Newton-type scheme (6) for the
solution of (5) converges in a neighborhood Dk ⊂ R

nk

of a solution yk
∗ that satisfies the second order sufficient

conditions for optimality of problem Pk(xk), if Jk(y) ap-
proximates ∇2

yLk(y) sufficiently well on Dk.
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II. REAL-TIME ITERATIONS

Let us now consider the real-time scenario described
in Section I-A, where we want to solve the sequence of
optimization problems Pk(xk), but where we do not have
the time to iterate each problem to convergence. Let us
more specifically assume that each Newton-type iteration
needs exactly as much computation time as corresponds to
the time that the real process needs for the transition from
one system state to the next. Thus, we can only perform
one single Newton-type iteration for each problem Pk(xk)
and then we have to proceed already to the next problem
Pk+1(xk+1). The real-time iteration scheme that we will
investigate here is based on a carefully designed transition
between subsequent problems. After an initial disturbance,
it subsequently delivers approximations uk for the optimal
feedback control that become better and better, if no further
disturbance occurs, as will be shown in Section III.

It turns out that the computations of the real-time iteration
belonging to problem Pk(xk) can largely be prepared without
knowledge of the value of xk, so that we can assume that the
approximation uk of the optimal feedback control is instantly
available at the time that xk is known. However, after this
feedback has been delivered, we need to prepare the next
real-time iteration (belonging to problem Pk+1(xk+1)) which
needs the full computing time.

In the framework for optimal feedback control on shrink-
ing horizons (2), we reduce the number of remaining inter-
vals from one problem Pk(xk) to the next Pk+1(xk+1), in
order to keep pace with the process development. Therefore
we have to perform real-time iterates in primal-dual variable
spaces R

n0 ⊃ . . . ⊃ R
nk ⊃ R

nk+1 ⊃ . . . ⊃ R
nN−1 of

different size. Let us denote by Πk+1 the projection from
R

nk onto R
nk+1 , i.e., if y = (λk, sk, qk, ỹ) ∈ R

nk then
Πk+1y = ỹ ∈ R

nk+1 .

A. The Real-Time Iteration Algorithm

Let us assume that we have an initial guess y0 ∈ R
n0

for the primal-dual variables of problem P0(·). We set the
iteration index k to zero and perform the following steps:

1) Preparation: Based on the initial guess yk ∈ R
nk ,

compute the vector ∇yLk(yk) and the matrix Jk(yk):
Note that Jk(yk) is completely independent of the
value of xk , and that of the vector ∇yLk(yk) only
the first component (∇λk

Lk = xk − sk) depends on
xk. This component will only be needed in the second
step. Therefore, prepare the linear algebra computation
of Jk(yk)−1∇yLk(yk) as much as possible without
knowledge of the value of xk (a detailed description
how this can be achieved is given in [18] or [24]).

2) Feedback Response: At the time when xk is exactly
known, finish the computation of the step vector
∆yk = −Jk(y)−1∇yLk(yk) and give the control
uk := qk + ∆qk immediately to the real system.

3) Transition: If k = N −1 stop. Otherwise, compute the
next initial guess yk+1 by adding the step vector to
yk and “shrinking” the resulting variable vector onto

R
nk+1 , i.e., yk+1 := Πk+1(yk + ∆yk). Set k = k + 1

and go to 1.

Note that after one iteration belonging to system state xk we
expect the next system state to be xk+1 = fk(xk, uk), but
that this may not be true due to disturbances. The scheme
allows an immediate feedback to such disturbances, due to
the separation of steps 1 and 2. This separation is only
possible because we do not require the guess of initial value,
sk, to be equal to the real initial value, xk . This formulation
may be regarded an initial value embedding of each problem
into the manifold of perturbed problems and is crucial for
the success of the method in practice.

We will in the following investigate the contraction prop-
erties of the real-time iteration scheme. Though a principal
advantage of the scheme lies in this immediate response
to disturbances, we will investigate contractivity only under
the assumption that after an initial disturbance the system
behaves according to the model. This is analogous to the
notion of “nominal stability” for an infinite horizon steady
state tracking problem.

III. CONTRACTIVITY OF THE REAL-TIME ITERATIONS

In this subsection we investigate the contraction properties
of the real-time iteration scheme. The system starts at an
initial state x0, and the real-time algorithm is initialized with
an initial guess y0 ∈ D0 ⊂ R

n0 . If we assume that after
an initial disturbance the system behaves according to its
deterministic dynamics (1), the real-time iteration scheme
obeys to the following system-optimizer-dynamics:

yk+1 = Πk+1(yk − Jk(yk)−1∇yLk(yk)) (7)

xk+1 = fk(xk, qk+1
k ). (8)

The difficulty in investigating the contractivity of the real-
time iterations stems from the fact that the system and the
optimizer mutually interact: (7) depends via ∇yLk on the
current system state xk, cf. (3). Conversely, (8) depends on
yk+1 by using its third component as feedback control, cf.
(4).

Let define the projections Dk of the neighborhood D0 onto
the primal-dual subspaces R

nk , i.e., Dk+1 := Πk+1Dk. We
will in the following make use of vector and corresponding
matrix norms ‖ · ‖k defined on the subspaces R

nk . These
norms are assumed to be compatible in the sense that
‖Πk+1y‖k+1 ≤ ‖y‖k and that ‖Πk+1T

ỹ‖k = ‖ỹ‖k+1. We
will use the following technical assumption.

Assumption 1: For all k = 0, . . . , N it we have Lk ∈
C2(Dk, R) and Jk ∈ C0(Dk, Rnk×nk) and Jk have a
bounded inverse (Jk)−1. Furthermore, there exists a κ < 1
and an ω < ∞ such that for each k = 0, . . . , N , and all
y′, y ∈ Dk, ∆y = y′ − y and all t ∈ [0, 1] it holds that∥∥∥(

Jk(y′)
)−1 (

Jk(y + t∆y) −∇2
yLk(y + t∆y)

)
∆y

∥∥∥
k≤ κ‖∆y‖k

and that∥∥∥(
Jk(y′)

)−1 (
Jk(y+t∆y)− Jk(y)

)
∆y

∥∥∥
k
≤ ωt‖∆y‖2

k,
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and such that for each k = 0, . . . , N − 1 it holds that∥∥∥(
Jk+1(Πk+1y′)

)−1 Πk+1
(
Jk(y+t∆y) − Jk(y)

)
∆y

∥∥∥
k+1

≤ ωt‖∆y‖2
k.

In the folowing, we will use the abbreviations ∆yk :=
Jk(yk)−1∇yLk(yk) and δk := κ + ω

2 ‖∆yk‖k.
Theorem 3.1 (Local Contractivity): Suppose Assumption

1, δ0 < 1, and that the ball with radius r = ‖∆y0‖0
1−δ0

around
y0 is completely contained in D0. Then the real-time iterates
y0, . . . , yN generated by (7) – with xk generated by (8) –
are well defined and satisfy the contraction condition

‖∆yk+1‖k+1 ≤ δk‖∆yk‖k ≤ δ0‖∆yk‖k. (10)

Furthermore, the iterates yk approach the exact stationary
points yk

∗ of the corresponding problems Pk(xk):

‖yk − yk
∗‖k ≤ ‖∆yk‖k

1 − δk
≤ (δ0)k‖∆y0‖0

1 − δ0
. (11)

The proof of the Theorem and a bound on the loss of
optimality can be found in [1].

IV. CONTROL OF A LOOPING KITE

In order to demonstrate the versatility of the proposed
real-time iteration scheme we present here the control of an
airborne kite as a periodic control example. The kite is held
by two lines which allow to control the roll angle ψ of the
kite. By pulling one line the kite will turn in the direction of
the line being pulled. This allows an experienced kite pilot
to fly loops or similar figures. The aim of our automatic
control is to make the kite fly a figure that may be called a
“lying eight”, with a cycle time of 8 seconds (see Fig. 2). The
corresponding orbit is not open-loop stable, so that feedback
has to be applied during the flight – we will show simulation
results where our proposed real-time iteration scheme is used
to control the kite, starting at a largely disturbed initial state
x0, over three periods, with a sampling time of one second.
The kite model can be found in [24], [27], [1]. The kite
position is described by polar coordinates θ and φ, where θ
is the angle that the lines form with the vertical. Defining the
system state ξ := (θ, φ, θ̇, φ̇)T and the control u := ψ we
can summarize the four system equations in the short form
ξ̇ = f̂(ξ, u).

A periodic orbit was determined that can be characterized
as a “lying eight” and which is depicted as a (φ, θ)-plot
in Fig. 2. The open-loop system is highly unstable in the
periodic orbit [24].

We want to mention that the kite model and the peri-
odic orbit may serve as a challenging benchmark problem
for nonlinear periodic control and are available in MAT-
LAB/SIMULINK format [29].

A. The Optimal Control Problem

Given an arbitrary initial state x0 (that we do not know
in advance) we want the kite to fly 3 times the figure
of Fig. 2, on a time horizon of 3T = 24 seconds. By
using the figure as a reference orbit, we formulate an
optimal control problem which has the objective to bring

60 40 20 0 −20 −40 −60
90

80

70

60

50

40

30

θ 
[d

eg
]

φ [deg]

1

2

3

4

5

6

7

0/8

Fig. 2. Periodic orbit plotted in the (φ, θ)-plane, as seen by the kite pilot.
The dots separate intervals of one second.

the system close to the reference orbit. For this aim we
define a Lagrange term of least squares type L(ξ, u, t) :=
‖ξ−ξr(t)‖2

Q+‖u−ur(t)‖2
R with diagonal weighting matrices

Q := diag(0.4, 1, s2, s2)1
s and R := 1.0 · 10−2deg−2s−1.

Using these definitions, we formulate the following optimal
control problem on the time horizon of interest [0, 3T ]:

min
u(·),ξ(·)

∫ 3T

0

L(ξ(t), u(t), t) dt (12)

subject to ξ̇(t) = f̂(ξ(t), u(t)), ∀t ∈ [0, 3T ],
ξ(0) = x0.

In order to reformulate the above continuous optimal control
problem into a discrete-time optimal control problem, we use
the direct multiple shooting technique, originally due to Plitt
and Bock [30], [17]: We divide the time horizon into N = 24
invervals [ti, ti+1], each of one second length, and introduce
a locally constant control representation q0, q1, . . . , qN−1, as
well as artificial initial values s0, . . . , sN , as depicted in
Fig. 1. On each of these intervals we solve an following
initial value problem yielding a trajectory piece ξi(t; si, qi).
This leads naturally to a discrete-time system as in (2c) with
transition function fi(si, qi) := ξi(ti+1; si, qi). Using the
multiple shooting formulation, we can thus transform the
continuous time optimization problem (12) into a nonlinear
programming problem of the type (2).

B. A Real-Time Scenario

In the following real-time scenario we assume that the
Newton-type optimizer is initialized with the reference tra-
jectory itself, i.e. y0 := (λ0

0, s
0
0, q

0
0 , . . . , λ

0
N , s0

N ), where
λ0

i := 0, and s0
i := ξr(ti) and q0

i := 1
ti+1−ti

∫ ti+1

ti
ur(t) dt

are the corresponding values of the periodic reference so-
lution. This y0 is (nearly) identical to the solution of the
problem P0(ξr(t0)). At the time t0 = 0, when the actual
value of x0 is known, we start the iterations as described
in Section II-A by solving the first prepared linear system
∆y0 = −J0(y0)−1∇yL0(y0) (step 2), and give the first
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Fig. 3. Closed-loop trajectories resulting from the real-time iteration
scheme, for different initial values x0. The kite never crashes onto the
ground (θ =90 degree).
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Fig. 4. Comparison of trajectories resulting from the real-time iteration
scheme (solid line), the open-loop controls without feedback (dash-dotted
line, crashing onto the ground), and a hypothetical optimal feedback control
(dashed line).

control u0 := q0
0 + ∆q0

0 immediately to the system. Then
we shrink the problem (step 3) and prepare the iteration
for the following one (step 1). As we assume no further
disturbances, the new initial value is x1 = f0(x0, u0) =
ξ0(t1; x0, u0) resulting from the (continuous) system dynam-
ics. This cycle is repeated until the N = 24 intervals are
over.

The corresponding trajectory resulting from the real-time
iteration scheme for different initial values x0 is shown in
Fig. 3, as (φ, θ)-plots. For all scenarios, the third loop is
already close to the reference trajectory.

In Fig. 4 we compare the result of the real-time itera-
tion scheme with the open-loop system dynamics without
feedback (dash-dotted line) and with a hypothetical optimal
feedback control (dashed line), for one initial value x0.
The open-loop system, where the controls are simply taken

from the reference (and initialization) trajectory (uk := q0
k),

crashes after 7 seconds onto the ground.
Note that the computation of the hypothetical optimal

feedback control needs about 8 seconds on a Compaq Alpha
XP1000 workstation. This delay means that no feedback can
be applied in the meantime, so the kite would have crashed
onto the ground before the first response is computed.

In contrast to this, the first feedback control u0 of the
real-time iteration scheme was available within only 0.05
seconds delay after time t0 (for the computations of step 2).
The sampling time of one second until the next feedback
can be applied was necessary to prepare the following real-
time iteration (to be exact, step 1 needed always below
0.8 seconds). The comparison with the hypothetical optimal
feedback control shows that the real-time iteration scheme
delivers a quite good approximation even for this challenging
nonlinear and unstable test example with largely disturbed
initial values.

V. CONCLUSIONS

We have presented a recently developed Newton-type
method for the real-time optimization of nonlinear processes,
and have given a contractivity result that bounds the errors
compared to optimal feedback control. In a numerical case
study, the real-time control of an airborne kite, we have
demonstrated the practical applicability of the method for
a challenging nonlinear control example.

The “real-time iteration” scheme is based on the direct
multiple shooting method, which offers several advantages
in the context of real-time optimal control, among them
the ability to efficiently initialize subsequent optimization
problems, to treat highly nonlinear and unstable systems, and
to deal efficiently with path constraints. The most important
feature of the real-time iteration scheme is a dovetailing
of the solution iterations with the process development
which allows to reduce sampling times to a minimum, but
maintains all advantages of a fully nonlinear treatment of
the optimization problems. A separation of the computations
in each real-time iteration into a preparation phase and a
feedback response phase can be realized. The feedback phase
is typically orders of magnitude shorter than the preparation
phase, and allows to deliver an immediate feedback that takes
all linearized constraints into account.

The contractivity of the scheme is valid under mild condi-
tions that are nearly identical to the sufficient conditions for
convergence of off-line Newton-type methods. The real-time
iterates geometrically approach the exact optimal solutions
during the runtime of the process.

The control aim for the kite example is to steer the kite into
a periodic orbit, a “lying eight”, starting from any arbitrary
initial state. The initial state is only known at the moment that
the first control needs already to be applied – the real-time
iteration scheme delivers linearized feedback nearly without
delay, and provides a newly linearized feedback after each
sampling time of one second, leading to a fully nonlinear
optimization, and always being prepared to react to further
disturbances. The scheme shows an excellent closed-loop
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performance for this highly nonlinear and unstable system,
and compares well to a hypothetical exact optimal feedback
control.

The real-time iteration scheme has also been applied for
nonlinear model predictive control of a real pilot plant
distillation column described by a stiff DAE model with over
200 system states, allowing feedback sampling times of only
20 seconds [25].
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