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Abstract: This paper validates the combination of nonlinear model predictive control and
moving horizon estimation to optimally control an overhead crane. Real-time implementation
of this combined optimal control and estimation approach with execution times far below the
sampling time was realized through the use of automatic code generation. Besides experiments
that reflect good point-to-point performance, the approach showed to be good in disturbance

rejection as well as in servo-tracking.

1. INTRODUCTION

Recently developed fast solvers for convex as well as
non-convex optimization enabled application of nonlin-
ear model predictive control (NMPC) and moving hori-
zon estimation (NMHE) to mechatronic systems. Some
of the existing codes for convex optimization include an
active-set method based on aquadratic programming (QP)
solver qpOASES [Ferreau et al., 2008], auto-generated
interior point codes FORCES and CVXGEN [Domahidi
et al., 2012][Mattingley and Boyd, 2009], a dual New-
ton strategy solver qpDUNES [Frasch et al., 2013], and
an auto-generated fast-gradient solver Fiordos [Richter
et al., 2011]. In the area of NMPC, existing tools for
fast NMPC and NMHE include AutoGenU [Seguchi and
Ohtsuka, 2003] and the ACADO code-generation tool
(CGT) [Houska et al., 2011Db]. The latest extenstions to the
ACADO CGT support optimal control problems (OCPs)
that can include nonlinear measurement /reference func-
tion as well as nonlinear path and point constraints. More-
over, the tool support export of tailored solvers for NMHE.

In the previous work by the authors [Vukov et al., 2012]
the validation of the NMPC on an overhead crane has been
presented. At the time, constrained by the feature set of
the ACADO CGT, a rather simple OCP formulation was
possible that used linear reference functions in the least-
square objective. Employing explicit integrators was the
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only option, leading to simplification of the stiff model in
order to make the whole control scheme real-time feasible
and to avoid expensive integration resulting from a huge
number of integration steps. Furthermore, there was no
module for estimation, thus finite differences were used to
estimate certain states such as cart, cable and swinging
velocities. In this paper, we present a combined NMPC
and NMHE approach to control the overhead crane using
the latest features from the ACADO code-generaion tool
enabling us to consider the full non-linear crane model for
estimation and control (dynamical model, measurement
model and control output model). One recent application
of the gain-scheduled NMPC for an overhead crane has
been reported in [Schindele and Aschemann, 2011].

1.1 Nonlinear MPC' problem formulation

For the purpose of this paper, we use the following optimal
control problem (OCP) formulation:

Ne—1
L, min 7 e (an, wr) — 7l %
UQ, ey UN — 1 k=0
+ [P n(zN) = Ry la
s.t. o — i‘o 1b

2l < xp < ap®, for k=0,...,N,

(la)
(1b)
Tp1 = F(zg,ug), for k=0,...,N -1, (1c)
(1d)
up <up <up®, fork=0,...,N—1, (le)
where x € R™ denotes the vector of differential states,
u € R™ the vector of control inputs. Discretized sys-
tem dynamics is represented by the function F. The cur-
rent state estimate provided by an estimator is denoted
Zo € R™. The controlled system output is captured with
reference functions in (la): h, € R™ and h,n € R"V,
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and the corresponding weighting matrices are R € R"r*"r
and Ry € R"~NX"nN Variables 7, € R" and 75 € R""~
denote time-varying references. Within this formulation we
use only simple box constraint on the controls and on the
states: u'® < u"? € R™ and z'° < 2"? € R in (le) and
(1d) respectively. Finally, the number of control intervals
is denoted as N,.

1.2 Nonlinear MHE problem formulation

In a similar fashion, the moving horizon estimation (MHE)
problem reads:

1

, mmin D by (k) — il
U—_NgyyUl  k=—Ng
+ [[1hy,0(z0) — Goll%, (2a)
s.t. 41 = F(xg,ug), for k= —Ng,...,1, (2b)

where the number of estimation intervals is N,. Measure-
ment functions are denoted with h, € R" and hyo €
R™.0 and the corresponding weighting matrices are S €
Rny Xny and SO e Rny’oxnyp.

We choose to have the same dynamic model for both the
controller (1) and the estimator (2). The main motivation
for this approach is that we want the estimator to capture
the same dynamics we want to control using NMPC.

1.8 Contributions and Overview

The main contribution of the paper is the validation of
the combined NMHE and NMPC approach to control
an overhead crane. We show that the proposed approach
is real-time feasible and that the computation times are
far below the chosen sampling time. Control performance
is validated through a set of experiments: point-to-point
motion, disturbance rejection and servo-tracking.

The paper is organized as follows. Section 2 present the
so called real-time iterations approach to solve an OCP
in real-time. In Section 3 we briefly present a tool for
exporting the customized solvers for optimal control and
it’s properties. The experimental setup, model equations
as well as OCP formulations are detailed in Section 4.
Experimental results are presented in Section 5. Section
6 concludes the paper.

2. REAL-TIME ITERATION SCHEME

The main idea behind the real-time iteration (RTI)
scheme [Diehl, 2001] is to employ multiple shooting dis-
cretization [Bock and Plitt, 1984] together with numerical
integration and a piece-wise constant control parameter-
ization. The structured nonlinear program that comes as
a result of this procedure can be efficiently treated with
a sequential quadratic programming (SQP) methods. As
the objective consists of a least squares tracking term,
it is reasonable to employ a Gauss-Newton method to
approximate the Hessian matrices [Bock, 1983]. In order to
ensure real-time feasibility of the algorithm, only one SQP
iteration is performed per sapling time step. Consequently,
OCPs (1) and (2) are solved only approximately. The

RTI scheme [Diehl et al., 2002] uses the control and state
variables of the previous optimization run, possibly after
a shift, as new linearization point, and performs only one
Newton-type iteration per sampling instant. Due to the
fact that the initial value enters the problem linearly, it
can be shown to deliver a generalized tangential predictor
to perturbations, and nominal convergence of the resulting
NMPC loop can be proven. We refer to [Diehl et al., 2009]
and the references therein for a detailed survey on the RTI
and other algorithms for nonlinear MPC.

Due to the fact that the state estimate I, enters the
optimization problem (1) only via the affine constraint
(1b), the model can be integrated and sensitivities can
be generated without knowing the current state estimate.
This part of the algorithm is called the preparation phase.
Once the feedback signal is obtained, we only need to
solve the underlying quadratic problem (QP) — the feedback
phase. After the QP is solved, we take the solution wuj
and send it to the process. In the context of the MHE, cf.
(2), we can do model integration and generate sensitivities
without knowing the current measurement go. As in the
previous case, as soon as yg is available we have to solve
(2) in order to obtain the current state estimate & which
is sent to the controller.

From the implementation point of view, preparation
phases of the NMPC and NMHE can be executed in par-
allel. Having in mind that preparation phase(s) typically
consume more than 80% of the execution time of an RTI
step, one can reduce the sampling time — if needed.

3. AUTOMATIC CODE GENERATION

In order to make the RTI scheme real-time feasible,
we utilize the automatic code-generation approach. The
ACADO Code Generation Tool is part of the open-source
software package ACADO Toolkit [Houska et al., 2011a]
for automatic control and dynamic optimization [Houska
et al., 2011b]. The tool generates self-contained ANSI-C
compliant code for NMPC and MHE [Ferreau et al., 2012],
which can be deployed on any platform supporting the
standard C library. The tool implements the algorithmic
ideas based on the RTT scheme. The user interface allows
one to specify nonlinear dynamic model equations as well
as objective and constraint functions. Before a solver gets
exporter, problem structure and dimensions are exploited
together with sparsity patterns to remove all unnecessary
computations and remove any need for dynamic memory
allocation.

In order to prevent prohibitively long execution times
while integrating stiff systems and to tackle more chal-
lenging nonlinear dynamical systems represented by dif-
ferential algebraic equations DAE, support for implicit in-
tegrators for ODEs and (DAEs) has been added [Quirynen
et al., 2012]. One of the latest extension of the tool makes it
possible to solve long horizon OCPs employing an interior
point QP solver [Vukov et al., 2013].
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Fig. 2. Picture of the actual overhead crane used in the
experiments.

4. EXPERIMENTAL SETUP AND DYNAMIC MODEL
4.1 Experimental Setup

A schematic representation of the considered overhead
crane is given in Fig. 1, while Fig. 2 shows a picture of
the actual crane used in the experiments. The pendulum
consists of a cylindrical load hanging on two parallel
cables. A cart can position the load in the z; direction
while a winching mechanism can position the load in the
xo direction. Reliable sensors (encoders) are available to
measure the cart position xg, cable length zy, and cable
angle a (see Figure 1). A more detailed description of the
system can be found in [Vukov et al., 2012]. The cart and
hoisting motor are controlled using an internal velocity
controller. The system inputs are the voltages uc and wur,
representing setpoints for the respective internal velocity
controller. The control software is implemented using the
OROCOS Toolchain [Bruyninckx et al., 2003] and runs on
a PC with an Intel Xeon 2.53 GHz quad core processor,
12 GB RAM memory, and a preemptive Linux kernel as
operating system. The sampling frequency for the state
estimation and feedback controller is fixed to 100 Hz.

4.2 Dynamic Model

This Section briefly reviews the dynamic model of the set-
up. Detailed information on the dynamic modelling can
be found in [Vukov et al., 2012]. Second order models
have been identified in the frequency domain for the input-
output relation for both the cart mechanism (uc to zc)
and the winching mechanism (uy, to xr,).

A A
_“C and G = _ 4L
s(tes+1) s(Ls+1)
where 7¢ = 0.01279, Ac = 0.04742, 71, = 0.02470 and

Ap, = 0.03409. These models and the equation of motion
of the variable cable length overhead crane [Vukov et al.,

Gc =

2012] result in the following nonlinear ordinary differential
equations:

= 77’61 (UC — Acuc)
iy, = vy, o, =—m " (v — Apur)
0=w, w=—a;"(Acucr cos(d) + gsin(f) + 2vLw)

Tc = v, Uc

Uc = UCR; UL = ULR
These equations are summarized as F'(x, u) where the state
r = (zc,vc, 2L, v, 0, w,uc, u,)” and the control input
u = (ucr, uLR)

4.8 Measurement model for MHE

The measured states of the system are y = (z¢, zL, o, uc,
ur, ucr, urr)? and we have hy(z,u) = (zc,zr, f(0), uc,
Uy, UCR, uLR)T. Here « is the measured cable angle, which
is different from the real load angle 8 due to imperfect
alignment of the cables (see [Vukov et al., 2012] for more
details on the o — 6 relation).

Optimizing the control allows one to account for distur-
bances and unmodeled dynamics. This approach is mo-
tivated by the fact that the control hardware and the
actuators are sometimes connected via analog lines. Those
analog lines collect noise and disturb the control signal
that is sent to the process.

Inclusion of the state noise in the MHE formulation is
possible, but probably prohibitively expensive given that
the solver used in this paper has cubic complexity in
number of control inputs.

4.4 Output model for MPC

Our aim is to control the position and swinging of the load
in the x1-x5 plane. For this purpose, the selected controlled
system outputs are the load position xz; and zo and the
swinging velocity w.

T, ref xc + a1, sin(6)
T2 ref a1, cos(h)
F=1 w |,h(z,u)= w (3)
Ucr ucR
ULR ULR

In [Vukov et al., 2012], the load position and swinging was
controlled more indirectly by controlling the cart position
xg, cable length z1, and angle . Since there is a coupling
between these variables tuning of the MPC R matrix was
involved in order to obtain acceptable behaviour in the
x1 — o2 plane. By considering (3) as a controlled output
this coupling is implicitly included and the control weights
can directly be imposed on the actual output (z1,z2).

5. EXPERIMENTAL RESULTS

In this section we illustrate the real-time performance
of the closed loop system. At each sampling time the
nonlinear MHE and MPC are solved sequentially. First
the MHE estimats the current state by using the sensor
measurements as an input. This estimate serves as in input
for the MPC control problem. This control loop is closed at
a sampling rate of 100 Hz. First the non linear estimation
and control problems are described in more detail. Then,
experiments and results are discussed.
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5.1 The nonlinear moving horizon estimator

The MHE diagonal weighting matrices we used are given
by:

S = diag(16.5m~2,25.1 m~2,119.4,1.2 V=2,0.4 V2,

0.01s?/V?,0.01 s2/V?)

These are obtained from experimentally tuning an initial
guess. This initial guess for the weights was calculated
using the variance of measured data for an open loop
experiment (weight = var~—1/2). The experimental results
given in the remainder of this Section show that these
weights result in reliable state estimates. The estimation
horizon is chosen to be 0.2 s with 20 shooting intervals,
which was found to be suitable by empirical testing.

5.2 The nonlinear model predictive controller

We consider following bounds on the control and control
rate

—-10V S UC(T),UL(T) § 10V
—100 V/s < ucr(7), ucr(r) < 100 V/s

The considered state vector x, control vector u and refer-
ence vector 7 are defined as in Section 4.4 . The control
horizon is chosen to be 1s with 10 shooting intervals,
which was found to be suitable by empirical testing. The
MPC formulation incorporates a reference vector 7, which
is a nonlinear combination of the state vector z. Point
to point motions are executed by giving step reference
changes, hence the references are constant over the whole
control horizon. We consider the following reference for 7
and u:

fk = (xl,refa T2 ref, 07 07 O)T
Here 1 ref, 22 ret are the desired load x; and xo position,
while the desired angular velocity is zero to prevent
swinging. The control reference is set to zero to minimize
the total control effort. After some experimental tuning we
obtain the following weighting matrices
R = diag(100 m~2,100 m~2,1s%,107° s2/V?,107° 2 /V?)
Since we want accurate point to point motions, the weight
on the position z; and x5 is relatively large with respect
to the weight on the control inputs. Furthermore, since
we also want fast point to point motions, the weight on
the swinging velocity w is smaller than the weight on the
position z1 and 5.

5.8 Point to point motions

A first experiment illustrates both estimator and controller
performance for several point to point motions.

Controller performance  Multiple step references for the
1 and x5 position of the load are applied to the controller.
The response of the controller can be seen in Figure 3. The
steady state error for the x1 and x5 position is about 1 mm
and 0.5 mm respectively. The settling time is about 3.5 s.
It can be seen that the angle is still oscillating around zero
with small amplitude (about 0.04 °). This small residual
oscillation on 6 is however not due to swinging in the

x1 [m]

Zo [m]

= 5| | \ |
= |

0 10 20 30_ 40 50 60
time [s]

Fig. 3. Position of the load x1,z2 and angle deflection 6;
solid lines: measurements, dashed lines: references
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Fig. 4. Control of cart uc and cable uyp, and control rates
UCR and ULR

r1 — 2 plane but due to the yawing of the load around
the x5 axis. This yawing motion is induced by the motion
of the crane and is a consequence of the front and back
of the load not hanging perfectly horizontal, due to a
misalignment in the front and back cables of the load.
This yaw results in front and back cable motions and
hence results in oscillating 8 measurements. Since the set-
up cannot control the yawing of the load, this residual
cannot be controlled to zero. The control reaction to this
residual is negligible.

The control inputs and control rates are given in Figure 4.
Here one can see that the cart control uc and control
rate ucr and cable control up, and control rate upr hit
their limits. This rather aggressive performance is due to
the small weights in the R matrix on the control effort,
and large weights on the tracking error (h, — 7). The
large weights on the tracking error will drive the controller
toward the system limits to minimize the set point error
as fast as possible.

It is interesting to note that a set point change in
without change in xo results in a control input for the
winching motor (ug,) as well (see Figure 3 at 7 = 47 s).
This is due to the problem formulation which considers
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Fig. 5. MHE estimates of all states (Cart position ad
velocity ¢ and vg, cable length and velocity xy, and
vy, angle and angular velocity § and w and control of
cart and cable uc and wuy,) for point to point motion
with MPC
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Fig. 6. (a) Overall NMHE execution time, (b) KKT
tolerance.

the minimization of the 2-norm of the tracking error both
on z1 and xs.

Estimator performance  The state estimates the con-
troller uses are given in Figure 5 for the first point to
point motion. In order to validate these estimates of the
state they are compared to the sensor measurements (for
zc, 1, 0) and time derivative of the sensor measurements
computed by finite differences (for vc,vr,w). The esti-
mates of the position measurements z¢,zyp,0 are reli-
able since rms values are small (0.48 mm, 0.543 mm,
0.01104 °) for the point to point motions in the previ-
ous experiment. The rms values (4.2 mm/s, 6.08 mm/s,
0.9857 °/s) of the velocities vc,vr,w are a lot larger
which is due to the finite difference calculation of the
velocity measurements, which are very noisy (not shown).
Figure 5 shows that the estimates for these velocities are
smooth, while the finite difference signals are very noisy
(not shown). Filtering this finite difference signal with a
low pass filter could resolve this problem, however this
will distort the signal and introduce a lag. Hence, using
the estimates as an input for the controller is much more
reliable than using the finite difference data. Since the rms
values are small, and by visually inspecting the estimator
signals, we conclude that the estimates of the states, given
by the nonlinear moving horizon estimator are robust and
reliable. Furthermore, the controller performance, which
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Fig. 7. Position of the load x1,z2 and angle deflection 6;
solid lines: measurements, dashed lines: references.

uses these estimates as in input, validates the performance
of the estimator.

Computation performance and optimality — Figure 6 val-
idates the low execution time of the estimators auto-
generated C-code. The average execution time for this
experiment is 0.68 ms while the peak execution time is
0.74 ms. The controllers autogenerated C-code execution
times are similar with an average execution time of 0.34
ms and a peak execution time of 0.43 ms. The average
execution time of the estimator-controller is then 1.02
ms while the peak execution time is 1.17 ms. The total
computation time is hence significantly lower than the
sampling time (1.17 ms << 10 ms) (which could even be
increased). Execution times are measured using the Linux
function clock_gettime(), which provides resolution in
the nanosecond range.

Solving only one SQP iterations at each sampling instance
results in a suboptimal estimate and control action. A
good measure for the suboptimality is the Karush-Kuhn-
Tucker (KKT) tolerance which in this case is calculated
as the absolute value of the gradient of the Lagrangian
function. This tolerance is given in Figure 6 for the MHE.
Jumps in the KKT tolerance occur at big reference changes
since the solution from one SQP iteration is only a rough
approximation of the optimal solution. However, due to the
good contraction properties of the Gauss-Newton real-time
iteration scheme, the KKT tolerance decreases quickly in
subsequent sampling instants. Similar results are obtained
with the MPC.

5.4 Disturbance rejection

In a second experiment, an external disturbance is applied
to the load position x1,ze by making is swing with a very
large amplitude (30 °). As can be seen in Figure 7. At
7 = 0 s, the controller has controlled the system to the
given reference. At 7 = 1.9 s the controller is turned
of and a disturbance, driving the systems away from the
reference, is applied. The controller is turned on again at
7 = 10.86 s and fully rejects the large disturbance on the
the position 1,25 and the angle 8. While compensating
for the disturbance, the control inputs again saturate.

Figure 8 shows the online estimate of the angle and the
difference with the measurement. It can be seen that the
estimate of the angle corresponds very well to the real
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0 5 . 10 15
time [s]

Fig. 8. Top: online estimate of the angle 6, Bottom,
difference bewteen the estimate and the measured
value of the angle 6.
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Fig. 9. Position of the load z1, z2, cart z¢ and cable z, and
angle deflection #; solid lines: measurements, dashed
lines: references

angle, even for very large angles (here 30 °©), while this
makes the state equations highly nonlinear.

5.5 Servo-tracking

In this last experiment we show how the controller per-
forms while following a given reference trajectory in x;
and zo position as a function of time. The reference for
the nonlinear controller over the time horizon is no longer
constant but time varying for z; and xs.

i = (T1 ref ks T2,ref.k5 0,0,0)7, for all k=0,...,N -1
while the control reference is again set to zero over the

whole control interval. As a reference trajectory for z; and
o we choose a Lissajous figure:

21 ref(Tref) = 0.2 4 0.158in(278(Tyef) + 7/2)
22 ref(Tref) = 0.6 4+ 0.15 sin(47ms(Tyef))

where s(Tvef) = —27’33f+37'r2ef for Tyt = 0..10 s ensures that
the trajectories start and stop smoothly in the velocity.
Figure 9 shows the result of this trajectory following. We
observe good tracking performance with maximal tracking
error 10 mm and 5 mm for x; and zo respectively and
RMS tracking error 5.7 mm and 2.7 mm for z; and o
respectively.

6. CONCLUSIONS

We can conclude that real-time implementation of the
NMHE-NMPC control structure (1)-(2), obtained using
the latest code-gen tools of ACADO shows low computa-
tion time (1.17 ms) and high performance (reliable state

estimates and good point-to-point, tracking and distur-
bance rejection control performance) on an experimental
overhead crane setup.
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