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Abstract— Multiple-kite airborne wind energy (AWE) sys-
tems are typically characterized by unstable and highly non-
linear dynamics which often translates to intricate controller
design and challenging coordination problems. Rotary kite
AWE systems (RAWES) have been alternatively proposed for
small-scale applications, under the assumption that they can
reduce the complexity of the control problem. This paper
confirms that a small, rigid-wing RAWES in pumping mode
can be controlled effectively in a large operational range, using
only pitch control as on-board actuation. Optimal control is
applied to compute RAWES pumping trajectories in different
operating regions, for a design geometry that is optimized for
a rated wind speed under structural constraints. The reduced
control complexity comes at the cost of a low harvesting factor,
close to that of conventional wind turbines.

I. INTRODUCTION

Airborne wind energy (AWE) is a novel renewable energy
technology that aims at harvesting wind power at high
altitudes, where winds are stronger and more regular than
at low altitudes. The technology has the potential to do
so at only a fraction of the cost and material than that of
conventional wind turbines, which are not able to reach these
heights. It is based on the idea, first investigated in [13],
of extracting power from the wind with a tethered kite or
aircraft that flies high-speed cross-wind manoeuvres.

In multiple-kite AWE systems (MAWES), two or more
kites fly trajectories around each other and balance their
forces so as to minimize the shared main tether crosswind
motion. MAWES could drastically increase the system power
output compared to single-kite systems, as the optimal-
control based simulation studies in [20] and [21] report.
However, the MAWES dynamics are highly unstable and
nonlinear and pose challenging coordination tasks for control
engineers, as well as imposing high demands on the perfor-
mance and reliability of the communication infrastructure.

In theory, a rigid-wing rotary kite AWE system (RAWES),
where the wings are mechanically connected with structural
elements, has the potential of achieving the MAWES goal
of tapping into high altitude winds, based on a cheap and
simple small-scale design. It simplifies the design twofold:
it has steadier dynamics, and it avoids the intricate multiple-
kite coordination problem. On the downside, RAWES are
restricted to a low-power scale, since the structural require-
ments for a high-power system would lead to inefficiently
heavy devices and high cut-in speeds.

RAWES concepts have been the subject of some interest
in the AWE community thus far. An overview and assess-
ment of on-board generating, lighter-than-air rotary kites
is presented in [17]. In [15], a self-supporting rotorcraft

was proposed for on-board generation. A pumping soft-kite
RAWES, called “Rotokite”, was presented in [16]. The patent
[8] describes a rigid wing RAWES concept, similar to the
one discussed in this paper.

The contribution of this paper is to show that a small-scale
rigid-wing pumping RAWES can be controlled efficiently
at different wind speeds using only pitch control as on-
board actuation. The text is organized as follows. Section II
presents a system model for the RAWES under consideration.
Section III then elaborates on the OCP formulation and
presents methods and software used to solve the problem.
Section IV presents an optimized RAWES design and dis-
cusses different operating regimes. Section V summarizes the
conclusions.
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Fig. 1: Conceptual sketch and main parameters of the con-
sidered rigid-wing pumping RAWES configuration.

II. SYSTEM MODEL

A. System configuration

The rotary kite is conceptualized as a rigid body consisting
first of three wings, characterized by a wing-span Lw and an
aspect ratio A, as depicted in Fig. 1. Three carbon fiber
beams of length Lb and diameter db connect the wings to a
central carbon fiber rod of length Lr = (Lb+cpLw)/ cos(δ)
and diameter dr = db, where the angle δ is chosen to be
45◦. The parameter cp is the relative position of the centre
of pressure along the wing span from root to tip. Thin cables
with diameter dck additionally connect the center-of-pressure
of the wings to the central rod in order to compensate for the
strong bending moments that arise due to the lift forces. The
central rod itself is attached to a tether at the attachment point
at the bottom of the central rod. The tether, with a diameter



dc, connects the rotary kite via a winch to the ground station,
where it drives a generator drum. The pitch angles pk of each
wing k are free to rotate and can be actuated. Within the
scope of this paper, we abstract from the specific actuation
implementation.

B. System dynamics

A full derivation of the model equations for a single-
wing AWE system in pumping mode, specifically tailored for
optimal control purposes, is found in [9]. A slightly adapted
version of the obtained result is presented here for the case
of a rotary kite. The model takes the form of a fully-implicit
index-1 DAE system summarized by

F(x(t), ẋ(t),u(t), z(t), θ) = 0, (1)

with related consistency conditions C(t) = 0 that have to
hold at some arbitrary point in time t = tc.

The system differential states are given in vertically con-
catenated form by x = (r, ṙ, R, ω, ψ, ψ̇, l, l̇, l̈, E), where
r ∈ R3 is the position of the kite’s center of mass in the
Cartesian inertial frame {ex, ey, ez} at the ground station.
The rotation matrix R ∈ R3×3 describes the axes of the body
coordinate frame in the inertial frame: R =

[
e′x e′y e′z

]
.

The angular velocity ω ∈ R3 is expressed in the body
frame. Variables l, l̇, l̈ ∈ R describe tether length, speed
and acceleration respectively. The additional state E ∈ R
tracks the amount of mechanical energy that is transferred to
the ground station over time. The coefficients ψ ∈ R2nψ+1

determine the pitch angles of the wings in a cyclic pitch
control parametrization of harmonic order nψ , as will be
discussed below.

The controls u = (
...
l , ψref) are the tether jerk

...
l ∈ R

and the reference values ψref ∈ R2nψ+1 for the cyclic pitch
control parameters ψ. These reference values are the input
to a linear controller that is assumed to result in the second-
order closed-loop system

d

dt
ψ̇ = − (ψ − ψref)

T 2
ψ

− 2cψψ̇

Tψ
, (2)

with time constant Tψ and damping coefficient cψ .
The algebraic variables z = (λ, a) consist firstly of the

Lagrange multiplier λ associated with the tether constraint
that restricts the kite’s tether attachment point to move on
the 2D-manifold given by

c(r, R, l) =
1

2
((r +RrT)>(r +RrT)− l2) = 0, (3)

where rT is the tether attachment position in the body
frame. Note that it is assumed here that the main tether is
inelastic and does not sag. The second algebraic variable is
the instantaneous induction factor a, which is discussed in
Section II-C.

The system parameters θ = (dt, Lb, db, dck) consist of
the tether diameter dt, the connecting beam length Lb and
diameter db, and the reinforcement cable diameter dck.

For the Lagrangian approach laid out in [9], the RAWES
inertial and gravitational properties need to be defined. The
rotary kite mass is given by

mK = 3m′SSw + ρb(3Lb
πd2b

4
+ Lr

πd2r
4

), (4)

where m′S is the mass per wing area and ρb is the density
of the beams and rod. The mass of the thin reinforcement
cables is neglected. The Lagrangian of the system then reads
as

L = T − V + λ>c (5)

with the kinetic energy T and potential energy V given by

T =
1

2
(mK +

mT

3
)ṙ>ṙ +

1

2
ω>Jω (6)

V = (mK +
mT

2
)r>ez. (7)

Here, mT = ρT l
πd2t
4 is the tether mass, with ρT the

tether material density. Including the tether mass in the kite
dynamics is a simple way to account for the effect of the
tether inertia and weight on the system, without having to
model the cable dynamics separately [11]. The rotary kite
inertia tensor J is expressed in the body frame.

The translational dynamics are readily given by

d

dt

∂L
∂ṙ
− ∂L
∂r

= FA, (8)

whereas the Lagrangian rotational dynamics can be projected
onto a 3D manifold as outlined in [9], so that

J
dω

dt
+ ω × Jω = MA − λ(rT ×R>r). (9)

The generalized forces FA and MA consist of the aerody-
namic forces and moments acting on the kite.

After index reduction, the holonomic tether constraint is
imposed as

c̈+ 2κċ+ κ2c = 0, (10)

where κ is a tuning factor of a Baumgarte stabilization
scheme [4].

Let the expression [ω]× denote the skew-symmetric matrix
of the vector ω. The rotational kinematics then read as

d

dt
R = R(

κR
2

(I −R>R) +
[
ω
]
×), (11)

where κR is another Baumgarte tuning factor. Performing a
Baumgarte stabilization on the model invariants prevents a
violation of the Linear Independence Constraint Qualification
(LICQ) in the context of periodic optimal control [10]. For
a good choice of κ and κR, imposing (10) and (11) in
combination with periodicity conditions, will force the OCP
solver to converge to a solution for which the consistency
conditions

C(t) =
(
c(t), ċ(t), Put(R

>(t)R(t)− I)
)

= 0 (12)

are satisfied over the entire time interval. Here, the operator
Put picks out the six upper triangular elements of the
orthogonality conditions.



The tether force is given by λl, which is positive when
pulling, so that for the energy state

Ė = P = λll̇ (13)

holds, with P being the instantaneous mechanical power
transferred to the ground station.

The trivial kinematics

d

dt
(r, ψ, l, l̇, l̈) = (ṙ, ψ̇, l̇, l̈,

...
l ) (14)

then complete the system dynamics, save for a model for
FA, MA, and the induction factor a.

C. Atmosphere and induction model

In order to account for an increasing wind power avail-
ability with increasing altitude, in an AWE context, the
free-flowing wind speed u∞(z) is typically modelled by a
logarithmic wind shear model [3]:

u∞(z) = uref
log( zzr )

log( z0zr )
, (15)

assuming uniform laminar wind flow. The reference wind
speed uref is the wind speed at altitude z0, and zr is the
roughness length associated with the ground surface. In this
paper, it is assumed that the RAWES operates above plain
land surface. The atmospheric density drop ρ(z) is modeled
using the international standard atmosphere model with the
parameters found in [20].

As the first-order studies [21] and [12] confirm, axial in-
duction effects should be taken into account when modeling
AWE systems. Therefore, in this model, the available wind
speed at the RAWES wings is given by

uw = (1− a)u∞(r>ez), (16)

where the induction factor is determined using the actuator-
disk (AD) method proposed in [12], which leads to the
equation

F>Ae
′
y = 2ρ(r>ez)u

2
∞(r>ez)(a− a2)AK, (17)

with the rotary kite actuator annulus area given by

AK = π((Lb + Lw)2 − L2
b). (18)

In order not to accelerate or reverse the flow, the bounds

0 ≤ a ≤ 0.5 (19)

are introduced.
It is assumed here that the wind field behaves as a

potential flow and that it is always in equilibrium. Also, AD
assumes uniform axial flow within the actuator disk annulus,
with negligible wake expansion and rotation. For AD to
be valid, there should be low spanwise velocity variations
(i.e. Lb � Lw) and the tilt ξ = cos−1(e>y Rey) of the rotor
axis with respect to the wind direction should be small.

D. Aerodynamics

For every wing k ∈ {1, 2, 3}, the apparent wind velocity
is defined as

ua,k = uwey − ṙ−R(ω × r′cp,k), (20)

with r′cp,k the position of the centre of pressure of wing k in
the body frame. This position is assumed to be at two-thirds
of the wing span from root to tip, which is a good assumption
when Lb ≈ Lw. Also, for each wing, the spanwise direction
from root to tip e′′1,k and the chordwise direction from trailing
to leading edge e′′2,k can be computed in the inertial frame
by

e′′1,k = RRy

(
2π

3
(k − 1)

)
e′x (21)

e′′2,k = RRy

(
2π

3
(k − 1)

)
Rx(pk)(−e′z), (22)

where Ry (γ) is defined as the rotation matrix that rotates
a vector about the y-axis with an angle γ. The chordwise
direction is determined by the pitch angle pk.

The cyclic pitch profile pk(φ) is parametrized by a Fourier
series of order nψ according to

pk = ψ0 +

nψ∑
m=1

ψ1m

2
sin(mφ+

2mπ

3
(k − 1))

+

nψ∑
m=1

ψ2m

2
cos(mφ+

2mπ

3
(k − 1)) (23)

where the coefficients (ψ0, ψ11, ψ21, ..., , ψ1nψ , ψ2nψ ) are
stored in the differential state ψ. The angle φ tracks the
rotation advancement of the kite around e′y and could be
obtained by an inertial measurement unit (IMU) by project-
ing the gravity vector into the plane of rotation:

φ = tan−1
(

(−R>ez)>e′x
(−R>ez)>e′z

)
. (24)

The wing lift and drag coefficients are assumed to only
depend on the angles of attack αk. From thin airfoil theory
[18], assuming near elliptical, uncambered wings with an
aspect ratio A and Oswald efficiency Oe, and for small
angles of attack αk, the three-dimensional lift and drag
coefficients are given by

CL,k =
2π

1 + 2
A

αk and CD,k = CD,0 +
C2

L,k

πAOe
. (25)

For small angles of attack αk, their values can be approxi-
mated by

αk ≈
(ua,k)>e′′3,k
(ua,k)>e′′2,k

. (26)

The side slip angles βk are given by

βk = sin−1

(
(ua,k)>e′′1,k
‖ua,k‖2

)
. (27)

In order to prevent flow separation, the inequalities

−15◦ ≤ αk ≤ 15◦ and −15◦ ≤ βk ≤ 15◦, (28)



must hold.
The drag of the connecting beam and reinforcement cable

is taken into account by including a constant parasitic drag
coefficient CD,T , that can be approximated by

CD,T =
1

4

(CD,bdbLb + CD,ckdcKLcK)

Sw
. (29)

The factor of one-fourth was proposed in [11], and we
assume that the connecting beam is designed with well-
streamlined fairings with a chord length cb = 3db, so that
the drag coefficient can be reduced to CD,b = 0.08 for high
Reynold numbers [18]. The reinforcement cable has a long
cylindrical drag coefficient CD,ck = 1.0 [18].

The lift and drag force on each wing are then readily given
by

Lk =
1

2
ρ(r>ez)SwCL,k ‖ua,k‖2(ua,k × e′′1,k) (30)

Dk =
1

2
ρ(r>ez)Sw(CD,k + CD,T ) ‖(ua,k)‖2ua,k, (31)

with the total force on the wing given by Fk = Lk + Dk.
Aerodynamically induced moments are not modeled based

on the assumption that the rotational dynamics of the rotary
kite are dominated by the moments of the aerodynamical
forces around its center of mass. Then, the generalized force
and moment exerted on the kite are known:

FA =

3∑
k=1

Fk and MA =

3∑
k=1

r′cp,k ×R>Fk. (32)

Finally the equations (2), (8) - (11), (13)-(14), (17) yield the
complete system dynamics summarized by (1).

E. Structural constraints

In order to make sure that the tether tension stays positive
but doesn’t exceed the maximum tension τmax [5], the
inequality constraints

λ ≥ 0 and τmax
πd2c
4
− fsλl ≥ 0 (33)

must hold, with fs a safety factor. Similarly the reinforce-
ment cable must compensate for the lift and drag components
along the rotation axis, which means that

τmax
πd2ck

4
cos(δ)− fsF>k e′y ≥ 0 (34)

must hold in order to prevent bending.
To prevent bending in the plane of rotation, the bending

displacement of the beam at the beam-wing connection point
is bounded by 1% of the beam length, so that

0.01Lb − ‖Fb,k‖2
L3
b

3EbIb
≥ 0 (35)

must hold, where Eb the Young modulus of carbon fiber
[14], Ib =

πd4b
64 the second moment of inertia of the circular

beam cross-section, and where Fb,k is the bending force in
the plane of rotation at the beam-wing connection point:

Fb,k = (Fk −m′SSw(
d2rcm,k

dt2
− gez))>(e′′1k × e′y), (36)

with rcm,k the position of the center of mass of wing k in the
inertial frame. The bending moment transferred from wing
to beam is neglected.

III. PERIODIC OPTIMAL CONTROL PROBLEM

A. Problem formulation

The RAWES model presented in Section II can now be
used to compute periodic pumping orbits of a free time pe-
riod Tp that yield maximal mechanical power. This problem
is tackled by solving a periodic optimal control problem
(POCP), where the initial system state x(0) and the final state
x(Tp) are free, but must be equal. In this case, periodicity
is enforced on the adjusted state x̂ = (r, ṙ, R, ω, ψ, ψ̇, l, l̇, l̈),
while the initial energy state should be zero, so that

x̂(0)− x̂(Tp) = 0 and E(0) = 0. (37)

In order to keep the POCP well-defined, a phase-fixing
constraint must be added. This is done by dividing the total
cycle period Tp into two time periods T1 and T2, so that

Tp = T1 + T2. (38)

The constraints

l̇ ≥ 0 ∀t ∈ [0, T1] and l̇ ≤ 0 ∀t ∈ ]T1, Tp] (39)

then fix the order of appearance of the reel-out and reel-in
phase in the solution. Additionally, the constraints

l(T1) = lmax and r>ez ≥ zmin (40)

force the RAWES to reach a certain design tether length and
remain above a minimal altitude.

Optimal power cycles can then be found by solving the
periodic optimal control problem

min
w(·),θ̂

− P̄ (41a)

s.t. (1), (19), (28), (33)− (35), (37)− (40), (41b)

where P̄ = E(Tp)/Tp is the average power output of the
RAWES system. The OCP decision variables are given by
w(·) = (x(·),u(·), z(·)) and θ̂ = (θ, T1, T2).

B. Methods and Software

Problem (41) is discretized with the direct collocation
approach, using a Radau scheme with polynomials of order 4.
In order to improve solver convergence, small regularization
on the controls is added. The inconvenience of a variable
integration grid, due to the presence of the free time periods
T1 and T2, is solved by introducing a time transformation
as proposed by [6]. The resulting NLP is posed using the
open-source symbolic framework CasADi [2] and solved
with the interior-point solver IPOPT [19] using the linear
solver MA57 [1].

IV. RESULTS

The system parameters of the small-scale RAWES under
consideration are summarized in Table I. The pitch control
harmonic order nψ was chosen to be 1, based on the
observation that increasing it to 3 only improved the rated
power output by 1%.



TABLE I: System parameters

Parameter Symbol Value Dimension
Wing span Lw 1.5 m

Aspect ratio A 12 −
Oswald efficiency Oe 0.8 −
Wing parasitic drag coefficient CD,0 0.01 −
Pitch control harmonic order nψ 1 −
Pitch control time constant Ta 0.5 s

Pitch control damping coefficient ca 0.7 −
Cable material density ρc 1450 kg ·m−3

Cable tensile strength τmax 3.6 · 109 Pa

Safety factor fs 10 −
Carbon fiber density ρb 1750 kg ·m−3

Carbon fiber Young modulus Eb 250 · 109 Pa

Altitude of wind speed uref z0 100 m

Surface roughness length zr 0.1 m

Maximal tether length lmax 300 m

Minimal altitude zmin 10 m

A. Optimal design

Solving (41) for uref = 10m
s gives the optimal design

parameters θ∗. The system tether diameters dc = 1.9 mm,
dck = 1.5 mm and beam diameter db = 36 mm
converge to reasonable values. The connecting beam length
Lb is 1.60 m, which almost equals the wing span. This
corresponds to spanwise velocity variations of about 94%,
which violates the AD modeling assumptions. Consequently,
the resulting induction factor can only be taken to represent
a rough estimate of the actual induction. The overall cycle
time Tp is 2.44 seconds. If desired, longer cycle periods
could be obtained by initializing the optimization solver with
a higher number of rotations, combined with a finer problem
discretization.

The optimized pumping trajectory is shown in Fig. 2.
Since (41) is a non-convex optimization problem, we can
only guarantee that the trajectory is locally optimal. However,
the result is close to what can be expected for a pumping
multiple-wing system. Let the reel-out factor f be defined as
the reel-out speed divided by the free-stream wind speed, so
that f = l̇

u∞(r>ez)
. Then we observe that the reel-out phase

of a duration T1 = 1.45 seconds makes up the main part of
the pumping cycle, with a mean reel-out factor f̄ = 0.38,
which is only slightly larger than the reel-out factor of one-
third that Loyd predicts [13].

The efficiency of the optimal solution can be assessed
by evaluating the overall power harvesting factor ζ̄, that is
defined as

ζ =
P

1
2ρ(r>ez)3Swu3∞(r>ez)

. (42)

The optimal solution has a harvesting factor ζ̄ = 4.6, which
is lower but close to a typical harvesting factor of 5.5
for conventional wind turbines, but significantly lower than
the harvesting factors up to 30 that in theory should be
attainable for high-efficiency AWE systems [7]. This is an
expected result as the RAWES is basically a flying wind

(a) isometric view (b) side view

(c) downstream view (d) top view

Fig. 2: Optimal reel-out (solid) and reel-in (dash) trajectories
of the tip of wing k = 1 for uref = 10m

s .

turbine, with the additional drawback that it’s inner parts are
not contributing to power extraction. For fair comparison
however, it must be noted that the RAWES needs only a
small amount of material to reach it’s operating altitude
compared to a wind turbine with similar efficiency.

The pitch profile of one of the wings is shown in Fig. 4
on the left. The profile is smooth and can be interpreted in a
straightforward way. A high average pitch characterizes the
reel-out phase, and a low average pitch the reel-in phase. In
the transition from reel-out to reel-in, the first harmonic has
an increased amplitude in order to change the rotor tilt, as
can be seen in Fig. 4 on the right. During reel-out, the rotor
tilt is small, as it is beneficial to align the rotation axis with
the wind direction. During reel-in, the rotor tilt increases to
more than 70◦ in order to reduce the tether force, which
violates the low-tilt AD modeling assumption. However, as
the induction factor is close to zero anyway during reel-in,
the breaking down of the induction model is not expected to
compromise the solution too much.

B. Operational regimes

In order to investigate the behaviour of the optimal design
θ∗ in different operating regimes, the power curve depicted
in Fig. 3 is obtained by solving (41) with the additional
constraint θ = θ∗ for different reference wind speeds uref .
Three operating regimes can be identified here.

Region I. The cut-in reference wind speed of this RAWES
design is about 5.4m

s . Up to this wind speed, the RAWES
must consume power in order to stay airborne. This operation
mode is also referred to as reversed pumping. The power
consumed at uref = 4m

s is about 30% of the rated power
output. The trajectory is characterized by very aggressive
steering, as can be observed in the pitch profile in Fig. 4 on
the left, as well as in the evolution of the rotor tilt depicted
in Fig. 4 on the right, which oscillates rapidly between



Fig. 3: Power curve for the optimal RAWES design θ∗

values down to 30◦ to values up to 130◦. This indicates that
the induction model is not suited in the reversed pumping
operating region.

Region II. In the region between the cut-in wind speed and
the rated wind speed, the RAWES produces an increasing
amount of power. The control strategy here is to maximize
the amount of energy that can be extracted out of the given
wind speed for the given design. The pumping trajectories
here all have a similar qualitative behaviour to the one
depicted in Fig. 2.

Region III. From the rated wind speed upwards, struc-
tural constraints limit the system power output. The control
strategy here is one of flying at decreasing altitudes where
wind speeds are lower, reaching the minimal altitude of 10m
from uref = 20m

s onwards. The rotary axis is increasingly
pointed sideways away from the wind vector to reduce the
available wind. The pitch profile is smooth and similar to the
one in Region II, although the reel-in pitch is much lower
because the apparent wind speed is much higher. The rotor
tilt does not vary greatly over the trajectory.

Fig. 4: Pitch profile p1 of wing k = 1 (left) and rotor tilt
angle ξ (right) for the optimal trajectories at uref = 10m

s
(solid), uref = 20m

s (dash) and uref = 4m
s (dash-dot)

V. CONCLUSIONS

Small-scale rigid-wing RAWES have been shown to bear
the potential of operating efficiently in different operational
regimes by using only pitch actuation as on-board control.
The reduction of complexity relative to general multiple-
kite systems comes at the price of low efficiency. Future
research will entail passive and active launch and landing

concepts. Improving the composition of structural elements
in the system is the subject of ongoing research.
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