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Abstract— This work presents an algorithm for solution
of Mixed-Integer Optimal Control Problems (MIOCPs) for
Solar Thermal Climate Systems (STCSs) with MPC-capable
runtime. We implement the so-called Combinatorial Integral
Approximation (CIA) algorithm for a model of an STCS of a
building that incorporates an adsorption cooling machine and
apply the algorithm within a numerical case study to solve a
Mixed-Integer Non-Linear Program (MINLP) resulting from
an MIOCP for the system. We compare the results of the CIA
algorithm to those of a general MINLP solver and show that our
algorithm achieves comparable solution quality at a runtime
that is up to 1000 times smaller.

I. INTRODUCTION

Energy consumption of buildings accounts for up to 40 %
of the total energy consumption of some developed countries
[1]. Major shares of this energy are used within Heating,
Ventilation and Air Conditioning (HVAC), while worldwide
more energy is consumed for cooling energy production than
for space heating [1]. In contrast to conventional cooling
devices driven by electrical energy, technologies like adsorp-
tion cooling can utilize low temperature heat like waste heat
of industrial processes and solar heat as driving energy for
the cooling process, and with this, facilitate more ecological
cooling energy production [2], [3].

Both operability and efficiency of an Adsorption Cooling
Machine (ACM) highly depend on its current operation con-
ditions regarding driving energy temperature and recooling
temperature [3]. When driving ACMs with waste heat or
solar thermal energy, energy occurrences can possibly be
predicted in the form of, e. g., production plans or weather
forecasts. This favors the use of optimization-based control
methods, where forecasts can be taken into account directly
for predictive control decisions that facilitate efficient ACM
operation.

Within MPC for ACMs, the subject of optimization can
either be the machine’s internal processes [4], [5] or the
optimized scheduling of an ACM of determined behavior [6].
In this work, we focus on the second case and optimize the
switching of an ACM depending on the predicted operation
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conditions. In presence of additional, continuous optimiza-
tion variables such as mass flow rates, the optimization
problem becomes a Mixed-Integer Optimal Control Problem
(MIOCP) [7].

For the solution of Optimal Control Problems (OCPs) in
general and for the special case of MIOCPs, the use of direct
methods and especially of direct multiple shooting or direct
collocation is favorable [7], [8]. For the case of MIOCPs, this
results in Mixed-Integer Non-Linear Programs (MINLPs).
General MINLP algorithms and according numerical solvers
exist to solve these problems, e. g., the open-source solver
Bonmin [9]. However, these solvers that aim to solve the
exact MINLP tend to work only on small time horizons, since
the problem complexity and with this also the potential solver
runtime increases exponentially with the number of discrete
time points. This renders these methods less favorable for
use within real-time MPC applications where solution speed
is crucial [7]. Therefore, it was proposed to decompose the
MINLP into a Non-Linear Program (NLP) and a Mixed-
Integer Linear Program (MILP) [10], [11]. This approach,
further referred to as Combinatorial Integral Approximation
(CIA), is justified by error bounds depending on the dis-
cretization grid and has been successfully applied to, e. g.,
water networks [12] and vehicle driving [13].

Within this work, we implement a CIA algorithm for a
model of a Solar Thermal Climate System (STCS) installed
at Karlsruhe University of Applied Sciences that incorporates
an ACM. Since the separate optimization of the ACM switch-
ing can result in situations where the machine’s scheduled
operation times do not match the optimized profile of the
continuously controllable mass flow rates, we implement
a subsequent NLP solution step as proposed in [11] to
avoid possible operation efficiency losses or even harmful
operating modes. The implemented algorithm is tested within
a numerical case study and the solutions are compared to
the results of Bonmin in terms of solution quality, runtime
and coverage of combinatorial, vanishing and slack variable
induced constraints. The algorithm is shown to achieve
results of comparable quality at a runtime that is up to 1000
times smaller and suitable for application within MPC of
climate systems.

The paper is structured as follows: In Section II, the STCS
considered within this study and the modeling approach for
the system are described. In Section III, the CIA algorithm
used within this work is introduced. The implementation of
the algorithm for the STCS is illustrated in Section IV and
the results of an application for multiple test scenarios are
evaluated. Section V concludes and suggests future work.



Fig. 1. Depiction of the STCS considered within this study. Red arrows indicate heat exchange, yellow arrows indicate solar irradiation.

II. SOLAR THERMAL CLIMATE SYSTEM

A. System description and control objective

A depiction of the STCS considered within this study,
which is installed at the Faculty of Management Science and
Engineering at Karlsruhe University of Applied Sciences, is
given in Fig. 1. It models an array of horizontally placed solar
thermal collectors with total collector surface Asc = 35.0 m2

and optical efficiency ηsc = 0.7 that supports a stratified High
Temperature (HT) water storage of volume Vhts = 2.0 m3.
The water mass flow rate ṁsc through the collectors1 can
be set on a continuous scale ṁsc ∈ [0, 0.5] kg/s.2 The hot
water from the top of the HT storage can be utilized for
operation of a silica-gel/water ACM which, when switched
on (bacm = 1), utilizes the heat from the HT storage to
absorb heat from a stratified Low Temperature (LT) water
storage with volume Vlts = 1.0 m3 and emits the combined
heat through a recooling tower.

The water from the bottom of the LT storage can be
used to support a set of fan coils that are operated for heat
exchange with the air mass mr,a = 2.16 · 103 kg of a room.
The water mass flow rate ṁfc,w through the fan coils can
be set on a continuous scale ṁfc,w ∈ [0, 0.3] kg/s, the air
mass flow rate ṁfc,a = 0.43 kg/s through the fan coils is
assumed constant.3 The room air also exchanges heat with
the concrete wall mass mr,c = 2.376 · 105 kg of temperature
Tr,c, which in turn exchanges heat with the environment
depending on the ambient temperature Tamb.

The room temperature Tr,a is affected by a time-varying
heat load Q̇load that is due to influences from heating through
solar irradiation on the building and internal heat loads from
machines and humans. The control objective for the system

1Usual system separations of outdoor circuits containing, e. g., glycol-
water-mixtures from indoor water circuits are neglected for simplicity.

2Within this study, we assume that additional, low-level controllers can
translate the mass flow rates requested by the high-level system controller
into corresponding pump speeds, and neglect minimum pump flow rates.

3In the real application, a constant operation of fan coils which we assume
here for simplicity would be inefficient. However, the operation of the fan
coils could be set depending on pump operation, so that the fans are activated
only when the pump is working, which results in a similar system behavior.

is to keep the room’s air temperature Tr,a within a defined
comfort range.

B. Modeling approach

The models used within this study are gray-box models
of system components based on mass and energy balances.
They fulfill all necessary conditions regarding differentiabil-
ity that enables further use within derivative-based optimiza-
tion methods, cf. [14]. The ACM and storage models have
been used successfully in a previous study [6]. Energy losses
to the environment are neglected except for room wall and
solar collectors. All materials and media within the system
are assumed to be incompressible and with constant specific
heat capacities and densities as given in Table I.

1) Solar collector model: A single-node solar collector
model is used to calculate the collector temperature Tsc as

Ṫsc(t) = C−1sc [ṁsc(t)cw(Thts,L(t)− Tsc(t))
+ ηscAscIg(t)− αscAsc(Tsc(t)− Tamb(t))]

(1)

with Csc = 2.6 kJ/K the heat capacity of the solar collectors
including the contained medium and αsc = 1.4 W/(m

2
K)

the heat transfer coefficient for the heat losses, cf. [15].
2) HT water storage: The volume Vhts of the stratified

storage tank is discretized into L = 4 layers and an
energy balance is calculated for each layer to determine its
temperature, cf. [16], [17], [6]. The occurrence of mass flows
between storage layers depends on the current value of ṁsc

and the ACM operation status bacm ∈ {0, 1}. Using the water
mass of a layer mhts = (ρwVhts)/L = 500 kg and assuming
ṁsc(t) < ṁacm,ht, the energy balance that determines the

TABLE I
SPECIFIC HEAT CAPACITIES AND DENSITIES OF MATERIALS AND MEDIA

Substance Specific heat capacity Density

Water cw = 4.12 kJ/(kgK) ρw = 103 kg/m3

Air ca = 1.005 kJ/(kgK) ρa = 1.2 kg/m3

Concrete cc = 0.88 kJ/(kgK) ρc = 2.2 · 103 kg/m3



temperature Thts,1 of the top layer can be calculated as

Ṫhts,1(t) = m−1hts[ṁsc(t)Tsc(t)

− (1− bacm(t))ṁsc(t)Thts,1(t)

+ bacm(t)(ṁacm,ht − ṁsc(t))Thts,2(t)

− bacm(t)ṁacm,htThts,1(t)].

(2)

The energy balance for each middle layer k = 2, . . . , L−1
is given in (3) and for the bottom layer in (4).

Ṫhts,k(t) = m−1hts[(1− bacm(t))ṁsc(t)Thts,k−1(t)

− bacm(t)(ṁacm,ht − ṁsc(t))Thts,k(t)

+ bacm(t)(ṁacm,ht − ṁsc(t))Thts,k+1(t)

− (1− bacm(t))ṁsc(t)Thts,k(t)]

(3)

Ṫhts,L(t) = m−1hts[−ṁsc(t)Thts,L(t)

+ (1− bacm(t))ṁsc(t)Thts,L−1(t)

+ bacm(t)ṁacm,htTacm,ht,out(t)

− bacm(t)(ṁacm,ht − ṁsc(t))Thts,L(t)]

(4)

3) Adsorption cooling machine and recooling tower:
We assume the temperature of the medium supplied by the
recooling tower to be of a constant difference ∆Trc to the
current ambient temperature Tamb. Given valid inlet temper-
ature configurations for ACM operation, the mean cooling
power Q̇acm,lt and the mean Coefficient Of Performance
(COP) of an ACM during an adsorption cycle is determined.
According data can, e. g., be obtained from measurements
or machine data sheets. From suitable (polynomial) curve
fittings fQ̇acm,lt

(·) and fcop(·) to these data, energy balances
for the machine’s three circuits can be calculated as in

Q̇acm,lt(t) = fQ̇acm,lt
(Thts,1(t), Tlts,1(t), Tamb(t)),

Q̇acm,ht(t) =
Q̇acm,lt(t)

fcop(Thts,1(t), Tlts,1(t), Tamb(t))
,

Q̇acm,mt(t) = Q̇acm,lt(t) + Q̇acm,ht(t).

(5)

Low Medium Temperature (MT) input temperatures and
high HT and LT input temperatures are favorable conditions
for efficient operation of the ACM [3]. Using (5), the mean
output temperatures of the ACM can be calculated as

Tacm,lt,out(t) = Tlts,1(t)− Q̇acm,lt(t)

cwṁacm,lt
,

Tacm,ht,out(t) = Thts,1(t)− Q̇acm,ht(t)

cwṁacm,ht
,

Tacm,mt,out(t) = Tamb(t) + ∆Trc +
Q̇acm,mt(t)

cwṁacm,mt
,

(6)

using the mass flow rates ṁacm,lt = 48 kg/min, ṁacm,ht =
41.8 kg/min and ṁacm,mt = 85 kg/min. Though the cyclic
output temperature behavior of an ACM is not covered
by this model, it becomes applicable due to the storages
connected to the HT and LT side of the machine and the
comparatively high mass flow rate of the MT circuit which
dampen the effect of fluctuating output temperatures, see
[18], [6].

4) LT water storage: The LT storage model (7) is for-
mulated analogously to the HT storage model using M = 3
layers and mass flow rates and temperatures of fan coils and
ACM LT circuit. A detailed depiction is omitted for brevity.

Ṫlts,1(t) = flts,1(Tfc,w(t), Tlts,{1,2}(t), ṁfc,w(t), bacm(t))

Ṫlts,2(t) = flts,2(Tlts,{1,2,3}(t), ṁfc,w(t), bacm(t))

Ṫlts,3(t) = flts,3(Tacm,lt,out(t), Tlts,{2,3}(t),

ṁfc,w(t), bacm(t))

(7)

5) Fan coil and room models: The model of the fan
coils is a single-node model of a gas-liquid heat exchanger
with heat transfer coefficient (Aα)fc = 475 W/K. The
temperatures of the water side Tfc,w and the air side Tfc,a are
calculated according to (8) with mfc,w = 3.6 kg the water
mass and mfc,a = 0.198 kg the air mass inside the fan coil.

Ṫfc,w(t) =
ṁfc,w(t)cw(Tlts,M (t)− Tfc,w(t)) + Q̇fc(t)

mfc,wcw

Ṫfc,a(t) =
ṁfc,a(t)ca(Tr,a(t)− Tfc,a(t))− Q̇fc(t)

mfc,aca

Q̇fc(t) = (Aα)fc(Tfc,a(t)− Tfc,w(t))

(8)

The model for the room’s air mass temperature Tr,a and
the wall’s concrete mass temperature Tr,c is a single-node
model given in (9). Heat exchange between air and concrete
depends on the wall surface Ac = 540 m2 and a heat transfer
coefficient αa,c = 1.5 W/(m

2
K).

Ṫr,a(t) =
ṁfc,a(t)ca(Tfc,a(t)− Tr,a(t)) + Q̇r,i(t)

mr,aca

Ṫr,c(t) =
Acαa,c(Tamb(t)− Tr,c(t))− Q̇r,i(t)

mr,ccc

Q̇r,i(t) = Acαa,c(Tr,c(t)− Tr,a(t))

(9)

6) Operation conditions and constraints: The time-
varying profiles for ambient temperature Tamb, global solar
irradiation Ig and heat load Q̇load are assumed as known at
all times. System temperatures must neither exceed Tub =
110 ◦C nor go below Tlb = 5 ◦C. The temperature bound-
aries for ACM operation are given in Table II.

III. MIXED-INTEGER OPTIMAL CONTROL

Within this section, we first introduce a generic MIOCP
statement. On that basis, we introduce the chosen discretiza-
tion and CIA solution approach, followed by a more detailed
description of the binary control approximation method.

TABLE II
TEMPERATURE BOUNDARIES FOR ACM OPERATION

Temperature Lower bound Upper bound

Tlts,1 Tlt,lb = 10 ◦C Tlt,ub = 22 ◦C

Thts,1 Tht,lb = 55 ◦C Tht,ub = 95 ◦C

Tamb Tamb,lb = 14 ◦C Tamb,ub = 36 ◦C



A. Problem statement

Let ~x(t) ∈ Rnx be the differential states, ~u(t) ∈ Rnu the
continuous controls, b(t) ∈ {0, 1} the binary control, ~s(t) ∈
Rns a vector of slack variables and ~c ∈ Rnc time-varying
parameters with nx, nu, ns, nc ∈ N and t ∈ [t0, tf ] ⊂ R
element of a given time horizon. We minimize the sum of the
continuous-time Lagrangian cost functional L(·), which is
assumed to be integrable on the time horizon, and the Mayer
term M(·). Function ~f(·) describes the right hand side of
the differential equations and ~r(·) describes path constraints
with lower bound ~rlb and upper bound ~rub that can be
relaxed by making use of ~s. The functions ~f(·) and ~r(·) are
assumed to be continuously differentiable in all arguments
within the domain of interest. Lastly, X and U denote the
feasible domains of the states and the continuous controls,
respectively. With ~x0 ∈ Rnx the initial state vector and
~v(t)> = [~x(t)>~u(t)>b(t) ~s(t)>] the vector of optimization
variables, the general problem reads as

min
~v(·)

tf∫
t0

L(t, ~x(t), ~u(t), b(t), ~s(t)) dt+M(~x(tf)) (10a)

s.t. for t ∈ [t0, tf ] :

~̇x(t) = ~f(~x(t), ~u(t), b(t),~c(t)), (10b)
~rlb ≤ r(t, ~x(t), ~u(t), b(t), ~s(t),~c(t)) ≤ ~rub, (10c)
~x(t0) = ~x0, (10d)
~x(t) ∈ X , ~u(t) ∈ U , b(t) ∈ {0, 1}. (10e)

B. Problem discretization and CIA approach

Using a first discretize, then optimize approach [7], we
introduce a discretization grid GN , divide the time horizon in
N control intervals and apply the direct collocation method
on this grid, so that the system dynamics (10b) and the
path constraints (10c) are reformulated into mixed-integer
nonlinear equations and inequalities, respectively. Altogether,
this discretization step reformulates the MIOCP into an
MINLP. For further details regarding direct collocation we
refer to [14].

Since MINLPs are often (very) hard to solve, there exist
a variety of solution methods [19]. Due to its specific
problem structure, the CIA decomposition approach has been
proposed to solve discretized MIOCPs [10], [11]. The idea
is to solve a relaxed MINLP, which is an NLP, before
approximating the relaxed controls with binary controls,
which turns out to be an MILP.

Considering the approximated binary control profile, the
continuous controls optimized within the first NLP are not
necessarily optimal or even valid anymore regarding control
objective and constraints. Therefore, we solve the NLP again
with the binary controls fixed in order to adjust the con-
tinuous controls to the obtained binary solution. To achieve
feasibility, it might be necessary for the optimizer to relax the
path constraints via slack variables if (due to the determined
binary controls) a feasible solution cannot be obtained from
adjustment of the continuous controls alone.

Algorithm 1 summarizes the steps of the CIA algorithm.
Note that the discretized MIOCP is the aforementioned
MINLP and by relaxing the integrality constraint for ~b from
b ∈ {0, 1} to b ∈ [0, 1] for all b ∈ ~b, we obtain (NLP). ~b is
then discretized on N intervals, unlike in the MIOCP, and
reads therefore as a vector. (NLP) is assumed to be solved
by an NLP solver, e.g., Ipopt [20].

Algorithm 1: CIA algorithm for MIOCP
Input : Discretized (MIOCP) instance with grid GN ,

initial guesses for ~x, ~u,~b.
Output: (Local) Optimal variables ~x∗, ~u∗,~b∗, ~s∗ with

objective L∗ = L(~x∗, ~u∗,~b∗, ~s∗).
1 Initialize ~s = ~0 and solve (NLP) → ~x, ~u, ~brel, ~s, Lrel.
2 if ~brel ∈ {0, 1}N then
3 return: (~x∗, ~u∗,~b∗, ~s∗,L∗) = (~x, ~u,~brel, ~s,Lrel);
4 else
5 Solve binary control approximation for ~brel → ~bbin;
6 Solve (NLP) with ~b = ~bbin fixed → ~x, ~u, ~s, Lbin;

7 return: (~x∗, ~u∗,~b∗, ~s∗,L∗) = (~x, ~u,~bbin, ~s,Lbin);
8 end

If this procedure is repeated with an iteratively refined
discretization grid, the achieved solution is going to be
arbitrarily close to its relaxed solution. In the following,
we refer to Step 1 of Algorithm 1 as CIANLP,1, Step 5
as CIAMILP and Step 6 as CIANLP,2. The binary control
approximation problem that plays an important role in our
algorithm is illustrated in the upcoming subsection.

C. Binary control approximation

A theorem by Sager et al. [10] supports bounds for
the rounding error, when solving first the NLP and then
approximating the binary controls. Furthermore, it suggests
to minimize the maximal accumulated difference of relaxed
and binary controls in integral sense. Formulated as a math-
ematical term and in the MIOCP setting it reads as

min
bbin(·)

max
t∈[t0,tf ]

‖
∫ t

t0

brel(τ)− bbin(τ)dτ‖. (11)

If we discretize the controls, it results

min
~bbin

max
j∈GN

∣∣∣∣∣
j∑

i=t0

(bi,rel − bi,bin) ·∆ti
∣∣∣∣∣ , (12)

with ∆ti := ti+1−ti, ti, ti+1 ∈ GN which can be formulated
as an MILP and solved using an MILP solver, or solved
directly using a tailored Branch and Bound algorithm [10].

IV. IMPLEMENTATION AND APPLICATION

Within this section, we give a description of the MIOCP
formulation for the STCS introduced in Section II and
details on software implementation. Afterwards, the results
of the application of the algorithms for selected scenarios are
discussed.



A. Optimal control problem formulation
In order to adapt the MIOCP formulation to our HVAC

system, we first recognize our differential states

~x> = [Thts,{1,2,3,4} Tlts,{1,2,3} Tsc Tfc,{w,a} Tr,{a,c}], (13)

continuous controls ~u> = [ṁsc ṁfc,w] and the obvious
binary control b = bacm. Thus, it holds nx = 12 and nu = 2.
Further, we introduce ns = 7 slack variables ~s. The time-
varying parameters are ~c> = [Tamb Q̇load Ig] such that nc =
3. With ~v(t)> = [~x(t)>~u(t)>b(t) ~s(t)>] the vector of opti-
mization variables and ~s(t)> = [∆Tr,a(t) ~slb(t)> ~sub(t)>],
the MIOCP for the STCS reads as

min
~v(·)

∫ tf

t0

~u(t)>Wu~u(t) dt+

∫ tf

t0

~s(t)>Ws~s(t) dt

− wThts,1
Thts,1(tf) + wTlts,3

Tlts,3(tf)

(14a)

s. t. for t ∈ [t0, tf ] :

(1)-(9), (14b)
Tr,a,lb ≤ Tr,a(t) + ∆Tr,a(t) ≤ Tr,a,ub, (14c)

~ε ≥ b(t)

 Tht,lb − Thts,1(t)
Tlt,lb − Tlts,1(t)
Tamb,lb − Tamb(t)

− ~slb(t)

 , (14d)

~ε ≥ b(t)

 Thts,1(t)− Tht,ub
Tlts,1(t)− Tlt,ub
Tamb(t)− Tamb,ub

− ~sub(t)

 , (14e)

Tlb ≤ T (t) ≤ Tub, ∀ T (t) ∈ ~x(t), (14f)
~ulb ≤ ~u(t) ≤ ~uub, (14g)
b(t) ∈ {0, 1}, (14h)
~x(t0) = ~x0. (14i)

The Lagrange term of the objective (14a) contains the sum
of squares of continuous controls ~u and slack variables ~s
weighted by appropriately chosen weightings Wu ∈ Rnu×nu

and Ws ∈ Rns×ns , respectively. The minimization of ~u
favors energy efficient pump use, while minimization of ~s
reduces the deviation ∆Tr,a of the room temperature from
the comfort range Tr,a,lb = 21◦C and Tr,a,ub = 23◦C in
(14c) as well as the use of ~slb and ~sub for relaxation of the
temperature boundaries for ACM operation (14d) and (14e).

The Mayer term contains the final storage layer tempera-
tures Thts,1(tf) and Tlts,3(tf) weighted by wThts,1

and wTlts,3
,

respectively, which favors to always drive the system towards
a reactive configuration of high values for Thts,1 and low
values for Tlts,3, which, e. g., is especially important within
later MPC applications.

The system dynamics that must be fulfilled are given
in (14b). The path constraints that enforce the temperature
bounds for ACM operation are formulated in (14d) and (14e)
as smoothened vanishing constraints [21]. Bounds on con-
tinuous controls given in (14g) and on states given in (14f)
must be fulfilled as well as the binary constraint (14h) and
the initial state in (14i).

B. Software implementation
The MIOCP discretization is conducted using direct col-

location with Lagrange polynomials and implemented in

CasADi 3.2.0 [22] in Python. The problem is solved once
using Bonmin and once using CIA. Within CIA, Ipopt is used
as NLP solver. The binary approximation (12) is computed
using a custom implementation of the Branch and Bound
algorithm in [10] in C++ and interfaced from Python.

Within both methods, MA27 [23] is used as linear solver
for Ipopt. Valid initial guesses for optimization variables are
obtained by system simulations using a simple, set-point-
based control scheme in OpenModelica [24] via OMPython
[25]. Within all methods and solution steps, conditions
determine the maximum number of switchings σmax = 4.

C. Test scenarios

For testing the control formulation and implementation,
the following operation scenarios of solar irradiation Ig and
ambient temperature Tamb recorded at Karlsruhe University
of Applied Sciences in 2017, with an assumed, corresponding
heat load Q̇load as shown in Figure 2 are considered, which
are assumed known to the controller.
S1: Cloud-free, high solar irradiation with nearly ideal solar

profile; high ambient temperature with peak shifted in
relation to the solar irradiation peak.

S2: Cloudy, less irradiation throughout the day, irradiation
peaks in the afternoon; lower peak temperatures.

S3: Cloudy during noon, therefore no solar irradiation peak
during that time; ambient temperature lower at noon.

S4: Irradiation is high until noon, then drops; most of the
day, ambient temperatures are below the comfort range.

Each scenario starts at midnight and lasts 24 h, with
N = 360 equidistant control intervals of length ∆t =
240 s. Within one interval, ambient conditions are assumed
constant. The vector for the initial states is given as ~x0 =
[55.0 51.7 48.3 45 20 19 18 20 21.5 21.5 21.5 21.5]> ◦C.

D. Comparison of optimization results

Table III shows the quality of the solutions for (14) ob-
tained by Bonmin and CIA on a number of key figures K. K1

is the solution time on an Intel Core i5-4570 3.20 GHz CPU
and K2 the achieved objective value. K3 is the mean and
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TABLE III
COMPARISON OF SOLUTION QUALITY OF CIA (C) AND BONMIN (B) FOR SCENARIOS S1-S4 .

Key figure Unit S1-C S1-B S2-C S2-B S3-C S3-B S4-C S4-B
K1 Solution time s 9.39e+01 4.80e+04 5.95e+01 6.26e+04 6.07e+01 1.89e+05 6.01e+01 6.50e+02
K2 Objective value - -7.93e+00 -7.94e+00 -6.76e+00 -7.46e+00 -4.12e+00 -4.89e+00 -7.14e+00 -6.03e+00
K3 (N + 1)−1

∑N+1
k=1 ∆Tr,a,k

◦C -1.68e-03 -1.65e-03 -2.81e-03 -2.19e-03 -1.21e-02 -7.06e-03 2.95e-10 3.24e-12
K4 maxk=1,...,N+1(|∆Tr,a,k|) ◦C 4.76e-02 4.74e-02 5.02e-02 3.47e-02 1.48e-01 8.23e-02 6.06e-10 6.67e-12
K5 N−1

∑N
k=1 slb,1,k

◦C 8.83e-05 8.06e-05 4.09e-05 1.92e-04 3.61e-05 6.42e-06 2.15e-05 4.00e-05
K6 maxk=1,...,N (|slb,1,k|) ◦C 2.58e-03 1.39e-02 4.10e-05 2.96e-02 3.61e-05 6.42e-06 2.15e-05 4.02e-05
K7 N−1

∑N
k=1 slb,2,k

◦C 4.14e-05 1.46e-05 2.66e-03 3.97e-05 6.18e-03 2.37e-04 1.22e-04 4.00e-05
K8 maxk=1,...,N (|slb,2,k|) ◦C 1.67e-03 1.95e-03 4.06e-01 8.47e-03 2.85e-01 4.55e-02 3.61e-02 4.00e-05
K9 Thts,0,N+1

◦C 1.04e+02 1.04e+02 9.78e+01 9.64e+01 8.19e+01 7.97e+01 8.80e+01 7.24e+01
K10 Tlts,3,N+1

◦C 1.65e+01 1.61e+01 2.02e+01 1.96e+01 2.01e+01 1.98e+01 1.64e+01 1.13e+01
K11

∑N
k=1 bacm,k∆t s 2.16e+04 2.18e+04 8.64e+03 1.01e+04 2.06e+04 2.21e+04 7.20e+02 4.32e+03

K12
∑N

k=1 ṁsc,k∆t kg 5.04e+03 5.05e+03 4.50e+03 2.33e+03 4.94e+03 4.03e+03 7.00e+02 1.78e+03
K13

∑N
k=1 ṁfc,w,k∆t kg 3.36e+03 3.34e+03 1.89e+03 1.70e+03 4.79e+03 4.62e+03 2.45e-04 0.00e+00

K4 the maximum absolute deviation of the room temperature
from the comfort range ∆Tr,a. K5 to K8 are the mean and
maximum absolute values of the utilized slack variables slb,1
and slb,2. K9 and K10 are the final values of Thts,1 and
Tlts,3. In K11 the total ACM runtime is given and in K12

and K13 the total amount of mass transported by the solar
circuit pump and cooling circuit pump, respectively.

It is shown that all solution times K1 of CIA are below
102 s which is a fraction of the control interval length ∆t,
while solution times for Bonmin are up to several orders
of magnitude higher. This can be explained by the number
of NLPs solved within CIA being exactly two, while within
one run of Bonmin possibly several hundreds of NLPs are
solved. Nevertheless, the objectives K2 obtained by CIA are
comparable to the results of Bonmin. The aim of preserving
the comfort range (14c) is fulfilled well for both methods in
terms of K3 and K4 and the final storage layer temperatures
in K9 and K10 are comparable. The differences in K9 to
K11 for S4 show a higher utilization of ACM and driving
energy from the HT storage by Bonmin to achieve a lower
LT storage temperature than CIA which results in a similarly
good solution for (14).

Apart from that, the differences in solutions mainly lie
within different utilization of pumps and slack variables for
path constraint relaxation. Reasons for this can be illustrated
on a more detailed comparison of the solutions for S2 in Fig-
ure 3. It shows that the development of system temperatures
is similar, ACM operation is predictively scheduled within
efficient operation conditions and the maximum switching
constraint is fulfilled for both methods. However, utilization
of the solar circuit pump is much higher for CIA for time
points before approx. N = 170. This is caused by the ACM
operation schedule obtained by CIAMILP from the relaxed
profile of CIANLP,1 that switches on the ACM relatively
early compared to the profile obtained by Bonmin, which
forces the optimizer in CIANLP,2 to utilize more pump
operation in order to establish Thts,1 ≥ Tht,lb for valid ACM
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ṁsc,Bonmin
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Fig. 3. Detailed depiction of solution for scenario S2.

operation. Since the energy provided by solar irradiation is
limited, the optimizer needs to temporarily decrease parts of
the minimum operation conditions in (14d) by about 0.4 ◦C
using slb,2 around approx. N = 120 and by about 0.1 ◦C
around approx. N = 170 to preserve feasibility of the NLP.

With Bonmin, such situations do not occur since binary
and continuous controls are treated simultaneously. However,
in practical HVAC applications constraint violations of such
dimension appear tolerable and the benefits of improved
system control facilitated by shorter solution times prevail
the drawback of small, temporary constraint violations. Ad-
ditionally, more restrictive constraints could be chosen for the
MIOCP such that small constraint violations do not violate
the actual operation conditions of the controlled machinery.



E. Relation of solution time and number of control intervals

Figure 4 depicts a comparison of the solution times of
Bonmin and CIA, as well as the duration of the several
CIA solution steps CIANLP,1, CIAMILP and CIANLP,2 for
different numbers of control intervals N for S1.

The runtime increases from N = 90 to N = 360 by
roughly one order of magnitude for CIA and two orders
of magnitude for Bonmin. CIA runtime stays below 102 s
for all tested discretizations, while the runtime of Bonmin
nearly approaches 105 s. The solution time of CIAMILP is
very low in comparison to the NLP solutions steps, while the
solution of CIANLP,2 appears to take less time than solving
CIANLP,1. This can be reasoned by CIANLP,2 being initial-
ized with the solution of CIANLP,1 and CIAMILP, which is
likely to be a better initialization than the one for CNLP,1

obtained in OpenModelica. This behavior is favorable for
use of the CIA algorithm within MPC application where,
after the first solution, the control problem is initialized with
the optimal solution of the previous time step.

V. CONCLUSIONS AND FUTURE WORK

Within this work, we presented an algorithm for mixed-
integer optimal control of solar thermal climate systems
with MPC-capable runtime. Compared to the general MINLP
solver Bonmin, the algorithm is able to obtain solutions of
similar quality at a highly reduced runtime.

Future work should focus on the introduction of multiple
binary controls for the algorithm, investigations on the run-
time development for increasing system sizes and application
of the method for MPC of the simulated and physical system.
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