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Abstract: Optimization problems arising in Optimum Experimental Design (OED) appli-
cations require repeated covariance matrix evaluations of the underlying Parameter Estima-
tion (PE) problems. The complexity of this task grows quickly with the problem dimensions,
especially when process noise is considered. In this paper, a Schur complement method is
proposed to alleviate this problem by translating the covariance matrix evaluation into the
solution of a sparse linear system and the inversion of a small-scale matrix. The method is used
as a building block for the open-source software package casiopeia, a powerful and easy-to-
use environment for OED and PE. The performance of the software and the proposed Schur
complement method is assessed on a numerical example.
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1. INTRODUCTION

In Parameter Estimation (PE) problems, the amount
of information that can be extracted on the unknown
parameters strongly depends on whether the conducted
experiment was able to sufficiently excite the relevant
system dynamics. A useful indicator for assessing the
quality of the estimation results is the covariance matrix
of the estimated parameters, see e. g. Walter and Pronzato
(1997), Pronzato (2008). High values for a parameter’s
variance indicate that the setup was not optimal for
determining its true value – even if the fitting to the given
measurements is satisfactory – since either the inputs of
the system were not well designed or the adopted model
was inadequate. High covariance values may for instance
occur when the values of some model parameters strongly
depend on the values of others.

Since it is favorable not only to evaluate the informa-
tion content of one experiment, but to ex ante determine
meaningful experimental setups to reduce effort and cost,
the covariance matrix is further used within Optimum
Experimental Design (OED) to design experiments that
result in a higher confidence on the estimated parameter
values 1 (Pronzato, 2008), (Bock et al., 2013). In OED, the
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1 Other OED approaches aim at minimizing the cost of the identi-
fication experiment while guaranteeing an acceptable control perfor-
mance, see e. g. Annergren (2016).

covariance matrix is part of the objective of an optimiza-
tion problem, which makes the efficient evaluation of the
matrix crucial and every increase in computational effort
problematic. Different approaches exist to calculate and
use the covariance matrix in this context, see e. g. Bauer
et al. (2000), Körkel (2002), Körkel et al. (2004), Bock
et al. (2007), Kostina and Kostyukova (2012).

If a system is subject to noise that affects its dynamics and
this noise is not explicitly considered within the PE prob-
lem, the estimation results may be inaccurate. As a remedy
to this, additional degrees of freedom can be introduced
in the PE problem formulation that capture such process
noise and improve the estimation results. This approach
is customary in the field of optimization based state and
parameter estimation, see e. g. Rao et al. (2003). However,
these additional degrees of freedom increase the effort to
evaluate the covariance matrix, which can in turn have a
negative impact on the solution times of OED problems.

Within this paper, a method to compute the covariance
matrix based on the Schur complement is presented, which
relies on the solution of a sparse linear system and the
inversion of a small-scale matrix (with dimension equal
to the number of estimated parameters). Although the
method is presented for the case of process noise, it is de-
liberately kept generic and thus applicable to other types
of noise as well. To facilitate direct use within PE and OED
applications, the open-source software package casiopeia
that contains an implementation of the proposed method is
introduced and its performance is assessed on a numerical
example.



The paper is organized as follows. Section 2 shows how
the consideration of process noise increases the effort to
compute the covariance matrix for both unconstrained and
equality constrained parameter estimation problems. In
Section 3 the Schur complement method for the covariance
matrix evaluation is presented. The requirements for using
this approach within OED are discussed in Section 4.
Finally, casiopeia is introduced in Section 5 and its
performance is assessed in the numerical case study of
Section 6.

1.1 Notation

In the following, the accent ā is used to denote a variable
that is fixed within an optimization problem. The accent
ã means that the variable is polluted by noise and â that
it is the solution of an optimization problem.

2. COVARIANCE MATRICES IN PARAMETER
ESTIMATION

In the following, we introduce the notion of covariance ma-
trices in the context of both unconstrained and constrained
least-squares PE. Least squares PE is a common method
for formulation of linear and nonlinear PE problems, see
e. g. Nocedal and Wright (2006). Further, we show how the
consideration of process noise increases the computational
effort to evaluate the covariance matrices.

2.1 Evaluation of covariance matrices

Consider a possibly nonlinear, unconstrained least-squares
PE problem of the form

p̂ = arg min ‖ỹ − h(p; ū)‖2
Σ−1

y
, (1)

with unknown parameters p ∈ Rnp and fixed, noise-
free inputs ū ∈ Rnu that are applied to the system
during a certain experiment. 2 The measurement values
ỹ ∈ Rny are polluted by additive, zero-mean Gaussian
noise N (0,Σy) with Σy ∈ Rny×ny the (co-)variances of the
measurements. 3 The weighting matrix Σ−1

y is the inverse
of Σy. The model response h(·) ∈ Rny may e. g. come from
a single shooting discretization of a dynamic system, see
e. g. Press (2007). It is assumed that the inputs are piece-
wise constant within one discretization interval and the
measurements are taken at the discretization time points.

The covariance matrix can now be used for assessing
the quality of the estimation results p̂ of (1) for the
experimental setup determined by ū. An estimate for this
matrix is

Σp̂ =

((
∂h

∂p
(p̂; ū)

)>
Σ−1

y

(
∂h

∂p
(p̂; ū)

))−1

, (2)

2 The vector ū contains the vectorized inputs of all time steps.
3 The vector ỹ contains the vectorized measurements of all time
points. The noise of the measurements is assumed to be uncorrelated
between time points, but can be correlated for measurements at one
time point, i. e., the matrix Σy can be diagonal or block-diagonal.

as in Bauer et al. (2000). In order to obtain an unbiased
estimate for the covariance matrix, Σp̂ has to be scaled by
a factor

βp̂ =
‖ỹ − h(p̂; ū)‖2

Σ−1
y

(N − np)
, (3)

whereN is the number of measurements of the experiment.
In case (1) is a linear PE problem, βp̂Σp̂ is an unbiased
estimator for the covariance matrix of (1) (Ljung, 1999).
In case (1) is nonlinear, βp̂Σp̂ is an approximation for the
covariance matrix.

2.2 Covariance matrix evaluation under process noise

If the system is subject to process noise, additional degrees
of freedom w ∈ Rnw can be introduced in the optimization
problem to yield more accurate results. For zero-mean
Gaussian process noise N (0,Σw) with (co-)variances Σw ∈
Rnw×nw , the PE problem becomes

(p̂, ŵ) = arg min ‖ỹ − h(p, w; ū)‖2
Σ−1

y
+ ‖w‖2

Σ−1
w
. (4)

The covariance matrix of (4) is now obtained from

Σv̂ =

((
∂h∗

∂v
(v̂; ū)

)> [
Σ−1

y 0
0 Σ−1

w

](
∂h∗

∂v
(v̂; ū)

))−1

(5)

with v> =
[
p> w>

]
∈ Rnv and h∗(·)> =

[
h(·)> w>

]
. The

scaling factor becomes

βv̂ =
‖ỹ − h(p̂, ŵ; ū)‖2

Σ−1
y

+ ‖ŵ‖2
Σ−1

w

(N − np)
. (6)

The matrix Σp̂ is now a submatrix of Σv̂, located at the
upper left corner due to the ordering of the optimization
variables. The dimensions of Σv̂ are indicated in (7).

Σv̂ =
Σp̂ Σ>p̂,ŵ

Σp̂,ŵ Σŵ


 np

nw

np nw

(7)

This implies that the computational effort for obtaining
Σp̂ has increased, despite the fact that the content of the
other submatrices of Σv̂ is typically not of interest.

2.3 Covariance matrices for equality constrained problems

For PE of dynamic systems, it is usually favorable to use
multiple shooting instead of single shooting for discretiza-
tion of the dynamics (Bock, 1983). This results in equality
constrained PE problems.

Consider the equality constrained least-squares PE prob-
lem of the form



minimize
p, x, w

‖ỹ − h(p, x, w; ū)‖2
Σ−1

y
+ ‖w‖2

Σ−1
w

subject to g(p, x, w; ū) = 0,
(8)

with g ∈ Rng coming from a multiple shooting discretiza-
tion of a dynamic system. Vector x contains the optimiza-
tion variables introduced for the system’s states.

Let z> =
[
p> x> w>

]
be the concatenation of the opti-

mization variables and B(·) the Hessian approximation of
the Generalized Gauss-Newton method (Bock, 1983). We
define the Karush-Kuhn-Tucker (KKT) matrix K of (8)
as

K(z, ū) =

[
B(z; ū) gz(z; ū)>

gz(z; ū) 0

]
, (9)

with gz(·) the Jacobian of g(·) with respect to z. The
covariance matrix Σẑ of the equality constrained least-
squares PE problem in (8) is now equal to the upper left
submatrix of K−1, i. e.,

K−1(ẑ; ū) =
M11 M>21

M21 M22


 nz

ng

nz ng

(10)

with Σẑ = M11 (Kostina and Kostyukova, 2012). Note that
Σẑ contains all (co-)variances for all optimization variables
z. Again, due to the ordering of the variables p, x, and w in
z, only the upper left submatrix Σp̂ of Σẑ contains relevant
information on the quality of p̂. For a multiple shooting
problem (8) and a corresponding single shooting problem
(4), the resulting covariance matrices Σp̂ coincide. 4

3. COVARIANCE MATRIX EVALUATION VIA A
SCHUR COMPLEMENT METHOD

In this section, an efficient approach is presented to obtain
Σp̂ from K using the Schur complement.

3.1 Efficient matrix inversion using linear solvers

In principle, Σp̂ can directly be obtained from K−1 as

Σp̂ = Z>p (K−1Zp), (11)

with Zp being a projection matrix from K−1 to Σp̂, i. e.,

Zp =
I

0




np

np

nz + ng − np
(12)

and I ∈ Rnp×np the identity matrix.

For this calculation to be efficient, it is crucial not to
explicitly calculate K−1, but to evaluate (K−1Zp) directly.
Consider a numerical (or symbolic) linear solver solve()
that is able to solve a linear system of the form
4 In single shooting, w also contains degrees of freedom for estima-
tion of the initial states.

AX = C, (13)

with A ∈ Rn×n, C ∈ Rn×m known and X ∈ Rn×m

unknown as in

X = solve(A,C). (14)

Then, solve() can be used to directly compute Σp̂ as

Σp̂ = Z>p · solve(K,Zp). (15)

without explicitly computing K−1 beforehand which re-
duces the computational effort significantly, see e. g. Golub
and Loan (1996). The multiplication with Z>p is only a
selection of elements from solve(K,Zp) and therefore it
introduces no additional computational cost. Further gain
in efficiency is obtained if solve() can exploit the sparsity
of the involved matrices.

3.2 Inversion of submatrices using the Schur complement

When K is partitioned as

K =
K11 K>21

K21 K22


 np

(nz − np + ng)

np (nz − np + ng)

(16)

the Schur complement can be used to compute the covari-
ance matrix Σp̂, which corresponds to the upper left block
of the inverse of (16), as

Σp̂ = (K11 −K>21(K−1
22 K21))−1. (17)

Note that K22 is invertible if the Nonlinear Programming
(NLP) problem that corresponds to the problem with all
parameters p fixed, satisfies the Second Order Sufficient
Condition for local optimality (Nocedal and Wright, 2006).
This assumption corresponds to a well-posed parameter
estimation problem and it is for example the case when the
constraints come from a multiple shooting discretization
and the disturbances are penalized with positive definite
weighting matrices. 5

Again, it is crucial to compute (K−1
22 K21) at once using

the previously introduced solve() operator. In this case,
Σp̂ is evaluated as

Σp̂ = (K11 −K>21 · solve(K22,K21))−1. (18)

In order to obtain an unbiased estimator, Σp̂ needs now to
be scaled by the factor

βẑ =
‖ỹ − h(p̂, x̂, ŵ; ū)‖2

Σ−1
y

+ ‖ŵ‖2
Σ−1

w

(N − np)
. (19)

5 The authors in Walter and Pronzato (1997) apply this method on
covariance matrices of unconstrained PE problems where the inverse
of K22 might not exist and mention possible remedies for that case.



A comparison of the evaluation times for the discussed
approaches is provided in Section 6.5, using a numerical
example.

4. APPLICATION TO OPTIMUM EXPERIMENTAL
DESIGN

Within this section, an introduction to OED is pro-
vided and the relevant optimization problem is formulated.
Based on this formulation, the requirements for a dedi-
cated software implementation are derived.

4.1 Optimum experimental design problem formulation

The aim of OED is to generate optimized inputs û for an
experiment that eventually reveal more information on the
unknown parameters p than a less educated guess ū.

These optimized inputs can be obtained from the solution
of an optimization problem of the form

minimize
x, u

Φ(Σp(x, u; p̄, w̄))

subject to g(x, u; p̄, w̄) = 0,

xmin ≤ x ≤ xmax,

umin ≤ u ≤ umax,

(20)

where the objective is a scalar information function Φ(·)
of the covariance matrix Σp(·) for the corresponding PE
problem with free optimization variables x, u. The problem
is also subject to the constraints g(·) imposed by the
system dynamics (in form of, e. g., a multiple shooting
discretization) and possibly upper and lower bounds on
states x and inputs u. For further information on OED
see e. g. Bock et al. (2013).

In (20), p̄ is an initial guess of sufficient quality for the
true value of p, which can be obtained from the literature,
previous experiments or other prior knowledge on the
considered system. The process noise w̄ is assumed to be
all 0. 6

4.2 Software implementation requirements

When (20) is solved with a derivative-based NLP solver,
Φ(Σp(·)) and its derivatives are evaluated frequently. This
implies that an efficient method for evaluating Σp is
crucial. Furthermore, it must be possible to efficiently
compute up to second order derivatives for the components
of (20) to high accuracy, despite the fact that Φ(Σp(·))
already contains first order derivatives of components of
the PE problem that underlies the experimental design
problem.

Accurate derivatives can be obtained efficiently by Algo-
rithmic Differentiation (AD) (Griewank, 2000). However,
this technique is only applicable when all expressions used
within the construction of the optimization problem are
differentiable and the differentiation rules of every expres-
sion – including calls to sophisticated linear solvers and
numerical integrators – are known.
6 Even though w̄ is 0, the consideration of process noise in the
underlying PE problem influences the construction of Σp as shown
in the previous sections. Therefore, w still has to be included in the
construction of the objective.

5. SOFTWARE IMPLEMENTATION

Based on the reasoning of the previous section, the choice
of the software framework is motivated and the software
package casiopeia is introduced.

5.1 Choice of software framework

A framework that satisfies the requirements formulated in
Section 4.2 and with this facilitates the use of (18) for
formulation and solution of (20) is casadi, introduced
by Andersson (2013). It does so by providing the pos-
sibility to automatically generate derivative expressions
using AD principles for complex symbolic expressions as
well as for calls to external solvers that have been coupled
to casadi in a way that supports AD. These expressions
can be used to formulate and solve optimization problems,
while all derivatives that are needed by the NLP solvers
that interact with casadi are generated automatically.

5.2 Introduction of the software package casiopeia

The implementation of the presented methods is included
in the open-source Python module casiopeia (Bürger,
2016). In addition to PE and OED features, a collection
of tools is provided in order to help the user to assess
the quality of the estimation results. The implemented
methods can be used via a unified user interface. Further-
more, multiple shooting and collocation discretizations for
dynamic systems are generated automatically. A detailed
documentation including introductory examples can be
found in (Bürger, 2016).

For the solve() command introduced in Section 3.1, the
numerical linear solver csparse (Davis, 2006) is used,
which is available as an infinitely many times differentiable
function through casadi and is also able to exploit the
sparsity structure of the involved matrices.

6. NUMERICAL CASE STUDY

Within this section, the methods implemented in ca-
siopeia are applied to a numerical example and their
performance is assessed in terms of solution quality and
computational effort. The code for the example can be
found in (Bürger, 2016).

6.1 Model description

The model used within this example describes the dynam-
ics of a quarter vehicle, a system that is used in analysis
of road performance and driving characteristics of vehi-
cles. Within the model, a spring-damper-system depicts
a vehicle’s chassis that is coupled to another spring that
reflects the behavior of the tire. A schematic depiction of
the system and a description of the symbols used within
the model is given in Figure 1. The dynamics of the
quarter vehicle can be described by a system of ordinary
differential equations (Mitschke, 2014)



Symbol Description Unit

kC Chassis damper coefficient Ns
m

cC Chassis spring coefficient N
m

cT Tire spring coefficient N
m

mC Vehicle mass kg

xC Vehicle mass deflection m

vC Velocity in xC direction m
s

mT Tire mass kg

xT Tire mass deflection kg

vT Velocity in xT direction m
s

g Gravitational acceleration m
s2

u Deflection from ground m

mC

mT

cCkC

cT

u

xT

xC

g

Fig. 1. Schematic depiction of the quarter vehicle system
model and description of symbols.

ẋT(t) = vT(t)

v̇T(t) =
kC

mT
(vC(t)− vT(t)) +

cC
mT

(xC(t)− xT(t))

− cT
mT

(xT(t)− u(t))

ẋC(t) = vC(t)

v̇C(t) = − kC

mC
(vC(t)− vT(t))− cC

mC
(xC(t)− xT(t)).

(21)

The system states x> = [xT, vT, xC, vC] describe the po-
sitions of the involved masses and their current velocities.
The parameters p> = [kC, cC, cT] describe spring and
damper coefficients to be determined experimentally. The
input u describes the deflection of the tire bottom from
the ground, which is either introduced by random road
undulation during driving, or applied by an apparatus in
order to run certain experiments for the system.

6.2 Parameter estimation

Sample data ȳ of all system states are obtained by simu-
lation of (21) for a time horizon of tf = 5 s at a sampling
rate of fs = 20 Hz with assumed true parameters

ptrue =

kC,true

cC,true

cT,true

 =

4.0 · 103 Ns
m

4.0 · 104 N
m

1.6 · 105 N
m

 (22)

and all initial states x(t = 0) set to 0. Noise is applied to
the generated simulation results as in

ỹ = ȳ +N (0,Σy) (23)

to reflect noisy measurements. In general, Σy is a block-
diagonal matrix with the (co-)variances of the measure-
ments σ2

y at each time point. For simplicity, we assume
that the noise of the several measurements is uncorrelated
here, such that σy only contains the diagonal entries

diag(σy) =
[
0.01 m, 0.01 m

s , 0.01 m, 0.01 m
s

]
. (24)

As a result, Σy is also a diagonal matrix. The inputs ū
that are sent to the system are

ū(t) = 0.05 m · sin(2πt). (25)

These inputs are assumed to be subject to noise, so that
the inputs that actually excite the system and therefore
are used for simulation are

ũ = ū+N (0,Σw) (26)

with Σw a diagonal matrix with entries σ2
w = 0.0052 m2.

This input noise is a special kind of process noise. Follow-
ing these steps, data are generated for L = 100 repeated
estimations of p̂ with the PE routine of casiopeia. To
compensate for the noise on ũ, additional degrees of free-
dom w ∈ Rnw with nw = nu are introduced to the PE
problem. Since the expected order of magnitude for the
values in p̂ is assumed to be known, the parameters are
scaled accordingly within the estimation. The initial guess
for p̂ used within the estimation is

pinit =

kC,init

cC,init

cT,init

 =

1.0 · 103 Ns
m

1.0 · 104 N
m

1.0 · 105 N
m

 . (27)

The scaled mean values p̂mean of all estimates p̂i and
the corresponding standard deviations are then computed
and compared to the result of the last estimation p̂L and
the standard deviations obtained from the evaluation of
βẑLΣp̂L

in casiopeia. The results are shown in Table 1.

Table 1. Comparison of parameter values and
standard deviations, initial experiments.

Parameter kC (103 Ns
m

) cC (104 N
m

) cT (105 N
m

)

p̂mean = L−1
∑L

i=1
p̂i 4.082 3.973 1.616√

L−1
∑L

i=1
(p̂i − p̂mean)2 0.1245 0.1455 0.0264

p̂L 4.141 3.965 1.650√
diag(βẑLΣp̂L ) 0.1143 0.1284 0.0254

Table 1 shows that the estimated parameter values lie in
the neighborhood of ptrue, but with comparatively high
standard deviation, which is caused by the insufficient
system excitation introduced by ū. Also note that the
standard deviations computed by casiopeia are close to
the standard deviations of the repeated experiments.

6.3 Optimum experimental design

Based on the initial input trajectory ū and using the esti-
mated parameters p̂L from Section 6.2, optimized inputs û
are obtained using the OED routine of casiopeia. Upper
and lower bounds on the state values and the input values
are introduced as follows

xmin = −

0.1 m
0.4 m

s
0.1 m
0.4 m

s

 , xmax =

0.1 m
0.4m

s
0.1 m
0.4m

s

 , (28)

umin = −0.05 m, umax = 0.05 m, (29)
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Fig. 2. Comparison of initial and optimized inputs.

in order to generate experiments only within the system’s
(assumed) operation range. As information function Φ the
A-criterion, i. e. the trace of Σp, is used.

Figure 2 shows the optimized inputs û in comparison to
the initial inputs ū, depicting how the optimized inputs are
used to intentionally excite different parts of the system
and increase the information content. The increase in
confidence achieved by the experimental design can be
visualized by a comparison of the confidence ellipsoids
that result from the initial and optimized inputs, which
is shown in Figure 3 for parameters kC and cT.

6.4 Parameter estimation from optimized experiments

Using û, optimized measurement data ŷ are generated
according to Section 6.2 and the estimations are repeated
with otherwise unchanged settings. The results are shown
in Table 2.

Table 2. Comparison of parameter values and
standard deviations, optimized experiments.

Parameter kC (103 Ns
m

) cC (104 N
m

) cT (105 N
m

)

p̂mean = L−1
∑L

i=1
p̂i 4.027 3.985 1.604√

L−1
∑L

i=1
(p̂i − p̂mean)2 0.0592 0.0784 0.0177

p̂L 3.992 4.013 1.596√
diag(βẑLΣp̂L ) 0.0559 0.0814 0.0172

Table 2 shows that it is now possible to retrieve confident
estimates for all parameter values that lie very close to
ptrue. This shows that not only more reliable estimates can
be obtained based on the optimized experimental data, but
also less experiments would be necessary in order to obtain
this level of certainty.
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102 103 104

Number of discretization intervals N

10−2

10−1

100

101

102

103

E
va
lu
at
io
n
ti
m
e
(s
)

Full inversion (10)

Single Shooting (5)

Direct Factorization (15)

Schur complement (18)

Fig. 4. Comparison of covariance matrix evaluation time
on an Intel Core i5-4570 3.20 GHz CPU.

In case further improvement was desired, the design and
estimation procedures could be repeated based on the im-
proved estimation results. Furthermore, casiopeia could
be used to design multiple experiments within one opti-
mization problem to obtain complementary experiments
that deliberately excite different system parts.

6.5 Performance of the Schur complement method

To assess the performance of the method in (18), Σp̂ is
computed for different time horizons tf which result in a
different number of discretization intervals. The computa-
tion times are compared to those of the other approaches
shown in the previous sections, i. e., evaluating Σp̂ as in (5)
for a single shooting implementation of the PE problem
according to (1), to the direct evaluation of K−1 given
in (10) and to the direct factorization approach in (15).
To simplify the comparison, a fourth-order Runge-Kutta
method with fixed step size is used for discretization of the
dynamic systems.

Figure 4 shows that the Schur complement method in (18)
is the most efficient approach within this comparison. The
evaluation time increases almost linearly with the number
of discretization intervals N (which here is equivalent
to an increase in measurements, see Section 2.1). The
methods (5), (10) and (15) show a much more rapid
increase in evaluation time. Missing entries in Figure 4
indicate that the evaluations either did non finish in
reasonable time, or the limitations of approximately 14 GB
of available memory were exceeded.

7. CONCLUSIONS AND FUTURE WORK

Within this paper, a Schur complement method for OED
has been presented that is particularly well suited for PE
problems with process noise. The method has been im-
plemented in the open-source software package casiopeia
based on the symbolic framework casadi and tested on a
numerical example.

While the advantages over other approaches have been
investigated, it is subject to further research how the
evaluation time can be further decreased to facilitate
OED problems of larger size. Since the Schur complement
approach to compute the covariance matrix is rather
generic, the method can easily be extended to directly
support other types of noise as well.
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