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Kurzfassung
Die vorliegende Masterarbeit beschäftigt sich mit Optimalsteuerung für Multi-Kite-Not-
falltrajektorien. Multi-Kite-Systeme bestehen aus kleinen autonomen Flugzeugen (übli-
cherweise Kites genannt), die durch Seile untereinander und mit einer Bodenstation
verbunden sind. Sie werden im Bereich der Höhenwindenergie zur Energieerzeugung
verwendet. Das Ziel dieser Masterarbeit ist es, eine modulare Struktur für Optimals-
teuerungsprobleme zu erstellen, die benutzt werden kann, um optimale Notlandungstra-
jektorien für Multi-Kite-Systeme zu berechnen. Darin inbegriffen ist die systematische
Kategorisierung möglicher Notfallszenarien und die Entwicklung von Strategien, mit de-
nen ihnen begegnet werden kann. Wir formalisieren eine modulare Homotopiestrategie,
um eine gute und zulässige Initialisierung für die komplexen Optimalsteuerungsprobleme
zu finden. Des Weiteren formulieren wir verschiedene Optimalsteuerungsprobleme, die
jeweils unterschiedliche Notfalltszenarien repräsentieren. Wir analysieren ihre jeweiligen
Lösungen sowohl in Bezug auf die physikalischen Phänomene, die dafür sorgen, dass
diese bestimmten Trajektorien optimal sind, als auch in Bezug auf die Sensitivität der
optimalen Trajektorien hinsichtlich einer Änderung von physikalischen und numerischen
Parametern. Die Optimalsteuerungsprobleme sind implementiert in die python-Toolbox
AWEbox.

Abstract
This thesis concerns itself with optimal control for multi-kite emergency trajectories.
Multi-kite systems consist of small autonomous airplanes (usually referred to as kites)
that are linked to each other and to the ground by tethers and are employed in the
field of airborne wind energy to generate power. The goal of this thesis is to construct
a modular optimal control framework that can be used to compute optimal emergency
landing trajectories for multi-kite systems. This framework includes a systematical cate-
gorization of possible emergency scenarios and the development of strategies in order to
deal with each of those categories. We formalize a modular homotopy strategy to find
good and feasible initial guesses for the complex nonlinear optimal control problems. We
further formulate a number of different optimal control problems, each representing dif-
ferent emergency scenarios, and analyze their corresponding solutions, both in terms of
what physical phenomena make these particular trajectories optimal and how the optimal
trajectories change when varying physical or numerical parameters. The optimal control
framework is implemented within the python toolbox AWEbox.
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1. Introduction

This thesis will concern itself with optimal control for multi-kite emergency trajectories.
Optimal control is meant in the sense of offline open-loop trajectory optimization, while
the term multi-kite describes a system consisting of multiple small aircraft that are teth-
ered together and are used in the field of airborne wind energy (AWE). The following
introduction shall serve to clear up these terms.

For conventional towered wind turbines, the outer 30 % of the blades generate more
than half of the total power [9]. The outer tips of the blades however only make up a
very small percentage of the overall mass and production cost of a towered wind turbine.
Ironically, the scale of towered wind turbines is not restricted by the rotors, but by the
moment generated at the bottom of the tower. Thus, the tower is not only inefficient
and expensive, but also the bottleneck of the whole structure when trying to scale it
up. Hence, the following question arises: Is it possible to build a wind turbine that only
consists of the efficient parts of the blades, while omitting the large and expensive towers?

A possible answer to this question is the concept of AWE. Airborne wind energy sys-
tems (AWES) generate power by substituting autonomous aircraft of various kinds for
the rotors of the conventional wind turbine and a tether for the tower itself. Such air-
craft include planes and soft-kites, which are usually tethered to the ground in order to
use the relative velocity of the ground and the air to generate energy. This concept is
visualized in Fig. 1.1. Both planes and soft-kites are usually referred to as kites in an
AWE context. In terms of the forces they can compensate versus the amount of material
and energy that is needed to produce them, tethers are much more efficient than concrete
structures. Also, a tether is much more flexible than concrete, which is why the AWESs
can be designed in a way that only tether stress but no moment is generated. This is
a huge advantage, since it gets rid of the structural bottleneck that is the base and the
foundation of the tower that must be able to withstand large moments over an extended
period of time. Overcoming this bottleneck enables AWESs to reach higher altitudes,
where the winds are usually stronger and more consistent than closer to the ground [4].
Thus, AWE has the potential to be both cheaper and more efficient than conventional
towered wind turbines. In order to quantify this, we introduce the power harvesting
factor

ζ =
Ph

Pw

, (1.1)

which describes the fraction of the power Ph that can be harvested with a given wing
surface and the wind power Pw that flows through an area of the same size. The ζ-
factor of towered wind turbines is approximately 5.5, while ζ-factors of up to 8 have been

1



1. Introduction

Figure 1.1.: Transformation of a towered wind turbine into an AWES [9].

measured for AWESs [9].

The concept of AWE has been around since the 1970s, most notably with the American
engineer Miles Loyd, who first investigated the concept of power generation by tethered
flight in detail [28]. He was also the first to come up with an estimation of the maximum
steady state power P that can theoretically be generated by an AWES, namely

P =
2

27
ρAv3

wCL

(
CL

CD

)2

, (1.2)

with wing area A, wind speed vw, lift and drag coefficients CL and CD, and air density ρ.
Although this is only an approximation under idealized assumptions, it sparked interest
concerning the large quantities of power that can potentially be generated with AWESs
given the right system configuration. This is due to the concept of crosswind kite power:
A tethered kite that is flown fast in crosswinds results in a large increase in the resulting
tether tension, a phenomenon widely used by e.g. kite-surfers to lift themselves up into the
air. Note that (1.2) depends on the third power of the wind speed vw, which emphasizes
the huge potential of crosswind power.

Now that the basic concepts of AWE have been elaborated, section 1.1 will go into
details about multi-kite AWESs specifically. Section 1.2 goes on to explain the shape
and properties of dual-kite pumping cycles. Section 1.3 then gives an introduction to
the possible emergency scenarios regarding multi-kite AWESs, while section 1.4 gives an
overview over the research that has already been done in relation to the topic of this
thesis. Lastly, section 1.5 lays out how the thesis’ content will be structured.

2



1.1. Multi-Kite Airborne Wind Energy Systems

1.1. Multi-Kite Airborne Wind Energy Systems

There are several ways to classify AWESs. A Venn diagram of the classification done
in [9] is shown in Fig. 1.21. One distinction is between systems with on-board power
generation and those with ground-based power generation. The first class generates
power by carrying a generator with a turbine as part of the kite. By flying so called
power cycles, usually periodic figure of eight or circular shapes, the AWES drives the
on-board generators and thus produces power. The second class uses the relative velocity
of the ground and the kite to generate power. To do so, the kite’s tether is connected to
a generator and periodically reeled in and out. If the kite’s trajectory is planned smartly,
the reel-out phase generates much more power than the reel-in phase consumes. The
power cycle of a ground-based AWES is usually referred to as a pumping cycle. The
setup that is investigated in this thesis uses ground-based power generation. It is obvious
that the efficiency of an AWES, both with on-board and ground-based power generation,
is highly dependent on the choice of the power cycle. This is even more true for an AWES
with ground-based power generation, since the system needs to convert the air’s relative
velocity to the ground into tension of the tether that is connected to the generator. Also,
the system has an extra degree of freedom (DOF) regarding the reel-in profile of the main
tether.

The next distinction is that between rigid and flexible structures. Flexible structures
such as soft-kites can be built extremely light-weight and do not cause damage when
crashing into the ground. Rigid structures generally exhibit higher lift to drag ratios
and can thus generate more power. The combination of flexible structures together with
on-board power generation is not useful, since the weight of an on-board generator makes
the main advantage of flexible structures, their extremely light weight, obsolete.

Another distinction is the number of kites connected to one main tether and thus to
one ground-station. Single kite systems need a long main tether to reach high altitude
winds. A long tether however also produces large tether drag and vibrations as it is
moving around. One possibility to get around this problem is to connect multiple kites
with relatively short secondary tethers to a single longer main tether that is then in turn
connected to the ground-station. The length of the main tether enables the AWES to
reach high altitude winds, while the shorter secondary tethers allow the kites to perform
fast maneuvers without causing a lot of tether drag [45]. It is intuitive to choose two kites
for the multi-kite system since it constituted the lowest degree of complexity for such a
system. This kind of multi-kite AWES is typically called a dual-kite AWES. A sketch of
the dual-kite system is shown in Fig. 1.3. Even though most research interest regarding
multi-kite systems has focused on these dual-kite AWESs, triple kites or more complex
configurations might have advantageous structural properties, which have so far been left
undiscovered.

This thesis will focus on dual-kite systems with ground-based power generation as

1For a more detailed overview of different AWESs, we refer to [8].
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1. Introduction

gr.-basedon-board

rigid

flexible

multi-kite

single-kite

Figure 1.2.: Classification of AWESs according to [9]. Red star indicating the system
configuration this thesis focuses on.

indicated by the red star in Fig. 1.2. The controls of such a system usually comprise
a combination of actuation via the tether, i.e. by using the generator to reel the main
tether in or out, and flaps as well as rotors on the kites. Dual kites already exhibit
a high degree of complexity and have not been researched in an exhaustive manner,
especially considering any topic not directly related to the computation of power cycles.
The jump in complexity of the problem from single to dual kites is very large, since the
number of states required to describe the model almost doubles and the AWES is able to
perform much more sophisticated maneuvers, as already explained above. With increasing
complexity of the multi-kite AWES’s configuration, the analytical and numerical effort
in researching the system also increases sharply. Hence, it is a prudent approach to
first develop solutions for the less computationally demanding dual-kite AWESs before
advancing to triple-kite AWESs or more complex configurations. Thus, all results in
this thesis will be formulated in a way that is easy to generalize to different multi-kite
configurations.

1.2. Dual-Kite Pumping Cycles
In section 1.1 we briefly touched on the topic of pumping cycles. A pumping cycle is
the periodic orbit of an AWES with ground-based power generation. Since the multi-kite

4



1.2. Dual-Kite Pumping Cycles

ground-station

main tether

secondary tether

kite
power cycle

Figure 1.3.: Schematic sketch of a dual-kite AWES [9].

emergency trajectories discussed in this thesis all start on pumping cycles, it is necessary
to give more details about their shape and properties. In the literature, pumping cycles
are usually derived by solving an optimal control problem (OCP) (cf. [24] for dual-kite
and [19] for single-kite AWESs). The OCP formulation usually involves a periodicity
condition in the constraints and a term in the cost function that represents the amount
of generated power normalized with the period length. By following [24], we can compute
the optimal pumping cycle shown in Fig. 1.42. The plot shows four different projections
of the same trajectory, including an isometric view. The red and green lines represent
the positions of the two kites. Only the trajectory of the two kite nodes is displayed in
order to keep the plot clear and easy to read. In the isometric projection, the implicit
orientation of the kites is shown with little planes. All further trajectory plots in this
thesis are presented in the same fashion.

The shape of the optimal pumping cycle shows the distinctive separation of reel-in
and reel-out phase. During the reel-out phase, the kites fly on a looping trajectory away
from the ground-station, thereby reeling out the main tether and generating power. The
loopings are flown with a high lift coefficient in order to increase the tension on the main
tether and thus increase the generated power.

During the reel-in phase, the kites fly outwards and back towards the ground-station.

2For details of the OCP formulation, we refer to [24].
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Figure 1.4.: Power generating pumping cycle trajectory of a dual-kite AWES.

Flying outwards decreases the projection of the kites’ aerodynamic forces on the main
tether, and thus also the amount of power that is needed to reel the kites in. For the
same reason, the kites’ lift coefficient is decreased during the reel-in.

The center node of the dual-kite AWES ideally only moves back and forth in the
direction of the main tether in order to drive the generator on the ground. All crosswind
maneuvers of the kites that are orthogonal to the direction of the main tether only affect
the motion of the secondary tethers. As mentioned in section 1.1, this is one of the main
incentives to introduce multi-kite configurations for AWESs.

In order to ensure that the optimal pumping trajectory only consists of a single reel-in
and a single reel-out phase, a technique called phase-fixing is employed. This means
that the overall time interval T = [0, tf ] is divided into two intervals T1 = [0, pfixtf ] and
T2 = [pfixtf , tf ] with the phase fixing parameter pfix ∈ [0, 1]. Intervals T1 and T2 are
designated for the reel-out and reel-in phase respectively. To ensure that the phases
actually happen during their designated time intervals, a constraint is added such that
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the tether can only be reeled out during T1 and only reeled in during T2, resulting in the
desired phase pattern. As for the phase fixing parameter, pfix = 0.7 has been found to
work well. It should be noted that tf is still a free decision variable of the OCP. Only the
ratio of reel-in to reel-out phase gets fixed beforehand with the parameter pfix.

1.3. Emergency Scenarios for Airborne Wind Energy
Systems

It is clear that a lot can go wrong with a fully autonomous multi-kite AWES. Even
with the most careful implementation of all components, there are still a multitude of
uncontrollable variables that need to be taken into account, e.g. bird strike, bad weather
conditions, sabotage or careless amateur pilots. On top of that, there are also all the
regular risks of malfunction for mechatronic systems. Since the AWES is designed to
be fully autonomous, all possible scenarios must be thought of in advance in order to
prepare a suitable countermeasure. The most straightforward emergency responses are
some sort of an emergency landing in case the AWES is damaged and needs repairs. In
the case of minor malfunctions such as one of several redundant sensors breaking down or
the on-board battery losing some of its maximum capacity over time, there needs to be
a judgment call as to whether the AWES has to land or not. Here of course, the modus
operandi must be to try to land before any serious malfunction occurs that would impede
the control and maneuverability of the AWES, since a landing with nominal control and
sensor functionality is always safer and more efficient than an emergency landing, no
matter how carefully the latter is planned. In addition to a complete emergency landing,
there are some scenarios for which it would be sufficient to abandon the high altitude
pumping trajectory for a more conservative but still efficient pumping trajectory in lower
altitudes. The most common of those scenarios would be unfavorable weather conditions
that make it unsafe to continue to fly the initial pumping trajectory, but do not pose
any threat to the AWES in the lower altitude pumping trajectory. Thus, it is possible to
avoid the time and energy expensive landing and starting procedures.

On the one hand, multi-kite AWESs are much more prone to emergencies than single
kite systems, simply because they have two or more kites as opposed to one, allowing
for a higher number of mechatronic parts that can potentially break or get damaged.
In addition, a multi-kite system requires a more sophisticated control setup that will be
naturally less robust and more error prone than its simpler counterparts. Even when using
the same control setup as for single kites, a multi-kite system needs at least one additional
controller per kite, adding to the complexity of the overall control structure. On the other
hand, the increased complexity of the multi-kite AWES can be potentially beneficial in
cases of emergency. One kite with broken or otherwise compromised actuation could e.g.
be indirectly supported by the other kites by compensating for some of its forces. One
can even imagine a scenario where a group of kites carries the entire weight of another
broken kite to the ground.
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1.4. Related Work
Since the multi-kite AWES is intended to be controlled completely autonomous, there are
no experienced pilots who can use their skill and experience to cope with these emergency
scenarios. Hence, it is of importance to think of possible emergencies and prepare the
controller’s actions for these cases. This problem however is not so relevant for the
conceptual and prototyping stages of an AWES development process. Simulations are
inherently non-dangerous and for prototypes, a switch to manual control can give an
experienced pilot access to the AWES’s actuation in case something goes wrong. Thus,
there exists no detailed research yet in the field of emergency trajectories for AWESs.

The work done on trajectory optimization for AWESs focuses almost exclusively on
the generation of suitable power cycles [21, 10, 19, 45, 24, 26]. A notable exception is
the computation of a transition from one trajectory to another for a single-kite system
by Horn [19]. In terms of landing trajectories, one should note the landing trajectory
of a single kite computed by Koenemann [23]. Within an OCP framework, he simplifies
the system by restricting the dynamics to a two dimensional space and introduces a
quasi static tether model that accounts for tether sag, but neglects tether vibrations.
While some of the OCP formulation can also be used for dual kites, the two dimensional
approximation of the kite dynamics only makes sense in the final stages of a single kite
landing.

In the field of trajectory planning and optimization for passenger aircraft, emergency
landing trajectories play an important role. While some of them employ an optimal
control (OC) or dynamic programming (DP) framework [30, 42], others use different kinds
of path primitives to build trajectories [38, 1, 5]. In the literature concerning unmanned
aerial vehicles (UAV), the methodology is very similar. While some authors employ an
OC framework, most rely on path primitives like Dubins curves to put together landing
trajectories [43, 29, 12, 13]. A number of papers also concern themselves with decision
making problems such as choosing a suitable landing site or proposing logical conditions
that trigger an emergency landing procedure [37, 29]. The results of the papers related to
passenger aircraft, however, can hardly be adapted for AWESs for the following reasons:

• Most papers about emergency landing trajectories for passenger aircraft consider
the scenario of an engine failure that results in zero thrust while the rest of the
actuation stays intact. Multi-kite AWESs rely on a different control concept that
relies on actuation via the main tether and the kites’ flaps.

• The motion of a single aircraft is well understood. This makes it possible to derive
feasible solutions in an analytical fashion using e.g. Dubins curves. These analytical
solutions can then be used as initial guesses for optimization problems or as motion
primitives for other planning algorithms. The motion of multi-kite AWES’s is not
nearly as well understood.

• The fact that there are at least two kites in a multi-kite AWES makes it possible
for the kites to indirectly control each other, especially in case of compromised
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actuation on one of the kites. This is a dimension of the problem that is completely
new.

• The most common flight maneuver of a passenger aircraft is steady level longitu-
dinal flight, which is very useful as an initial state for a trajectory. Given that the
most common flight maneuver for a multi-kite AWES is flying crosswind-maneuvers,
an emergency trajectory will generally start on a power cycle. This is more diffi-
cult conceptually and numerically, since there are a multitude of different initial
conditions to consider inside one power cycle that all differ a lot from each other.

Considering all this, it seems prudent to choose an OC framework for the work of this
thesis. It is a very flexible framework for, which enables the engineer to adapt to a
multitude of different models and circumstances relatively easily by editing the OCP’s
constraints or cost function. It is possible to find automated, numerical solutions to an
OCP, which do not require as much analytical insight into the problem as an analytical
solution. This is important since it enables us to produce solution procedures that are
robust with regards to a change in the modeling of the AWES or its environment. An
analytical approach would make it necessary to re-derive the analytical formulas for every
change in the problem’s model, e.g. a derivation of different motion primitives for every
new multi-kite configuration. This approach makes sense for a fixed emergency scenario
like the emergency landing of a passenger aircraft, but not when facing varying emergency
scenarios and AWES models. Additionally, an OCP framework is used to solve not only
for any feasible trajectory, but the optimal feasible trajectory. For example, one can
compute the feasible trajectory with the smallest control input or the smallest terminal
velocity. Hence, we generally expect to get better results using OC than other approaches
that are not based on optimization.

1.5. Organization of Contents
The aim of this thesis is the construction of a general and modular OC framework that
can be used to compute and analyze a variety of multi-kite emergency trajectories. This
includes an emergency response strategy as well as a homotopy strategy for solving the
OCPs within the framework. The framework is conceptualized in a modular fashion
such that it can be easily expanded by adding more complex models or new emergency
scenarios. After computing a number of different optimal emergency trajectories, we will
explain why these particular trajectories are optimal and how the optimal trajectories
change with different models and parameters. We also want to find out how badly a
multi-kite system can be compromised before it is impossible to perform an emergency
landing and whether it is possible for a compromised kite to be indirectly controlled by
the rest of the AWES.

We will start off in chapter 2 with a summary of all the theoretical background and
the methods used. The first section of this chapter will discuss the modeling approach
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used to model the AWES. We then go on to explain the direct collocation scheme with
which the OCPs in this thesis are discretized. The next section gives an overview of the
interior-point method of the numerical solver. The last section of chapter 2 explains the
homotopy strategy that is employed to solve the OCPs in this thesis.

Chapter 3 concerns itself with the layout of an emergency response concept of a multi-
kite AWES. It first goes into detail about the nature of the expected emergency scenarios.
Then we present a state-machine that can be used for the detection of emergency sce-
narios. Lastly, we introduce a hierarchical emergency landing strategy in order to handle
different kinds of emergency scenarios in one unified framework.

Chapter 4 describes how the AWES is modeled. This is done by first listing the system’s
states, controls and coordinate system. We then elaborate on the Lagrangian mechanics
of the system and explain which wind and atmospheric model is used. Next, we discuss
which generalized forces are acting on the system. The chapter is concluded with an
explanation of how the kites’ on-board batteries are modeled.

Chapter 5 introduces a modular framework of building blocks that make up every OCP
in this thesis. First we list the different components of the cost functions, then we go
on to the equality and inequality constraints. This is followed by a catalog of all the
homotopy steps that can be put together to a full homotopy procedure. Afterwards, we
discuss how the initial guess for the first homotopy step is generated and give an account
of the different numerical issues that have come up during the implementation of the
OCPs.

Chapter 6 explains how the problem formulations discussed in this thesis are imple-
mented into the python toolbox AWEbox. After an overview of AWEbox’s functionalities,
we give an account of the contributions made to AWEbox during the course of this the-
sis. Section 6.2 will then briefly elaborate on the CasADi toolbox, which is used within
AWEbox, and its numerical backend IPOPT.

Chapter 7 takes the framework introduced in chapter 5 and applies it to landing tra-
jectories with nominal flight behavior. After stating the OCP formulation and homotopy
schedule of the problem, the corresponding solutions are analyzed. This includes a dis-
cussion of the solutions of various homotopy steps, a study of the solution’s sensitivity
to a change in the reference wind speed, as well some insights in how the potential and
kinetic energy of the system behave during the landing.

Chapter 8 then gives an overview of all the emergency trajectories and their correspond-
ing OCP formulations that have been implemented over the course of this thesis besides
the nominal landing. These include transition trajectories as well as landing trajectories
with compromised flight behavior. The latter comprises three different emergency sce-
narios, specifically an actuator malfunction, a broken on-board battery and structural
damage.

Chapter 9 then concludes the thesis by giving a concise assessment of the results and
an outlook onto future research in the field of optimal control for multi-kite emergency
trajectories.
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2. Optimal Control Methods and
Theory

This chapter gives a summary of all the theoretical background and methods that are
relevant to this thesis. Section 2.1 gives an overview of the Lagrange modeling approach
that is used to represent the AWES as an index 1 differential algebraic equation (DAE).
Section 2.2 then explains how the OCPs that are solved in the following chapters are
discretized using direct collocation. Section 2.3 elaborates on how interior-point (IP)
methods are used to numerically solve the discretized OCP and why an IP method is
chosen over a sequential quadratic programming (SQP) method. Lastly, section 2.4 goes
into detail about the homotopy strategy that is used to solve the OCPs in this thesis.

2.1. System Modeling with DAEs
The modeling of physical systems like the multi-kite AWES is typically done using a
Lagrange approach [17, 45] because it provides a framework that can be easily generalized
and automated. To do so, we define t ∈ [0, tf ] to be the time interval in which the system
is evolving with final time tf . We employ the generalized coordinates q(t) ∈ Q, which
are a set of independent variables that can describe any possible configuration of the
physical system. These configurations can be represented as a manifold M defined by
the invariant g(q, t) = 0, where M = {q ∈ Q | g(q(t), t) = 0, t ∈ [0, tf ]} is the set of all
possible configurations of the physical system. The invariant g is a map from Q× [0, tf ]
to G ∈ Rmg×ng . The dimensions mg and ng are usually those of a vector, but can be
arbitrary.

With the help of q and g(q, t) we can formulate the Lagrange function

L(q, q̇,λ) = T (q̇)− V (q)− λTg(q, t), (2.1)

where T is the system’s kinetic energy, V the system’s potential energy and λ the vector
of Lagrange multipliers. From there, the Lagrange dynamics

d

dt

∂L
∂q̇
− ∂L
∂q

= F, g(q, t) = 0 (2.2)

are derived, with the non-conservative generalized forces F. The non-conservative gen-
eralized forces are defined by the principle of virtual work: For an infinitesimal displace-
ment δq in the generalized coordinates, the work done on the system by the forces F
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is
δW = 〈δq,F〉, (2.3)

where 〈·, ·〉 is the scalar product on Q. In the usual case, where Q ∈ Rnq , F ∈ Rnq

is a projection of the non-conservative forces acting on the system on Q and the scalar
product is simply defined as δqTF.

Equation (2.2) is an index 3 DAE. Within an OC context, DAEs are usually considered
as root-finding problems. The Jacobian of an index 3 DAE is non-singular, meaning
that we cannot use a Newton-type solver for the corresponding root-finding problem.
Hence, high-index DAEs are best treated by performing index reduction [17]. Using
index reduction, (2.2) can be turned into an index 1 DAE that has an invertible Jacobian
and can therefore be treated with Newton-type solvers. To do so, we first compute the
Lagrange dynamics

d

dt

∂L
∂q̇
− ∂L
∂q

=
d

dt
(Tq̇ − Vq̇ − (λTg)q̇)− Tq + Vq + (λTg)q (2.4)

= Tq̇t + Tq̇q̇q̈ + Vq + (λTg)q

= Tq̇q̇q̈ + Vq + (λTg)q = F,

where we employ the shorthand notation of ∂
∂q

(·) = (·)q. We also employ the knowledge

that g(q)q̇ = T (q̇)q = V (q)q̇ = 0 and that T (q̇)q̇t = 0 because the kinetic energy does
not explicitly depend on the time t.

Furthermore, we compute the first and second derivative of g(q, t) with respect to time
and then set g̈ to zero, resulting in

ġ(q, q̇, t) = gt + gqq̇ (2.5)

g̈(q, q̇, q̈, t) = ġt + ġqq̇ + gqq̈ = 0.

Note that gt is only the partial derivative with respect to time, while ġ denotes the total
derivative.

Equations (2.4) and (2.5) can be written as the system[
Tq̇q̇ gT

q

gq 0

]
︸ ︷︷ ︸

M

[
q̈
λ

]
=

[
F− Vq

−ġqq̇− gqq̈

]
, (2.6)

which, together with the consistency conditions g(q(0), 0) = 0 and ġ(q(0), q̇(0), 0) = 0,
is equivalent to (2.2). Note that (2.6) is linear in [q̈T,λT]T. Hence, it seems tempting to
invert the mass matrix M of (2.6) to get an explicit formulation for [q̈T,λT]T that can then
be integrated with an explicit integration scheme. However, inverting M would destroy
some of the natural sparsity, making a treatment with explicit integrators computationally
more expensive. Also, DAEs are better treated with implicit integrators since they are
usually stiff. A DAE is called stiff, if some of its Jacobian’s eigenvalues have a very
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large negative real part. These very stable modes can be involuntarily excited by the
explicit integrator, leading to unstable behavior in the numerical integration. Hence, we
use an implicit integration scheme, namely the direct collocation method explained in
section 2.2.

When solving (2.6), g̈(t) = 0 gets integrated implicitly with the corresponding initial
values ensuring that g(t) = 0 holds for all times t. This is however only valid if (2.6)
is solved exactly. When using numerical approaches to solve (2.6), the integral of g̈ is
only approximated. This can lead to a numerical drift, especially for long integration
intervals, resulting in g(t) 6= 0 for some t. To counteract the numerical drift, we employ
Baumgarte stabilization [17]. Instead of enforcing g̈(t) = 0, we set

g̈(t) = −2κġ(t)− κ2g(t). (2.7)

This turns the dynamics of the consistency constraints into a stable oscillator for κ ∈ R+,
with a double eigenvalue at −κ ∈ C−. Since we fixed g(0) = 0 and ġ(0) = 0, g(t) is
stable around g(t) = 0, counteracting the numerical drift. For a more compact notation,
we introduce

cinv(0) = [g(0), ġ(0)]T = 0 (2.8)

as the consistency constraint.

2.2. Direct Collocation
The OCP we want to approximate can be written as

minimize
x(·),u(·),λ(·), tf ,p

J(x(·),u(·),λ(·), tf ,p)

subject to 0 = f(x(t), ẋ(t),u(t),λ(t),p), ∀t ∈ [0, tf ],

0 = c(x(t),u(t),λ(t),p), ∀t ∈ [0, tf ],

0 = c0(x(0),u(0),λ(0),p),

0 = cf(x(tf),u(tf),λ(tf),p),

0 ≤ h(x(t),u(t),λ(t),p), ∀t ∈ [0, tf ],

0 ≤ h0(x(0),u(0),λ(0),p),

0 ≤ hf(x(tf),u(tf),λ(tf),p),

xmin(p) ≤ x(t) ≤ xmax(p), ∀t ∈ [0, tf ],

umin(p) ≤ u(t) ≤ umax(p), ∀t ∈ [0, tf ],

λmin ≤ λ(t) ≤ λmax, ∀t ∈ [0, tf ],

0 ≤ tf .

(2.9)

In this generic OCP, the decision variables are the system states x(·) ∈ Rnx , the con-
trols u(·) ∈ Rnu , the algebraic variables λ(·) ∈ Rnλ , the final time tf ∈ R+ and a
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parameter vector p1. We use the (·)-notation to stress that the decision variables of the
OCP are functions and that J is a functional. The cost functional usually consists of a
Lagrange term LT =

∫ tf
0
l(t) dt and a Mayer term φ(tf) such as

J(x(·),u(·),λ(·), tf ,p) =

tf∫
0

l(x(t),u(t),λ(t),p) dt+ φ(x(tf),λ(tf), tf ,p). (2.10)

The Lagrange term is an integral term that depends on the decision values at all t ∈ [0, tf ]
and is therefore also called running cost. The Mayer term, or final cost, only depends on
the decision values at the final time tf . The implicit DAE

0 = f(x(t), ẋ(t),u(t),λ(t),p) (2.11)

describes the system’s dynamics as explained in section 2.1. Adding it to the OCP con-
strains the problem to physical solutions. Furthermore, the decision variables are con-
strained by their respective bounds as well as the path constraints c(x(t),u(t),λ(t),p),
their initial equality constraints c0(x(0),u(0),λ(0),p) and their terminal equality con-
straints cf(x(tf),u(tf),λ(tf),p). In case of the index 1 DAE described in section 2.1, part
of the initial equality constraints would be the consistency constraint cinv(0) = 0.

In section 2.1, the DAE describing the system dynamics was derived using the gener-
alized coordinates q. Hence, (2.6) can be written as the implicit function

f(q(t), q̇(t), q̈(t),λ(t), t,p) = 0. (2.12)

Depending on how q, x, u and λ are chosen, one can define a coordinate transformation

Tc :
[
qT, q̇T, q̈T, t

]T 7→ [
xT, ẋT,uT

]T
(2.13)

in order to arrive at (2.11).
The inequality constraints on x(t), u(t) and λ(t) can also be represented as x(t) ∈ XB,

u(t) ∈ UB and λ(t) ∈ λB where XB, UB and λB are usually chosen to be convex sets.
We explicitly permit the bounds on x(t) and u(t) to depend on p. The inequality con-
straint h(x(t),u(t),λ(t),p) ≤ 0 permits more complex types of inequality constraints
than box or set constraints. It should be noted that (2.9) is in general not a convex
problem. Even if we choose the cost functional J , the inequality constraints h and the
equality constraints c as well as the sets XB, UB and λB to be convex, the DAE will
usually constrain the optimization variables to a non-convex set, rendering the whole
problem non-convex. This stays the same also after discretizing the problem.

Since (2.9) is generally non-convex, the initial guess does not only determine how fast
a minimum is found, but also which local minimum is found. There is no guarantee that

1Technically, p is a variable vector since it is part of the optimization variables. However, we continue
to call it parameter vector to distinguish it from the other optimization variables.
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the global minimum can be found and even if it is found, there is no way of checking that
it truly is the global minimum. This is because any numerical NLP solver only uses local
information, from which it cannot deduce global properties of the NLP, except when it
is convex.

As mentioned in section 2.1, we choose an implicit integration scheme to handle (2.11).
The continuous OCP (2.9) is an infinite dimensional optimization problem since t ∈ [0, tf ]
runs trough an infinite amount of values, and thus results in an infinite amount of op-
timization variables and constraints. Although it is possible to solve this problem with
an indirect approach using Pontryagin’s maximum principle, this is not viable for the
complex nonlinear systems that multi-kite AWESs are, especially since every change in
the model would require a new derivation of the OCP’s solution by hand.

Thus, we pursue the strategy of “first discretize, then optimize”, leading to the method
of direct collocation that has already produced good results for similar problems in the
past [19]. Also, direct collocation has a larger region of convergence compared to e.g.
a multiple shooting approach [16]. Specifically, we choose direct collocation of type
Radau IIA due to its good stability properties (A- and L-stability) [32]. The main idea of
direct collocation is to divide the solution’s time axis into multiple collocation intervals
and to use a different polynomial on each interval to approximate the system’s DAE.

The first step to finding an approximate solution to (2.9) is discretization. The time
interval [0, tf ] is divided into m collocation intervals ti = [ti,0, ti,f ], where ti,0 and ti,f are the
first and last point on each collocation interval and i ∈ {0, 1, ..,m−1} = I. The intervals
are set up such that ∪m−1

i=0 ti = [0, tf ] and ∩(ti, ti+1) = ti,f = ti+1,0. The normalized time
on each collocation interval ti is τ̄i ∈ [0, 1], such that t = ti,0 + τ̄i

tf
m

.
Each collocation interval ti has n + 1 control points ti,j with j ∈ {0, .., n} = J . The

discretized control ui is piecewise constant in each collocation interval. Choosing a control
parameterization with local support ensures that the sparsity of the OCP is preserved
when discretizing it. The control ui is kept constant within each collocation interval to
avoid discontinuities that would destroy the accuracy of the integration scheme [16].

On collocation interval ti we refer to ti,j in terms of the normalized time τ̄j for ease of
notation. In the following, it will also be handy to define the sets I− = {0, ...,m−2} and
I− = {1, ...,m− 1}. The sets J − and J− are defined analogously as J − = {0, ..., n− 1}
and J− = {1, ..., n}. Furthermore, we define m̄ = m− 1.

On each collocation interval we define a Lagrange polynomial of degree n as

x̄i(τ̄) =
n∑
j=0

ξj(τ̄)xi,j, (2.14)

where

ξj(τ̄) =
n∏

k=0,k 6=j

τ̄k − τ̄
τ̄k − τ̄j

. (2.15)

Hence, the Lagrange polynomial has the property that x̄i(τ̄j) = xi,j. The notation xi,j
refers to the system states at the control point ti,j, however only in terms of the discretized
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OCP. Thus, xi,j is only an approximation of the real solution x(ti,j). The Lagrange
polynomial (2.14) can be differentiated with respect to time to yield

˙̄xi(τ̄) =
n∑
j=0

∂ξj(τ̄)

∂τ̄

dτ̄

dt
xi,j =

n∑
j=0

∂ξj(τ̄)

∂τ̄

m

tf
xi,j. (2.16)

We choose ti,j to be Radau collocation points, meaning that the end of each collocation
interval is a collocation point, but the beginning is not. Thus, the last collocation point
of interval ti also lies in ti+1 but is only a collocation point of ti. The notation ti,0 is used
for the beginning of each collocation interval, even though it is not a collocation point.
At each collocation point, the Lagrange polynomial x̄i(τ̄) must satisfy the DAE of (2.9).
Hence, we have

0 = f(x̄i(τ̄j), ˙̄xi(τ̄j),ui,λi,j, tf ,p), ∀i ∈ I, j ∈ J−. (2.17)

The indexing convention for λi,j is the same as for xi,j. To ensure that the solution
approximated with the Lagrange polynomials x̄i is continuous, we need to enforce

x̄i(1) = xi+1,0, ∀i ∈ I−. (2.18)

Since we use Radau collocation points, τ̄n = 1 and the last collocation point coincides
with the end of the interval ti. Thus, there is no need to evaluate x̄i(1) and (2.18) turns
into

xi,n = xi+1,0, ∀i ∈ I−. (2.19)

Equations (2.17) and (2.19) are called collocation constraints and continuity constraints.
They are further referred to as

0 = ccol(xi,j,λi,j,ui, tf ,p), ∀i ∈ I, j ∈ J− (2.20)

0 = ccon(xi,n,xi+1,0,p), ∀i ∈ I−. (2.21)
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With all this we can approximate (2.9) with

minimize
x,u,λ, tf ,p

J̄(x,u,λ, tf ,p)

subject to 0 = ccol(xi,j,λi,j,ui, tf ,p), ∀i ∈ I, j ∈ J−,
0 = ccon(xi,n,xi+1,0,p), ∀i ∈ I−,
0 = c(x,u,λ,p),

0 = c0(x0,0,u0,λ0,0),

0 = cf(xm̄,n,um̄,λm̄,n,p),

0 ≤ h(x,u,λ,p),

0 ≤ h0(x0,0,u0,λ0,0,p),

0 ≤ hf(xm̄,n,um̄,λm̄,n,p),

xmin(p) ≤ x ≤ xmax(p),

umin(p) ≤ u ≤ umax(p),

λmin ≤ λ ≤ λmax,

0 ≤ tf ,

(2.22)

where we use the notation

x = [x0,0, ...,xm̄,n]T (2.23)

u = [u0, ...,um̄]T (2.24)

λ = [λ0,1, ...,λ1,1, ...,λm̄,n]T. (2.25)

Keep in mind that that the algebraic variables λ are not defined for all control points,
but only for the collocation points.

The cost functional is approximated as

J̄(x,u,λ, tf ,p) =
tf
m

m̄∑
i=0

n∑
j=1

wq,jl(xi,j,ui,λi,j,p)︸ ︷︷ ︸
L̄T

+φ(xm̄,n,λm̄,n, tf ,p), (2.26)

with the quadrature weights wq = [wq,1, ..., wq,n].

To derive the approximation for the Lagrange term LT =
∫ tf

0
l(t) dt, we follow [19].

First, we want to approximate the Lagrange term LT,i =
∫ ti,f
ti,0

l(t) dt ≈ L̄T,i under the

assumption that L̄T,i(ti,0) = 0. To do so, we write out (2.16) for all collocation nodes of
the collocation interval i for the derivative li as li(τ̄1)

...
li(τ̄m)

 =
m

tf

 ξ′1(τ̄1) · · · ξ′n(τ̄1)
...

. . .
...

ξ′1(τ̄n) · · · ξ′n(τ̄n)


 L̄T,i(τ̄1)

...
L̄T,i(τ̄n)

 , (2.27)
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2. Optimal Control Methods and Theory

where we use the notation ∂ξi
∂τ̄

= ξ′j. When solving this equation for
[
LT̄,i(τ̄1), · · · , LT̄,i(τ̄n)

]T
and plugging the solution into (2.19), we arrive at

L̄T,i(1) = [ξ1(1), ..., ξ2(1)]
tf
m

 ξ′1(τ̄1) · · · ξ′n(τ̄1)
...

. . .
...

ξ′1(τ̄n) · · · ξ′n(τ̄n)


−1  li(τ̄1)

...
li(τ̄n)

 . (2.28)

Note that [ξ1(1), · · · , ξ2(1)] = [0, · · · , 0, 1] since we are using Radau collocation points.
Since we have assumed that L̄T,i(ti,0) = 0 for all collocation intervals i, we can sum up
the intervals as

L̄T =
m̄∑
i=0

L̄T,i, (2.29)

which is equivalent to the expression used in equation (2.26) for the quadrature weights

wq = [ξ1(1), · · · , ξ2(1)]

 ξ′1(τ̄1) · · · ξ′n(τ̄1)
...

. . .
...

ξ′1(τ̄n) · · · ξ′n(τ̄n)


−1

. (2.30)

Since the quadrature weights wq only depend on [τ̄0, ..., τ̄n], they only have to be computed
once for a given n.

Using direct collocation for discretization as outlined above, (2.8) turns into

cinv,0,0 = [g(x0,0,u0), ġ(x0,0,u0)]T = 0, (2.31)

where the coordinate transformation Tc is used again to map from [q, q̇, t] to [x,u].
Note that g and ġ can both explicitly depend on the control u depending on the relative

degree of the dynamical system Σ : U → X ,u(·) 7→ x(·), where the notation (·) denotes
the entire trajectory of a decision variable. Hence, Σ is defined as a map from an input
trajectory to an output trajectory. If the relative degree of Σ is e.g. two, then g̈ is a
function of u.

In this formulation, all constraints are discretized by only enforcing them for the OCP’s
decision variables, namely x, u and λ on the control points. It is still possible that the
constraints are violated between the control points.

2.3. Interior-Point Methods for Numerical Optimization
Now that (2.9) has been discretized using direct collocation, we need a way to numerically
solve the discrete OCP (2.22). For this, we choose to use an IP method. To explain the
basic working principles of IP methods, we restate (2.22), but without explicitly writing
down the box constraints that are instead fused into the general inequality constraint
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2.3. Interior-Point Methods for Numerical Optimization

vector h, whereas the collocation and continuity constraints are fused into the equal-
ity constraint vector c. Also, we summarize all decision variables as w ∈ Rnw , with
nw = nx + nu + nλ + 1 + np.

minimize
w

J(w)

subject to 0 ≥ h(w),

0 = c(w).

(2.32)

For the inequality constraint vector h = [h0, ..., hih , ..., hnh
] ∈ Rnh , an inequality con-

straint hih is called active at a feasible point w∗, if and only if hih(w∗) = 0. We call the
set of all active inequality constraints the active set Ah. A point w∗ is further said to
fulfill the linear independence constraint qualification (LICQ), if the matrix

L =

[
∇wc(w∗)
∇wha(w

∗)

]
∈ R(nc+nha )×nw (2.33)

has full rank, where ha ∈ Rnha is a concatenation of all hih ∈ Ah. This is equivalent
to the condition that the gradients of all equality constraints and all active inequality
constraints must be linearly independent.

Furthermore, we define the Lagrange function of (2.32) as

L(w,λ,µ) = J(w) + λTc(w) + µTh(w), (2.34)

with the Lagrange multiplier vectors λ and µ. Note that in the Lagrange function, equal-
ity and inequality constraints are treated separately with a separate vector of multipliers
each.

The OCP (2.32) can be solved by looking for points that satisfy the so called Karush-
Kuhn-Tucker (KKT) conditions [32]:

Theorem 1 (KKT conditions). If w∗ is a local minimizer of the optimization problem
defined in (2.32) and if LICQ holds at w∗, then there exist multiplier vectors λ∗ and µ∗

such that

∇wL(w∗,λ∗,µ∗) = 0 (2.35)

c(w∗) = 0 (2.36)

0 ≥ h(w∗) ⊥ µ∗ ≥ 0. (2.37)

The orthogonal operator ⊥ implies that the vectors h and µ are orthogonal to each other.
This means that for every hih /∈ Ah, µih = 0. In general, the KKT conditions are only
a necessary condition for optimality. They are also a sufficient condition only for convex
problems.

Since we usually deal with non-convex problems, we formulate a second-order sufficient
condition [32]. To do so, we define Z as the null-space of the matrix

A =

[
∇wc(w∗)
∇wh+(w∗)

]
∈ RnA×nw , (2.38)
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where h+ are the strictly active inequality constraints. A constraint hih is strictly active
if and only if hih ∈ Ah and µih > 0. The matrix Z ∈ Rnw×(nw−nA) is defined with the
conditions that AZ = 0, ZTZ = 0 and that the columns of Z are a base of Z. The
second-order condition can then be formulated as:

Theorem 2 (Strong second-order sufficient conditions for optimality). If (w∗,λ∗,µ∗)
fulfills the KKT conditions and the LICQ and if the Hessian of its Lagrangian is positive
definite on the corresponding space Z, i.e., if

ZT∇2
wL(w∗,λ∗,µ∗)Z > 0, (2.39)

then the point w∗ is a local minimizer of the problem formulated in (2.32).

For an OCP without inequality constraints, theorem 1 can be converted easily into a
nonlinear root-finding problem that can then be solved by using some sort of Newton-type
method. For OCPs with inequality conditions, the so called complementary slackness
condition (2.37) makes this straightforward approach impossible. IP methods try to
approximate condition (2.37) in such a way that fast and reliable Newton-type methods
can be used to find points that fulfill the KKT conditions of theorem 1 and also ensure
that the condition (2.39) from theorem 2 holds.

As a first step, we introduce the slack variables s to rewrite the constraint hih(w) ≤ 0
as hih(w) + sih = 0 together with sih > 0. Secondly, we add a barrier function term to
the cost function such that

J̄(w, s, τ) = J(w)− τ
nh∑
ih=1

log sih (2.40)

is the new cost function with the barrier parameter τ > 0. One can verify that for
τ → 0, the barrier function acts as an ideal indicator function for sih > 0, vanishing
for any strictly positive sih and going to infinity for sih → 0. However, by decreasing
τ , the numerical properties of the barrier function also deteriorate because it converges
point-wise to the discontinuous indicator function.

Using the new cost function (2.40), we can formulate the OCP

minimize
w, s

J̄(w, s, τ)

subject to 0 = h(w) + s,

0 = c(w),

(2.41)

which is only constrained by equality constraints. Introducing the slack variable s and
adding the barrier term to the cost function approximates the inequality constraints
without actually formulating them in the OCP. We can now apply theorem 1 to (2.41),
resulting in

∇wL̄(w,λ,µ, τ) = 0 (2.42)

c(w) = 0 (2.43)

h(w) + s = 0, (2.44)
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to which we add

µihsih − τ = 0, for ih = 1, ..., nh. (2.45)

Equation (2.45) is a smooth approximation of the complementary slackness condition
for sih > 0, the inequality conditions that were not explicitly stated in (2.41). For
τ → 0 the original complimentary slackness condition is recovered. Equations (2.42) –
(2.45) constitute the desired root-finding problem that can be solved using Newton-type
methods.

It has already been mentioned that τ → 0 gives the best approximation of (2.32), but
results in bad numerical behavior because the cost function J̄ would then be (almost)
non-continuous. Hence, a homotopy is employed to solve (2.41). First, it is solved
for a large τ0, whereafter the solution is used as an initial guess for the same problem
with a smaller τ1. This procedure is repeated for a series of τiτ , iτ ∈ {0, 1, ..., nτ},
with τiτ > τi+1 > 0. The value of the last τnτ is a measure of how accurately (2.41)
approximates (2.32) with respect to the inequality constraints. The engineer using the
IP method has to choose a value based on the classical trade-off between computation
time and accuracy.

Due to the homotopy that is performed during the IP algorithm, one does not directly
solve for an optimal value w∗ but rather a series of w∗iτ that are each optimal with regard
to the barrier parameter τiτ of the corresponding homotopy step. This means that w∗iτ+1

is a suboptimal solution to the iτ -th homotopy step. Thus, it is difficult to warm start an
IP method because even if the solver is initialized with the optimal solution w∗nτ , it first
has to solve all intermediate problems with their corresponding τiτ , resulting in a series
of w∗iτ . It is even possible that the optimal solution w∗nτ is infeasible for another τiτ if
iτ 6= nτ . Hence, it is a non-trivial question how to choose the series of τiτ and especially
how to choose τ0 and τnτ .

Since the constraints µih > 0 and sih > 0 are not explicitly stated in the root-finding
problem (2.42) – (2.45), one has to shorten the step size during the Newton-type iterations
to ensure that the constraints are met. One also has to ensure within the Newton-type
method that the condition of theorem 2 holds by regularizing the Hessian in such a way
that it is positive definite during each step of the Newton-type method.

Compared to SQP methods, IP methods have two important advantages. Firstly, they
only need to approximately solve a root-finding problem per homotopy step, while SQP
methods need to solve an entire quadratic program (QP) of the same size in each iteration.
Especially since some SQP solvers use IP methods to solve these QPs, IP methods are
often less computationally expensive than SQP methods.

Secondly, since we can choose the accuracy with which the inequality constraints are
approximated with the barrier parameter τ , a large τ0 (i.e. a bad initial approximation of
the inequality constraints) can facilitate the process of finding a feasible initial condition.
In other words, if a bad initial guess w0 turns out to be infeasible for a given τ0, it is
possible to increase τ0 until w0 is feasible without necessarily decreasing the quality of
the solution w∗nτ . This is especially useful for complicated and unintuitive mechanical
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systems like multi-kite AWES for which the computation of feasible initial conditions is
very difficult.

2.4. Homotopy Strategy
None of the problems discussed in this thesis can be robustly solved with a single OCP.
Instead, we employ a homotopy strategy similar to [18, 24] and solve a series of OCPs Pl,
l ∈ {0, 1, ..., P} = PH, one after the other, using the solution of OCP Pl as initial guess
for Pl+1. By doing so, we can first find a solution to a problem P0, for which it is easy to
find a feasible solution, and then gradually deform the problem to PP , the problem we
actually want to solve. In order to explain the homotopy strategy, we will first elaborate
its working principle and then present a more precise formalization.

Working Principle

For the homotopy strategy, we introduce two different homotopy parameter vectors. The
vector φ = [φ0, ..., φl, ..., φP ]T ∈ RP+1 consists of scalar homotopy parameters φl that are
bounded on the interval [0, 1]. The vector θ = [θT

0 , ...,θ
T
l , ...,θ

T
P ]T consists of unbounded

homotopy parameters that are used to soften constraints by expanding the feasible set
of the OCP. They can but do not have to be scalar. Together the homotopy parameters
are added to the OCP as an optimization variable p = [φT,θT]T in accordance with the
notation of section 2.22.

There exists a scalar bounded homotopy parameter φl for every homotopy step Pl. It
is used with a homotopy function with a linear embedding that can be part of the cost
function, the constraints or the dynamic equations of the OCP formulation.

Let us assume we have the homotopy

Sl(p) = φlA(θl) + (1− φl)B (2.46)

somewhere within the OCP formulation, where φl ∈ [0, 1] is the bounded homotopy
parameter associated with step Pl.

Note that A(θl) can be a function of the unbounded parameter vector θl. A possible
interpretation of the function A(θl) is that of an unbounded fictitious force that can be
introduced into the dynamics. Since θl is an optimization variable, it facilitates finding
a feasible solution by altering the dynamics of the system in a way that expands the
feasible set of the OCP. After finding a feasible solution with the help of θl, we use the
homotopy to shrink the feasible set to correspond to the physical forces in the dynamics.
To do so, we perform homotopy step Pl.

Within Pl, we perform the following two sub-steps to deform the problem formulation
from the starting function A to the target function B:

2Technically, the homotopy parameters are optimization variables. However, we continue to call them
parameters to distinguish them from the rest of the optimization variables.
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• Solve the OCP for φ, θ bounded element-wise by

θr = 0,∀r < l (2.47)

φr = 0,∀r < l (2.48)

φl ∈ [0, 1] (2.49)

φr = 1,∀r > l, (2.50)

with the initial guess φl = 1 and add a strong penalty for φl in the cost function.
This results in S(p) = A(θl) at the beginning of the homotopy step, whereas φl is
then decreased due to its strong penalty until φl ≈ 0 and S(p) ≈ B. Since θl is
unbounded, we must penalize it to make sure that A(θl) does not grow with the
same rate that φl decreases.

• Solve the OCP with the bounds

φr = 0,∀r ≤ l (2.51)

φr = 1,∀r > l (2.52)

θr = 0,∀r ≤ l. (2.53)

This makes sure that S(p) = B. Consequently, the deformation from A to B is
complete.

The term A does not have to be a function of θl, but can also be e.g. a constraint or
a cost function term. We do not allow B to be a function of θl.

Homotopy Formalization

Now that we have explained the basic working principle of the homotopy strategy, we
set out to find a precise formalization of it. Our goal in doing so is to develop a concise
notation for the description of homotopy schedules. For this, we identify three separate
parts of the OCP formulation that can contain homotopies: the cost function J ∈ R, the
dynamics D ∈ RnD and the constraints C ∈ RnC .

The cost function takes the form of

J(p) = J1(φ) + J2(φ) + fθ(θ) + fφ(φ) + J0. (2.54)

We will go over this notation bit by bit.
The first two terms are defined as

J1(φ) =
∑
l∈PH

J1,l(φl) (2.55)

J2(φ) =
∑
l∈PH

J2,l(φl). (2.56)
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Here in turn we use the definition of

J1,l(φl) = φlJ̃1,l = pJ(J̃1,l) (2.57)

J2,l(φl) = (1− φl)J̃2,l = pJ(J̃2,l), (2.58)

where we define the placement operator

pa(b) = abb, (2.59)

for two vectors a and b. We choose this notation to be able to simply state J̃1,l and J̃2,l

for a given l, without having to further specify, where they appear in J . This will be
especially useful when we later define the non-scalar expressions D and C in the same
way.

The term J0 denotes all terms of the cost function that are not functions of φ.
The functions fθ(θ) and fφ(φ) are there to penalize the homotopy parameters p at

the appropriate homotopy steps. To do so, we define the function fφ(φ) as

fφ(φ) =
∑
l∈PH

r̃lf̃φl(φl), (2.60)

where f̃φl are strictly quasi-convex functions with f̃φl(0) = 0 and r̃l is a scalar that is set
according to

r̃r = 0, ∀r < l (2.61)

r̃l = 1 (2.62)

r̃r = 0, ∀r > l. (2.63)

This makes sure that φl is penalized according to f̃φl(φl) in the homotopy step Pl. The
function fθ(θ) is defined analogously.

The dynamics and constraints are similarly expressed as

D(p) = D1(p) + D2(φ) + D0 (2.64)

and
C(p) = C1(p) + C2(φ) + C0, (2.65)

with the analogous definitions for D1, D2, D0, C1 , C2 and C0. Let us explicitly state
the definitions (2.55) – (2.58) for the dynamics D:

D1(p) =
∑
l∈PH

D1,l(φl,θl) (2.66)

D2(φ) =
∑
l∈PH

D2,l(φl), (2.67)
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with

D1,l(φl,θl) = pD(D̃1,l) (2.68)

D2,l(φl) = pD(D̃2,l). (2.69)

Here we can make two observations. Firstly, D1 is a function of p, which also includes
θ, as opposed to J1(φ). We can easily extend our notation for J1 to also be a function
of θ, but since we use the unbounded homotopy parameter θ to increase the feasible set
of an OCP, it does not make sense for it to appear in a homotopy like (2.46) in the cost
function. Secondly, defining D1,l with the help of the placement operator enables us to
define D̃1,l without having to worry about the different vector dimensions of D̃1,l and D.

With this notation, we can describe a switch in the cost function as

J̃1,l
φl−→
θl

J̃2,l (2.70)

for some homotopy step Pl. The notation of (2.70) is interpreted as follows: switch
from J̃1,l to J̃2,l using the bounded homotopy parameter φl and the unbounded homotopy
parameter θl. The cost on p is changed according to (2.61) – (2.63). The bounds on p
are changed according to (2.47) – (2.53). A full homotopy step can then be described by

Pl : J̃1,l
φl−→
θl

J̃2,l (2.71)

D̃1,l
φl−→
θl

D̃2,l (2.72)

C̃1,l
φl−→
θl

C̃2,l. (2.73)

From now on, we concisely present (2.71) – (2.73) for a full series of homotopy steps Pl,
l ∈ PH in the form of table 2.1.

Table 2.1.: Generic homotopy schedule.

homotopy step P0 · · · Pl · · · PP

objective J̃1,0
φ0−→
θ0

J̃2,0 · · · J̃1,l
φl−→
θl

J̃2,l · · · J̃1,P
φP−→
θP

J̃2,P

dynamics D̃1,0
φ0−→
θ0

D̃2,0 · · · D̃1,l
φl−→
θl

D̃2,l · · · D̃1,P
φP−→
θP

D̃2,P

constraints C̃1,0
φ0−→
θ0

C̃2,0 · · · C̃1,l
φl−→
θl

C̃2,l · · · C̃1,P
φP−→
θP

C̃2,P

If one of the table’s elements is marked with a grayed out ×, it means that the cor-
responding homotopy in J , D or C is zero. The unbounded homotopy parameter θl is
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omitted when the homotopy does not depend on θl. For any series of homotopy steps,
we initialize with the bound φ = 1, meaning that homotopy (2.46) has a default value of
Sl = A until it is changed.

This procedure has two main advantages over choosing a fixed step for the homotopy
parameters p. For one, instead of having to solve an arbitrary number of OCPs, we
only have to solve two. Also, we can leave the choice of the step size for the homotopy
parameters up to the sophisticated line-search algorithms of the numerical backend. The
downside of this procedure is however that leaving the choice of step size up to the
numerical backend also means that we have to use caution when designing fφ(φ). If φ is
weighted too aggressively in the cost function, the step size in φ might become so large
that the solver “jumps” over the homotopy path.

In order to solve the OCPs for the emergency landing procedures, one first solves a
problem for which an initial guess can be found more easily and then gradually changes
the cost function, dynamics and constraints until arriving at the actual problem one
wants to solve. Since we not only solve one problem but a series of problems Pl, most
of the Pl are only intermediate solutions. For an intermediate problem Pl, it does not
make sense to introduce all of the problem’s nonlinearity by solving it for a whole range
of barrier parameters τ . A sensible way of handling the nonlinearities is to set the ini-
tial barrier parameter τ0 and the target barrier parameter τf differently for P0, PP and
all other intermediate OCPs Pl. Specifically, we define the values τa, τb and τc with
τa > τb > τc > 0. We then set τ0 and τf according to table 2.2. With this approach, step
P0 is only solved up to a barrier parameter of τb. The following problems Pl stay at this
barrier parameter and only the final OCP PP is solved with a low barrier parameter τc.
Additionally, we distinguish between two error tolerances ra and rb for the interior-point
solver, where ra > rb. The numerical values for the parameters presented in table 2.2
can be looked up in appendix A.3. The initial and terminal homotopy step are only used
to change the settings of the solver. Hence, the whole columns corresponding to P0 and
PPP are grayed out. These homotopy steps only consist of one sub-step instead of two
and neither penalize θ nor φ. This information is not included in the following homotopy
schedules since it is redundant for all schedules of this thesis.

Table 2.2.: Barrier parameters for Pl.
τ0 τf rtol

P0 τa τb ra

Pl τb τb ra

PP τb τc rb

This chapter served to introduce the theory and notation that will be used in later
chapters. We discussed how to model physical systems in an OC context using DAEs
and how to discretize an OCP using direct collocation. Furthermore, we explained the
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working principle of interior-point methods and the homotopy strategy that will be used
to solve the OCPs of this thesis. We aimed to develop a notation for discretized OCP
formulations and homotopy schemes that is both precise and easy to read.
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The upcoming chapters of this thesis are mostly concerned with formulating and solving
OCPs, thereby generating optimal trajectories tailored for different scenarios. The current
chapter shall serve as an overall context in which all of these different trajectories should
be viewed. It explains the general concepts and strategies of how a multi-kite AWES
should deal with emergency scenarios. Section 3.1 starts by categorizing all emergency
scenarios that that have been identified over the course of this thesis and elaborates on
each of these categories. Section 3.2 then explains how emergencies will be detected by
and internally represented within the system using a state machine. Lastly, section 3.3
concerns itself with the structure of the emergency landing strategies that are used in
response to the detected emergency scenarios.

In order to make the AWES more safe and reliable, most components are implemented
in a redundant fashion. Especially the sensors of the AWES must be redundant so that
the long or short term failure of a single sensor does not render the whole AWES “blind”.

3.1. Expected Emergency Scenarios

Section 1.3 has already given a short introduction to possible emergency scenarios. The
following gives a more complete and structured view of the topic. All emergency scenarios
that have been identified can be categorized as follows:

• Sensor malfunction: One or more of the kites’ sensors breaking down can result
in problems with sensor fusion and state estimation. False or missing sensor values
can result in the state estimation converging to a wrong value or not converging
at all, rendering the control setup instable. Since the kites’ sensors are redundant,
the suggested course of action is to act before further malfunctions result in an
impeded maneuverability of the kites that would make a nominal landing procedure
impossible.

• Actuator malfunction: The kites are actuated by servo-motors that are suscep-
tible to attrition and bad weather conditions. A malfunction of the actuators leads
to limited control possibilities of the kite in question. More specifically, the actua-
tors can get stuck in a certain position, only work within a limited range or break
down completely. This is not only true for the actuator on the kites but also for
the generator winch in the ground-station.
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• Structural damage: Bird strike or other unforeseen circumstances can inflict
structural damage on the AWES, ranging from a deformation of the kites to the
breaking of a tether. This can lead to a change of the kites’ aerodynamics.

• Software errors: Even after careful debugging, it is possible that the code running
on the kites fails. For example, it is possible for embedded algorithms to fail, e.g.
by not converging in time for the next control interval.

• Energy system malfunction: The on-board battery or power distribution system
can fail. It is to be expected that the on-board battery loses maximum capacity
over time. Also, bad weather conditions like too much moisture or previous failure
of electronic components can trigger a failure of the energy distribution system.

• Electronics malfunction: Due to moisture, the on-board electronics can mal-
function. An error in the electronics is likely to trigger failures in the other system
components that are connected by the electronics.

• Communication errors: Both the on-board communication and the communica-
tion between kites and ground-station can fail.

Looking at the above list, it is obvious that not all of these emergency scenarios can
be effectively resolved by the means of an OC approach using trajectory optimization.
Nevertheless, all emergency scenarios must be considered to come up with a unified
methodology of how to handle them.

Since every nominal or emergency landing makes the AWES less efficient, there is a
strong incentive to perform as few landings as possible. However, a nominal landing is
much safer compared to an emergency landing and so it is reasonable to land while the
malfunctioning components redundancy still ensures a nominal flight behavior for the
AWES. In a mechatronic system, the failure of one component is often an indicator for
the failure of other components shortly after. If one redundant sensor fails due to low
temperatures, it is very likely that other sensors will follow suit since they are subject
to the same temperatures. In addition, there is the concept of cascading failures: A
malfunction in one part of a mechatronic system is likely to trigger other parts of the
system to malfunction. A common example for this is the lighting on a bike: If the bulb
of the front light burns through, the bicycle’s dynamo provides too much voltage to the
back light, causing it to break soon after if the front bulb is not exchanged. Considering
these two arguments, it is unwise to try to improve the AWES efficiency by tolerating
too many failures of redundant system components before landing and it should only be
attempted if there is strong evidence that the failure was indeed an isolated incidence.

3.2. Emergency Detection
The first step in each emergency scenario is the detection of the emergency such that the
proper cause of action can be chosen. We choose to formalize this basic procedure as a
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state machine as shown in Fig. 3.2. The state machine’s nodes correspond to operational
modes, while the edges correspond to actions performed within these operational modes.
By performing the actions attributed to the edges, the system’s state can switch from
node to node in the direction assigned by the arrows. The state machine has four nodes
that are defined as follows:

• Nominal (N): The system is running smoothly without any problems. This is
the system’s desired operational mode, in which the system will ideally spend the
majority of its time.

• Warning (W ): A problem has occurred that needs further investigation and should
be kept under observation. The response to these problems is dependent on how
frequently and continuously they appear. The explosion of a sensor’s variance for
example can be completely harmless if it is an isolated, short-term phenomenon due
to noise but needs to be monitored to ensure that it does not happen continuously,
indicating a broken sensor. As far as the AWES’s control policy is concerned, the
state W is equivalent to the nominal state N .

• Error (E): An error has occurred that necessitates an immediate emergency land-
ing. As opposed to a problem that only warrants a warning, an error is issued
under the assumption that the problem in question is not an isolated short-term
phenomenon, cannot be fixed while the AWES is still airborne and renders the
AWES unsafe to fly. This does not necessarily mean that the AWES’s controls are
already compromised. Ideally the error state E is entered before the AWES loses
its nominal flight behavior, but when it can be predicted that the AWES is about
to be compromised in the foreseeable future, e.g. due to the failure of a redundant
sensor.

• Critical (C): A critical error has occurred that renders the control setup effectively
useless. Once the critical state C has been entered, no guarantee can be given that
the control setup will produce useful output, e.g. when an uncaught exception
crashes the flight controller.

The edges of the state machine correspond to actions performed within the given states,
namely the detection of different kinds of emergencies. Each time one of these actions
is performed, the system moves along the arrow and enters a new state. The edges are
assigned as follows:

• dW: A warning is issued. This means that a problem that necessitates a warning is
detected. Note that the edge dW does not necessarily lead to the warning state W .

• dN: A problem that resulted in a previous warning is resolved. The resolution of
such a problem requires more than the non-performance of dW. In other words, it
is not enough that a warning is no longer issued. There needs to be a change in the
system’s behavior indicating that the problem has indeed been resolved.
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Figure 3.1.: State machine for error detection.

• dE: An error occurred and has been detected by the system. As opposed to the
issuing of a warning, all edges designated dE lead to the error state E.

• dC: A critical error occurred and has been detected by the system. Similar to dE,
all edges designated dC lead to the critical state C.

• dCE: A critical error has been resolved, e.g. by rebooting the flight controller. Since
the AWES control setup is now functioning again, there is no reason not to use it
to perform an appropriate emergency landing.

It is only ever possible to go along one edge at a time, meaning that e.g. a warning can
only be issued if neither dN nor dE nor dC are performed.

After a warning is issued and state W is entered, it is possible to go back along the
edge dN to enter the nominal state N . It is however not possible to return to state W
or N once a (critical) error has been detected and state E or C has been entered. This
design choice follows the idea that, once a (critical) error has been detected, the AWES
should perform an emergency landing even if the problem resolves itself shortly after.
This is due to the fact that such an event is less likely than that the evidence for said
recovery is corrupted due to the preceding (critical) error. Hence, both edges dN and dW

loop back from state E onto itself. The state can only be left by going along the edge dC

to state C. However, it is possible to go back from node C along the edge dE and enter
the state E again, in case that the functionality of the control setup is recovered in some
way.

The choice which edge d to follow can be made by a Bayesian network using expert
knowledge about the system [33]. The network must be set up in such a way that it
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chooses the action d that corresponds to the most probable cause for a given set of prior
assumptions. Hence, it performs a kind of artificial reasoning (AR). The choice of action
must be unique for each set of prior assumptions to make sure that the system only ever
moves along one edge at a time. Inside the states W , E and C there are other Bayesian
networks set up to use AR to figure out which emergency scenario is most likely the
cause of the prior assumptions that have been observed. This however will not be part of
this thesis since it diverges too much from the topic of trajectory optimization. For the
remainder of this thesis, we will therefore assume that the most likely emergency scenario
has been deduced by a Bayesian network and is therefore known.

3.3. Hierarchical Emergency Landing Strategies
Section 3.2 has explained how emergency scenarios can be detected by the AWES and
how a Bayesian network can be used to choose an appropriate response to a given sce-
nario. However, we have not mentioned the possible responses so far. There are three
different emergency landing strategies, (A), (B) and (C), ordered in descending desir-
ability. Within each of these strategies, we assume that the emergency happens while
the AWES is flying a pumping cycle, since this constitutes its most common operational
mode. The logic as to when to apply each strategy is as follows:

Algorithm 1: Logic for choosing emergency landing strategy.

if (A) is possible then
do (A);
else if (B) is possible then

do (B);
else

do (C);
end

end

end

Thus, strategy (B) is only employed if strategy (A) is not an option. Strategy (C) is
only employed if both strategies (A) and (B) are not possible. Algorithm 1 will most likely
not be implemented as code, since the choice of which strategy to use will be performed
by this Bayesian network as outlined in section 3.2. The algorithm is displayed here to
give a better understanding of the conceptual relationship of (A), (B) and (C). The
three strategies are defined as follows:

• (A) Transition to low altitude pumping trajectory: Instead of landing, the
AWES transitions into a low altitude pumping trajectory. This saves time and
energy by omitting the inefficient landing and starting procedure. The strategy
is applicable e.g. for when bad weather conditions make flying pumping cycles
impossible but do not force the AWES to land. The AWES then flies the low
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altitude pumping trajectory until the weather clears up again and then transitions
back to flying pumping cycles. Since the AWES has nominal flight behavior in
this case, there is no need to initiate the transition immediately. It is possible
to continue on the pumping trajectory for a few seconds in order to find a more
suitable starting point for the transition trajectory.

• (B) Emergency landing with nominal flight behavior: The AWES performs
a landing in response to an emergency, but does so at a point where it still has
nominal flight behavior. A likely scenario would be the failure of a redundant sensor
or the on-board battery’s maximum capacity getting too low. Similar to strategy
(A), there is enough time to continue the pumping cycle until a desirable point is
reached to initiate the landing trajectory. Since the AWES still has nominal flight
behavior and the initial state can be freely chosen along the pumping trajectory,
this strategy should always be successful, meaning that it should be able to land
the AWES without damaging the environment or the system itself.

• (C) Emergency landing with compromised flight behavior: In case of a
sudden emergency that compromises the AWES’s flight behavior, there is no guar-
antee that the AWES can follow the pumping trajectory any further. Thus, the
emergency landing trajectory needs to be initiated as soon as possible, no matter
how inefficient the current position on the pumping cycle might be. This task is
the most difficult to perform since the AWES is much more restricted in terms of
its initial state and flight behavior. It is obvious that not all emergency scenarios
permit an elegant landing trajectory that leave the AWES completely unharmed.
In some cases, the optimal trajectory will not be the best, but rather the “least
bad” resolution of the emergency scenario.

Both strategies (B) and (C) are designed as a two-phase landing procedure. In the
first phase, the kites should fly close to the ground-station while reducing the AWES’s
kinetic energy using aerodynamic forces. In phase two, the kites’ propellers are used
to land the AWES. This two-phase landing procedure is put in place to prevent high
relative velocities with regard to the wind from damage the AWES’s propellers. In case
of strategy (C) however, it can make sense to use the propellers right from the beginning
of the trajectory, considering that a damaged propeller is favorable to other damages that
could result from the AWES relying on aerodynamic forces for too long. However it must
also be kept in mind that a propeller breaking in mid-flight is a great safety hazard due
to its sudden influence on the AWES’s maneuverability. Due to time constraints, this
thesis will focus on the first part of the two-phase landing procedures.

This chapter served to introduce a set of comprehensive strategies for dealing with
different kinds of emergency scenarios that are facing the multi-kite AWES. We will now
go on to develop ways to mold these strategies into precise OCP formulations. In order
to do so, it is first necessary to derive a model of the multi-kite AWES, which will be
done in the next chapter.
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For feasibility studies and as a basis for future work, we use a point-mass model of the
AWES. The derivation of the system’s aerodynamics is taken from [45]. The Baumgarte
stabilization and the choice of the state vector is similar to [17]. The point-mass model’s
obvious drawback is that it is only a 3 DOF model, lacking any explicit rotational dy-
namics. This lack of complexity however is also its biggest advantage, making it easier
to intuitively understand how the system’s states interact with each other. This makes
the point-mass model ideal for a first implementation of the problems presented in this
thesis. It is later possible to exchange the model for a more accurate 6 DOF formulation.
The system is modeled using an implicit DAE 0 = f just as explained in section 2.1.

The first section of this chapter gives an overview of the system’s states, controls and
coordinate system. The next section then goes on to discuss how the system’s dynamics
are derived with a Lagrange approach. Section 4.3 explains how wind and atmospheric
properties are modeled. The next section goes into detail about the generalized forces
that are acting on the system, specifically the aerodynamic kite forces and the tether
drag. Section 4.5 elaborates on how the on-board battery of the kites is modeled.

The parameters used in this chapter are summarized in appendix A.1 together with
their corresponding numerical values. The Ampyx PowerPlane (2nd gen.) as described
in [25, 27] is chosen as a reference for the kite parameters.

4.1. System States, Controls and Coordinate System
The schematic layout of a dual-kite AWES is shown in Fig. 4.1. The systems nodes are
numbered p ∈ {1, ..., N} = N while A denotes the set of all nodes with a kite attached.
The tethers are numbered k ∈ {1, ..., NT} = T . We further define the map P : p→ P (p)
that maps each node p to its parent P (p). The parent P (p) is connected to p by the
tether k = p by moving along the tether in the direction of the ground-station. The
parent P (1) is defined as node 0, even though 0 /∈ N .

The system states of the AWES consist of

x =
[
qT, q̇T,CT

L ,Ψ
T, lT, l̇T

]T
∈ Rnx , (4.1)

where nx = 6N +2NK +2 and q, q̇ ∈ R3N are concatenations of the position and velocity
vectors qp, q̇p for all nodes p ∈ N . Similarly, CL, Ψ ∈ RNK are concatenations of the lift
coefficients CL,a and roll angles Ψa for all kite nodes a ∈ A, where NK is the cardinality of
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Figure 4.1.: Schematic sketch of the dual-kite AWES including the coordinate system and
the labeling of the system’s nodes [24].

A. These expressions make up the state vector together with the global states, consisting
of the main tether length and velocity lT and l̇T. The main tether velocity l̇T is defined
in such a way that l̇T < 0 means that the tether is reeled in towards the ground-station.
For convenience, all states are summarized in table 4.1. It should be noted that since
qT

1 q1 − l2T = 0, the chosen coordinates are not minimal. Even though the choice of
coordinates is not minimal, one can show that modeling the system in these coordinates
results in model equations of lesser complexity. Thereby the computational cost for
evaluating the model equations and its corresponding sensitivities is reduced [45, 17].
Additionally, we have the generated energy E of the AWES, which is not included in the
state vector x for ease of notation.

The controls of the system are chosen as

u =
[
ĊT

L , Ψ̇
T, l̈T

]T
∈ R2NK+1, (4.2)

where ĊL, Ψ̇ ∈ RNK are defined analogously to CL and Ψ. The system controls are the
derivatives of the roll-angle Ψ and lift coefficient CL of all kites as well as the acceleration
of the main tether l̈T. This means that there are several undamped integrators in the
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transfer function from the controls u to the states x. The choice of ĊL and Ψ̇ as controls
implies that in the case of no control input, both roll-angle and lift coefficient are perfectly
stabilized.

Table 4.1.: Model states.

state unit meaning

qp m position vector of node p
q̇p m/s velocity vector of node p
CL,a [−] lift coefficient of kite a
Ψa deg roll angle of kite a
lT m main tether length

l̇T m main tether velocity

We use a coordinate system with x pointing into the dominant wind direction, z up-
wards and y as an addition to the right-hand system. This means that the coordinate
system is fixed as long as the wind model is constant in time t. The origin of the coordi-
nate system is located at the ground-station.

4.2. Lagrangian Mechanics
The dynamics of the system shown in Fig. 4.1 are derived using a Lagrange approach.
To do so, we employ the generalized coordinates q = [qT

1 ,q
T
2 ,q

T
3 ]T corresponding to the

nodes’ positions. Note that the generalized coordinates q, which are used to derive the
Lagrange mechanics, are only a part of the system’s states x. The system must behave
in such a way that the kites’ positions are always consistent with the lengths of the main
and secondary tethers lT and ls. This means that the system states are restricted to the
manifold M defined by the invariant constraint

g(q) =

 qT
1 q1 − l2T

(q2 − q1)T(q2 − q1)− l2s
(q3 − q1)T(q3 − q1)− l2s

 = 0. (4.3)

Considering (4.3), we can derive the Lagrange dynamics just as outlined in section 2.1.
The systems potential energy can be computed as

V =
3∑
p=1

mpgqz,p, (4.4)

where mp is the mass of node p, consisting of half the weight of all tethers directly
connected to p and the mass of the kite for p ∈ A. Variable qz,p is the height of node p
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and g the standard gravity. The system’s kinetic energy consists of the kinetic energy of
each node p as well as the generator’s kinetic energy and can be formulated as

T =
3∑
p=1

1

2
mpq̇

T
p q̇p +

1

4
mGl̇T , (4.5)

assuming the generator drum is a solid cylinder with mass mG. The non-conservative
generalized forces F of the system consist of aerodynamic forces acting on the kites and
tether drag, as will later be discussed in section 4.4. The system’s conservative forces
(e.g. gravity) are accounted for by the potential energy term in the Lagrange function
(2.1). By performing index reduction, (2.2) turns into

d

dt

∂L
∂q̇
− ∂L
∂q

= F, g̈ = 0 (4.6)

cinv(0) = 0,

where we again use the notation

cinv(0) =
[
g(q(0))T, ġ(q(0), q̇(0))T

]T
. (4.7)

Using Baumgarte stabilization as outlined in section 2.1, the differential equation (DE)
for the consistency constraint becomes

g̈(q, q̇, q̈(u)) = −2κġ(q, q̇)− κ2g(q). (4.8)

Note that g̈ is a function of the control u since q̈ is a function of u.
The overall system dynamics are obtained by concatenating (4.6) with the trivial dy-

namics and the DE for the energy E. The system’s algebraic variables are the Lagrange
multipliers λ = [λ1, λ2, λ3]T. Each Lagrange multiplier is linked to one entry of the in-
variant constraint g(q) and so to one specific tether. The expression λklk = τk is equal to
the tension in the tether k. Hence, one can formulate the DE for the generated energy E
as

Ė = λ1lTl̇T. (4.9)

4.3. Wind and Atmospheric Model
The wind velocity is modeled using a logarithmic wind profile. The free stream velocity
is defined as

u∞(z) = uref

log
(
z
z0

)
log
(
zref

z0

)ex, (4.10)

where ex is the unit vector in x-direction, z the height, z0 the roughness length, zref the
reference height and uref the reference wind speed at the reference height. Since the wind
model does not depend on time t, the coordinate system is fixed.
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The atmospheric properties air density ρ and temperature T are modeled after [3] ac-
cording to the International Standard Atmosphere model. The temperature as a function
of the elevation is modeled as

T (z) = Tref − Γz, (4.11)

where Tref is the reference temperature and Γ is the average lapse rate in the atmo-
sphere. Using this expression, the air density is modeled as a function of temperature
and elevation as

ρ(T, z) = ρref

(
T (z)

Tref

)(
g

ΓRair
−1

)
, (4.12)

where ρref is the reference air density, Rair the specific gas constant for air and g the
standard gravity. Since temperature T (z) does not appear anywhere else in the model
equations and is only a function of z, we summarize these two equations as

ρ(z) = ρref

(
Tref − Γz

Tref

)(
g

ΓRair
−1

)
. (4.13)

4.4. Generalized Forces Acting on the System
The generalized forces of the system are all non-conservative forces, which violate the
conservation of energy within the system, meaning that they are responsible for a flux of
energy into or out of the system. This distinguishes non-conservative forces from conser-
vative forces like gravity, which conserve the energy within the system. When modeling
the dual-kite AWES, the generalized non-conservative forces comprise the system’s aero-
dynamic forces acting on the kites, namely lift and drag, as well as the drag forces acting
on the tethers.

4.4.1. Aerodynamic Kite Forces
In order to model the generalized forces acting on the kite nodes a ∈ A, we define the
airspeed relative to the wind as

uA,a = u∞(za)− q̇a. (4.14)

Furthermore, we define

êp =
qp − qr
‖qp − qr‖

(4.15)

to be the unit vector pointing in the direction of the tether attached to node p ∈ N and
connecting it to its parent P (p) = r. The transversal and lift axis of kite a ∈ A are then
defined as

eT,a =
uA,a × êa
‖uA,a × êa‖

(4.16)
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and
eL,a = eT,a × uA,a. (4.17)

The lift force acting on the kite can then be formalized as

FL,a =
1

2
ρSCL,a(cos(Ψa)eL,a‖uA,a‖+ sin(Ψa)eT,a‖uA,a‖2), (4.18)

with the wing surface S. The drag force acting on the kites is given by

FD,a =
1

2
ρSCD,a‖uA,a‖uA,a, (4.19)

with the drag coefficient
CD,a = C0

D + CI
D(CL,a)

2, (4.20)

the wing drag coefficient C0
D and the induced drag coefficient CI

D. A schematic sketch of
the aerodynamic forces can be seen in Fig. 4.2.

FL

eL

êa

eT

−uA

Ψ

FD

Figure 4.2.: Schematic sketch of the aerodynamic forces FL and FD.

Within this 3 DOF model we assume that the relative velocity vector uA,a of a kite a
is exactly anti-parallel to its (implicit) orientation. Thus, neither side slip nor angle of
attack appear in the model. Since the angle of attack does not appear in the model, stall
is also not included. Hence, we have to assume that the bounds on CL,a are always set
in a way that prevents the kite from stalling.

4.4.2. Tether Drag
The tethers are modeled as solid rods that cannot be subject to compressive forces. To
model the tether drag forces for tether k ∈ T , we define the tether’s relative velocity

uT,k = u∞(zk)− q̇T,k, (4.21)

where q̇T,k and zk are the average velocity and height of the two nodes attached to
tether k.
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Trivial Tether Drag Model

Following [45], the drag force acting on tether k is then expressed as

FTD,k =
1

2
ρdklkCTD,k‖uT,k‖uT,k (4.22)

and equally distributed to the nodes attached to tether k. This means that

FNTD,p =
∑
k∈Ka

1

2
FTD,k, (4.23)

for all nodes p ∈ N , where Ka is the set of tethers that is attached to node p. The
superindex N indicates that the index p is referring to a node, not a tether. The param-
eters dk and lk are diameter and length of tether k. The lift coefficient CTD,k is chosen
to resemble that of a cylinder. This tether drag model will further be referred to as the
trivial tether drag model.

Projected Tether Drag Model

A slightly more elaborate model can be derived by using the tether length that is per-
pendicular to the relative velocity of the tether instead of the whole tether length lk.
Equation (4.22) is thus transformed to

FTD,k =
1

2
ρdkl⊥,kCTD,k‖uT,k‖uT,k, (4.24)

where l⊥,k is the tether length perpendicular to its own relative velocity. To derive l⊥,k,
we first derive the tether length parallel to the relative velocity as

l||,k =

(
uT,k

‖uT,k‖

)T

(qk − qr), (4.25)

where qk and qr are the positions of the two nodes attached to tether k. The perpendic-
ular length is then derived by

l⊥,k =
√
l2k − l2||,k. (4.26)

This tether drag model will further be referred to as projected tether drag model.

Equivalence Tether Drag Model

An even more sophisticated model of the tether drag can be derived using an equivalent
forces approach. To do so, each tether k ∈ T is divided into nT tether segments of
identical length. The v-th segment of tether k is denoted as sk,v for v ∈ {1, ..., nT}. The
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center of each segment sk,v is denoted as qT,k,v, the corresponding height and velocity as
q̇T,k,v and zk,v. The segments relative velocity is then

uT,k,v = u∞(zk,v)− q̇T,k,v. (4.27)

With this it is possible to compute the forces acting on sk,v by adapting the projected
tether drag model (4.24) to

FTD,k,v =
1

2
ρdk,vl⊥,k,vCTD,k,v‖uT,k,v‖uT,k,v, (4.28)

where dk,v, l⊥,k,v and CTD,k,v are defined as above but for a segment sk,v and not a whole
tether k. The forces and moments acting on tether k are now derived with

FTD,k =

nT∑
v=1

FTD,k,v (4.29)

MTD,k =

nT∑
v=1

FTD,k,v × lM,k,v, (4.30)

where lM,k,v = qT,k − qT,k,v is the corresponding moment arm. Here, qT,k is the center of
tether k. The forces FTD,k and moments MTD,k are now transformed into the body frame
of tether k to yield FB

TD,k and MB
TD,k. The z-axis in the body frame is pointing along

the tether. The equivalent forces acting on the two endpoints of tether k are denoted as
FB

eq,k,l for the lower end and FB
eq,k,u for the upper end. The components of the equivalent

forces are

FB
eq,k,u = [fk,u,x, fk,u,y, fk,u,z]

T (4.31)

FB
eq,k,l = [fk,l,x, fk,l,y, fk,l,z]

T. (4.32)

The components of the forces and moments acting on the tether are

FB
TD,k = [fk,x, fk,y, fk,z]

T (4.33)

MB
TD,k = [mk,x,mk,y, 0]T, (4.34)

where we assume that tether k cannot rotate around its z-axis. With this notation, we
can derive the equivalent forces by solving the linear system of equations (LSE)

fk,x
fk,y
fk,z
mk,x

mk,y

0

 =


1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

0 lk
2

0 0 − lk
2

0
lk
2

0 0 − lk
2

0 0
0 0 1 0 0 −1


︸ ︷︷ ︸

Aeq


fk,u,x
fk,u,y
fk,u,z
fk,l,x
fk,l,y
fk,l,z

 . (4.35)
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Here the tether is assumed to be a line in R3 with no diameter in the body frame’s
x-y-plane. Thus, we enforce

0 = fk,u,z − fk,l,z. (4.36)

The equivalent forces FB
eq,k,u and FB

eq,k,l can now be derived by inverting the matrix Aeq,
which is always possible except for lk = 0, which is not important since the length of
tether k will always be strictly positive. We arrive at the desired forces Feq,k,u and Feq,k,l

acting on the upper and lower end of tether k by performing the inverse transformation
as before, this time from the body frame to the earth frame.

4.5. On-board Battery Model
The hardware on each kite is powered by an on-board battery that is charged by a
propeller during flight. Since a compromised on-board battery is a potential cause for an
emergency, it makes sense to include it in the model. We denote the energy stored in the
on-board battery as EB. We can then formulate

EB(t) = EB(t0) +

t∫
t0

ĖB(t̄) dt̄, (4.37)

where the rate of change ĖB is defined as

ĖB = ĖB,in − ĖB,out, (4.38)

with ĖB,in denoting power going into the battery by charging of the battery during flight
and ĖB,out denoting the power needed for the on-board hardware. Since we concern
ourselves only with the battery during emergency scenarios, ĖB,in is not modeled in more
detail and is set to zero anyways, thereby modeling a compromised on-board generator.
The power needed for the on-board hardware is further divided into

ĖB,out = ĖB,con + ĖB,el + ĖB,act, (4.39)

where the constants ĖB,con and ĖB,el characterize the upkeep needed to run the flight
controller and the rest of the kite’s electronics. The power needed for the actuation of
the kite can be modeled as

ĖB,act = MLδ̇L +Mφδ̇Ψ, (4.40)

where δL and δΨ are the deflection angles of the control surfaces used to actuate the pitch
and roll control of the kite. ML and MΦ are the moments acting on the servo-motors at
a certain δL, δΨ. The moment ML is modeled as

ML = q̄SL
lL
2

sin(δL), (4.41)

43



4. DAE System Model

with the actuator length lL, the actuator width wL, the actuator surface SL = lLwL and
the dynamic pressure q̄. The dynamic pressure q̄ is

q̄ =
1

2
ρv2

rel, (4.42)

where vrel is the control surface’s relative velocity and can be expressed as ‖uA,a‖. The
dynamic pressure is multiplied with the effective control surface SL sin(δL), meaning the
part of the actuator surface that is orthogonal to uA,a, to yield the force acting on the
control surface. The force is multiplied with the moment arm lL

2
to yield the moment

acting on the servo-motor of the control surface. The moment arm is assumed to be half
the length of the control surface. The moment MΨ can be modeled analogously as

MΨ = q̄SΨ
lΨ
2

sin(δΨ). (4.43)

So far, the expression for ĖB,act is a function of δL, δΨ and their corresponding deriva-
tives with respect to time. Since the 3 DOF point-mass model only considers CL and
Ψ, we need to find expressions for δL(CL) and δΨ(Ψ). To do so, we use Bryan’s method
according to [6, 31], which says that we can assume these expressions to take the form of

δL(CL) = δL,0 + Cδ,LCL (4.44)

δΨ(Ψ) = δΨ,0 + Cδ,ΨΨ, (4.45)

where δL,0, δΨ,0, Cδ,L and Cδ,Ψ are constants. We can estimate these constants by solving
the LSE

δL,max = δL,0 + Cδ,LCL,min (4.46)

δL,min = δL,0 + Cδ,LCL,max (4.47)

δΨ,max = δΨ,0 + Cδ,ΨΨmin (4.48)

δΨ,min = δΨ,0 + Cδ,ΨΨmax, (4.49)

with given minimum and maximum deflections of the control surfaces. By plugging (4.44)
– (4.45) into (4.40), the desired model is derived.

The energy stored in the on-board battery at the initial time EB(t0) can be expressed
as a fraction of the energy stored on a fully charged battery. We compute the initial
electrical energy stored on the battery as

EB,0 = NBνfrνcQBUB, (4.50)

where NB is the number of battery cells, QB the charge, UB the voltage, νc the conversion
efficiency and νfr the fraction of how fully the battery is charged at the initial time.
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4.5. On-board Battery Model

In this chapter we have derived a 3 DOF model for a dual-kite AWES. This includes
the aerodynamic kite forces as well as three different tether drag models of increasing
complexity. We have also derived a model for the on-board battery of the kites.

The implicit DAE
0 = f(x, E, ẋ, Ė,u,λ) ∈ Rnx+1+NT , (4.51)

which describes the model, consists of the DE for the states x ∈ Rnx , the DE for the
energy E ∈ R and the (derivatives of the) algebraic equations g̈ ∈ RNT . In the case
that the on-board battery energy and its derivative is added to the model as states for
all kites, the dimension of f increases by 2NK. For a dual-kite AWES without on-board
batteries, there are 25 states (including the energy E), 5 controls, 3 algebraic equations
and f ∈ R28.

Now that we have obtained a model for the dual-kite AWES, we can continue with the
formulation of a modular framework for the construction of OCPs that will be used to
find optimal emergency trajectories.
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5. Optimal Control Problem
Formulation

All OCPs in this thesis are constructed out of modular building blocks to provide a
framework that can be easily edited and precisely formalized. The current chapter gives
an overview over all of these building blocks and how they are used. The building blocks
are formulated in a discrete fashion such that they can be used in an OCP that has been
discretized using direct collocation.

The first section of this chapter explains the different components that appear in the
cost functions. The next section lists all the equality and inequality constraints that
appear in the OCPs. Section 5.3 elaborates on the different homotopy steps that can be
combined to a full homotopy scheme. Section 5.4 then goes into detail about how the
initial guess for the initial homotopy step is constructed. The last section summarizes a
number of numerical issues that have come up during the implementation of the OCPs.

After all of these concepts are introduced, chapters 7 and 8 will go into detail about each
individual OCP and which building blocks they are made up of. A table containing all
the numerical parameters and their corresponding values can be found in appendix A.3.

5.1. Cost Function

The cost functions of all the problems discussed in this thesis are constructed out of
a number of modular cost components. More specifically, these components are called
general problem cost G, tracking cost T , landing cost L and transition cost K. These
components are then linked using the homotopy parameters φ = [γ, η, ν, υ, τ ]T and θ, as
is described in section 5.3.

General Problem Cost

The general problem cost comprises the regularization cost R and the homotopy param-
eter cost H. The regularization cost is defined as

R = R̂uRu + R̂tRt + R̂q̈Rq̈, (5.1)

where Ru, Rt, Rq̈ are the regularization terms for the control input u, the final time tf
and the node accelerations q̈ respectively. The positive constants R̂u, R̂t and R̂q̈ are
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5. Optimal Control Problem Formulation

tuning parameters. The regularization cost R is added to the cost function to increase
numerical stability and convergence.

The homotopy parameter cost H is defined as

H = Hγ +Hη +Hν +Hυ +Hτ +Hθ, (5.2)

where

Hγ = Ĥγγ (5.3)

Hη = Ĥηη (5.4)

Hν = Ĥνν (5.5)

Hυ = Ĥυυ (5.6)

Hτ = Ĥττ (5.7)

Hθ = Ĥθθ
Tθ, (5.8)

with positive scalars Ĥγ, Ĥη, Ĥν , Ĥυ, Ĥτ and Ĥθ. These tuning parameters differ depend-
ing on the homotopy step and are used to drive the corresponding homotopy parameter
to zero as explained in section 2.4. The general problem cost is then expressed as

G = R +H. (5.9)

Tracking Cost

The next cost component is the tracking cost T . It is defined as

T =
1

m

(
m̄∑
i=0

n∑
j=0

wq,j(xi,j − xref,i,j)
TT̂(xi,j − xref,i,j)

)
, (5.10)

where T̂ is a positive definite square matrix and xref is the reference state trajectory.
The tracking cost T is quadratic with a minimum at x = xref and is thus used to drive
x towards xref . The weights wq,j are defined as in (2.30) to ensure that the integral is
approximated correctly using Radau quadrature. When using Radau quadrature, the
sum is normalized with the fraction tf

m
. Since we do not want the tracking cost T to

linearly grow with the final time tf , we only normalize with 1
m

.

Landing Cost

The landing cost L is used to generate trajectories with little final kinetic energy. It is
defined as

L =
1

N

(
N∑
p=1

q̇T
p,m̄,nL̂q̇p,m̄,n

)
, (5.11)

with the positive definite square matrix L̂. The landing cost penalizes the quadratic
terminal velocity of every node.
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Transition Cost

When the AWES is transitioning from one pumping cycle to another, the transition costK
is introduced. It is similar to the regularization cost and intended to favor transition
trajectories with small node accelerations and little control input. The transition cost is
defined as

K = K̂q̈Rq̈ + K̂uRu, (5.12)

where Rq̈ and Ru are the regularization terms of the node accelerations and controls

respectively. The positive scalars K̂q̈ and K̂u are tuning parameters.

5.2. Constraints

The constraints of the OCP are categorized by equality and inequality constraints. The
equality constraints are discussed first, followed by the inequality constraints, which also
include the variable bounds.

5.2.1. Equality Constraints

The OCP’s equality constraints are all constraints that can be formulated as

0 = c(x,u,λ,p) (5.13)

in accordance with OCP (2.22). The most important equality constraints of the OCP
are the collocation and continuity constraints, which constrain the optimal trajectory
to follow the DAE outlined in chapter 4. Furthermore, they comprise an initial energy
constraint and parameterized initial and terminal constraints.

Collocation and Continuity Constraints

Both collocation and continuity constraints have already been discussed at length in
section 2.2. When adapted to the notation of the model derived in chapter 4, they are
stated as

0 = ccol(xi,j, Ei,j,λi,j,ui, tf ,p) ∀i ∈ I, j ∈ J− (5.14)

0 = ccon(xi,n, Ei,n,xi+1,0, Ei+1,0,p) ∀i ∈ I−. (5.15)

Enforcing the collocation constraints ensures that the DAE of the model holds at all collo-
cation nodes. Enforcing the continuity constraints ensures that the states are continuous
at the border of one collocation interval to the next.
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Initial Energy Constraint

The generated energy E of the system is a relative quantity. It only denotes how much
energy is generated or consumed by the system over the time interval [0, tf ], but does not
specify the baseline to which the quantity is relative to. Since this baseline can be chosen
arbitrarily, we set it to zero by enforcing

0 = E0,0. (5.16)

Parameterized Initial and Terminal Constraints

For emergency response strategy (A), we need to make sure that the optimal trajectories
start and end on the given pumping trajectories. For strategies (B) and (C), one only
ensures that the optimal trajectory starts on a given pumping trajectory. To formulate
these constraints, we parameterize the given trajectories using CasADi-splines1 as func-
tions of a single normalized time parameter ξ ∈ [0, 1]. The parameterized trajectories are
then denoted as x̂0(ξ0) for the initial trajectory and x̂f(ξf) for the terminal trajectory.
With this notation, the two constraints

0 = x̂0(ξ0)− x0,0 (5.17)

0 = x̂f(ξf)− xm̄,n (5.18)

are formulated. Note that this notation is consistent with the exclusion of the energy E
from the state vector x since we already enforce the initial energy to be zero. Further-
more, it does not make sense to assign the terminal energy to a specific value when
transitioning from one pumping cycle to another. Also note that under the assumption
that x̂0(ξ0) is consistent for all ξ0 ∈ [0, 1], there is no need for an explicit consistency con-
dition cinv,0,0 = 0 to be introduced as a constraint. Depending on the specific problem we
want to solve, the parameters ξ0 and ξf are either introduced as optimization variables
and bounded by the interval [0, 1] or set to a specific value to ensure that the optimal
trajectory starts on a specific point on the parameterized trajectory.

By enforcing ξ ∈ [0, 1] we make sure that every point on the parameterized trajectory
can be reached with the corresponding ξ. It is however not possible to go from ξ = 0
to ξ = 1 without passing through the whole interval during the optimization. Since the
parameterized trajectories are usually pumping cycles and therefore periodic, it must
be possible to pass from one end of the interval [0, 1] to the other, since the points
are identical. In practice however, this is not relevant since the parameterized initial
constraint is very non-convex. Hence, we can assume that the constraint ξ ∈ [0, 1] will
never be active unless the initial guess for ξ is very close to the interval boundaries. This
can be prevented easily by shifting the interval in such a way that the initial guess for ξ
is approximately in the middle of the interval.

1CasADi-splines are a fast implementation of B-splines.
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5.2.2. Inequality Constraints
The OCP’s inequality constraints are all constraints that can be formulated as

0 ≤ h(x,u,λ,p) (5.19)

in accordance with OCP (2.22). They comprise a tether stress constraint, an anti-collision
constraint, a maximum acceleration constraint, a terminal position constraint, a minimum
battery energy constraint as well as the state and control bounds. For ease of notation,
we omit the indices i and j for the path inequalities. Unless otherwise specified, the
following inequalities are defined for all i ∈ I and j ∈ J (respectively j ∈ J− in case of
the algebraic variables).

Tether Stress Constraint

Since the tethers are modeled as permanently tight, one needs to enforce constraints
to ensure that this assumption is valid. The tether stress constraint makes sure that
the tether tension τk of all tethers k ∈ T is positive throughout the trajectory, thereby
keeping the tethers tight. This can be formulated as

0 ≤ τk = lkλk (5.20)

for all tethers k ∈ T . Since lk is a length and therefore by definition positive, this is
equivalent to enforcing that all λk are positive which can be expressed as

0 ≤ λ. (5.21)

In addition to this, we also have to consider the tethers’ material properties with respect
to the maximum stress they can take. The maximum allowed stress is defined as

σmax =
σmat

cs

, (5.22)

where σmat is the maximum stress the tethers material can withstand and cs is a safety
factor. The maximum tether stress constraint is then expressed as

0 ≤ σmax,k − σk = σmax,k − λk
lk
Ak

(5.23)

for all tethers k ∈ T , where Ak is the cross section of tether k. To ensure that the
constraint is scaled well, we reformulate it as

0 ≤ σmax,k −
τk
Ak

(5.24)

0 ≤ τmax

Amax

− τk
Ak

(5.25)

0 ≤ Ak
Amax

− τk
τmax

, (5.26)

or 0 ≤ hts(τk) for short. The constant Amax is a tuning variable. The constant τmax is
fixed by τmax = σmaxAmax.
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Maximum Acceleration Constraint

An acceleration sensor is located on each kite, which is used as part of the localization
procedure. Typical acceleration sensors only work up to certain limits, which are usually
displayed in multitudes of the standard gravity g. To enforce this hardware constraint,
we formulate

0 ≤ gcacc − ‖q̈a‖ (5.27)

for all kites a ∈ A and with the constant 0 < cacc. For better scaling and to get rid of
the nonlinearity of the norm, constraint (5.27) is reformulated as

‖q̈a‖ ≤ gcacc (5.28)

q̈T
a q̈a ≤ g2c2

acc (5.29)

0 ≤ 1− q̈T
a q̈a

g2c2
acc

, (5.30)

or 0 ≤ hacc(q̈a) for short.

Anti-Collision Constraint

The kites must not collide during their flight, so we need to formulate an anti-collision
constraint. The most straightforward way to do so is to enforce

0 ≤ ‖qa1 − qa2‖ − dmin, (5.31)

where dmin is the minimum distance the kites should be apart at all times. This must
hold for all combinations of (a1, a2) ∈ {(a1, a2) | a1, a2 ∈ A ∧ a1 6= a2} = Acom. It makes
sense to define dmin as a multiple of the kite’s wing span ba, resulting in dmin = cminba
with the constant factor cmin. Formulating the constraint as proposed in equation (5.31)
is however unwise, since it does not scale well and is not continuously differentiable at
the origin due to the norm. Hence, the constraint is reformulated as

dmin ≤ ‖qa1 − qa2‖ (5.32)

d2
min ≤ (qa1 − qa2)T(qa1 − qa2) (5.33)

0 ≤ (qa1 − qa2)T(qa1 − qa2)

d2
min

− 1, (5.34)

or 0 ≤ hacol(qa1 ,qa2) for short.

Terminal Position Constraint

To ensure the success of a landing trajectory, we constrain the terminal position of the
nodes qn to be within a certain distance to the ground-station. To do so, we formulate
the constraint

‖qp,m̄,n‖ − df,p ≤ 0 (5.35)
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for all p ∈ N . The constant df,p is the maximum terminal distance of node p from the
ground-station. For the reasons that were already explained before, the constraint is
reformulated as

0 ≤ 1−
(qT

p,m̄,nqp,m̄,n)

d2
f,p

, (5.36)

or 0 ≤ htp(qp,m̄,n) for short.

Minimum Battery Energy Constraint

The minimum battery energy constraint enforces that the energy stored on the on-board
battery at the any time must be above a certain threshold EB,f . This is expressed by the
inequality

EB,i − EB,f ≥ 0, (5.37)

for all i ∈ I. The energy EB,i is modeled just as explained in section 4.5. When discretiz-
ing the equation (4.37), we arrive at

EB,̄i = ĒB,0 +
tf
ī

ī−1∑
i=0

n∑
j=1

wq,jĖB,i,j, ∀ī ∈ I− (5.38)

EB,0 = ĒB,0, (5.39)

where we use Radau quadrature to approximate the integral just as explained in sec-
tion 2.2. Since we simulate a compromised on-board generator, we set ĖB,in,i,j = 0 for
all i ∈ I and j ∈ J .

This approach only enforces the constraint on the last node of every collocation interval.
In addition, it is not necessary to implement the battery energy and its derivative as states
of the problem, which would generate a lot more constraints and optimization variables.
If enforcing the constraint only once per collocation interval is not accurate enough, one
can also add the battery energy and its derivative as additional states to the OCP with
the simple ODE d

dt
EB = ĖB and then enforce the constraint

EB,i,j − EB,f ≥ 0 (5.40)

for all i ∈ I− and j ∈ J as well as

EB,0,0 = NBνfrνcQBUB. (5.41)

Since we want to introduce the minimum battery energy constraint during the homo-
topy scheme, we reformulate equation (5.38) as

EB,̄i(φ) = EB,0 +
tf
ī

ī−1∑
i=0

n∑
j=1

wq,jĖB,i,j(1− ν), ∀ī ∈ I− (5.42)

with the homotopy parameter ν that corresponds to the compromised landing homotopy
step (cf. section 5.3).
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State and Control Bounds

Since the main tether length lT is a distance, it must be bounded from below by

0 ≤ lT (5.43)

for the model to stay physical. Similarly, the height of all nodes must be positive since we
assume that a vanishing height corresponds to ground level. For safety reasons, it seems
reasonable to constrain the height to a value slightly above zero in order to account for
uneven terrain. This is expressed as

zmin ≤ qz,k, (5.44)

with the minimum height zmin. The kites’ lift coefficients CL,a and roll angle Ψa must be
bounded by

CL,min ≤ CL,a ≤ CL,max (5.45)

and
Ψmin ≤ Ψa ≤ Ψmin (5.46)

respectively for all a ∈ A in accordance with the kites’ geometry and aerodynamics. Also,
the control inputs u must be bounded by suitable

ĊL,min ≤ ĊL,a ≤ ĊL,max (5.47)

Ψ̇min ≤ Ψ̇a ≤ Ψ̇max (5.48)

l̈T,min ≤ l̈T ≤ l̈T,max, (5.49)

which reflect the minimum and maximum possible actuation of the system for all a ∈ A.
To allow for a change in the variable bounds on CL,a, Ψa, ĊL,a and Ψ̇a during the homotopy
scheme, we use the homotopy parameter ν to define

CL,max = νC+
L,max + (1− ν)C−L,max (5.50)

CL,min = νC+
L,min + (1− ν)C−L,min. (5.51)

The superindex + indicates the variable bound before the switch, while the superindex −
indicates the variable bound afterwards. The bounds on Ψa, ĊL,a and Ψ̇a are defined
analogously. In the following, equations (5.43) to (5.49) are summarized as

xmin(φ) ≤ x ≤ xmax(φ) (5.52)

umin(φ) ≤ u ≤ umax(φ) (5.53)

for ease of notation. Furthermore, we introduce

[C+
L,min,a, C

+
L,max,a,Ψ

+
min,a,Ψ

+
max,a]

T = x+
δ,a (5.54)

[C−L,min,a, C
−
L,max,a,Ψ

−
min,a,Ψ

−
max,a]

T = x−δ,a (5.55)

[Ċ+
L,min,a, Ċ

+
L,max,a, Ψ̇

+
min,a, Ψ̇

+
max,a]

T = u+
δ,a (5.56)

[Ċ−L,min,a, Ċ
−
L,max,a, Ψ̇

−
min,a, Ψ̇

−
max,a]

T = u−δ,a. (5.57)
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The numerical values for the bounds introduced in this section can be seen in ap-
pendix A.2.

5.3. Homotopy Schedule
Rather than solving a single OCP to generate the desired emergency trajectories, we
use a homotopy scheme and solve a number of OCPs one after the other until arriving
at the solution. The homotopy building blocks introduced in this section are the initial
homotopy step, the tracking homotopy step, the transition homotopy step, the nominal
landing homotopy step, the compromised landing homotopy step and the final homotopy
step. Within the current section, the force vectors F(·) do not have the indices i and
j, because the forces refer to the DAE f(x,u,λ, tf ,p) that appears in the collocation
constraints. A change in f obviously affects all collocation points i ∈ I, j ∈ J−.

Initial Homotopy Step

The initial and the tracking homotopy step are used to generate a feasible initial guess
out of a crude one. As explained in section 2.4, we employ homotopy parameters inside
the model of the system dynamics. Specifically, we use the homotopy parameter γ to
extend the aerodynamic forces FA,a = FL,a + FD,a in the model with

FA,a,+(p) = (1− γ)(FL,a + FD,a) + γ(FL,a + FD,a + FF,a) (5.58)

= FL,a + FD,a + γFF,a,

for all kites a ∈ A, where FF,a are the fictitious forces acting on kite a. In accordance
with the notation of section 2.4, we use θ = FF, where FF ∈ R3NK is a concatenation of
the vectors FF,a for all a ∈ A. This means that for γ = 1, which is the initial value for
all bounded homotopy parameters, the nonlinearity of the aerodynamic forces are still
present in the model, but the solver can choose an appropriate FF,a for the trajectory
to be feasible during the optimization. Empirically, choosing the starting function of the
homotopy to be FA,a + FF,a has worked better than choosing it as FF,a. Intuitively, it
makes sense that the homotopy can be solved faster if the starting function is more similar
to the target function. However, further research needs to be conducted with respect to
how the starting functions need to be chosen for a given homotopy.

Additionally, we set τ0 = τa, τf = τb and rtol = ra during the initial homotopy step.

Tracking Homotopy Step

In the tracking homotopy step, the bounded homotopy parameter γ and the unbounded
homotopy parameter FF are used to change from fictitious forces FF to aerodynamic
forces FA in the dynamics. By doing so, a crude initial guess is used as a reference
to generate a feasible one that resembles the reference as much as possible due to the
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tracking cost T . This can be especially interesting since the crude initial guess need not
necessarily include good guesses for the controls u, the algebraic variables λ or even parts
of the states x. Assuming that most states are chosen consistently, the rest get filled in
by the homotopy process. This is very useful since, from experience, it suffices to find a
consistent initial guess for q, q̇, lT and l̇T that are much easier to formalize in algebraic
expressions than the rest of x, u and λ. With the notation of section 2.4, this homotopy
step can be formalized as

tracking: FFA
γ−→
FF

FA, (5.59)

where FFA = FF + FA. Beginning with the tracking homotopy step, we set τ0 = τb and
τf = τb.

Transition Homotopy Step

The transition homotopy step is used to switch from the initial tracking problem to
the transition problem. Since the necessary initial and terminal constraints are already
enforced during the initial and the tracking homotopy step, we only switch from the
tracking cost T to the transition cost K. This is done by using the homotopy parameter υ.
The transition homotopy step is expressed as

transition: T
υ−→ K. (5.60)

Nominal Landing Homotopy Step

In the nominal landing homotopy step, we use the homotopy parameter η to switch from
the tracking problem of the previous homotopy step to the landing problem that we
actually want to solve. We do this by switching the cost from T to L, thereby no longer
tracking the reference but penalizing the terminal position and velocity. Since we use the
solution of the previous homotopy step as an initial guess, we can assume that the solver
converges to a local minimum that is reasonably close to the tracking reference. However,
since ηT = 0 at the end of this homotopy step, there is no gradient in the cost that forces
the solution towards the reference trajectory. The homotopy step is formalized as

nominal landing: T
η−→ L. (5.61)

Compromised Landing Homotopy Step

In order to model a compromised landing, we use the homotopy parameter ν to change the
bounds on the states CL,a, Ψa, on the controls ĊL,a and Ψ̇a or on the on-board battery
energy EB,a of one kite a ∈ A. The bounds are changed according to the emergency
scenario that is being modeled in the OCP. It also needs to be kept in mind that when
making the bounds on CL,a and Ψa more restrictive, it is not necessarily possible anymore
to enforce

0 = [CL,a,0,0,Ψa,0,0]T −
[
ĈL,a,0(ξ0), Ψ̂a,0(ξ0)

]T
(5.62)
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as part of the initial constraint

0 = x̂0(ξ0)− x0,0. (5.63)

In these cases we must omit CL,a and Ψa from the initial constraint by reformulating the
constraint as

0 = x̂−0 (ξ0)− x−0,0, (5.64)

where the superindex − indicates that CL,a and Ψa are not a part of the vectors. We
formalize the compromised landing homotopy step as

compromised landing: [b1,min, b1,max]︸ ︷︷ ︸
b1

ν−→ [b2,min, b2,max]︸ ︷︷ ︸
b2

, (5.65)

where b1 and b2 are the bounds whose exact shape depends on the kind of compromised
landing that is being modeled.

Tether Drag Homotopy Step

We use the homotopy parameter τ to extend the tether drag forces FTD,k to

FTD+,k(φ) = τFt
TD,k + (1− τ)F2nd

TD,k, ∀k ∈ T , (5.66)

where the superindices t and 2nd denote the trivial and a second tether drag model derived
in section 4.4. This makes it possible to first solve a number of homotopy steps for the
trivial tether model before switching to a more nonlinear model, making all previous
homotopy steps easier to solve. Here, we refer to the trivial, projected and equivalence
tether drag forces as Ft

TD, Fp
TD and Fe

TD respectively. During this homotopy step, the cost
function stays unchanged but for the cost related to the homotopy parameter τ . This
homotopy step cannot only be used to switch from the trivial model to the projected
model but also to other models of arbitrary complexity. The more complex the tether
model is, the more useful it is to introduce the model in a later homotopy step such that
the previous steps do not have to deal with the model’s nonlinearities. The tether drag
homotopy step is expressed as

tether: Ft
TD

τ−→ F2nd
TD . (5.67)

Final Homotopy Step

In the final homotopy step, all constraints and the cost function of the OCP stay the same.
However, the problem is now solved up to a small barrier parameter τc and error tolerance
rb as explained in section 2.4. The final homotopy step introduces additional nonlinearity
into the problem by approximating the inequality constraints more accurately. It is used
to solve the OCP to the desired degree of accuracy.
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5.4. Initial Guess Generation
Finding a feasible initial guess is non-trivial for a dual-kite AWES. Hence, we use the
homotopy strategy that is outlined in sections 2.4 and 5.3. However, this homotopy
strategy must still be initialized with a reasonably good initial guess, even though it need
not be feasible. When looking for an initial guess v0 = [x0T,u0T,λ0T,p0T]T, we have the
following criteria in mind:

• The initial guess must be consistent, meaning that
[
g(x0

i,j), ġ(x0
i,j)
]T

= 0 must hold
for all i ∈ I, j ∈ J and not only for [i, j] = [0, 0] as enforced in equation (4.6).

• All inequality constraints from section 5.2.2 must hold for v0.

• All equality constraints from section 5.2.1 most hold for v0 with the exception of
the collocation constraints. The latter depend nonlinearly on u and λ for which
it is very hard to find a good initial guess. Also, the parameterized terminal and
initial constraints must only hold for q, lT and l̇T.

To make sure that these criteria are met, we generate initial guesses as functions of the
OCP’s parameterized initial and terminal conditions. The idea is to select an initial and
terminal point for the trajectory and then interpolate the two points in a way that ensures
the criteria are all met. The initial guesses for transition and landing trajectories differ in
that the transition trajectory is constrained by both the initial and terminal condition,
while the landing is only constrained by the initial condition.

5.4.1. Initial and Terminal Points
For both transition and nominal landing trajectories, it makes the most sense to start

at the point where the tether velocity
˙̂
lT,0 of the parameterized initial condition x̂0 is

minimal. This happens during the pumping cycle’s reel-in phase. We denote this initial
point as

x0
0,0 ∈

{
x̂0(ξ̄0) | ˙̂

lT,0(ξ̄0) ≤ ˙̂
lT,0(ξ0), ξ̄0 ∈ [0, 1], ∀ξ0 ∈ [0, 1]

}
. (5.68)

The terminal point for the transition trajectories is chosen analogously as the point on

x̂f where
˙̂
lT,f is minimal. Hence, we define x0

m̄,n analogously to x0
0,0. For compromised

landing trajectories, the initial point on x̂0 is already fixed by ξ0, so we set

x0
0,0 = x̂0(ξ0), (5.69)

for a given ξ0 that is not a decision variable of the OCP. The terminal point x0
m̄,n for all

landing trajectories is not constrained by a x̂f as it is the case for the transition trajecto-
ries. We choose x0

m̄,n for the landing trajectories by preserving all tether vectors êk of x0
0,0,

but reducing the AWES’s main tether length l0T such that the inequality constraint (5.44)
holds.
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5.4. Initial Guess Generation

5.4.2. Consistent Interpolation
Now that we have generated tuples of (x0

0,0,x
0
m̄,n) according to the respective trajectory,

the interpolation procedure does not depend on the type of the trajectory anymore but
only on the tuple. First we construct a coordinate system consisting of the three unit
vectors e||, e+ and e⊥, which are defined as follows: The vector e|| is the normalized
bisection of ê2 and ê3, which is expressed as

e|| =

(
ê2 +

1

2
(ê3 − ê2)

)(
‖ê2 +

1

2
(ê3 − ê2)‖

)−1

. (5.70)

The vector e+ is orthogonal to e|| and lies in the surface that contains q1, q2 and q3. It
is defined as

e+ =
ê3 − ê2

‖ê3 − ê2‖
. (5.71)

The third vector e⊥ is defined as the normalized cross product of e|| and e+. Hence, e||,
e+ and e⊥ define an orthonormal coordinate system. The coordinate system’s origin is
located at the center node q1.

The movement of the center node is parameterized in time as

q1(t) = q0
1,0,0 + s0(t)(q0

1,m̄,n − q0
1,0,0), (5.72)

where s0(t) ∈ [0, 1] is a time dependent interpolation parameter. We define s0(t) in such
a way that it corresponds to a given function l0T(t) by solving the system of equations

l0T(t)ê1(t) = q0
1,0,0 + s0(t)(q0

1,m̄,n − q0
1,0,0) (5.73)

ê1(t)Tê1(t) = 1, (5.74)

which is equivalent to solving the quadratic equation

0 = s2
0(t)(q0

1,m̄,n − q0
1,0,0)T(q0

1,m̄,n − q0
1,0,0) (5.75)

+ 2s0(t)q0
1,0,0

T
(q0

1,m̄,n − q0
1,0,0)

+ (q0
1,0,0

T
q0

1,0,0)− l0T
2
(t).

For the given values of lT(t) that are of interest for the initial guess generation, exactly one
of the solutions of the quadratic equation (5.75) lies in the interval [0, 1] and is therefore
the one we are looking for.

The function lT(t), on which the parameterization of q1(lT(t)) depends, must be chosen
such that the following boundary conditions are met:

l0T(0) = l0T,0,0 (5.76)

l0T(t0f ) = l0T,m̄,n (5.77)

l̇0T(0) = l̇0T,0,0 (5.78)

l̇0T(t0f ) = l̇0T,m̄,n (5.79)

59



5. Optimal Control Problem Formulation

To be able to enforce all the boundary conditions, l0T(t) must be at least cubic. Hence,
we define

l0T(t) =
1

6
c3t

3 +
1

2
c2t

2 + c1t+ c0, (5.80)

where the constants c0 to c3 are uniquely defined by the boundary conditions (5.76) –
(5.79). The initial guess for the tether velocity l̇0T is derived by differentiating l0T with
respect to time. Note that a cubic tether length implies that the tether jerk is constant.

The coordinate system consisting of e||, e+ and e⊥ is used to parameterize the positions
of q2(t) and q3(t) using spherical coordinates where φ denotes the azimuth and θ the
elevation. The kite nodes’ positions qa(t) for a ∈ A are then parameterized as

qa(t) = q1(t) (5.81)

+ (cos(φa(t)) cos(θa(t))e||

+ sin(φa(t)) cos(θa(t))e+

+ sin(θa(t))e⊥)ls.

The expression for φa(t) is derived by linear interpolation between φ0
a,0,0 and φ0

a,m̄,n as

φa(t) = φ0
a,0,0 +

t

t0f
(φ0

a,m̄,n − φ0
a,0,0). (5.82)

The elevation θa(t) is defined analogously. The constants φ0
a,0,0, φ0

a,m̄,n, θ0
a,0,0 and θ0

a,m̄,n

are derived by

θ0
a,0,0 = arcsin

(
eT
|| êa(0)

)
(5.83)

θ0
a,m̄,n = arcsin

(
eT
|| êa(t

0
f )
)

(5.84)

φ0
a,0,0 = arctan2

(
(lsêa(0))Te+, (lsêa(0))Te||

)
(5.85)

φ0
a,m̄,n = arctan2

(
(lsêa(t

0
f ))Te+, (lsêa(t

0
f ))Te||

)
. (5.86)

The choice of e||, e+ and e⊥ makes sure that θ0
a,0,0 = 0 for all a ∈ A, which ensures that

that |θ0
a,0,0 − θ0

a,m̄,n| ≤ 2π. The initial guess for the node velocities q̇0
n can be derived by

differentiating q0
n with respect to time. The initial guess for Ψ0

a and C0
L,a is simply set to

zero.
After defining x0(t) as a continuous function of t, the values for x0

i,j are generated by

x0
i,j = x0(ti,j), (5.87)

for all i ∈ I, j ∈ J , where ti,j is defined as in section 2.2. Lastly, the values for u0 are
all set to zero and λ0 to one, since we do not have a better initial guess for them. We
set λ0 ≥ 0 to ensure that constraint (5.21) holds. The initial guess for the homotopy
parameters is derived by setting θ0 = 0 and initializing φ0 according to the corresponding
bounds of homotopy step Pl as explained in section 2.4. The initial guess for the terminal
time tf is computed by

t0f =
l0T,0,0 − l0T,m̄,n

vT

, (5.88)

where vT is chosen as a sensible reel-in speed for the main tether.
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5.5. Numerical Issues
During the implementation of the optimization problems, a number of numerical issues
have come up. Specifically, these are the infeasibility of small parts of the parameterized
trajectories, the need for an acceleration regularization as well as the tuning of meta-
parameters of the homotopy procedure and the addition of a “stagger” distance to the
tracking trajectory.

5.5.1. Infeasibility of Parameterized Trajectories
In general, the trajectory parameterization using CasADi-splines is very accurate in each
of the states in x. Nevertheless, the trajectory x̂0(ξ0) is infeasible for some ξ0 ∈ [0, 1].
The reason for this is illustrated in Fig. 5.1. The plot on the left displays a comparison of
the approximated CL for an example pumping trajectory and the real value for CL. The
parameterization looks almost identical to the real trajectory and has indeed a lookup-
table error of around 1 · 10−12.

The plot on the right is a zoomed-in detail of the left plot. It shows a small overshoot
phenomenon when moving to or from the maximum bound of CL (dashed line). Even
though the effect is small with an order of magnitude of 1 · 10−3, it is large enough for
the solver to consider those points infeasible for low barrier parameters. The same effect
can be observed for all states that have active bounds during the trajectory, but is in
practice only relevant for CL and Ψ. For ξ ∈ [0, 1] this means that some points in the
interval, which could otherwise be optimal, are infeasible for purely numerical reasons.
When “accidentally” constraining ξ to an infeasible point, the solver is unable to solve
the problem. Hence, we soften the relevant bounds on CL and Ψ by a small ε = 1 · 10−3.
Since ε is so small, it has otherwise no effect on the solution of the OCP.

5.5.2. Acceleration Regularization
Heuristically, a regularization on the node accelerations has proven to increase conver-
gence and give solutions with better invariants. In [23], a similar regularization directly
on the kite forces of a single kite AWES is employed to generate smoother landing tra-
jectories. In order to quantify this phenomenon, we observe the numerical performance
of a nominal landing trajectory (for more details, cf. chapter 7) while varying the reg-
ularization on the node accelerations. Fig. 5.2 shows a comparison of the numerical
performance for different values of R̂q̈. The values of R̂q̈ are plotted logarithmically with

R̂q̈ = 0 corresponding to the value of −∞.

The number of iterations decreases drastically when increasing R̂q̈. Between R̂q̈ = 0

and R̂q̈ = 1 · 10−1, the number of iterations decreases by 88 % from 1135 to 136 itera-
tions. The optimization time similarly decreases by 82 %. The time needed to construct
the OCP does not change with R̂q̈. The maximum invariant decreases by 90 % when

introducing a regularization of R̂q̈ = 1 · 10−6 instead of R̂q̈ = 0. When we increase R̂q̈
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Figure 5.1.: Infeasibility of parameterized trajectories. Left: Comparison of spline ap-
proximation (blue) and actual curve (red) for CL. Right: Zoomed-in detail
of overshoot phenomenon with dashed line indicating the bound on CL.

further, the maximum invariants vary between 4 % and 17 % of the original value. In the
example trajectory shown in Fig. 5.2, a choice of R̂q̈ = 1 · 10−1 or 1 · 10−2 is reasonable,
depending on whether one prioritizes optimization speed or the size of the maximum
invariants.

Large invariants are a sign of discretization errors in the DAE of the system. Large
node accelerations mean that a large number of collocation intervals are necessary to
make the discretization sufficiently accurate. Regularizing the node accelerations has the
effect that we can discretize the DAE with fewer collocation intervals without increasing
the invariants. Of course the discretization error, and with it the invariants, can also
be decreased by increasing the number of collocation intervals. This however comes at
the price of increasing the size of the problem. Therefore, we choose to fix the number
of collocation intervals at a reasonable number and add a regularization on the node
accelerations.

5.5.3. Homotopy Meta-Parameter Tuning

The success of the homotopy strategy (cf. section 2.4) depends on the tuning of the
meta-parameters involved. Especially important is the choice of τb, which determines
how well the inequalities are approximated during the intermediate homotopy steps. If
τb is too small, the solver spends time on nonlinearities of the intermediate steps that do
not appear in the final homotopy step. If τb is chosen too large, then the approximation
of the inequality constraints is so crude in the intermediate homotopy steps that their
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Figure 5.2.: Acceleration Regularization. Comparison of the number of iterations, NLP
construction time, optimization time and maximum invariants for different
values of R̂q̈.

solutions are not good initial guesses for the next homotopy step anymore.

This phenomenon is visualized in Fig. 5.3. As an example, it shows the solution of
the nominal landing homotopy step of a nominal landing trajectory (cf. chapter 7) for
two different values of τb. The pumping cycle used as parameterized initial condition
is displayed in black. For τb = 1 · 10−5 (blue), the solver converges to a sensible initial
guess for a landing trajectory. For τb = 1 ·10−2 (red), the optimal landing trajectory first
increases the kites’ height to over 500 m before landing. This trajectory is obviously not
a sensible solution and therefore also not a good initial guess for the next homotopy step.
Hence, τb must be tuned in such a way that all intermediate solutions of the homotopy
procedure are sensible.

63



5. Optimal Control Problem Formulation

0 250 500 750 1000

x [m]

−50

−25

0

25

50

y
[m

]

(a)(a)

0 250 500 750 1000

x [m]

0

100

200

300

400

500

z
[m

]

(b)(b)

−50 0 50

y [m]

0

100

200

300

400

500

z
[m

]

(c)(c)

x [m] 0
250

500
750

1000

y [m
]

−50

0

50

z
[m

]

0

200

400

(d)(d)

Figure 5.3.: Homotopy meta-parameter tuning. Comparison of solutions after nominal
landing homotopy step for τb = 1 · 10−2 (red) and 1 · 10−5 (blue). Initial
trajectory displayed in black. Position of the ground-station represented by
a red dot.

5.5.4. Stagger Distance
It has proven useful within the tracking homotopy step to add a “stagger” distance
between the initial guess x0 and the tracking reference xref . This means that we do not
set xref = x0, but add a small “stagger” distance ds to all of the kites’ positions qk in the
direction of their corresponding tethers. Specifically, we set

qp,ref = q0
p + dsêp, ∀p ∈ N , (5.89)

where êk is defined just like in equation (4.15). This approach is motivated by the fact
that the small distance ds between x0 and xref encourages the solver to find trajectories
with positive tether stress in the tracking homotopy step. With this, we can make sure
that the initial guess produces sensible tether stress values. Adding a “stagger” distance
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has empirically proven to improve convergence in the tracking homotopy step. We choose
a value of ds = 0.1 m.

In this chapter, we have presented the modular building blocks that can now be used to
construct OCP formulations. We have listed the components of the cost function as well
as the equality and inequality constraints. Also, we have used the notation of section 2.4
to introduce a number of homotopy steps that will be used to solve the OCPs in this
thesis. Lastly, we gave a summary of different numerical issues that have come up during
the course of this thesis. With the help of the preliminary work done in this chapter,
we can now go on to formulate OCPs and homotopy schemes in a precise and readable
fashion in chapters 7 and 8. Before that however, we will elaborate on how the framework
is implemented in the python toolbox AWEbox.
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The procedures for trajectory optimization in this thesis are implemented as part of
new features for the python package AWEbox, which provides optimization procedures for
various kinds of multi-kite AWES related problems. This chapter gives some insight into
how the problems discussed in this thesis have been implemented into AWEbox and which
design choices were made in the course thereof. To do so, section 6.1 gives an overview
of AWEbox’s functionalities and summarizes all the contributions made to AWEbox during
the scope of this thesis. Then section 6.2 gives some more insights about how the toolbox
CasADi is used within the AWEbox to formulate NLPs and what solvers where chosen as
the numerical backend for AWEbox.

6.1. AWEbox

The AWEbox package can be used to formulate multi-kite AWES related optimization
problems within a very high level framework. The user simply chooses which optimization
problems should be solved and leaves the rest to AWEbox. With this, AWE engineers will
be able to assess their design concepts and find suitable trajectories without having to deal
with the numerical tuning that is usually necessary to solve such optimization problems.
Possible optimization problems that can be solved in AWEbox include the computation
of power cycles, starting and landing trajectories, emergency trajectories or transition
trajectories. It is also possible to optimize system parameters of a multi-kite AWES,
like the length or diameter of the secondary tethers. The emergency response strategies
themselves as discussed in chapter 3 are not part of AWEbox.

The basic structure of the AWEbox is shown in Fig. 6.1. The schematic is separated into
two parts, each depicting one of the two levels of abstraction used in the AWEbox. The first
level of abstraction is the trial. A single trial corresponds to one OCP formulation
that can be solved to yield an optimal trajectory. The next level of abstraction is the
sweep. A single sweep can contain an arbitrary number of trial objects. One uses
sweep objects to easily construct and solve a number of trials. Once a sweep is created
by the user, it takes the user specified sweep options and uses it to build the desired
trial objects. In the sweep options, the user can specify a list of parameters that
should be varied during the sweep. Once all of the trials are built, sweep executes its
run method with the trial objects as an input. This returns the solutions that contain
the optimal solutions and a number of numerical and system parameters of each trial

that were produced during the optimization process. The solutions can then be passed
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to a visualization object to generate plots.

The lower part of Fig. 6.1 shows what happens in each trial while the build and
run methods are called by sweep. Each trial that is built uses its associated options,
model, formulation, nlp and optimization objects. The options object contains all
preferences regarding the trail’s configuration, e.g. in terms of system architecture,
choice of model, or parameter values. The model object handles the construction of the
dynamical system equations based on the settings set in options. The formulation

object is used to make choices about the general layout of the problem formulation, e.g.
whether a landing trajectory should be computed or a power cycle. The nlp object
then constructs an NLP out of the model and the formulation, applying the chosen
discretization procedure and setting up the objective function and constraints of the
given NLP. Lastly, the optimization object sets up the trial’s homotopy schedule.
Once this step is completed, the trial is considered built. During the build method of
sweep, this procedure is performed for each individual trial. Within the run method
of sweep, each of the built trial objects is solved using its optimize method to yield a
solution object.

The AWEbox package is designed to separate the user from the numerics while still
providing enough freedom to customize the user’s problem formulation. Since AWEbox

will be released with an open-source license (at an unspecified later date), users can also
implement their own problem formulations in case they are not provided by AWEbox or
edit existing ones. The code is structured in a generic and compartmentalized way that
facilitates the exchanging of parts of the problem formulation, e.g. the implementation
of new kite models or new discretization methods. An example of the work-flow for using
AWEbox is presented in the appendix B.1. The code example shows how to set up a sweep

and produce the plots displayed in Fig. 7.4.

The AWEbox toolbox was implemented during this thesis together with Rachel Leuthold1

and Jochem De Schutter1,2. It is based in parts on code written by Elena Malz3 and Mario
Zanon4. The first version of the AWEbox code was implemented by Rachel Leuthold and
Jochem De Schutter in 2017. Building on this, the current version of the AWEbox was
produced during a major refactoring of the previously existing AWEbox code in January
and February of 2018, done by Rachel Leuthold, Jochem De Schutter and myself. On
top of the refactoring, I implemented all features relating to the optimization of nominal
and compromised landing trajectories as well as transition trajectories into the AWEbox.
All of the solutions presented in this thesis are computed with this new version of the
AWEbox.

1Dept. of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany.
2Kiteswarms GmbH.
3Dept. of Electrical Engineering, Chalmers University, 41258 Göteborg, Sweden.
4Dynamical Systems, Control and Optimization, IMT Lucca, 55100 Lucca, Italy.
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6.2. CasADi and IPOPT

For the implementation of the OCPs we use the C++ software package CasADi [2] that
provides a symbolic framework together with automatic differentiation and can be inter-
faced with python. Once the OCP is formulated in CasADi’s symbolic framework, it can
be used to build a solver object that automatically generates all necessary derivatives
and passes them to the numerical backend. This makes it possible to formulate OCPs in
a high level manner with python, while still using fast C++ code to solve the OCPs. The
CasADi framework is designed to formulate and solve general NLPs efficiently. This means
that one has to first formulate the OCP as a discrete NLP before it can be formulated in
CasADi. Thus, discretization schemes like direct collocation, single- or multiple-shooting
have to be implemented by the user and are not supplied by CasADi. This requires ad-
ditional work, but also provides the user with a lot of conceptual freedom regarding the
numerical design of the NLP, e.g. how to implement the discretization scheme. At the
same time, CasADi provides enough functionality within its symbolic framework to make
the implementation of more complex NLPs, which originate from the discretization of an
OCP, fast and straightforward. Furthermore, CasADi possesses some helpful structuring
and debugging tools that make it easier for the engineer to check whether the desired
optimization problem has been correctly translated into code or not.

As numerical backend we choose the interior-point solver IPOPT [41]. Using an interior-
point solver can lead to some challenges regarding homotopies. This is due to the fact
that interior-point solvers have troubles with warm-starting [44]. We mitigate this by
using the homotopy strategy described in section 2.4.

In addition, IPOPT is well documented and supported within the CasADi framework.
Even though it is possible to use other solvers within CasADi (e.g. the SQP solver WORHP
[7]), IPOPT is the default solver and thus much better documented. Another advantage of
IPOPT is that it can exploit the sparsity of a given optimization problem. OCPs usually
exhibit some inherent sparsity depending on the way the differential constraints are ap-
proximated and discretized. Using the direct collocation method outlined in section 2.2
ensures that each collocation constraint only depends on the variables of its correspond-
ing collocation interval. This translates to a sparse structure of the OCP, resulting in e.g.
a sparse Hessian that can be inverted efficiently. To preserve this sparsity, it is impor-
tant not to introduce dependencies between the decision variables outside of the block
structure generated by the collocation intervals, e.g. by using a control parameterization
without local support. This would introduce new non-zero entries into the OCP’s Hessian
and thus destroy the sparsity of the problem. The solver IPOPT, together with CasADi can
make full use of the OCP’s sparsity patterns to increase its computation speed. Within
IPOPT we use linear solvers from the HSL mathematical software library [22].

This chapter served as a brief overview of how the framework discussed in chapter 5
is implemented into the AWEbox. In the following chapters, we will omit further details
about the software implementation and focus on a precise mathematical formulation of
the OCPs and the analysis of their corresponding solutions.
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Figure 6.1.: Schematic overview of the AWEbox on sweep and trial level.
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Flight Behavior

Now that all the building blocks of the cost function, the constraints and the homotopy
schedule have been introduced, we need to explain how these components can be used
to find optimal emergency landing trajectories. To do so, this chapter gives a detailed
explanation of how optimal nominal landing trajectories, i.e. trajectories that follow
emergency response strategy (B) from section 3.3, are computed. Emergency response
strategy (B) implies that the AWES has enough time to continue on the pumping cycle
until an optimal exit point is reached. This means that the normalized time parameter ξ0

of the parameterized initial condition is chosen optimally. It further implies that the
AWES exhibits nominal flight behavior during the landing.

The first section will introduce the OCP formulation of the problem as well as the
homotopy schedule formalized in the framework that has been laid out in chapter 5. The
following section is an in-depth analysis of the solutions of the whole homotopy procedure.
This includes a discussion of the solutions of several different homotopy steps, followed by
a study of how the optimal solution changes with the reference wind speed. The chapter
then concludes with an investigation into how the system’s kinetic and potential energy
behaves during the course of the trajectory.

7.1. OCP Formulation and Homotopy Schedule

With the preliminary work done in chapter 5, we can formulate the OCP that is used
to derive the landing trajectory with nominal flight behavior. The goal of the OCP is
to find a trajectory that flies the nodes close to the ground-station while reducing their
kinetic energy as much as possible. This will be translated into the OCP with the help
of the nominal landing cost and the terminal position inequality that were presented
in sections 5.1 and 5.2.2. Just as outlined in section 2.2, we use direct collocation to
approximate the continuous OCP.
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The discretized OCP formulation is as follows:

minimize
x, E,λ,u, tf ,p, ξ0

ηT + (1− η)L+G

subject to 0 = ccol(xi,j, Ei,j,λi,j,ui, tf ,p), ∀i ∈ I, j ∈ J−,
0 = ccon(xi+1,0, Ei+1,0,xi,n, Ei,n,p), ∀i ∈ I−,
0 = x̂0(ξ0)− x0,0,

ξ0 ∈ [0, 1],

0 = E0,0,

0 ≤ hacc(q̈a,i,j), ∀i ∈ I, j ∈ J , a ∈ A,
0 ≤ hts(λk,i,j, lk,i,j), ∀i ∈ I, j ∈ J−, k ∈ T ,
0 ≤ hacol(qa1,i,j,qa2,i,j), ∀i ∈ I, j ∈ J , (a1, a2) ∈ Acom,

0 ≤ htp(qp,m̄,n), ∀p ∈ N ,
0 ≤ λ,

umin ≤ u ≤ umax,

xmin ≤ x ≤ xmax,

pmin ≤ p ≤ pmax,

0 ≤ tf .
(7.1)

The optimization variables for (7.1) comprise the system’s state x, the energy E, the al-
gebraic variables λ, the controls u, the final time tf as well as the homotopy parameters p
and the normalized time parameter ξ0. The cost function is a combination of the tracking
cost T , landing cost L and general problem cost G. The equality constraints are made up
of collocation, continuity and initial energy constraints. The inequality constraints of the
OCP are the maximum acceleration constraint, the maximum tether stress constraint,
the anti-collision constraint, the terminal position constraint as well as bounds on λ,
u, x, p and ξ0. Note that this formulation represents all the homotopy steps that are
performed to solve the problem. Hence, the homotopy parameters p are included in the
optimization variables. For each homotopy step, the objective, dynamics and constraints
of (7.1) are changed as explained in sections 2.4 and 5.3. The exact homotopy schedule
is presented in table 7.1.

We set the number of collocation intervals to m = 50 and the degree of the Lagrange
polynomials to d = 4. For a dual-kite system, we have 25 states (including E), 3 algebraic
variables, 5 controls and 10 parameters (including two bounded homotopy parameters,
θ = FF ∈ R6 as well as tf and ξ0). Since there is one control vector per collocation inter-
val, one state vector per control point and one algebraic variable vector per collocation
point, (7.1) has 7110 decision variables. Furthermore, there are 6801 equality and 4253
inequality constraints.
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Table 7.1.: Nominal landing homotopy schedule.

homotopy step initial tracking nom. landing tether final

objective × × T
η−→ L × ×

dynamics × FFA
γ−→
FF

FA × Ft
TD

τ−→ Fe
TD ×

constraints × × × × ×

7.2. Analysis of Solutions

After defining the OCP formulation and homotopy schedule for the landing trajectory
with nominal fight behavior, we need to discuss the resulting solutions. To do so, we will
evaluate the solutions of several different homotopy steps, give an analysis of the optimal
solution’s sensitivity to a change in the reference wind speed, as well as a study of how
the kinetic and potential energy of the system behaves during the landing.

7.2.1. Homotopy Steps

To better comprehend how the solution evolves during the homotopy procedure, we dis-
cuss a number of intermediate solutions. With this, we can get an understanding of how
the solution changes with each deformation of the cost function, dynamics or constraints.

Initial Homotopy Step

The initial homotopy step is used to track the initial guess using the fictitious forces FF

together with the true aerodynamic forces FA. Since FF is not bounded or penalized in
the cost function, the result of this homotopy step should be the initial guess itself.

The resulting trajectory is shown in Fig. 7.1, with the kite at node 1 and 2 presented
in red and green respectively. The pumping cycle used as parameterized initial condition
is displayed in black. The solution is close to the initial guess, but clearly not identical,
especially due to the small inward curve at the beginning of the trajectory. This behavior
has four reasons. Firstly, there is a small regularization on the fictitious forces and node
accelerations in the general problem cost G. Hence, the solution depicted in Fig. 7.1 can
actually have a lower cost than the initial guess itself. Secondly, we are not tracking
exactly the initial guess, but add a very small stagger distance to increase convergence
as described in section 5.5.4. Thirdly, the solvers accuracy in the initial homotopy step
is set at τf = τb and rtol = ra, meaning that the OCP is not solved for full accuracy. Last
but not least, the parameterized initial constraint only holds in parts for the initial guess.
Most prominently, it does not hold for the node velocities q̇. This means that the initial
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Figure 7.1.: Nominal landing trajectory. Solution after initial homotopy step compared
to initial guess (dashed). The initial trajectory is displayed in black. Position
of the ground-station represented by a red dot.

guess cannot be tracked since it is not feasible.

Tracking Homotopy Step

In the tracking homotopy step, the fictitious forces are decreased to zero and exchanged
for the true aerodynamic forces. Hence, the solution should result in the closest (meaning
the smallest tracking cost) approximation of the tracking reference that follows the true
system dynamics without fictitious forces. Indeed, Fig. 7.2 shows that the solution to the
tracking homotopy step still resembles the initial guess, but not as closely as after the
initial homotopy step due to the lack of fictitious forces. The fact that the real system
is able to track the initial guess reasonably well is confirmation that the choice of initial
guess is sufficient. The homotopy strategy has successfully produced a feasible initial
guess.
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Figure 7.2.: Nominal landing trajectory. Solution after tracking homotopy step compared
to solution of previous homotopy step (dashed). Initial trajectory displayed
in black. Position of the ground-station represented by a red dot.

Nominal Landing Homotopy Step

Now that we have a feasible initial guess, the nominal landing homotopy step changes the
cost function from a tracking problem to the nominal landing problem that we actually
want to solve. Since the new cost function penalizes the terminal velocity of all nodes, we
expect to find a breaking maneuver at the end of the solution of this homotopy step. Due
to the non-convexity of the problem and the reasonable choice and feasibility of the initial
guess produced in the last homotopy steps, the basic shape of the solution displayed in
Fig. 7.3 is expected to be roughly the same as before.

The solution indeed resembles the initial guess, but for an upwards breaking-motion
at the end. Both kites turn inward and generate additional lift by increasing the lift
coefficient CL,a. This has two effects: Firstly, the projections of the kites’ velocities on
the negative z-axis are increasing. This means that the kites are transforming kinetic
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Figure 7.3.: Nominal landing trajectory. Solution after nominal landing homotopy step
compared to solution of previous homotopy step (dashed). Initial trajectory
displayed in black. Position of the ground-station represented by a red dot.

energy into potential energy, thereby slowing themselves down. Secondly, the increase
in CL,a also leads to an increase in the drag coefficient CD,a since the induced drag of
a kite a is quadratic in CL,a (cf. (4.20)). An increase in CD,a in turn increases the
drag force FD,a that is linear in CD,a and points parallel to the kite’s relative velocity
(cf. (4.22)), thus decelerating it. The extent of the breaking maneuver is limited by the
active terminal position inequality constraint that prevents the kites from increasing their
height more. The middle node q1 is consequently decelerated through the consistency
constraints. Since this homotopy step is using a trivial tether drag model, the tethers’
orientation to their respective relative velocities is immaterial to the amount of drag they
produce, and hence for the shape of the trajectory.
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Tether Homotopy Step

The tether drag homotopy step is used to switch from the trivial tether drag model to
a more sophisticated model. To analyze the influence of the tether drag model on the
optimal solution, we compare the solutions of this homotopy step generated by the three
tether drag models that have been introduced in section 4.4.2. Namely these are, in
growing order of sophistication, the trivial, the projected and the equivalence model.
Fig. 7.4 shows a comparison of the solutions generated by the three models.
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Figure 7.4.: Nominal landing trajectory. Comparison of trivial (red), projected (blue)
and equivalence (green) tether drag model. Initial trajectory displayed in
black. Position of the ground-station represented by a red dot.

The different trajectories show that the choice of tether drag model is significant for
the shape of the solution. The solution using the trivial tether drag model (red) is
identical to the solution of the previous homotopy step. The solution of the projected
tether drag model (blue) is characterized by a larger distance of the two kites. They are
around 100 m apart at all times. With a secondary tether length of 50 m, this means

77



7. Landing Trajectories with Nominal Flight Behavior

that the two secondary tethers approximately form a line connecting the two kites with
q1 in the middle. This makes sense because it increases l⊥,k, the length of the secondary
tethers that is perpendicular to its relative velocity (cf. (4.26)).

In Fig. 7.4 (a) one can also see that the trajectory corresponding to the projected
tether drag model is curved. Since both the problem formulation and the initial guess
produced in the previous homotopy step are symmetrical with respect to the x-axis, this
must be due to the asymmetry in the pumping trajectory that is used as parameterized
initial condition. Indeed we can see in Fig. 7.4 (a) that the kites continue the curvature of
the pumping cycle. To change this curvature would mean to abandon the perpendicular
orientation of the secondary tethers for some time and is therefore not optimal.

The solution generated with the equivalence model (green) does not exhibit the same
large distance between the kites, even though the model does consider the tethers’ ori-
entations to their respective relative velocities. This can be explained as follows: The
equivalence model produces more tether drag than the projected model. Hence, it does
not need to adjust the tethers’ orientation in order to reduce the terminal node velocity
below 1 m/s. At this point, the nominal landing cost L is so small that it does no longer
dominate the cost function, but the regularization cost R does instead. Thus, the tethers’
orientation is not changed even though it would produce additional tether drag and de-
celerate the kites further. One can argue that it is not desirable for a regularization term
to affect the optimal solution in this way and that therefore the tuning parameters of the
objective function should be changed. We have however come to the conclusion that a
“smoother” trajectory is more desirable than a minuscule decrease in terminal velocity,
considering that the velocity is already below 1 m/s. The fact that the regularization cost
is larger than the nominal landing cost speaks for the fact that the AWES can easily
reduce its terminal energy.

In order to get a better understanding of the different tether drag models, we define
the accelerations

aA =
∑
a∈A

1

ma

FNTD,a (7.2)

a1 =
1

m1

FNTD,1 (7.3)

aN =
∑
p∈N

1

mp

FNTD,p. (7.4)

The first acceleration aA denotes the sum of accelerations on all kite nodes a ∈ A that
result from tether drag forces. The second acceleration a1 results from the tether drag
forces on the center node p = 1. The third acceleration aN is the sum of aA and a1, so
it is referring to all nodes p ∈ N . Fig. 7.5 shows a comparison of aA, a1 and aN for the
three tether drag models.

The acceleration aA is in the same order of magnitude for all tether drag models. This
confirms the argument presented above: Even though the solution of the equivalence
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Figure 7.5.: Nominal landing trajectory. Comparison of the accelerations aA, a1 and aN
for the trivial, projected and equivalence tether drag models.

tether drag model does not adapt its tether orientations to increase lk,⊥ like the projected
tether drag model, the tether drag forces acting on the kites are roughly the same. When
looking at the plot for a1, we see that the projected and equivalence model look again
similar, however the trivial model exhibits much higher tether drag accelerations on the
center node p = 1. This aligns with the equations describing the trivial tether drag model.
Equation (4.22) shows that the trivial tether drag grows linearly with the (unprojected)
tether length lk and quadratically with the tether’s relative velocity uT,k. Since lT � lT,⊥
for most of the trajectory, there is an overestimation of a1 within the trivial tether drag
model. Hence, we can argue that the trivial tether drag model is not suitable for the
computation of landing trajectories.

Even though the equivalence tether drag model is a better approximation of the real
system than the projected and trivial model, using this more sophisticated model comes
at a price. Fig. 7.6 shows a comparison of the tether drag models with respect to four nu-
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Figure 7.6.: Nominal landing trajectory. Comparison of the number of iterations, NLP
construction time, optimization time and maximum invariant for the trivial,
projected and equivalence tether drag models.

merical parameters. Specifically, these parameters are the number of iterations needed to
solve the optimization problem (in total, so including all homotopy steps), the construc-
tion time of the NLP that is passed to the numerical solver, the optimization time needed
by the numerical solver and the maximum invariant of the corresponding solution. The
latter is a useful criterion when judging whether a solution is indeed physical or whether
it exhibits some unphysical behavior made possible by e.g. discretization errors.

The number of solver iterations increases by 22 % when changing from the trivial to
the projected tether drag model, then increases again by 14 % when changing to the
equivalence tether drag model. Regarding the NLP construction time, one can only
observe negligible increases when compared to the optimization time. Here, we see a
jump of 40 % from the trivial to the projected model and then again an increase in
187 %, almost tripling the optimization time. The absolute computation times are less

80



7.2. Analysis of Solutions

relevant, since they depend on the system that is used for computation.
Regarding the maximum invariant, the projected model performs best, followed by the

trivial and then the equivalence model. The difference here is however not relevant since
even the maximum invariant of the equivalence model is at 0.17 m2, which corresponds
to an error of 0.8 % relative to the secondary tether length of 50 m. Hence, all three
solutions can be considered physical.

Final Homotopy Step

The final homotopy step is used to solve the same problem as at the end of the previous
homotopy step, but with higher accuracy. Explicitly, this means setting the target barrier
parameter τf = τc. The initial barrier parameter τ0 = τb stays the same as before.
Additionally, the tolerance is set to rtol = rb. The final homotopy step is performed using
the equivalence tether drag model. As a result, we expect the solution of the previous
homotopy step with small changes due to the additional accuracy.

The solution shown in Fig. 7.7 is indeed almost identical to the previous solution. This
solution represents the last homotopy step and is therefore the solution to the problem
we initially set out to find. It is also the only one that is computed with full accuracy
and therefore the only solution that can be considered as truly representing the system
dynamics and constraints. All intermediate solutions are interesting as numerical artifacts
that help understand and analyze how the solution to the final homotopy step is created,
but there is no guarantee that they are optimal or feasible with respect to the final
problem formulation and accuracy. The optimal landing trajectory computed in the final
homotopy step takes approximately 45 s.

7.2.2. Sensitivity to Wind Speed

Now that we have analyzed how the solution changes over the course of the homotopy
procedure and how sensitive it is to the choice of the tether drag model, we need to
investigate how sensitive the solution is to parameter changes. The most relevant of
these parameters is the reference wind speed uref because it has been found to be a
crucial factor in determining the optimal shape of dual-kite pumping cycles [24]. To
analyze the sensitivity of the landing trajectories to a change in uref , its value is varied
by ± 50 % around its default value of 5 m/s, with a step size of 0.5 m/s. The results of
this analysis can be seen in Fig. 7.8, comparing the average terminal velocity q̇m̄,n,avg of
all nodes, maximum and average tension τmax and τavg in the main tether as well as ξ0,
the optimal starting point on the parameterized initial condition.

The terminal velocity q̇m̄,n,avg gets smaller with a growing uref . This makes sense since
the kite and tether drag forces all grow quadratically with the relative wind speed. Since
the landing is performed anti-parallel to the wind, this means that for a larger uref , the
drag forces also increase, slowing the nodes down further. This however is only true until
the nodes terminal velocity becomes so small that the landing cost L is no longer the
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Figure 7.7.: Nominal landing trajectory. Solution after final homotopy step with equiv-
alence tether drag model compared to solution of previous homotopy step
(dashed). Initial trajectory displayed in black. Position of the ground-station
represented by a red dot.

dominant term of the cost function. At this point, there can be small increases in q̇m̄,n,avg

if it in turn reduces the regularization cost R. Hence, the cost function must be tuned in
such a way that R is only the dominant term of the cost function if the terminal node
velocities and thus L are small enough.

With a growing uref , the average main tether tension τavg is also growing. Increasing
the wind speed results in an increase in the kites’ drag forces. Since the kites’ velocity is
partly in the direction of the main tether, a part of the force is compensated by tether
tension in the main tether. One can see that from 2.5 m/s to 3.0 m/s, τavg does not
increase. This can be explained when looking at the values for the maximum main tether
tension τmax. Here the relationship to a change in uref is not as straightforward. Indeed,
the largest value of τmax ≈ 535 N corresponds to the smallest uref = 2.5 m/s, hence the
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Figure 7.8.: Nominal landing trajectory. Sensitivity to change in uref . Comparison of
average terminal node velocity, maximum and average tether tension and
optimal initial trajectory parameter.

increase of τavg from 2.5 m/s to 3.0 m/s. The largest tether tension usually occurs during
the breaking maneuver at the end of the trajectory. Decreasing the wind speed generally
leads to a smaller main tether tension, but can also result in large values for τmax when
uref becomes too small and the kites have to perform more aggressive breaking maneuvers
in order to decrease their terminal velocity. A value of τmax ≈ 535 N is however far from
the values observed for pumping cycles (7 kN for uref = 5.0 m/s).

In Fig. 7.8 we can also see that the optimal starting point on the parameterized tra-
jectory only varies by + 5/− 2 %. This means that ξ0 is robust to a change in uref and
that the constraint ξ0 ∈ [0, 1] never becomes active.
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7.2.3. Potential and Kinetic Energy
An analysis of the AWES’s energy flow can give further insight into the optimal landing
trajectory. At the end of the landing trajectory, the height of each node must decrease
such that the solution is feasible with respect to the terminal position constraint. Also,
the landing cost penalizes high terminal node velocities. Hence, the system must both
lose kinetic and potential energy during the landing. This process is shown in Fig. 7.9,
both for each individual node as well as for the whole system.
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Figure 7.9.: Nominal landing trajectory. Kinetic and potential energy over time for indi-
vidual nodes and whole system.

The overall energy of the system is steadily decreasing. At first, potential energy is
converted into kinetic energy, thus reducing the height of the nodes but increasing their
velocities. The increase in the node velocities causes an increase in the drag forces that
reduce the kinetic energy of the system by emitting energy from it. Thus, the potential
energy of each node decreases more than the kinetic energy increases. During the last
part of the trajectory, there is a slight increase in the kites’ potential energy due to the
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upwards breaking maneuver (cf. Fig. 7.7 (b)). The difference between the kites’ smallest
height and their terminal height is approximately 10 m for both kites. In the same time
interval, the breaking maneuver decelerates the kites from 14 m/s to 0.8 m/s. With the
exact values for all nodes, this amounts to an increase of 1.9 MJ to the whole system,
which is only 0.7 % of the initial energy of 158 MJ. The overall energy of the system
is reduced to 19 % of its initial value. The potential energy is reduced to 21 %, while
the kinetic energy is reduced to 0.3 %. The kite nodes carry about three times more
energy than the middle node q1 due to the additional weight of the kites, the larger
initial height and the larger initial velocity of those nodes. The small oscillation in the
potential energy of all nodes is caused by the dynamics of the Baumgarte stabilization,
which directly affects the nodes’ positions q and therefore also the potential energy of
each node.

In this chapter, we gave an in depth analysis of nominal landing trajectories that
are used in accordance with emergency response strategy (B). After stating the OCP
formulation and the homotopy schedule, we discussed how the optimal solution changes
throughout the homotopy scheme. We showed that the choice of tether drag model is
significant for the shape of the optimal solution and that it is possible to find landing
trajectories with small terminal velocities also for small reference wind speeds. We have
also analyzed the energy flow of the system to better understand how the AWES reduces
its kinetic energy throughout the landing trajectory. Now that we have given a detailed
study of the nominal landing trajectory, we will dedicate the next chapter to giving an
overview of all the other emergency trajectories that have been developed during the
course of this thesis.
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and Transition Trajectories

This chapter will give an overview of all the landing trajectories that were implemented
during the course of this thesis besides the nominal landing trajectory discussed in chap-
ter 7. Specifically, these are transition trajectories (cf. section 8.1) and compromised
landing trajectories (cf. section 8.2). The latter cover the emergency scenarios of com-
promised actuation, a compromised on-board battery and structural damages. Due to
time constraints, it is not possible to present an analysis of these trajectories with the
same degree of detail as shown in chapter 7.

8.1. Transition Trajectories
Emergency response strategy (A) from section 3.3 stipulates the transition of the AWES
from one pumping trajectory to another one that is located closer to the ground, all with
nominal flight behavior of the AWES. This problem can be formulated with the following
OCP:

minimize
x, E,λ,u, tf ,p, ξ0, ξf

υT + (1− υ)K +G

subject to 0 = ccol(xi,j, Ei,j,λi,j,ui, tf ,p), ∀i ∈ I, j ∈ J−,
0 = ccon(xi+1,0, Ei+1,0,xi,n, Ei,n,p), ∀i ∈ I−,
0 = x̂0(ξ0)− x0,0,

0 = x̂f(ξf)− xm̄,n,

[ξ0, ξf ] ∈ [0, 1]× [0, 1],

0 = E0,0,

0 ≤ hacc(q̈a,i,j), ∀i ∈ I, j ∈ J , a ∈ A,
0 ≤ hts(λk,i,j, lk,i,j), ∀i ∈ I, j ∈ J−, k ∈ T ,
0 ≤ hacol(qa1,i,j,qa2,i,j), ∀i ∈ I, j ∈ J , (a1, a2) ∈ Acom,

0 ≤ λ,

umin ≤ u ≤ umax,

xmin ≤ x ≤ xmax,

pmin ≤ p ≤ pmax,

0 ≤ tf .
(8.1)
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The parameterized initial and terminal constraints of section 5.2.1 are used to make sure
that the transition trajectory starts and ends on the corresponding pumping cycle. The
parameters ξ0 ∈ [0, 1] and ξf ∈ [0, 1] are included as optimization variables, which means
that the solver can choose the optimal exit and entry points on the two pumping cycles.
As opposed to (7.1), there is no terminal position inequality. Also, instead of the nominal
landing cost L, the transition cost K appears in the cost function.

Table 8.1 shows the homotopy schedule for the transition trajectory. The homotopy
parameter υ is used in the transition homotopy step to switch from the tracking cost T to
the transition cost K. The tether homotopy step is excluded because it was not possible
to find a feasible solution for the transition trajectory for any tether drag model except
for the trivial one.

Table 8.1.: Transition homotopy schedule.

homotopy step initial tracking transition final

objective × × T
υ−→ K ×

dynamics × FFA
γ−→
FF

FA × ×

constraints × × × ×

An example for a transition trajectory is shown in Fig. 8.1. It shows the transition of
the AWES from the initial pumping cycle to another pumping cycle that is approximately
half-way to the ground-station. The transition is performed from the reel-in phase of the
initial pumping cycle to the reel-in phase of the terminal pumping cycle. The shape
of the transition trajectory is dictated by the transition cost K, which penalizes node
accelerations and controls. As can be seen most prominently for the red kite in Fig. 8.1,
the transition trajectory follows the initial and terminal pumping cycle for a while at the
start and the end of the transition trajectory. In between, it describes a smooth inward
curve. This curving motion changes the secondary tethers orientation with respect to
their respective relative velocities. This is not relevant for the trivial tether drag model
that is used to compute the solution shown in Fig. 8.1, but it seems very likely that the
optimal trajectory for a more sophisticated tether drag model would be influenced by
this effect. This argument is reinforced by the fact that the solver is unable to find a
feasible solution for any but the trivial tether drag model. It might be the case that this
is just due to poor tuning, but it seems more plausible that the initial guess generation
for transition trajectories needs to be changed in order to find feasible solutions for the
projected and equivalence tether drag model.
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Figure 8.1.: Transition trajectory. Initial and terminal trajectories displayed in black.
Position of the ground-station represented by a red dot.

8.2. Emergency Landings with Compromised Flight
Behavior

Emergency response strategy (C) covers all emergency scenarios that require an immedi-
ate landing on account of the compromised AWES’s inability to continue on the pumping
cycle. As examples for this emergency response strategy, this section will show OCP
formulations for three likely scenarios: an impairment of one of the kites’ actuators, an
on-board battery malfunction an and infliction of structural damage to one of the kites.

8.2.1. Actuator Malfunction

We want to simulate a malfunction of the actuators of kite a. To do so, we use the
compromised landing homotopy step to change the bounds of the specific actuator. In
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8. Overview of Compromised Landing and Transition Trajectories

section 5.3, this was formalized as u+
δ,a

ν−→ u−δ,a.

As an example, we choose to change the bounds of ĊL,2, meaning the lift actuation of
the kite at node 2. The bounds after the change are parameterized as

u−δ,2 =
[
fcĊ

+
L,min,2, fcĊ

+
L,max,2, Ψ̇

+
min,2, Ψ̇

+
max,2

]T
, (8.2)

where fc ∈ [0, 1] is a parameter that can be used to adjust the degree of the lift actuator
malfunction and the superindex + denotes the bounds prior to the change. It should be
noted that fc = 0 results in ĊL,2 = 0 for the whole trajectory, which means that the kite
is still able to perfectly stabilize a given CL,2.

The resulting OCP formulation is as follows:

minimize
x, E,λ,u, tf ,p

ηT + (1− η)L+G

subject to 0 = ccol(xi,j, Ei,j,λi,j,ui, tf ,p), ∀i ∈ I, j ∈ J−,
0 = ccon(xi+1,0, Ei+1,0,xi,n, Ei,n,p), ∀i ∈ I−,
0 = x̂0(ξ0)− x0,0,

0 = E0,0,

0 ≤ hacc(q̈a,i,j), ∀i ∈ I, j ∈ J , a ∈ A,
0 ≤ hts(λk,i,j, lk,i,j), ∀i ∈ I, j ∈ J−, k ∈ T ,
0 ≤ hacol(qa1,i,j,qa2,i,j), ∀i ∈ I, j ∈ J , (a1, a2) ∈ Acom,

0 ≤ htp(qp,m̄,n), ∀p ∈ N ,
0 ≤ λ,

umin(p) ≤ u ≤ umax(p),

xmin ≤ x ≤ xmax,

pmin ≤ p ≤ pmax,

0 ≤ tf .
(8.3)

In contrast to (7.1) and (8.1), ξ0 is not an optimization variable but a fixed constant.
Other than that, the OCP formulation is identical to (7.1). A further difference to
the nominal landing trajectory appears in the homotopy schedule, which can be seen
in table 8.2. As already explained, we use the compromised landing homotopy step to
change the constraints of the OCP. Due to this constraint change, the bounds on u depend
on p. In order to compute a solution to (8.3), we need to choose values for ξ0 and fc that
best reflect the problem we want to solve. Since it makes little sense to present solutions
for arbitrary choices of ξ0 and fc, we instead vary both parameters within their specified
bounds to investigate for which combinations there exist feasible trajectories.

The results of this can be seen in Fig. 8.2. Each step in ξ0 is represented by a bar.
The blue part of the bar represents the values of fc for which there exists a feasible
trajectory, while the red part represents the values of fc for which there is no feasible
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8.2. Emergency Landings with Compromised Flight Behavior

Table 8.2.: Actuator malfunction homotopy schedule.

homotopy step initial tracking nom. landing com. landing tether final

objective × × T
η−→ L × × ×

dynamics × FFA
γ−→
FF

FA × × Ft
TD

τ−→ Fe
TD ×

constraints × × × u+
δ,2

ν−→ u−δ,2 × ×

trajectory. If a bar is completely red, this means that the solver is not able to find a
feasible trajectory for any fc. The dashed black line at ξ0 = 0.7 further divides the
parameterized initial trajectory into reel-out and reel-in phase. The two points ξ0 = 0.0
and ξ0 = 1.0 are redundant due to the periodicity of the parameterized initial trajectory.
The parameter ξ0 is varied in steps of 0.025, amounting to 41 steps in total. The step
size for fc is 0.5 %.
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infeasible

Figure 8.2.: Landing trajectory with compromised actuation. Finding feasible trajectories
when varying fc and ξ0.

Out of the 41 initial conditions, we are able to find feasible solutions for 32. For all
of these 32, the smallest possible fc for which we can still find a feasible solution is
below 1.5 %. Hence, one can say that if it is possible to find a feasible solution for any fc,
then we can usually also find a feasible solution for a very small fc. For 22 out of the
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32 trajectories, we can even find a solution for fc = 0. This leads us to two conclusions:
Firstly, the bottle-neck of OCP (8.3) is not the compromised actuator homotopy step,
but the choice of the initial condition. This seems reasonable since varying ξ0 results in a
large variety of different initial conditions. Secondly, it makes a huge difference whether
fc = 0 or fc � 1.0. This is also to be expected, since setting fc = 0 restricts the space of
possible trajectories much more than fc � 1.0.

When looking at the separation of reel-in and reel-out phase, we can make another
observation: In the reel-out phase, 28.7 % of the bars’ surface is marked infeasible, while in
the reel-in phase it is only 8.5 %1. This is because the initial guesses of section 5.4 continue
the AWES’s reel-in phase nicely for ξ0 ∈ [0.7, 1.0). For the reel-out phase (ξ0 ∈ [0.0, 0.7))
however, the initial guesses clash with the node velocities of the parameterized initial
trajectory. Hence, we can expect better results for the reel-out phase, after finding a way
to incorporate the node velocities of x̂0(ξ0) into the initial guess generation.

8.2.2. On-Board Battery Malfunction
We have given an explanation of how the kites’ on-board batteries can be modeled in
section 4.5. Section 5.2.2 then elaborated on how this model can be implemented into an
OCP as the minimum battery energy constraint EB,i−EB,f ≥ 0 ∀i ∈ I−. This constraint
is added to (8.3) to yield the following formulation:

minimize
x, E,λ,u, tf ,p

ηT + (1− η)L+G

subject to 0 = ccol(xi,j, Ei,j,λi,j,ui, tf ,p), ∀i ∈ I, j ∈ J−,
0 = ccon(xi+1,0, Ei+1,0,xi,n, Ei,n,p), ∀i ∈ I−,
0 = x̂0(ξ0)− x0,0,

0 = E0,0,

0 ≤ EB,i(p)− EB,f , ∀i ∈ I−,
0 ≤ hacc(q̈a,i,j), ∀i ∈ I, j ∈ J , a ∈ A,
0 ≤ hts(λk,i,j, lk,i,j), ∀i ∈ I, j ∈ J−, k ∈ T ,
0 ≤ hacol(qa1,i,j,qa2,i,j), ∀i ∈ I, j ∈ J , (a1, a2) ∈ Acom,

0 ≤ htp(qp,m̄,n), ∀p ∈ N ,
0 ≤ λ,

umin ≤ u ≤ umax,

xmin ≤ x ≤ xmax,

pmin ≤ p ≤ pmax,

0 ≤ tf .
(8.4)

1We use the convention that ξ0 = 0.7 is part of the reel-in phase, ξ0 = 0.0 is part of the reel-out phase
and ξ0 = 1.0 is omitted due to its redundancy.
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8.2. Emergency Landings with Compromised Flight Behavior

The “activation” of the minimum battery constraint in the compromised landing ho-
motopy step is added to the homotopy schedule shown in table 8.3. The homotopy
parameter ν is used to switch from d

dt
EB = 0 to d

dt
EB = ĖB as explained in section 5.3.

Using sensible values (cf. appendix A.1) for the on-board battery parameters, one can

Table 8.3.: On-board battery malfunction homotopy schedule.

homotopy step initial tracking nom. landing com. landing tether final

objective × × T
η−→ L × × ×

dynamics × FFA
γ−→
FF

FA × × Ft
TD

τ−→ Fe
TD ×

constraints × × × 0
ν−→ ĖB × ×

use equation (4.50) to calculate

EB,0 = NBνfrνcQBUB (8.5)

= 15 · 1.0 · 0.7 · 18 kC · 3.7 V (8.6)

= 699.3 kJ, (8.7)

as the initial energy of the battery, assuming that it is fully charged. Under the as-
sumption that δL, δ̇L, δΨ and δ̇Ψ are meeting their respective maximum bounds, we can
calculate ĖB,act,max ≈ 48 W by plugging the values into

ĖB,act = MLδ̇L +Mφδ̇Ψ. (8.8)

Adding the constant power needed for the on-board controller and the rest of the elec-
tronics (approximately 60 W) we arrive at ĖB,max ≈ 108 W.

Assuming further a final time for the landing trajectory of 60 s, we get a rough estimate
of 6.5 kJ for the upper bound of the energy that is needed for a landing. This amounts to
only 0.9 % of the full battery energy of EB,0 = 699.3 kJ. Even when scaling the battery
down from fifteen cells to one, it still only makes up 7.1 % of EB,0.

The results of these calculations are supported by the optimization results, where the
minimal battery energy constraint does not becomes active at any point of the trajectory
for νfr ≥ 1 %. Hence, we can conclude that in the event of a malfunction of one of the
on-board battery’s generators, there is enough time to continue the trajectory until the
optimal exit point and employ emergency response strategy (B), meaning that the landing
trajectory is computed according to the homotopy procedure laid out in chapter 7.

8.2.3. Structural Damage
In case of a bird-strike or a similar event, kite a can sustain structural damage that
permanently alters its aerodynamic behavior. This can be modeled by changing the
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upper and lower bounds on the lift coefficient CL,a and the roll angle Ψa. In section 5.3,
this is formalized as

x+
δ,a

ν−→ x−δ,a. (8.9)

This model completely neglects the dynamic part of the incidence that causes the
structural damage. Staying with the example of bird-strike, the model can capture the
changed aerodynamic properties of the kite, but not the dynamic perturbation to the
system that goes along with it. Hence, the model should only be applied in cases where
the perturbation is negligible.

A change in bounds from x+
δ,a to x−δ,a is illustrated in Fig. 8.3, showing the three

sets D ∈ W ∈ P . The set P ∈ R2 is the nominal range of [CL,a,Ψa]. The set D ∈ R2

is the assumed range for a damaged kite. Lastly, set W ∈ R2 is the real range for the
damaged kite. Sticking with the notation of section 5.3, we only consider rectangular
sets D that can be parameterized by a vector

x−δ,a =
[
fcC

+
L,min,a, fcC

+
L,max,a, fcΨ

+
min,a, fcΨ

+
max,a

]T
, (8.10)

where fc ∈ [0, 1] is a parameter used to adjust the degree of the structural damage.
Additionally, the parameterized initial condition has to be reformulated as x̂−0 − x−0,0 to
exclude CL,a and Ψa from the constraint (cf. (5.64)). Otherwise, there is no guarantee

that [ĈL,0,a, Ψ̂0,a] ∈ D for all ξ0 ∈ [0, 1], which is necessary to find a feasible solution.
The resulting OCP then reads as follows:

minimize
x, E,λ,u, tf ,p

ηT + (1− η)L+G

subject to 0 = ccol(xi,j, Ei,j,λi,j,ui, tf ,p), ∀i ∈ I, j ∈ J−,
0 = ccon(xi+1,0, Ei+1,0,xi,n, Ei,n,p), ∀i ∈ I−,
0 = x̂−0 (ξ0)− x−0,0,

0 = E0,0,

0 ≤ hacc(q̈a,i,j), ∀i ∈ I, j ∈ J , a ∈ A,
0 ≤ hts(λk,i,j, lk,i,j), ∀i ∈ I, j ∈ J−, k ∈ T ,
0 ≤ hacol(qa1,i,j,qa2,i,j), ∀i ∈ I, j ∈ J , (a1, a2) ∈ Acom,

0 ≤ htp(qp,m̄,n), ∀p ∈ N ,
0 ≤ λ,

umin ≤ u ≤ umax,

xmin(p) ≤ x ≤ xmax(p),

pmin ≤ p ≤ pmax,

0 ≤ tf .
(8.11)

The OCP formulation is identical to (8.3), but for the change in the parameterized initial
condition and the fact that the bounds on x, and not on u, depend on p. Different is
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also the homotopy schedule that is shown in table 8.4, where the compromised landing
homotopy step is used to change the bounds from x+

δ,2 to x−δ,2. The set D is a design

Table 8.4.: Structural damage homotopy schedule.

homotopy step initial tracking nom. landing com. landing tether final

objective × × T
η−→ L × × ×

dynamics × FFA
γ−→
FF

FA × × Ft
TD

τ−→ Fe
TD ×

constraints × × × x+
δ,2

ν−→ x−δ,2 × ×

parameter of (8.11), but how should it be chosen to yield the best results? Suppose a
damaged kite has a given real constraint set W for [CL,a,Ψa]. For this specific W , D has
to be chosen such that D ⊆ W in order to ensure that the trajectory computed for D is
also feasible forW . We define B as the set of all possible constraint sets for [CL,a,Ψa] that
can arise from structural damage to the kite. The ideal set D∗ must fulfill the condition

D∗ ⊆ W ∀ W ∈ B. (8.12)

If condition (8.12) holds, then the solution of (8.11) would be a feasible trajectory for all
possible structural damages with their corresponding W ∈ B. Set W can become almost
arbitrarily small (in the sense of the set’s Jordan measure) depending on the type and
severity of the structural damage the kite has sustained. A D∗ that fulfills condition (8.12)
will most likely make (8.11) unfeasible. Hence, using D∗ does not seem reasonable, even
if there was a way to compute it. Thus, we have to find a trade-off: make D as small
as possible to account for condition (8.12), but large enough for there to exist a feasible
solution to (8.11).

With the given parameterization of equation (8.10), we want to find out how the
optimal solution behaves when decreasing fc and therefore also the size of D. To do so,
ξ0 is set to 0.7, which is chosen arbitrarily from the values for ξ0 for which the solver is
able to find feasible solutions in the compromised actuation scenario (cf. section 8.2.1).
Taking steps of 0.05 in fc, it is possible to find feasible solutions for a range between 1.0
and 0.3.

Fig. 8.4 shows a comparison of the maximum main tether tension, the optimization
time, the average terminal node velocity and the maximum invariant for this range of fc.
Since the feasible set of (8.11) shrinks when fc is decreased, we expect the terminal
node velocity to increase with a decreasing fc. As Fig. 8.4 shows, this is indeed the
case. With a decreasing fc, the movement of the kite at node 2 gets more and more
restricted, meaning that it is not able to perform the necessary breaking maneuvers
anymore. Nevertheless, the average terminal node velocity does not exceed 1.7 m/s. We
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Figure 8.3.: Landing trajectory with structural damage. Illustration of structural damage
modeling with assumed constraint set D, real constraint set W and nominal
constraint set P .

can observe that the terminal node velocity first increases linearly until a value of fc = 0.6
with a slope of about 0.33 m/s. From fc = 0.5 to 0.3, the terminal node velocity then
increases exponentially. The same pattern can be observed when looking at the maximum
invariant. Between fc = 1.0 and 0.75, the invariant is constant, followed by a decrease
from 0.8 to 0.55. From 0.6 to 0.3 however, there is a strong increase in the invariant,
rising to 230 % of the value for fc = 1.0. The terminal node velocities together with the
maximum invariants both show the same pattern: At first, the decrease in fc has little
effect on the landing trajectory, but then the solver starts to struggle increasingly with
the task of finding a solution that has small invariants and a low terminal node velocity.
The maximum main tether tension is one order of magnitude greater than the values for
the nominal landing trajectories (cf. Fig 7.8). This is also the case for fc = 1, which
means that it must be due to the non-optimal choice of ξ0. As fc decreases, the AWES is
not able to perform its breaking maneuver as well as before, leading to increasing terminal
velocities. Since the maximum tether tension is associated with the breaking maneuver,
the less aggressive breaking maneuvers also result in a decrease of the maximum main
tether tension. For the optimization time, we expect a similar pattern as for the terminal
node velocities or the invariants. This is however not the case. While the optimization
time varies and has indeed its maximum at fc = 0.3, there is no inverse correlation
between fc and the optimization time.

This chapter served as an overview of a number of different emergency trajectories, in-
cluding a transition trajectory and several different emergency landings with compromised
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Figure 8.4.: Landing trajectory with structural damage. Sensitivity to change in fc. Com-
parison of maximum tether tension, optimization time, average terminal node
velocity and maximum invariants.

flight behavior. We have shown that the introduction of the projected or equivalence
tether drag model is the bottle-neck of the homotopy scheme when solving for transition
trajectories. Whether the solver is able to find a feasible trajectory for an emergency
landing with compromised actuation depends on the choice of ξ0. When starting during
the reel-in phase of the parameterized initial trajectory, the solver is able to find feasible
trajectories more often than when starting during the reel-out phase. We discovered that
a broken on-board generator on one of the kites is no reason for an immediate emer-
gency landing, but that there is enough time to employ emergency landing strategy (B).
We then studied how the optimal solution for a given ξ0 changes when shrinking the
OCP’s feasible set, thereby simulating structural damage to the kites. When shrinking
the bounds on one of the kites lift coefficient, the effect on the optimal solution is first
small, but then increases more and more until the solver is not able anymore to find
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a feasible solution. Section 8.2 has shown that it is indeed possible for the kites of a
dual-kite AWES to indirectly control one another in case of an emergency that renders
one of the kites actuation compromised.
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In this thesis we set out to construct a general and modular framework that can be used
to find and analyze a variety of multi-kite emergency trajectories. In order to do so, we
first introduced a set of hierarchical emergency response concepts, each tailored to deal
with different types of emergency scenarios. Then we formulated a comprehensive list
of modular building blocks that can be used to construct cost functions, constraints and
homotopy schemes for multi-kite emergency OCPs. Afterwards, we have shown how this
framework can be used to model a variety of different emergency scenarios and to compute
the corresponding optimal landing and transition trajectories. The current chapter shall
serve to state some final conclusions about the results of this thesis and then give an
outlook regarding future research.

Conclusions

The contribution of this thesis is split into two parts: The first part is the formulation of
a number of OCPs and the analysis of their solutions. For nominal landing trajectories,
we have identified core issues regarding how the optimal solution depends on the tether
model and the solution’s sensitivity to a change in the reference wind speed. For landing
trajectories with compromised flight behavior, we have gained insights into how the initial
point of the trajectory determines whether the solver can find a feasible trajectory or not,
and how the quality of the landing trajectory decreases when shrinking the feasible set
of the OCPs, thereby simulating damaged kites. We also found that a broken kite can
indeed be indirectly controlled by the rest of the AWES, thereby making it possible to
perform emergency landings with compromised actuation or structural damage on one of
the kites. This thesis presents for the first time optimal transition and landing trajectories
for dual-kite AWESs.

The second part is the construction of a modular framework that can be used to
formulate and solve OCPs related to multi-kite emergency trajectories. The strength of
this framework is its flexibility with regard to different models, system configurations
and problem formulations. While this thesis focuses on dual-kite configurations with
ground-based power generation, the framework can be adapted with moderate effort in
the following ways:

• The model can be changed from the 3 DOF point-mass model to a more elaborate
6 DOF model. It is also possible to introduce new tether drag formulations as well
as more elaborate tether and actuator models.
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• The system configuration can be changed from a dual-kite setup to triple kites or
more complex configurations. The framework is also downwards compatible for
single kites.

• The homotopy schedule can be adapted by adding or removing any homotopy step
that can be formalized in the notation of section 2.4.

• The framework can be modified to comply with on-board power generation instead
of ground-based power generation.

• New constraints and cost function components can be added.

The combination of these five points makes it possible to adapt the framework to a large
variety of different problem formulations that must not even be connected to emergency
landings. A good example is the computation of starting trajectories, which can be
implemented within the same framework by adding appropriate constraints, cost terms
and homotopy steps. A slight restraint to this flexibility is the necessity to derive new
initial guesses for each problem formulation. However this procedure is simplified by
the initial and tracking homotopy steps, which generate a feasible initial guess out of a
consistent one.

Outlook

In order to improve the emergency landing trajectories that have been presented in this
thesis, the first future adaptation should be the change to a 6 DOF model, which was
omitted from this thesis due to time constraints.

It is further necessary to improve the automatic initial guess generation in such a way
that the parameterized initial and terminal constraints hold for all states of the initial
guess, not just the main tether length and node positions. Most notably, it should hold
for the node velocities in order to be able to find feasible solutions for all values of ξ0. This
can be done by decoupling the AWES’s nodes’ motion into a translational and a rotational
component with respect to the main tether direction and then parameterizing the node
positions and velocities in a way that ensures that the initial guesses have a vanishing
invariant. When we interpolate the node positions and velocities as polynomials, we
must make sure that they are of sufficiently high degrees such that we can impose all
necessary boundary conditions. Within section 5.4, we have started this approach by
interpolating the translational motion as a third degree polynomial and the rotational
motion as a linear function. This performs well for nominal landing trajectories, but can
produce problems for certain values of ξ0 for compromised landings. Thus, we propose
to interpolate both the translational and rotational motion of the nodes as fifth degree
polynomials, making it possible to enforce boundary conditions on position, velocity and
acceleration of the nodes.

100



Another open task is finding a suitable OCP formulation to solve for the second part
of the landing trajectories. Since we cannot assume anymore that the tethers are per-
manently tight during the second part of the landing procedure, we need a new tether
model that can simulate tether sag. It also needs to be addressed what exactly happens
to the secondary tethers during the second part of the landing, as they cannot be reeled
in by the generator like the main tether.

On a more theoretical note, further research needs to be done regarding the homotopy
strategy presented in section 2.4. Although the strategy works well in practice, we need
to find a way to provide convergence guarantees. One approach is to try to formulate
conditions on the choice of the homotopy’s starting function that guarantee that the solver
follows the homotopy path. A promising lead of how to do this is shown in [40], which
presents conditions for globally convergent homotopy algorithms for solving nonlinear
systems of equations. Since IPOPT solves a nonlinear root-finding problem within each
iteration, it should be possible to connect these results to the homotopy strategy of
section 2.4.

It is useful to incorporate some notion of robustness into the OCP formulations. In this
thesis, we have studied the optimal solution’s sensitivity to certain parameter changes
and found out that e.g. the optimal nominal landing trajectory is robust to a change in
the reference wind speed. Section 7.2.2 discusses how the optimal solution changes with
the reference wind speed. However, it would also be interesting to see what happens when
taking optimal controls that were computed for a wind speed of 5 m/s and use them to
simulate a landing with different wind speeds. In that way, we can assess the open-loop
robustness of a trajectory with respect to a change in the reference wind speed.

This approach however only relies on empirical evidence. We need to find a way to
derive actual robustness guarantees for the given OCP formulations or better yet, alter
the OCP formulations in such a way that we directly solve for the most robust feasible
trajectory. Methods of how to do this can be found e.g. in [15, 35, 34, 36, 20]. Especially
for emergency landing trajectories with compromised flight behavior, it makes sense to
optimize with respect to robustness to modeling errors. While system identification can
be used to derive very accurate models for the nominal flight behavior of an AWES, this
is not possible for most emergency scenarios. Implementing robust optimal control into
the framework of this thesis will most likely take more time than the previously discussed
modifications.

It is still an open question how the results of this thesis can be incorporated into a
real-time framework for the detection of emergency scenarios. The implementation of
the OCPs inside AWEbox are meant for offline computations and are therefore not yet
optimized for computation time. So far, it seems however very unlikely that emergency
trajectories can be computed on-the-fly for a given emergency scenario. Especially con-
sidering that we want to expand the OCP formulations to more complex models, the
OCPs are too large to solve them fast enough for an on-the-fly computation. A more re-
alistic approach is precomputing the nominal landing trajectory together with a number
of emergency trajectories when also the optimal pumping cycle is computed. The trajec-
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tories are then stored in memory and loaded when necessary. In this regard, it appears
even more necessary to find a way to increase the robustness of the emergency landing
trajectories, since we must account for an error between the initial conditions used to
precompute the solutions and the actual initial conditions at the time of the emergency.

In section 8.2 we have shown that the two kites of a dual-kite AWES are able to mitigate
the compromised actuation of one of the kites. It will be interesting to study how this
phenomenon extends to configurations with three or more kites. If it is indeed possible
for larger number of kites to completely support and land a broken kite, then multi-kite
AWESs can be designed to be much safer and more reliable than single kite AWESs.

Due to the modular notion of the framework presented in this thesis, we have laid
a solid foundation for the upcoming tasks in the field of optimal control for multi-kite
emergency trajectories. Since the framework is implemented into the upcoming open-
source toolbox AWEbox, it will also be accessible to other researchers in the field. By
doing so, we are hoping to jumpstart a series of cooperations with other researchers to
advance the subject of AWES optimization in general and the computation of optimal
trajectories in particular.
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Table A.1.: Model parameters.

parameter value unit meaning

g 9.81 m/s2 standard gravity
ρref 1.225 kg/m2 reference air density
Rair 287.053 J/kg K specific gas constant for air
Tref 288.15 K reference temperature
Γ 6.5 K/km average lapse rate
ρT, ρs 1000.0 kg/m main/secondary tether density [14]
σmat 3.6 GPa tether maximum material stress [11]
uref 5.0 m/s wind speed at reference height [3]
z0 0.1 m roughness length [3]
zref 10.0 m reference height [3]
C0

D 0.0273 [−] wing drag coefficient [25]
CI

D 0.02 [−] induced drag coefficient
S 3.0 m2 wing surface [27]
ba 5.5 m kite wing span [27]
ls 50.0 m secondary tether length
dT, ds 0.005 m main/secondary tether thickness
mp 36.8 kg kite weight [27]
mG 10.0 t generator weight
CTD 1.0 [−] tether drag coefficient [39]
nT 10 [−] number of tether segments for eq. forces model
NB 15 [−] number of battery cells
νfr 1.0 [−] fraction of full battery charge
νc 0.7 [−] conversion efficiency
QB 18 kC battery charge
VB 3.7 V battery voltage
lL, lΨ 0.2 m lift/roll actuator length
wL, wΨ 0.1 m lift/roll actuator width
δΨ,min, δL,min −20.0 deg min. roll/lift actuator deflection
δΨ,max, δL,max 20.0 deg max. roll/lift actuator deflection
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Table A.2.: Model bounds.

bound value unit meaning

CL,min 0.0 [−] minimum lift coefficient
CL,max 2.0 [−] maximum lift coefficient
Ψmin −80.0 deg minimum roll angle
Ψmax 80.0 deg maximum roll angle

ĊL,min −5.0 1/s minimum lift actuation

ĊL,max 5.0 1/s maximum lift actuation

Ψ̇min −5.0 deg/s minimum roll actuation

Ψ̇max 5.0 deg/s maximum roll actuation

l̈T,min −10.0 m/s2 minimum main tether acceleration

l̈T,max 10.0 m/s2 maximum main tether acceleration
zmin 10 m minimum node height
lT,min 0 m minimum main tether length
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Table A.3.: Numerical parameters.

parameter value unit meaning

m 50 [−] number of collocation intervals
n 4 [−] degree of the Lagrange polynomial used for collocation
τa 1.0 [−] starting value for τ0

τb 1 · 10−5 [−] intermediate value for τ0 and τf

τc 1 · 10−8 [−] final value for τf

ra 1 · 10−4 [−] initial value for rtol

rb 1 · 10−8 [−] final value for rtol

κ 10.0 [−] Baumgarte stabilization

R̂u 1 · 10−4 [−] control regularization tuning

R̂t 1 · 10−2 [−] time regularization tuning

R̂q̈ 0.1 [−] node acceleration regularization tuning

Ĥγ 1 · 103 [−] γ tuning cost

Ĥη 1 · 103 [−] η tuning cost

Ĥν 1 · 103 [−] ν tuning cost

Ĥτ 1 · 103 [−] τ tuning cost

Ĥυ 1 · 103 [−] υ tuning cost

Ĥθ 1 · 103 [−] θ tuning cost

T̂ diag(1) · 10−2 [−] tracking homotopy tuning

L̂ diag(1) · 10−2 [−] nominal landing homotopy tuning

K̂q̈ 1.0 [−] transition node acceleration regularization tuning

K̂u 0.1 [−] transition control regularization tuning
cs 10.0 [−] tether stress safety factor
Amax 8 · 10−3 m2 tether stress scaling
cacc 12.0 [−] max. acceleration factor
cmin 5.0 [−] anti-collision safety factor
ds 0.1 m “stagger” distance
dmin,1 40.0 m terminal position distance for node 1
dmin,2 80.0 m terminal position distance for node 2
dmin,3 80.0 m terminal position distance for node 3
vT 22.0 m/s landing velocity guess
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Code Example B.1: Code example in python to produce Fig. 7.4 using AWEbox.

1 # import modules
2 from AWEbox import ∗
3 import l ogg ing
4 # con f i gu r e l e v e l o f l o g g i n g / conso l e output
5 l ogg ing . bas i cCon f i g ( \
6 f i l emode=’w ’ , \
7 format=’%(message ) s ’ , \
8 l e v e l=logg ing .DEBUG)
9

10 # ================
11 # SET−UP AND SOLVE
12 # ================
13
14 # make d e f a u l t op t i ons o b j e c t and con f i gu r e i t
15 opt ions = Options ( True ) # True r e f e r s to i n t e r n a l acces s sw i t ch
16 opt ions [ ’ u s e r o p t i o n s ’ ] [ ’ system model ’ ] \
17 [ ’ a r c h i t e c t u r e ’ ] = (1 , 2) # dual k i t e s
18 opt ions [ ’ u s e r o p t i o n s ’ ] [ ’ t r a j e c t o r y ’ ] \
19 [ ’ f ixed params ’ ] = \
20 { ’ l s ’ : [ 5 0 . , 5 0 . ] , ’ diam t ’ : [ 5 e−3,5e−3] , ’ diam s ’ : [ 5 e−3,5e−3]} # te t h e r

parameters
21 opt ions [ ’ u s e r o p t i o n s ’ ] [ ’ t r a j e c t o r y ’ ] \
22 [ ’ type ’ ] = ’ nomina l land ing ’ # t r a j e c t o r y type
23 opt ions [ ’ u s e r o p t i o n s ’ ] [ ’ t r a j e c t o r y ’ ] \
24 [ ’ t r a n s i t i o n ’ ] [ ’ i n i t i a l t r a j e c t o r y ’ ] = \
25 ’ i n i t i a l d u a l . p ’ # param . pumping c y c l e
26 opt ions [ ’ u s e r o p t i o n s ’ ] [ ’ system model ’ ] [ ’ k i t e d o f ’ ] = 3 # 3 DOF
27 opt ions [ ’ nlp ’ ] [ ’ n k ’ ] = 50 # number o f c o l l . i n t e r v a l s
28 opt ions [ ’ nlp ’ ] [ ’ c o l l o c a t i o n ’ ] [ ’ d ’ ] = 4 # deg . o f l agrange po lynomia l
29
30 # de f i n e sweep op t i ons
31 sweep opts = [ ( [ ’ u s e r o p t i o n s ’ , ’ t e the r drag mode l ’ ] , \
32 [ ’ t r i v i a l ’ , ’ s imple ’ , ’ equ iva l ence ’ ] ) ] # sweep over t e t h e r drag models
33
34 # make sweep , run and save
35 sweep = Sweep ( \
36 name = ’ sweep example ’ , \
37 opt ions = opt ions , \
38 sweep opts = sweep opts )
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39 sweep . run ( f ina l homotopy s t ep=’ t e t h e r ’ ) # so l v e u n t i l ( and in c l ud i n g )
t e t h e r homotopy s t ep

40 sweep . save ( )
41
42 # ==============
43 # POSTPROCESSING
44 # ==============
45
46 # make v i s u a l i z a t i o n o b j e c t and op t i ons
47 v i s u a l i z a t i o n = V i s u a l i z a t i o n ( sweep )
48 v i s u a l i z a t i o n o p t i o n s = V i s u a l i z a t i o n o p t i o n s ( )
49
50 # se t f l a g s f o r the de s i r e d p l o t s
51 v i s u a l i z a t i o n o p t i o n s [ ’ u s e r o p t i o n s ’ ] [ ’ f l a g s ’ ]
52 [ ’ comparison ’ ] [ ’ quad ’ ] = True # t r a j e c t o r y p l o t
53
54 # produce and show p l o t s
55 v i s u a l i z a t i o n . p l o t ( v i s u a l i z a t i o n o p t i o n s )
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