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In-Vehicle Realization of Nonlinear MPC for
Gasoline Two-Stage Turbocharging Airpath Control

Thivaharan Albin, Dennis Ritter, Norman Liberda, Rien Quirynen, and Moritz Diehl

Abstract— Innovative charging concepts, such as two-stage
turbocharging for gasoline engines, cause high demands on the
process control. The open-loop process is characterized by a com-
plex, nonlinear system behavior. In addition, the requirements on
the closed-loop system are challenging: fast reference tracking
has to be achieved without overshoots while respecting constraints
on the turbocharger speeds in order to prevent damaging of the
components. Nonlinear model predictive control (NMPC) offers a
high potential for this purpose. It is capable of handling coupled
multiple-input systems while achieving high control quality and
respecting constraints on system states. This paper presents an
NMPC scheme for a two-stage turbocharged gasoline airpath,
which is based on a physically driven reduced-order model
formulated as a set of differential-algebraic equations. The online
optimal control algorithm uses the real-time iteration scheme and
is implemented on a control prototyping platform. For validation
of the algorithm, it is tested based on simulations and vehicle
experiments. These experiments have been conducted on a vehicle
dynamometer as well as on an automotive testing track. For
this purpose, a modified production vehicle is used in which the
airpath concept is implemented.

Index Terms— Airpath control, engine control, nonlinear model
predictive control (NMPC), turbocharging.

I. INTRODUCTION

TO REDUCE fuel consumption and emissions for internal
combustion engines, “downsizing” by the use of tur-

bochargers is investigated. Turbochargers allow one to use
energy from the hot exhaust gas in order to compress the
intake air of the combustion engine to higher pressures than
achievable with a naturally aspirated engine. For increasing the
specific power, conventional single-stage turbocharging con-
cepts lead to conflicting goals, concerning the dimensioning
of the charging components. A high specific power on the
one hand and a fast transient raise of the boost pressure on
the other cannot be realized at the same time. To mitigate
this tradeoff, more variability in the charging devices is used.
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A future promising technology in gasoline engines is the two-
stage turbocharging concept.

The architecture comprises a small high-pressure (HP) stage
and a large low-pressure (LP) stage. The small HP stage
is capable of realizing fast transients, even though it is
restricted concerning the specific power. By contrast, the large
LP stage can realize a high specific power with slower transient
dynamics. One of the arising challenges consists in the design
of the closed-loop controller, which fulfills the high require-
ments on the control quality.

A. Control Requirements

The control algorithm needs to handle both turbocharger
stages in a coordinated fashion, such that reference tracking
for the boost pressure is made possible and disturbances
are rejected. A fixed air-to-fuel ratio is maintained for the
combustion of a gasoline engine. As a consequence, the fuel
is always adapted to the amount of air mass trapped in the
cylinder, which is called quantitative control. In this case, there
is a direct correlation between the boost pressure, the amount
of air, the fuel amount, and the generated torque. The boost
pressure reference should thus be reached as quickly as pos-
sible, as this determines the transient acceleration capability
of the vehicle. However, in case of a step reference input,
the output should additionally be achieved without strong
overshoots, as this negatively influences the driving behavior.
The working principle of a diesel engine does not require a
fixed air-to-fuel ratio. Instead, the airpath is adjusted, such
that an excess of air is present all the time. This allows the
torque to be only based on the amount of fuel, which is called
qualitative control. Therefore, in a diesel engine, the torque
and the boost pressure are decoupled, such that oscillations
can be tolerated up to a certain amount.

In addition to the latter requirements on the reference
tracking performance, the control algorithm should respect the
upper limit constraints for the HP and LP turbocharger speeds,
since exceeding these limits might damage the turbocharger.
This becomes especially challenging, as the turbocharger
speed is typically not even measured in a series production
configuration. In summary, the following three major require-
ments have to be considered at the same time for gasoline
airpath control:

1) fast reference tracking;
2) no oscillatory behavior for step reference;
3) while respecting limits on turbocharger speeds.

In addition, turbocharged systems typically show strongly
nonlinear behavior and their dynamic behavior is very depen-
dent on disturbance variables, such as the engine speed. For
this purpose, nonlinear model predictive control (NMPC) is
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investigated in this paper. NMPC is a suitable choice, as it
can handle the nonlinear system dynamics and is able to
respect constraints on system states with a high control quality.
The overall goal is that the NMPC scheme makes use of the
specific turbocharging architecture to overcome the tradeoff
between fast transient raise and high power.

B. Related Work

An overview of fundamental modeling and control of
airpath systems can be found in [1] and [2]. For the purpose
of airpath control, a variety of control concepts have been
applied, where especially model-based control shows advan-
tages due to the arising strong nonlinearities. Examples of
the latter are internal model control [3] and flatness-based
control [4]. Compared with other model-based control con-
cepts, MPC [5] is attractive, as it is able to directly consider
constraints on the actuated signals and the system states.
In case of airpath control, this is an important feature, since
not only the actuators are constrained, but also limits on the
turbocharger speeds must be respected.

Among the applied MPC concepts, online optimization
was investigated as well as offline optimization-based imple-
mentations. Explicit MPC is used, e.g., in [6] based on a
piecewise-affine (PWA) approximation of the system behavior.
On the other hand, different MPC concepts based on online
optimization have also been investigated, where different
measures were used to take the nonlinearity into account.
The majority of the previous publications use linear time-
varying (LTV) MPC, which means that the optimal control
problem (OCP) is based on a linearized model gained at
the recent operating point, see [5] or [7]. More elaborate
NMPC control was recently investigated in [8]–[10], where
it is applied to single-stage diesel engines with a data-based
model. When an (N)MPC algorithm is applied to a real-
world system, all components, such as observer, problem
formulation, and optimization algorithm, have to match each
other. An additional important challenge is the realization of
offset-free control, for which different techniques are available,
such as virtual references [11] or rate-based MPC [12].

However, for the control of the more complex two-stage
gasoline turbocharging architecture, only a small number of
publications are available. The work in [13] presents a vehicle
setup of the two-stage turbocharging architecture for gasoline
engines. The authors utilize a single-input single-output
closed-loop PID controller. For lower engine speeds, the HP
stage is controlled (LP wastegate fully open), and for higher
engine speeds, the LP stage is controlled (HP wastegate fully
open). In the medium speed range, one of the two actuated
values is used in a feedforward manner with lookup tables,
and the other one is used in feedback. In [14], the modeling
and control of the pneumatic actuation system for a two-stage
gasoline airpath architecture is carried out. An MPC approach
based on a PWA approximation of the turbocharging concept
was presented in [5]. The PWA-based MPC works well for
small load steps, e.g., for steps starting at throttled operation to
a boost pressure of 1.4 bar. For steps to boost pressures larger
than 1.5 bar, where the nonlinearity is stronger, the control

Fig. 1. System overview of the investigated two-stage turbocharging concept.

results show considerable overshoots that are not tolerable for
real-world driving.

This paper is based on a previous publication of the
authors [15], where initial closed-loop simulations were car-
ried out in nominal operation. The concept has been extended,
such that it allows for real-time control, e.g., including the
observer, deadtime compensation, and real-time feasibility.
Moreover, the control algorithm was implemented on a rapid
prototyping hardware, and vehicle experiments have been
carried out on a dynamometer and on the road for validation
of the control algorithm.

C. Main Contributions and Outline

The main contribution of this paper is the development of an
NMPC scheme that allows meeting the tough demands on the
closed-loop control of the two-stage turbocharging architecture
for gasoline engines. For validation of the control concept,
in-vehicle experiments are conducted. The major bottleneck
for the implementation of NMPC is typically the computa-
tional effort. For this purpose, a sufficiently reduced-order
state-space modeling approach is proposed, which mainly
relies on physical equations. The resulting model is a system
of differential-algebraic equations (DAEs), covering the entire
operating range. Direct optimal control using an online sequen-
tial quadratic programming (SQP)-type algorithm is used as a
basis for the proposed implementation. To allow for real-time
feasible computations, the combination of a code-generated
real-time iteration (RTI) scheme with the presented reduced-
order model is used.

This paper is organized as follows. Section II provides
an overview on the setup of the system. The reduced-order
modeling of the system is described in Section III. The imple-
mentation of the NMPC scheme is discussed in Section IV.
Section V presents the closed-loop simulation results for the
control algorithm. The validation of the controller using exper-
iments on a vehicle dynamometer is described in Section VI,
and SectionVII presents the vehicle experiments on the road
while driving dynamically.

II. TWO-STAGE TURBOCHARGED GASOLINE ENGINE

A. System Setup

Fig. 1 shows the schematic setup of the investigated airpath
architecture. For an experimental analysis of the system,
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the depicted architecture was built up and implemented in a
demonstrator vehicle (Ford Focus) with a 1.8 L four-cylinder
gasoline engine. A rapid control prototyping hardware is used
in the vehicle, on which the control algorithm has been imple-
mented. The overall setup allows for real-world experiments
to validate the control performance. For the validation of the
system, closed-loop experiments have been conducted, using
a vehicle dynamometer as well as by performing driving
experiments on the road at an automotive testing center.
In [16], a more detailed overview on the turbocharging system
is given.

B. Available Sensors

The controlled variable of the system is the boost pressure
pboost,1 which is measured with a pressure sensor positioned
behind the intercooler and in front of the throttle valve. Due
to the high exhaust gas temperatures in gasoline engines,
the application of sensors in the exhaust gas path is impractical
for a series configuration due to durability and price issues.
Thus, in the presented control approach, no sensor signal
from the exhaust gas path is used for control purposes.
Additionally used measured variables are the engine speed
neng and the ambient pressure pamb. Therefore, all sensors
used for control are typically available in a series production
configuration. For the purpose of modeling and validation
of the algorithm, additional sensors are implemented in the
car. For example, both turbocharger speeds and the pressure
between the compressors (providing the pressure ratio over the
two compressors) are measured in the demonstrator vehicle
only for modeling and validation purposes.

C. Actuation System

As actuators for the control of the turbochargers, wastegates
on the HP (uwg,hp) and the LP stage (uwg,lp) are used.
Commonly, electronic wastegates are used for turbocharging,
which have the advantage that they have a position feedback
sensor and thus allow for accurate setting of the valve opening
area. In this paper, the use of alternative, simpler, and cheaper
pneumatic actuators is investigated. They do not use any
additional sensor, e.g., for position feedback, which makes
the control more demanding. The wastegate actuation signals
correspond to a pulsewidth modulated (PWM) signal, which
has an allowable operating range uwg,hp = [0 . . . 100]% and
uwg,lp = [0 . . . 100]%. It manipulates the pilot pressure,
which has influence on the cross-sectional diameter of the
opening. Thus, the amount of exhaust gas, which passes the
turbine or the wastegate, can be adjusted. Low values, such
as uwg = 0%, open the wastegate, and higher values, such
as uwg = 100%, close the wastegate. In case of a fully open
wastegate, the majority of the exhaust gas bypasses the turbine,
whereas in case of a fully closed wastegate, all the exhaust
gas flows through the turbine. In addition, a throttle valve
is present in the considered architecture, which is controlled
via a separate function, not part of the turbocharger control.
No additional HP bypass for the compressor was used in

1All relevant variables and indices are summarized further in the corre-
sponding tables of Appendix B.

the control concept, accepting efficiency losses at high mass
flows. At very high mass flows, the HP stage does not deliver
boost pressure anymore. However, with the given sizing of the
components, the HP stage does not go into a safety critical
mode.

D. Engine Control Algorithm

In summary, the controlled variable is the boost pressure
pboost and the actuated values are the HP and LP wastegate
PWM signals uwg,hp and uwg,lp. Additionally, the engine speed
neng and the ambient pressure pamb are used as measured
disturbances. The throttle valve is only used in the nonboosted
region, as is typical also in a series configuration. In the
boosted region, the throttle valve is set completely open for
reasons of fuel efficiency. As a consequence, the boost pressure
is equal to the intake manifold pressure and directly correlated
with the torque of the engine. Therefore, the throttle valve
is not investigated further. The setpoint for boost pressure is
determined by the requested torque in a conventional manner,
as given in torque oriented engine control structures. All other
parameters of the engine control structure, such as ignition,
injection, and camshaft position, are based on the standard cal-
ibration. The airpath NMPC control algorithm is implemented
on a dSpace MicroAutoBox. Note that all other engine control
functions, such as setpoint calculation and ignition timing, are
also implemented on the same MicroAutoBox system.

III. MODELING OF THE TWO-STAGE TURBOCHARGING

In the following, the nonlinear state-space model is intro-
duced, which is used within the NMPC problem formulation.
For the controller internal model, the focus is set on capturing
the system dynamics while trying to keep the function outputs
as well as their derivatives smooth and the state dimensions
small. In a previous publication of the authors [15], a nonlinear
state-space model has been presented, which is mainly driven
by physical equations. In [15], the model was validated against
static and dynamic measurement data. The model has shown
to reproduce the measurement data quantitatively well in a
big operating range concerning engine speed and engine load.
These findings are summarized in the following.

A. Fundamental Equations of Two-Stage Turbocharging

The well-investigated physical equations are used as a
basis for the model, and a detailed overview on turbocharger
modeling can be found in [2]. The power � on turbine and
compressor is used to describe the power balance on the
HP and the LP stage as described in (1). The expressions
in (2) and (3) relate the power on the two stages of the
compressor and, respectively, the turbine to the mass flow
through the corresponding device and the total change of
enthalpy. In the equations, the pressure ratio is given by
�t = put/pdt and �c = pdc/puc. The mass flow is given
by ṁ, the turbocharger speed by ntc, the specific isobaric heat
capacity by cp , the polar mass moment of inertia of the tur-
bocharger by �tc, the isentropic exponent by κ , the isentropic
efficiency by ηs , the temperature upstream of the compressor
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by Tuc, and the upstream turbine by Tut. Expressions given
with � hold for the HP and the LP stage � = lp, hp

d

dt

(
1

2
�tc,�n2

tc,�

)
= �t,� − �c,� (1)

�c,� = ṁc,�cp,airTuc,�
1

ηs,c,�

(
�

κair−1
κair

c,� − 1

)
(2)

�t,� = ṁt,�cp,exhTut,�ηs,t,�

(
1 − �

1−κexh
κexh

t,�

)
. (3)

The aspirated mass flow of the engine and the fuel mass flow
can be obtained, using the volumetric efficiency ηv , the volume
of the cylinder Vcyl, gas constant R, the stochiometric air
requirement λs , and the intake manifold temperature Tim as
follows (see [17]):

ṁasp = ηv pamb�c,lp�c,hpVcylneng

RairTim120
(4)

ṁfuel = ṁasp

λs
(5)

where a stochiometric operation (air-to-fuel ratio λ = 1) is
assumed. For calculating the mass flow through the HP and
LP wastegate and through the turbines, the throttle equation
can be used with A as an opening area

ṁt,� = ft,�
pdt,�√
Tut,�

(6)

ft,� ≡ At,�
�

3
2
t,�√

Rexh

·
√√√√ 2κexh

κexh − 1

(
�

−2
κexh
t,� − �

−κexh−1
κexh

t,�

)
(7)

ṁwg,� = fwg,�
pdt,�√
Tut,�

(8)

fwg,� ≡ Awg,�
�t,�√
Rexh

·
√√√√ 2κexh

κexh − 1

(
�

−2
κexh
t,� − �

−κexh−1
κexh

t,�

)
. (9)

B. Model Simplification

Various simplifications have to be done to gain a model
suitable for real-time NMPC, as described in the following.

1) Rotational Kinetic Energy and Pressure Ratio: To sim-
plify the model, the rotational kinetic energy can be correlated
with the pressure ratio over its corresponding compressor. For
the LP stage, an affine map with the parameters alp and blp
can be fit via linear regression on measurement data

n2
tc,lp = alp�c,lp + blp. (10)

For the HP stage, the following bilinear function has been
shown to work well [15]:

n2
tc,hp = (ahpneng + chp)�c,hp + (bhpneng + dhp). (11)

2) Singular Perturbation: For the gasoline two-stage tur-
bocharging, the model simplification by a singular perturbation
theory is applicable as described in [18]. This results in the
following equations:

ṁc,lp = ṁc,hp = ṁasp (12)

and

ṁasp + ṁ f uel = ṁt,hp + ṁwg,hp (13)

= ṁt,lp + ṁwg,lp. (14)

3) Modeling of the Wastegate Opening Area: Pneumatic
systems are used for actuating the wastegate opening area
in the given setup. The HP wastegate is actuated via under-
pressure and the LP stage via excesspressure, which makes
the system behavior of each stage different. The PWM signal
uwg,hp adjusts the ratio of underpressure delivered by a vacuum
pump, which is mixed with ambient pressure. In contrast to
that, the LP stage uses the charging pressure to actuate the
wastegate. The PWM signal uwg,lp adjusts the ratio of charging
pressure, which is mixed with the ambient pressure. In both
cases, the opening area can be calculated by force equilibrium
of the different acting forces. For gaining fast computations,
the resulting opening area characteristic has been determined
by simulations and was afterward approximated by a smooth
function. The HP stage opening area Awg,hp depends mainly
on the actuated signal, and it correlates linearly, such that a
simple model can be used

Awg,hp =
(

1 − uwg,hp

100

)
Awg,hp,max. (15)

In contrast to that, the dependence of the LP stage opening
area on the current boost pressure cannot be neglected. It was
modeled by two sigmoid functions

Awg,lp = f1(�c,lp�c,hp) f2(uwg,lp) (16)

with

fi (x) = ai + bi

1 + e
−x+ci

di

(17)

where ai , bi , ci , and di are constants for i = 1, 2, which
need to be identified. For the dynamics of the actuator, only
a deadtime is considered, as detailed in Section III-B4.

4) Deadtime: When the turbocharger architecture is imple-
mented in a vehicle, a quite considerable deadtime results.
The deadtime arises between the change of the manipu-
lated variables (uwg,hp and uwg,lp) and the reaction of the
system referring to the pressure ratios over the compressor
(�c,lp and �c,hp) and, consequently, also the controlled vari-
able ( pboost). The main reason for the deadtime can be found in
the pneumatic actuation as a change in the PWM signal must
result in a pressure change inside the wastegate actuator before
the wastegate position changes. An additional reason for the
deadtime can be found in the volumes of the air and exhaust
path as well as the components, such as the intercooler. The
volumes have to be filled or depleted, and the components have
to be passed by the gas. Instead of modeling all these effects
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individually, they are summarized as one overall deadtime tD ,
which acts directly on the input

uwg,� = uwg,�(t − tD). (18)

Based on the measurement data, the resulting deadtime is
estimated to be tD = 0.45 s. This value is quite large and
makes the control task more challenging for NMPC.

C. Resulting State-Space Model

Within the NMPC problem formulation, the resulting state-
space model is used that consists of a set of DAEs. For this
purpose, let x(t) ∈ R

nx denote the differential states, ẋ(t) the
differential state derivatives, z(t) ∈ R

nz the algebraic variables,
and u(t) ∈ R

nu the control inputs and u̇(t) their derivatives.
The system is governed by introducing the differential states
x1 = �c,lp, x2 = �c,hp, and the algebraic states z1 = �t,lp,
z2 = �t,hp. The model constants can be summarized as
c1, . . . , c8, which are described further in Appendix A. Based
on the latter parameters and setting κair = 1.4 as well as
κexh = 1.33, the resulting DAE system reads as

�̇c,lp(t) = c1 pamb
(
�1.5

t,lp − �1.25
t,lp

)√
�−1.5

t,lp − �−1.75
t,lp

− c2 pambneng�c,hp
(
�1.29

c,lp − �c,lp
)

(19)

0 = �c,lp�c,hp − c3
1

neng

√
�0.5

t,lp − �0.25
t,lp

· (√�t,lp + c4 Awg,lp(�c,lp�c,hp, uwg,lp(t − tD)))

(20)

�̇c,hp(t) = c5 pamb�t,lp
(
�1.5

t,hp − �1.25
t,hp

)√
�−1.5

t,hp − �−1.75
t,hp

− c6 pambneng�c,lp
(
�1.29

c,hp − �c,hp
)

(21)

0 = �c,lp�c,hp − c7
1

neng
�t,lp

√
z0.5

2 − �0.25
t,hp

· (√�t,hp + c8 Awg,hp(uwg,hp(t − tD))) (22)

with the output functions

pboost = pamb�c,lp�c,hp (23)

ntc,lp =
√

(alp�c,lp + blp) (24)

ntc,hp =
√

(ahpneng + chp)�c,hp + (bhpneng + dhp). (25)

The DAE model is of index 1 and consists of two differential
and two algebraic states. The output y1 corresponds to the
boost pressure pboost, which forms the tracking objective.
The outputs y2 and y3 correspond to the LP ntc,lp and the
HP ntc,hp turbocharger speeds, which will be constrained as
part of the OCP.

IV. NONLINEAR MODEL PREDICTIVE CONTROL

AND STATE ESTIMATION

This section gives an overview on the entire closed-loop
system, as shown in Fig. 2. The key element is the direct
optimal control method, which has been applied, in this paper,
to obtain a fast NMPC implementation. An extended Kalman
Filter (EKF) is used to observe the state of the system, and
additionally, a deadtime compensator (DTC) is implemented
to account for the considerable deadtime.

Fig. 2. Illustration of the closed-loop system on the dSpace MicroAutoBox:
NMPC based on ACADO code generation with DTC and EKF.

A. Disturbance Model and State Observer

One of the goals for the closed-loop controller is to achieve
offset-free tracking, even in the presence of disturbances and
model-plant mismatch. More precisely, our aim is that the
boost pressure yboost is reference tracked without offset for the
case that the reference and the disturbances are asymptotically
constant. For this purpose, a pure output disturbance model can
be used as discussed in [19]. The boost pressure calculation is,
therefore, augmented by an additional disturbance state d(t)

yboost(t) = pambx1x2 + d(t) (26)

where the disturbance variable is assumed to be constant over
the time horizon, i.e., ḋ = 0. By augmenting the state vector

x̄(t) =
[

x(t)
d(t)

]
(27)

the overall system equations, including the disturbance model,
can be represented as

0 = f ( ˙̄x(t), x̄(t), z(t), u(t − tD)) (28)

y = g(x̄(t)). (29)

All system, disturbance, and output variables are assumed
to exhibit zero mean Gaussian white noise. An EKF filter is
used for the estimation of the system states and disturbances,
as described in [20]. The EKF updates the state estimates
with a sampling time tsamp = 0.01 s. For the relation between
continuous time t and the discrete time index k ∈ {1, 2, 3, . . .},
it follows t = t0 + k · tsamp, and for the deadtime, kD =
�tD/tsamp�. Denoting x̄−

es,k as the a priori state estimate at time
index k and the a priori error covariance as P−

k and defining
Jx,k = (∂φ(·)/∂xk)|x̄es,k ,uk−kD

and Jy,k = (∂g(·)/∂xk)|x̄−
es,k

,
the prediction step reads as

x̄−
es,k = φ(x̄es,k−1, uk−1−kD ) (30)

P−
k = J x,k−1 · Pk−1 · JT

x,k−1 + QKF. (31)

The function φ(xi , ui ) denotes the numerical simulation of
the nonlinear dynamics throughout one sampling step, starting
from the given state xi and using the control inputs ui . Since
the model consists of an implicit DAE system in (28), and
also, an implicit integration method is needed as discussed
in [21]. For calculating the Jacobian matrices, algorithmic
differentiation [22] techniques are used in combination with a
tailored sensitivity propagation for the implicit Runge–Kutta
integration method [21]. The correction step, calculating the
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a posteriori estimates for the system state x̄es,k and the error
covariance Pk , reads as

Lk = P−
k · J T

y,k

J y,k · P−
k · JT

y,k + RKF
(32)

x̄es,k = x̄−
es,k + Lk · (

ymeas,k − g
(
x̄−

es,k

))
(33)

Pk = (� − Lk · J y,k) · P−
k . (34)

B. Deadtime Compensation

The EKF provides the current state estimate x̄es,k , which
can be used along with the model (28) and (29) in the
NMPC algorithm to compute the next control input. However,
the deadtime is typically compensated for based on a predic-
tion, which results in a smaller problem size for optimization.
A delay-free model can be considered based on the same
system dynamics as (28) and (29)

0 = f ( ˙̂x(t), x̂(t), ẑ(t), u(t)) (35)

y = g(x̂(t)). (36)

The new states x̂k correspond to the states x̄k+kD, shifted by
the deadtime. The predicted states x̂es,k need to be obtained,
using the inputs which have already been applied to the plant.
Note that for this purpose, the last kD inputs need to be
stored. Using �(x̄i , ui−kD , . . . , ui−1) to denote the numerical
integration from i → i + kD starting from the initial state x̄i

with the actuated signals ui−kD , . . . , ui−1, it follows:
x̂es,k = �(x̄es,k, uk−kD , . . . , uk−1). (37)

C. Optimal Control Problem Formulation

The NMPC scheme needs to solve one nonlinear OCP
at each sampling instant. Let us introduce the following
continuous time OCP formulation for the delay-free model:

min
x(·),u(·)

1

2

∫ tch

0
F (x(t), u(t)) dt + 1

2
FN (x(tch)) (38)

s.t. 0 = x(0) − x̂es, (39)

0 = f (ẋ(t), x(t), z(t), u(t)) ∀t ∈ [0, tch] (40)

with the following additional path constraints on the inputs
and outputs of the system:

¯
y2 − s(t) ≤ y2(t) ≤ ȳ2 + s(t) ∀t ∈ [0, tch] (41)

¯
y3 − s(t) ≤ y3(t) ≤ ȳ3 + s(t) ∀t ∈ [0, tch] (42)

¯uwg,lp ≤ uwg,lp(t) ≤ ūwg,lp ∀t ∈ [0, tch] (43)

¯uwg,hp ≤ uwg,hp(t) ≤ ūwg,hp ∀t ∈ [0, tch] (44)

¯̇uwg,lp ≤ u̇wg,lp(t) ≤ ¯̇uwg,lp ∀t ∈ [0, tch] (45)

¯̇uwg,hp ≤ u̇wg,hp(t) ≤ ¯̇uwg,hp ∀t ∈ [0, tch] (46)

0 ≤ s(t) ∀t ∈ [0, tch], (47)

and the stage and terminal cost functions defined as

F(x(t), u(t)) = ‖y1(t) − yboost,ref(t)‖2
Q + ‖u(t)‖2

R

FN (x(tch)) = ‖y1(tch) − yboost,ref (tch)‖2
Q N

. (48)

This nonlinear OCP depends on the parameter x̂es ∈ R
nx ,

which denotes the current state estimate, through the initial

value condition of (39). The dynamic optimization problem
is defined over the control horizon tch. The change rates of
the controls and the slack variable are optimized directly u :=
[u̇wg,hp, u̇wg,lp, s]� ∈ R

3. The slack variable s(t) is used to
penalize violations of the constraints in (41) and (42), which
allows to always have a feasible optimization problem.

The NMPC objective consists of a least squares tracking
cost, note that the reference signal yboost,ref(t) is used as a con-
stant value over the prediction horizon. The path constraints
consist of simple bounds defined by (41)–(47). The implicit
dynamics from (40) are given by the DAE system in (19)–(22).
As the DAE is of index 1, the Jacobian matrix (∂ f (·)/∂ (z, ẋ))
is invertible, which is needed by most numerical simulation
methods.

D. Direct Multiple Shooting Discretization

Direct optimal control methods proceed by first form-
ing a discrete approximation of the continuous time OCP
from (38)–(47), such that one can solve the resulting
tractable nonlinear program (NLP). For the sake of simplicity,
an equidistant grid of N shooting intervals is considered
over the control horizon consisting of time points ti , where
tN − t0 = tch and ti+1 − ti = (tch/N) for i = 0, . . . , N − 1.
Additionally, the notation will be simplified by restricting to
a piecewise constant control parameterization u(τ ) = ui for
τ ∈ [ti , ti+1).

A popular approach is known as direct multiple shooting,
which was proposed in [23]. For the OCP in (38)–(47),
the following NLP results:

min
X, U

1

2

N−1∑
i=0

F (xi , ui ) + 1

2
FN (xN ) (49)

s.t. 0 = x0 − x̂es (50)

0 = xi+1 − φ (xi , ui ) , i = 0, . . . , N − 1 (51)

including the path constraints

¯
y2 − si ≤ y2,i ≤ ȳ2 + si , i = 0, . . . , N (52)

¯
y3 − si ≤ y3,i ≤ ȳ3 + si , i = 0, . . . , N (53)

¯uwg,lp ≤ uwg,lp,i ≤ ūwg,lp, i = 0, . . . , N (54)

¯uwg,hp ≤ uwg,hp,i ≤ ūwg,hp, i = 0, . . . , N (55)

¯̇uwg,lp ≤ u̇wg,lp,i ≤ ¯̇uwg,lp, i = 0, . . . , N − 1 (56)

¯̇uwg,hp ≤ u̇wg,hp,i ≤ ¯̇uwg,hp, i = 0, . . . , N − 1 (57)

0 ≤ si , i = 0, . . . , N − 1 (58)

and the discrete stage and terminal cost functions read as

F(·) = ‖y1,i − yboost,ref‖2
Q + ‖ui‖2

R (59)

FN (·) = ‖y1,N − yboost,ref‖2
Q N

(60)

with state trajectory X = [x�
0 , . . . , x�

N ]� and control
trajectory U = [u�

0 , . . . , u�
N−1]�. For the sake of simplicity,

the latter NLP does not include algebraic states in the decision
variables as in [24], since they only enter the DAE system.
Note that the penalization of the control change rate is imple-
mented in the dynamic optimization software by including an
extra state which denotes the original control value, while its
time derivative is defined as the new control input.
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E. Real-Time Iterations and Closed-Loop Stability

To solve the NLP in (49)–(58), this paper considers an
SQP approach. It solves a sequence of quadratic program (QP)
approximations and can converge to a locally optimal solution
of the original NLP. Note that one is typically satisfied with
finding a local minimizer in case of nonconvex optimiza-
tion [25], especially within online algorithms for NMPC [26].
Since the OCP consists of a least squares type objective,
the generalized Gauss–Newton method [27] is used. All non-
linear functions in the NLP are linearized with automatic
differentiation at each SQP iteration. There are different
options to efficiently solve the large structured QP [28]. In the
proposed algorithm, condensing has been used in combination
with qpOASES [29].

In NMPC, one needs to solve this nonlinear OCP at each
sampling instant. For this purpose, specific online algorithms
have been developed, such as the RTI scheme [30], which is
used in our proposed implementation. The idea is to minimize
the computational delay between obtaining the new state esti-
mate x̂es and applying the next control input. It has been shown
in [30] that, under some reasonable assumptions, the stability
of the closed-loop system based on the RTI scheme can also be
guaranteed in presence of inaccuracies, model errors, or exter-
nal disturbances.

To obtain a real-time feasible NMPC implementation on
the embedded control hardware, the ACADO code generation
tool has been used as presented in [21] and [31]. It is part of
the open-source ACADO Toolkit, which can be downloaded
from www.acadotoolkit.org. The code generation tool
exports highly efficient, standalone C-code implementing the
RTI scheme for fast optimal control. It supports the ability to
exploit specific model structures as detailed in [21].

V. SIMULATIVE ASSESSMENT OF NMPC

Before testing the NMPC in the vehicle, closed-loop simu-
lations have been conducted. The main purpose of the simula-
tions is the parameterization and validation of the scheme,
concerning the aforementioned control requirements. Addi-
tionally, its performance has been compared with alternative
control algorithms. The simulations are conducted on the
control prototyping hardware that is also used in the vehicle.
Thus, it is possible to evaluate the computation time of
the NMPC algorithm, which allows to check for real-time
feasibility during parameterization of the algorithm.

A. Parameterization of NMPC

In case of NMPC, quite a few parameters have to be tuned
to realize closed-loop control that satisfies real-time feasibility
while achieving high control quality. The control horizon is set
to tch = 1.5 s, which allows to cover the whole dynamics
until steady state of the system. If the control horizon is
chosen too short, the control performance decreases, and in the
worst case, the turbocharger speed limits cannot be respected
anymore. In order to maintain real-time feasibility, the NMPC
scheme does not use the sampling time of NMPC as the
discretization step size. Instead, N = 20 intervals are used,
which results in a discretization time tdis = 75 ms for each

shooting interval. In the simulations, it has shown to be more
effective to use a larger discretization time along with a longer
control horizon instead of using smaller discretization times
and horizon lengths. The implicit Runge–Kutta method, used
for simulating the DAE system, is based on a fixed integration
step size of tint = 37.5 ms. The RTI scheme is used, based on
one SQP iteration per time step. To solve each QP subproblem,
condensing with qpOASES is used with NQP = 50, as the
maximum number of active set changes.

A terminal cost in combination with a sufficiently long
control horizon can be used for obtaining closed-loop stability
of the resulting NMPC scheme [32]. For real-time purposes,
it is advantageous to avoid the storage or online computation
of a terminal region and corresponding cost for each output
and disturbance signal. In the simulations and during the
conducted experiments, no situations were encountered, where
the terminal cost (60) was insufficiently represented. Instead,
the used control horizon is sufficient for stabilization in this
case, where the stage cost in (59) has been tuned mainly to
result in fast reference tracking. For the EKF, the covariance
matrices were chosen, such that quick disturbance estimation
is achieved, as the present noise is rather weak.

With these parameterization choices, the following values
result for the computation time and memory footprint of the
NMPC algorithm on the prototyping hardware.

1) Average Computation Time: 39 ms.
2) Maximum Computation Time: 43 ms.
3) Memory Usage (Whole ECU incl. NMPC): 4105 kB.

Note that this particular NMPC scheme solves an NLP that
consists of 384 optimization variables, 324 equality con-
straints, and 260 inequality constraints in every time step. The
maximum computation time is observed, when the maximum
number of QP-iterations NQP = 50 is reached, which happens,
e.g., at the very first time step after a big step in the reference
value. In order to always ensure that the solution can be
calculated in one sampling step, the sampling time for the
whole airpath control was set to tsamp = 50 ms.

B. Validation of NMPC

The general functionality of the NMPC algorithm has been
compared with linearized MPC schemes. A linear time invari-
ant (LTI) and an LTV MPC controller have been implemented
in simulation. The LTI scheme uses one linear model over the
entire operating region, whereas the LTV MPC calculates the
linearized model around the recent operating point in every
time step. In the case of LTI and LTV MPC, the weighting
matrices heavily affect the control action. If the weighting
factors are chosen too high, overshoots in the boost pressure
will result as well as violations of the turbocharger speed limits
ntc,hp and ntc,lp. For this reason, the weighting matrices have
been chosen, such that reference tracking is as quick as pos-
sible, without allowing for such violations of the turbocharger
speed limit and without considerable overshoots.

For one specific reference step, the LTI, LTV MPC, and
NMPC can be tuned, such that they show stabilizing control
in simulations, are able to consider the constraints on the
turbocharger speed limits, and allow for offset-free reference
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Fig. 3. Steady-state measurement data for neng = 2500 1/min, along with
change in boost pressure for 10% lp-wastegate actuation.

TABLE I

COMPARISON OF TIME t95 BETWEEN NONLINEAR MPC,
LTV MPC, AND LTI MPC

TABLE II

COMPARISON OF GRADIENTS AT STEADY-STATE MEASUREMENT
DATA FOR neng = 2500 1/min (FIG. 3)

tracking. The difference arises in the time t95, which is the
time needed for reaching 95% of the reference. Table I gives
an overview on t95 for different load steps, under nominal
conditions for neng = 1500 1/min. All step responses have
been carried out, starting from the same initial conditions.

The difference between NMPC and LTV MPC is around
0.5 s for the two control concepts, which is a considerable and
perceptible amount. To explain this further, Fig. 3 along with
Table II shows the steady-state behavior (with experimental
data) for a constant engine speed. Depending on the operating
point, the gradients change significantly. The behavior is
qualitatively present in the entire operating range. This has
to be considered in a suitable control scheme, especially for
a large step in the boost pressure. In contrast to the other
concepts, NMPC is aware of these nonlinearities in advance,
such that the reference can be tracked much faster. For
quick response, the NMPC activates the constraint in transient

operation for the HP turbocharger speed limit (a qualitatively
comparable closed-loop trace can be found in [15], where this
constraint activation can be seen). For the case of LTI and
LTV MPC, it is possible that the future gradient is assumed
to be too flat. This will result in an aggressive control action,
which causes an overshoot on the boost pressure and constraint
violations. To counteract this behavior, the weighting matrices
have to be adjusted accordingly. By putting less weight on the
reference tracking term, this consequently leads to a slower
dynamic response.

The closed-loop behavior of LTI MPC is very dependent
on the operating point, the linear model that is used, and the
tuning of the weights. For a small step in the boost pressure
reference, a stable behavior with quite reasonable times for
t95 can be found, comparable with the ones from LTV MPC.
However, if the setpoint change is large, a tuning can still be
found that results in stable behavior for this specific step in
the operating point. The drawback is that the system response
is rather slow, compared with LTV and NMPC. Additionally,
it results in an unstable behavior when a setpoint change is
applied that is considerably different from the one for which
the model and the weighting factors have been tuned.

The closed-loop simulations serve as an important platform
for validation of the general functionality of the different
MPC schemes and parameterization with respect to char-
acteristics, such as real-time feasibility. As can be seen in
Sections VI and VII, the simulations fit qualitatively well with
the experimental results that have been gained. However,
the values for t95 do not quantitatively correspond to the values
from the experiments, as different physical processes are not
incorporated in the simulation model. For example, in the real
operation, the steps start in the throttled operating region and,
then, go to the boosted region. In the simulations, the initial
condition corresponds to the boost pressure at open throttle.

VI. IN-VEHICLE VALIDATION OF THE CONTROL

CONCEPT: VEHICLE DYNAMOMETER

The first step of vehicle testing was done on a vehicle
dynamometer. This offers the possibility to test the airpath
control for the case of a constant engine speed, which is a
major disturbance variable.

In Fig. 4, the results of vehicle testing at the dynamometer
with the LTI MPC at constant engine speed neng = 2500 1/min
are shown. As expected by simulation, one can see that small
load steps can be managed reasonably well. The time t95 is
quite high, but the closed-loop control is stable and achieves
the reference without any offset. If the load step is higher
than what the LTI scheme was originally tuned for, it will
result in an oscillatory behavior. Going even higher, in this
case, yboost,ref = 2 bar, will result in an unstable behavior.
The behavior is as expected, as the closed-loop gain will get
bigger with increasing loads (see Fig. 3).

In Fig. 5, one exemplary closed-loop control result for the
NMPC is depicted. In the given case, a step is applied from
the nonboosted region to a high value of boost pressure of
yboost,ref = 2.2 bar at a constant engine speed of neng =
2500 1/min on the dynamometer. The closed-loop controller
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Fig. 4. Experiments on dynamometer: LTI MPC control for steps in the
boost pressure reference signals at constant engine speed neng = 2500 1/min.

is able to meet all specified criteria. It is possible to track the
reference without overshoot and without offset, by rejecting
all disturbances. At the same time, the controller is able
to respect the HP and LP turbocharger speed limits. It can
be observed that the control scheme is able to exploit the
turbocharging architecture. First, the HP stage is used to
quickly increase boost pressure. However, it is only used as
much, such that the speed limit is not violated. Simultane-
ously, the speed of the LP stage is increased. Both stages
are balanced, such that no overshoot is present, which is
especially challenging as yboost = yboost,ref is reached before
the system goes to steady state. After reaching the setpoint,
the actuation as well as the turbocharger speeds are still chang-
ing, which shows the advantage of the nonlinear predictive
control.

In addition, Fig. 6 shows the control results, where the
same boost pressure reference step is applied for different
constant engine speeds, all measured at the dynamometer.
The control requirements can be met for all engine speeds.
Additionally, the pressure ratios are illustrated for each case.
They show that at all three engine speeds, the HP stage is used
for quick increase in boost pressure. At neng = 2000 1/min,
the control relies in a relatively similar fashion on the HP
and the LP stage in stationary operation. Compared with that,
at neng = 3000 1/min, the boost pressure is realized almost
completely by the LP stage. In conclusion, the control concept
is able to account for the changeover between the two stages,
such that the design goals of the two-stage turbocharging are
realized (high dynamics with HP stage and high power with
LP stage).

Fig. 5. Experiments on dynamometer: NMPC control for a step in the boost
pressure reference signal at constant engine speed neng = 2500 1/min.

Fig. 6. Experiments on dynamometer: NMPC control for a step in the boost
pressure reference signal at different constant engine speeds.

VII. IN-VEHICLE VALIDATION OF THE CONTROL

CONCEPT: TESTING ON THE ROAD

The testing on the vehicle dynamometer provides important
insights to the control system and its performance. However,
as the process is highly nonlinear, random reference values
and disturbance signals can have a drastic impact on the
control performance. For this reason, experimental testings on
the road are inevitable to demonstrate functionality. For the
road testing, random drive profiles have been driven on an
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Fig. 7. Experiments on the road: NMPC control for a random driving maneuver with varying engine speed incl. gear shifts.

Fig. 8. Experiments on the road: detailed view on NMPC control for tip-in maneuver with varying engine speed.

automotive testing track. The experiments have shown that
the developed NMPC control algorithm is able to have high
performance in the entire operating range, for all drive profiles.

Fig. 7 shows an exemplary control result of the NMPC.
In this case, a random driving maneuver is conducted, which
includes varying engine speed with changes in gear shift.
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In Fig. 7, the relevant traces for the boost pressure setpoint
and measurement, wastegate actuation, turbocharger speeds,
vehicle speed, engine speed, pressure ratios over compressor,
and the torque setpoint are shown. The NMPC controller
is able to follow the boost pressure setpoint profile accu-
rately. Additionally, the HP stage is used to quickly increase
boost pressure in transients. The controller makes use of the
different stages taking into account the different values for
the turbocharger speed limits. At t = 19.5 s, a minimal
violation of the lp-speed constraint can be seen, which is
due to the implementation as soft constraint and also due
to the model-plant mismatch. Taking into account that the
strategy is realized without using turbocharger speed sensors
and only relying on the model (the plotted profile corresponds
to measurement values, which were only used for validation
purposes), it is a very good result. All in all, the engag-
ing and disengaging of the different stages work even for
the case of speed transient operation with random driving
profiles.

For better evaluation of the control performance, Fig. 8
shows one tip-in maneuver in detail. The reference can be
accurately tracked, despite the variations in the signals of boost
pressure reference and engine speed. A certain lag is present
between the reference and the system output, which cannot
be overcome as it results from the deadtime of the system
and the inertia of the turbochargers. For better evaluation,
also the boost pressure output profile is plotted, but shifted
by the deadtime of tD = 0.45 s. Just as in the case of
vehicle dynamometer testings, one can see that the control
uses the HP stage to quickly increase the boost pressure.
It should be stressed that the HP stage is only used in such
a way that the limit values on the turbocharger speed are
taken into account, which intuitively corresponds to an optimal
strategy.

VIII. CONCLUSION

Novel airpath concepts are investigated for gasoline engines
to reduce fuel consumption. One of them is the serial two-stage
turbocharging. This airpath concept exhibits strong nonlinear
behavior while having high demands on the control quality.
The turbocharger speed limits should not be violated, and no
overshoots in the boost pressure should be present. For achiev-
ing these goals, an NMPC approach is investigated in this
paper. The basis of this NMPC scheme is a physically driven
reduced-order state-space model formulated as a set of DAEs.
The scheme uses direct optimal control, based on an online
SQP type algorithm. Simulative testings have been conducted,
which show the advantage over alternative approaches. Addi-
tionally, the control algorithm has been evaluated in a vehicle,
where the airpath concept is implemented. The experiments
have been conducted on a vehicle dynamometer and also on
the road. These real-world experiments show that the control
algorithm is able to fully exploit the multi-input characteristic
of the two-stage turbocharging. The HP stage is used for quick
pressure increases, whereas the LP stage is used for high mass
flows.

APPENDIX A
MODEL PARAMETERS

The constants c1, . . . , c8 in the system of DAEs in (19)–(22)
are defined as follows:

c1 =
2cp,exh

√
Tut,lpηs,t,lp At,lp

√
2κexh

κexh−1

�tc,lpalp
√

Rexh
(61)

c2 = 2ηv Vcylcp,airTuc,lp

120RairTimηs,c,lp�tc,lpalp
(62)

c3 =
120RairTim At,lp

√
2κexh

κexh−1

(1 + λs)
√

Tut,lpVcylηv
√

Rexh
(63)

c4 =
(

1

At,lp

)
(64)

c5 =
2cp,exh

√
Tut,hpηs,t,hp At,hp

√
2κexh

κexh−1

�tc,hp(ahpneng + chp)
√

Rexh
(65)

c6 = 2ηv Vcylcp,airTuc,hp

120RairTimηs,c,hp�tc,hp(ahpneng + chp)
(66)

c7 =
120RairTim At,hp

√
2κexh

κexh−1

(1 + λs)
√

Tut,hpVcylηv
√

Rexh
(67)

c8 =
(

1

At,hp

)
. (68)

APPENDIX B
ABBREVIATIONS AND INDICES

The following abbreviations are used in this paper.

A Cross-sectional area.
cp Specific isobaric heat capacity.
d Disturbance state.
F Force.
ṁ Mass flow.
n Speed.
P Error covariance.
p Pressure.
Q, R Weighting matrices.
Rg Gas constant.
s Slack variable.
T Temperature.
t Time.
u Control input.
V Volume.
x Differential state variable.
y System output.
z Algebraic state variable.
η Efficiency.
κ Isentropic exponent.
λs Stochiometric air requirement.
� Pressure ratio.
� Power.
� Polar mass moment of inertia.
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The following indices are used in this paper.

amb Ambient conditions.
asp Aspirated.
c Compressor.
ch Control horizon.
comp Computational.
cyl Cylinder.
D Deadtime.
dc Downstream compressor.
dis Displacement.
dt Downstream turbine.
eng Engine.
exh Exhaust gas.
hp High-pressure stage.
im Intake manifold.
k Discrete timestep.
k + j |k Prediction for timestep k + j , at time k.
kf Kalman filter.
lp Low-pressure stage.
ref Reference.
s Isentropic.
samp Sampling.
t Turbine.
tc Turbocharger.
uc Upstream compressor.
ut Upstream turbine.
v Volumetric.
wg Wastegate.

APPENDIX C
NMPC CONTROLLER SETTING

The following settings have been used for the NMPC OCP
formulation.

Q 100 000.
QN 100 000.
RU,1 1.
RU,2 1.
RS 1e9.

¯uwg,lp 0%.

¯uwg,hp 0%.
ūwg,lp 100%.
ūwg,hp 100%.

¯̇uwg,lp −200 1/s.

¯̇uwg,hp −200 1/s.
¯̇uwg,lp 200 1/s.
¯̇uwg,hp 200 1/s.
ȳ2 150 000 1/min.
ȳ3 200 000 1/min.

¯
y2 0 1/min.

¯
y3 0 1/min.
QKF diag([1e − 6; 1e − 6; 500]).
RKF 1000.
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